LTM4609IVPBF [Linear]

36VIN, 34VOUT High Effi ciency Buck-Boost DC/DC μModule; 36VIN , 34VOUT高艾菲效率降压 - 升压型DC / DC微型模块
LTM4609IVPBF
型号: LTM4609IVPBF
厂家: Linear    Linear
描述:

36VIN, 34VOUT High Effi ciency Buck-Boost DC/DC μModule
36VIN , 34VOUT高艾菲效率降压 - 升压型DC / DC微型模块

文件: 总24页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4609  
36V , 34V High Efficiency  
IN  
OUT  
Buck-Boost DC/DC µModule  
FEATURES  
DESCRIPTION  
The LTM®4609 is a high efficiency switching mode buck-  
boost power supply. Included in the package are the  
switchingcontroller,powerFETsandsupportcomponents.  
Operating over an input voltage range of 4.5V to 36V, the  
LTM4609 supports an output voltage range of 0.8V to  
34V, set by a resistor. This high efficiency design delivers  
up to 4A continuous current in boost mode (10A in buck  
mode). Only the inductor, sense resistor, bulk input and  
output capacitors are needed to finish the design.  
n
Single Inductor Architecture Allows V Above,  
IN  
Below or Equal to V  
OUT  
n
Wide V Range: 4.5V to 36V  
IN  
OUT  
n
Wide V  
OUT  
Range: 0.8V to 34V  
n
n
n
n
n
n
n
n
n
I
: 4A DC (10A DC in Buck Mode)  
Up to 98% Efficiency  
Current Mode Control  
Power Good Output Signal  
Phase-Lockable Fixed Frequency: 200kHz to 400kHz  
Ultrafast Transient Response  
Current Foldback Protection  
Output Overvoltage Protection  
Small, Low Profile Surface Mount LGA Package  
(15mm × 15mm × 2.8mm)  
Thelowprofilepackageenablesutilizationofunusedspace  
on the bottom of PC boards for high density point of load  
regulation. The high switching frequency and current  
mode architecture enable a very fast transient response  
to line and load changes without sacrificing stability. The  
LTM4609 can be frequency synchronized with an external  
clock to reduce undesirable frequency harmonics.  
APPLICATIONS  
n
Faultprotectionfeaturesincludeovervoltageandfoldback  
current protection. The DC/DC μModule® is offered in a  
small thermally enhanced 15mm × 15mm × 2.8mm LGA  
package. The LTM4609 is Pb-free and RoHS compliant.  
Telecom, Servers and Networking Equipment  
n
Industrial and Automotive Equipment  
n
High Power Battery-Operated Devices  
L, LT, LTC, LTM, Linear Technology, the Linear logo and μModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Efficiency and Power Loss  
vs Input Voltage  
30V/2A Buck-Boost DC/DC μModule with 5V to 36V Input  
V
IN  
99  
98  
97  
96  
95  
94  
93  
92  
91  
6
5
4
3
2
1
0
CLOCK SYNC  
6.5V TO 36V  
10μF  
50V  
V
30V  
2A  
OUT  
V
IN  
PLLIN  
V
OUT  
+
10μF  
50V  
330μF  
50V  
FCB  
ON/OFF  
RUN  
LTM4609  
5.6μH  
SW1  
SW2  
R
SENSE  
+
SENSE  
R2  
0.1μF  
15mΩ  
s2  
SS  
SENSE  
EFFICIENCY  
POWER LOSS  
SGND  
V
FB  
PGND  
2.74k  
24  
(V)  
28  
36  
8
12  
16  
20  
V
32  
IN  
4609 TA01a  
4609 TA01b  
4609fa  
1
LTM4609  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
(See Table 6 Pin Assignment)  
V ............................................................. –0.3V to 36V  
OUT  
IN  
V
TOP VIEW  
BANK 2  
............................................................. 0.8V to 36V  
INTV , EXTV , RUN, SS, PGOOD.............. –0.3V to 7V  
CC  
CC  
M
L
SW1, SW2 .................................................... –5V to 36V  
V , COMP................................................ –0.3V to 2.4V  
FB  
BANK 4  
K
BANK 1  
BANK 3  
FCB, STBYMD....................................... –0.3V to INTV  
CC  
J
PLLIN........................................................ –0.3V to 5.5V  
PLLFLTR.................................................... –0.3V to 2.7V  
Operating Temperature Range  
H
G
BANK 5  
F
(Note 2)....................................................–40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range...................–55°C to 125°C  
Solder Temperature (Note 3)................................. 245°C  
E
D
C
BANK 6  
B
A
1
2
3
4
5
6
7
8
9
10  
11  
12  
LGA PACKAGE  
141-LEAD (15mm s 15mm s 2.8mm)  
T
JMAX  
= 125°C, θ = 4°C/W, WEIGHT = 1.5g  
JP  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4609EV#PBF  
LTM4609IV#PBF  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTM4609V  
141-Lead (15mm × 15mm × 2.8mm) LGA  
141-Lead (15mm × 15mm × 2.8mm) LGA  
–40°C to 85°C  
–40°C to 85°C  
LTM4609V  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
The l denotes the specifications which apply over the –40°C to 85°C  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Specifications  
l
l
V
V
Input DC Voltage  
4.5  
36  
4
V
V
IN(DC)  
IN(UVLO)  
Q(VIN)  
Undervoltage Lockout Threshold  
V
Falling  
3.4  
IN  
I
Input Supply Bias Current  
Normal  
2.8  
1.6  
35  
mA  
mA  
μA  
Standby  
Shutdown Supply Current  
V
RUN  
V
RUN  
= 0V, V  
= 0V, V  
> 2V  
= Open  
STBYMD  
STBYMD  
60  
4609fa  
2
LTM4609  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Specifications  
I
Output Continuous Current Range  
(See Output Current Derating Curves  
V
V
= 32V, V = 12V  
OUT  
10  
4
A
A
OUTDC  
IN  
IN  
= 6V, V  
= 12V  
OUT  
for Different V , V  
and T )  
A
IN OUT  
Reference Voltage Line Regulation  
Accuracy  
V
IN  
= 4.5V to 36V, V  
= 1.2V (Note 4)  
0.002  
0.02  
%/V  
ΔV /V  
FB FB(NOM)  
COMP  
l
l
Load Regulation Accuracy  
V
COMP  
V
COMP  
= 1.2V to 0.7V  
= 1.2V to 1.8V (Note 4)  
0.15  
–0.15  
0.5  
–0.5  
%
%
ΔV /V  
FB FB(LOAD)  
Switch Section  
M1 t  
M1 t  
M3 t  
M3 t  
Turn-On Time (Note 5)  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
50  
40  
25  
20  
20  
20  
50  
50  
50  
50  
220  
220  
10  
14  
14  
14  
ns  
ns  
r
f
r
f
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
DS  
Bias Current I = 10mA  
SW  
Turn-On Time  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
M2, M4 t  
M2, M4 t  
Turn-On Time  
Drain to Source Voltage V = 12V,  
ns  
r
DS  
Bias Current I = 10mA  
SW  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
ns  
f
DS  
Bias Current I = 10mA  
SW  
t
1d  
t
2d  
t
3d  
t
4d  
M1 Off to M2 On Delay (Note 5)  
M2 Off to M1 On Delay  
M3 Off to M4 On Delay  
M4 Off to M3 On Delay  
M2 Off to M4 On Delay  
M4 Off to M2 On Delay  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Mode Transition 1  
Mode Transition 2  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
M1 R  
M2 R  
M3 R  
M4 R  
Static Drain-to-Source  
On-Resistance  
Bias Current I = 3A  
mΩ  
mΩ  
mΩ  
mΩ  
DS(ON)  
DS(ON)  
DS(ON)  
DS(ON)  
SW  
Static Drain-to-Source  
On-Resistance  
Bias Current I = 3A  
20  
20  
20  
SW  
Static Drain-to-Source  
On-Resistance  
Bias Current I = 3A  
SW  
Static Drain-to-Source  
On-Resistance  
Bias Current I = 3A  
SW  
Oscillator and Phase-Locked Loop  
f
f
f
Nominal Frequency  
V
V
V
= 1.2V  
= 0V  
260  
170  
340  
300  
200  
400  
50  
330  
220  
440  
kHz  
kHz  
kHz  
kΩ  
NOM  
LOW  
HIGH  
PLLFLTR  
PLLFLTR  
PLLFLTR  
Lowest Frequency  
Highest Frequency  
= 2.4V  
R
PLLIN Input Resistance  
Phase Detector Output Current  
PLLIN  
I
f
f
< f  
> f  
–15  
15  
μA  
μA  
PLLFLTR  
PLLIN  
PLLIN  
OSC  
OSC  
4609fa  
3
LTM4609  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the –40°C to 85°C  
temperature range, otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Section  
l
V
V
Feedback Reference Voltage  
RUN Pin ON/OFF Threshold  
Soft-Start Charging Current  
Start-Up Threshold  
V
= 1.2V  
0.792  
1
0.8  
1.6  
0.808  
2.2  
V
V
FB  
COMP  
RUN  
I
SS  
V
V
V
= 2.2V  
1
1.7  
μA  
V
RUN  
V
V
V
Rising  
0.4  
0.7  
STBYMD(START)  
STBYMD(KA)  
FCB  
STBYMD  
STBYMD  
Keep-Active Power On Threshold  
Forced Continuous Threshold  
Forced Continuous Pin Current  
Rising, V  
= 0V  
1.25  
0.8  
V
RUN  
0.76  
–0.3  
0.84  
–0.1  
5.5  
V
I
V
= 0.85V  
FCB  
–0.2  
5.3  
μA  
V
FCB  
V
Burst Inhibit (Constant Frequency)  
Threshold  
Measured at FCB Pin  
BURST  
DF  
DF  
Maximum Duty Factor  
Maximum Duty Factor  
% Switch M4 On  
% Switch M1 On  
99  
99  
%
%
ns  
(BOOST, MAX)  
(BUCK, MAX)  
t
Minimum On-Time for Synchronous Switch M1 (Note 6)  
Switch in Buck Operation  
200  
250  
ON(MIN, BUCK)  
RFBHI  
Resistor Between V  
and V Pins  
99.5  
5.7  
100  
100.5  
kΩ  
OUT  
FB  
Internal V Regulator  
CC  
l
l
INTV  
Internal V Voltage  
V
I
> 7V, V = 5V  
EXTVCC  
6
6.3  
2
V
%
CC  
CC  
IN  
Internal V Load Regulation  
= 0mA to 20mA, V  
= 5V  
0.3  
5.6  
300  
60  
ΔV /V  
LDO LDO  
CC  
CC  
CC  
EXTVCC  
V
EXTV Switchover Voltage  
I
= 20mA, V  
Rising  
5.4  
V
EXTVCC  
CC  
EXTVCC  
EXTVCC  
EXTV Switchover Hysteresis  
mV  
mV  
ΔV  
ΔV  
CC  
EXTVCC(HYS)  
EXTV Switch Drop Voltage  
I
CC  
= 20mA, V  
= 6V  
150  
CC  
EXTVCC  
Current Sensing Section  
l
l
V
Maximum Current Sense Threshold Boost Mode  
Buck Mode  
160  
–130  
190  
–150  
mV  
mV  
SENSE(MAX)  
–95  
V
Minimum Current Sense Threshold Discontinuous Mode  
–6  
mV  
μA  
SENSE(MIN, BUCK)  
SENSE  
+
I
Sense Pins Total Source Current  
V
SENSE  
= V  
= 0V  
SENSE  
–380  
PGOOD  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
5.5  
7.5  
–7.5  
2.5  
10  
%
%
%
V
ΔV  
FB  
FBH  
–5.5  
–10  
ΔV  
FB  
FBL  
Returning  
ΔV  
FB  
FB(HYS)  
V
PGL  
PGOOD Low Voltage  
I
= 2mA  
= 5V  
0.2  
0.3  
1
PGOOD  
I
PGOOD Leakage Current  
V
μA  
PGOOD  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: See Application Note 100.  
Note 4: The LTM4609 is tested in a feedback loop that servos V  
to a  
COMP  
specified voltage and measures the resultant V  
.
FB  
Note 5: Turn-on and turn-off time are measured using 10% and 90%  
Note 2: The LTM4609E is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4609I is guaranteed over the full  
–40°C to 85°C temperature range.  
levels. Transition delay time is measured using 50% levels.  
Note 6: 100% test at wafer level only.  
4609fa  
4
LTM4609  
TYPICAL PERFORMANCE CHARACTERISTICS (Refer to Figure 18)  
Efficiency vs Load Current  
6VIN to 12VOUT  
Efficiency vs Load Current  
12VIN to 12VOUT  
Efficiency vs Load Current  
32VIN to 12VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
SKIP CYCLE  
DCM  
CCM  
BURST  
DCM  
BURST  
DCM  
CCM  
CCM  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 G03  
4609 G01  
4609 G02  
Efficiency vs Load Current  
5.6μH Inductor  
Efficiency vs Load Current  
8μH Inductor  
Efficiency vs Load Current  
3.3μH Inductor  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
100  
99  
98  
97  
96  
95  
94  
93  
100  
95  
90  
85  
80  
75  
70  
28V to 20V  
30V to 30V  
12V TO 5V  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
32V to 20V  
32V to 30V  
24V TO 5V  
IN  
IN  
IN  
36V to 20V  
IN  
36V to 30V  
IN  
32V TO 5V  
IN  
0
1
2
3
4
5
6
7
8
3
6
0
1
2
4
5
0
4
5
6
7
8
9
10  
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 G05  
4609 G06  
4609 G04  
Transient Response from  
12VIN to 12VOUT  
Transient Response from  
6VIN to 12VOUT  
Efficiency vs Load Current  
100  
95  
90  
85  
80  
75  
70  
I
I
OUT  
OUT  
2A/DIV  
2A/DIV  
V
V
OUT  
OUT  
200mV/DIV  
200mV/DIV  
4609 G09  
4609 G08  
200μs/DIV  
200μs/DIV  
LOAD STEP: 0A TO 3A AT CCM  
LOAD STEP: 0A TO 3A AT CCM  
5V to 16V  
IN  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
OUT  
OUT  
OUT  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
5V to 24V  
IN  
5V to 30V  
IN  
2x 15mΩ SENSING RESISTORS  
2x 15mΩ SENSING RESISTORS  
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
4609 G07  
4609fa  
5
LTM4609  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transient Response from  
32VIN to 12VOUT  
Start-Up with 6VIN to 12VOUT at  
OUT = 4A  
Start-Up with 32VIN to 12VOUT at  
OUT = 5A  
I
I
I
I
L
L
5A/DIV  
5A/DIV  
I
OUT  
2A/DIV  
I
I
IN  
IN  
2A/DIV  
5A/DIV  
V
OUT  
V
100mV/DIV  
V
OUT  
OUT  
10V/DIV  
10V/DIV  
4609 G12  
4609 G10  
4609 G11  
10ms/DIV  
0.1μF SOFT-START CAP  
200μs/DIV  
50ms/DIV  
0.1μF SOFT-START CAP  
LOAD STEP: 0A TO 5A AT CCM  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
2x 12mΩ SENSING RESISTORS  
2x 12mΩ SENSING RESISTORS  
Short Circuit with 32VIN to 12VOUT  
at IOUT = 5A  
Short Circuit with 12VIN to 34VOUT  
at IOUT = 2A  
Short Circuit with 6VIN to 12VOUT  
at IOUT = 4A  
V
OUT  
10V/DIV  
V
OUT  
5V/DIV  
I
IN  
2A/DIV  
V
OUT  
5V/DIV  
I
IN  
I
IN  
5A/DIV  
5A/DIV  
4609 G14  
4607 G15  
4609 G13  
50μs/DIV  
20μs/DIV  
50μs/DIV  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
OUTPUT CAPS: 2x 10μF 50V CERAMIC CAPS AND  
2x 47μF 50V ELECTROLYTIC CAPS  
2x 15mΩ SENSING RESISTORS  
OUTPUT CAPS: 4x 22μF CERAMIC CAPS AND  
2x 180μF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
4609fa  
6
LTM4609  
PIN FUNCTIONS  
V (Bank 1): Power Input Pins. Apply input voltage be-  
STBYMD(PinA10):LDOControlPin.Determineswhether  
theinternalLDOremainsactivewhenthecontrollerisshut  
down. See Operations section for details. If the STBYMD  
pin is pulled to ground, the SS pin is internally pulled to  
ground to disable start-up and thereby providing a single  
control pin for turning off the controller. An internal de-  
coupling capacitor is tied to this pin.  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
V
(Bank 5): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins.  
V
(Pin B6): The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
with a 100k preci-  
OUT  
PGND (Bank 6): Power Ground Pins for Both Input and  
Output Returns.  
sionresistor.Differentoutputvoltagescanbeprogrammed  
with an additional resistor between V and SGND pins.  
FB  
SW1, SW2 (Bank 4, Bank 2): Switch Nodes. The power  
inductor is connected between SW1 and SW2.  
See the Applications Information section.  
FCB(PinA9):ForcedContinuousControlInput.Thevoltage  
applied to this pin sets the operating mode of the module.  
When the applied voltage is less than 0.8V, the forced  
continuous current mode is active in boost operation and  
the skip cycle mode is active in buck operation. When the  
R
(Bank3):SensingResistorPin. Thesensingresis-  
SENSE  
tor is connected from this pin to PGND.  
+
SENSE (Pin A4): Positive Input to the Current Sense and  
Reverse Current Detect Comparators.  
pinistiedtoINTV ,theconstantfrequencydiscontinuous  
CC  
SENSE (Pin A5): Negative Input to the Current Sense and  
current mode is active in buck or boost operation. See the  
Reverse Current Detect Comparators.  
Applications Information section.  
EXTV (PinF6):ExternalV Input.WhenEXTV exceeds  
CC  
CC  
CC  
SGND (Pin A7): Signal Ground Pin. This pin connects to  
5.7V, an internal switch connects this pin to INTV and  
CC  
PGND at output capacitor point.  
shutsdowntheinternalregulatorsothatthecontrollerand  
COMP (Pin B7): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V.  
gate drive power is drawn from EXTV . Do not exceed  
CC  
7V at this pin and ensure that EXTV < V  
CC  
IN  
INTV (Pin F5): Internal 6V Regulator Output. This pin is  
CC  
for additional decoupling of the 6V internal regulator.  
PGOOD (Pin B5): Output Voltage Power Good Indicator.  
Open drain logic output that is pulled to ground when  
the output voltage is not within 7.5% of the regulation  
point.  
PLLIN (Pin B9): External Clock Synchronization Input  
to the Phase Detector. This pin is internally terminated  
to SGND with a 50k resistor. The phase-locked loop will  
force the rising bottom gate signal of the controller to be  
synchronized with the rising edge of PLLIN signal.  
RUN (Pin A8): Run Control Pin. A voltage below 1.6V will  
turn off the module. There is a 100k resistor between the  
RUN pin and SGND in the module. Do not apply more than  
6V to this pin. See the Applications Information section.  
PLLFLTR (Pin B8): The lowpass filter of the phase-locked  
loop is tied to this pin. This pin can also be used to set the  
frequencyoftheinternaloscillatorwithanACorDCvoltage.  
See the Applications Information section for details.  
SS (Pin A6): Soft-Start Pin. Soft-start reduces the input  
surgecurrentfromthepowersourcebygraduallyincreas-  
ing the controller’s current limit.  
4609fa  
7
LTM4609  
SIMPLIFIED BLOCK DIAGRAM  
V
IN  
4.5V TO 36V  
EXTV  
CC  
C1  
C
IN  
M1  
M2  
SW2  
INTV  
CC  
PGOOD  
RUN  
L
SW1  
ON/OFF  
V
OUT  
100k  
12V  
4A  
STBYMD  
COMP  
CO1  
M3  
M4  
C
OUT  
0.1μF  
100k  
R
FB  
V
FB  
7.15k  
CONTROLLER  
R
SENSE  
INT  
COMP  
+
SS  
SENSE  
SS  
0.1μF  
PLLIN  
PLLFLTR  
INT  
FILTER  
R
SENSE  
SENSE  
INT  
FILTER  
PGND  
FCB  
1000pF  
SGND  
TO PGND PLANE AS  
SHOWN IN FIGURE 15  
4609 BD  
Figure 1. Simplified LTM4609 Block Diagram  
DECOUPLING REQUIREMENTS T = 25°C. Use Figure 1 configuration.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 4A  
10  
μF  
IN  
OUT  
(V = 4.5V to 36V, V  
= 12V)  
IN  
OUT  
C
OUT  
External Output Capacitor Requirement  
(V = 4.5V to 36V, V = 12V)  
I
= 4A  
200  
300  
μF  
OUT  
IN  
OUT  
4609fa  
8
LTM4609  
OPERATION  
Power Module Description  
frequency can be synchronized by the input clock signal  
from the PLLIN pin. The typical switching frequency is  
400kHz.  
The LTM4609 is a non-isolated buck-boost DC/DC power  
supply. It can deliver a wide range output voltage from  
0.8V to 34V over a wide input range from 4.5V to 36V,  
by only adding the sensing resistor, inductor and some  
external input and output capacitors. It provides precisely  
regulated output voltage programmable via one external  
resistor. The typical application schematic is shown in  
Figure 18.  
The Burst Mode® and skip-cycle mode operations can  
be enabled at light loads in the LTM4609 to improve its  
efficiency, while the forced continuous mode and discon-  
tinuous mode operations are used for constant frequency  
applications. Foldback current limiting is activated in an  
overcurrent condition as V drops. Internal overvoltage  
FB  
andundervoltagecomparatorspulltheopen-drainPGOOD  
output low if the output feedback voltage exits the 7.5%  
window around the regulation point. Pulling the RUN pin  
below 1.6V forces the controller into its shutdown state.  
The LTM4609 has an integrated current mode buck-boost  
control, ultralow R  
FETs with fast switching speed  
DS(ON)  
andintegratedSchottkydiodes.Withcurrentmodecontrol  
and internal feedback loop compensation, the LTM4609  
modulehassufficientstabilitymarginsandgoodtransient  
performance under a wide range of operating conditions  
and with a wide range of output capacitors. The frequency  
of LTM4609 can be operated from 200kHz to 400kHz by  
setting the voltage on the PLLFLTR pin. Alternatively, its  
IfanexternalbiassupplyisappliedontheEXTV pin,then  
CC  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher input voltage range.  
Burst Mode is a registered trademark of Linear Technology Corporation.  
APPLICATIONS INFORMATION  
The typical LTM4609 application circuit is shown in  
Figure 18. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 3 for specific external capacitor  
requirements for a particular application.  
Operation Frequency Selection  
The LTM4609 uses current mode control architecture at  
constant switching frequency, which is determined by the  
internal oscillator’s capacitor. This internal capacitor is  
charged by a fixed current plus an additional current that  
is proportional to the voltage applied to the PLLFLTR pin.  
The PLLFLTR pin can be grounded to lower the frequency  
to 200kHz or tied to 2.4V to yield approximately 400kHz.  
When PLLIN is left open, the PLLFLTR pin goes low, forc-  
ing the oscillator to its minimum frequency.  
Output Voltage Programming  
The PWM controller has an internal 0.8V 1% reference  
voltage. As shown in the Block Diagram, a 100k 0.5%  
internal feedback resistor connects V  
and V pins  
FB  
OUT  
FB  
together. Adding a resistor R from the V pin to the  
FB  
A graph for the voltage applied to the PLLFLTR pin vs  
frequency is given in Figure 2. As the operating frequency  
increases, the gate charge losses will be higher, thus the  
efficiency is low. The maximum switching frequency is  
approximately 400kHz.  
SGND pin programs the output voltage:  
100k +RFB  
VOUT = 0.8V •  
RFB  
Table 1. RFB Resistor (0.5%) vs Output Voltage  
V
0.8V 1.5V 2.5V  
Open 115k 47.5k 32.4k 19.1k 15.4k  
10V 12V 15V 16V 20V 24V  
8.66k 7.15k 5.62k 5.23k 4.12k 3.4k 2.74k 2.37k  
3.3V  
5V  
6V  
8V  
11k 9.76k  
30V 34V  
9V  
OUT  
FREQUENCY SYNCHRONIZATION  
R
FB  
The LTM4609 can also be synchronized to an external  
sourceviathePLLINpininsteadofadjustingthevoltageon  
the PLLFLTR pin directly. The power module has a phase-  
V
OUT  
R
FB  
4609fa  
9
LTM4609  
APPLICATIONS INFORMATION  
locked loop comprised of an internal voltage controlled  
oscillator and a phase detector. This allows turning on the  
internal top MOSFET for locking to the rising edge of the  
external clock. A pulse detection circuit is used to detect  
a clock on the PLLIN pin to turn on the phase-lock loop.  
The input pulse width of the clock has to be at least 400ns,  
and 2V in amplitude. The synchronized frequency ranges  
from 200kHz to 400kHz, corresponding to a DC voltage  
input from 0V to 2.4V at PLLFLTR. During the start-up of  
the regulator, the phase-lock loop function is disabled.  
lower than the preset minimum output current level. The  
MOSFETs will turn on for several cycles, followed by a  
variable “sleep” interval depending upon the load current.  
During buck operation, skip-cycle mode sets a minimum  
positive inductor current level. In this mode, some cycles  
will be skipped when the output load current drops below  
1% of the maximum designed load in order to maintain  
the output voltage.  
When the FCB pin voltage is tied to the INTV pin, the  
CC  
controllerentersconstantfrequencydiscontinuouscurrent  
mode (DCM). For boost operation, if the output voltage is  
highenough,thecontrollercanenterthecontinuouscurrent  
buck mode for one cycle to discharge inductor current. In  
the following cycle, the controller will resume DCM boost  
operation. for buck operation, constant frequency discon-  
tinuous current mode is turned on if the preset minimum  
negative inductor current level is reached. At very light  
loads, this constant frequency operation is not as efficient  
as Burst Mode operation or skip-cycle, but does provide  
low noise, constant frequency operation.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
PLLFLTR PIN VOLTAGE (V)  
Input Capacitors  
4609 F02  
In boost mode, since the input current is continuous, only  
minimuminputcapacitorsarerequired.However,theinput  
current is discontinuous in buck mode. So the selection  
Figure 2. Frequency vs PLLFLTR Pin Voltage  
Low Current Operation  
of input capacitor C is driven by the need of filtering the  
Toimprovetheefficiencyatlowcurrentoperation,LTM4609  
provides three modes for both buck and boost operations  
by accepting a logic input on the FCB pin. Table 2 shows  
the different operation modes.  
IN  
input square wave current.  
For a buck converter, the switching duty-cycle can be  
estimated as:  
Table 2. Different Operating Modes  
VOUT  
D=  
FCB PIN  
0V to 0.75V  
0.85V to 5V  
>5.3V  
BUCK  
BOOST  
V
IN  
Force Continuous Mode  
Skip-Cycle Mode  
Force Continuous Mode  
Burst Mode Operation  
DCM with Constant Freq  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
DCM with Constant Freq  
IOUT(MAX)  
When the FCB pin voltage is lower than 0.8V, the controller  
behavesasacontinuous,PWMcurrentmodesynchronous  
switching regulator. When the FCB pin voltage is below  
ICIN(RMS)  
=
D(1D)  
η
In the above equation, η is the estimated efficiency of the  
V
– 1V, but greater than 0.8V, the controller enters  
INTVCC  
power module. C can be a switcher-rated electrolytic  
IN  
Burst Mode operation in boost operation or enters skip-  
cycle mode in buck operation. During boost operation,  
Burst Mode operation is activated if the load current is  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current rat-  
4609fa  
10  
LTM4609  
APPLICATIONS INFORMATION  
ings are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
required. Always contact the capacitor manufacturer for  
derating requirements.  
ripple ΔI is typically set to 20% to 40% of the maximum  
L
inductor current. In the inductor design, the worst cases  
in continuous mode are considered as follows:  
V2 • V  
V  
IN  
(
)
IN  
OUT(MAX)  
LBOOST  
V2OUT(MAX) • ƒ •IOUT(MAX) Ripple%  
Output Capacitors  
In boost mode, the discontinuous current shifts from the  
VOUT VIN(MAX) V  
(
)
OUT  
LBUCK  
where:  
input to the output, so the output capacitor C  
must be  
OUT  
V
IN(MAX) • ƒ •IOUT(MAX) Ripple%  
capable of reducing the output voltage ripple.  
For boost and buck modes, the steady ripple due to charg-  
ing and discharging the bulk capacitance is given by:  
ƒ is operating frequency, Hz  
IOUT(MAX) • V  
V  
IN(MIN)  
(
)
OUT  
Ripple% is allowable inductor current ripple, %  
VRIPPLE,BOOST  
=
COUT • VOUT • ƒ  
V
V
V
is maximum output voltage, V  
OUT(MAX)  
is maximum input voltage, V  
IN(MAX)  
VOUT VIN(MAX) V  
(
)
OUT  
VRIPPLE,BUCK  
=
is output voltage, V  
8 L •COUT VIN(MAX) • ƒ2  
OUT  
I
is maximum output load current, A  
OUT(MAX)  
The steady ripple due to the voltage drop across the ESR  
(effective series resistance) is given by:  
The inductor should have low DC resistance to reduce the  
2
I R losses, and must be able to handle the peak inductor  
current without saturation. To minimize radiated noise,  
use a toroid, pot core or shielded bobbin inductor. Please  
refer to Table 3 for the recommended inductors for dif-  
ferent cases.  
VESR,BUCK = ΔIL(MAX) ESR  
VESR,BOOST =IL(MAX) ESR  
The LTM4609 is designed for low output voltage ripple.  
R
SENSE  
Selection and Maximum Output Current  
The bulk output capacitors defined as C  
are chosen  
OUT  
withlowenoughESRtomeettheoutputvoltagerippleand  
transient requirements. C can be the low ESR tantalum  
R
is chosen based on the required inductor current.  
SENSE  
Since the maximum inductor valley current at buck mode  
is much lower than the inductor peak current at boost  
mode, different sensing resistors are suggested to use  
in buck and boost modes.  
OUT  
capacitor, the low ESR polymer capacitor or the ceramic  
capacitor. Multiple capacitors can be placed in parallel to  
meettheESRandRMScurrenthandlingrequirements.The  
typicalcapacitanceis300μF.Additionaloutputlteringmay  
be required by the system designer, if further reduction of  
outputrippleordynamictransientspikeisrequired.Table3  
shows a matrix of different output voltages and output  
capacitors to minimize the voltage droop and overshoot  
at a current transient.  
The current comparator threshold sets the peak of the  
inductorcurrentinboostmodeandthemaximuminductor  
valley current in buck mode. In boost mode, the allowed  
maximum average load current is:  
ΔIL  
V
IN  
160mV  
IOUT(MAX,BOOST)  
=
R
2
VOUT  
SENSE  
Inductor Selection  
The inductor is chiefly decided by the required ripple cur-  
rent and the operating frequency. The inductor current  
where ΔI is peak-to-peak inductor ripple current.  
L
4609fa  
11  
LTM4609  
APPLICATIONS INFORMATION  
In buck mode, the allowed maximum average load cur-  
rent is:  
The RUN pin can also be used as an undervoltage lockout  
(UVLO) function by connecting a resistor from the input  
supply to the RUN pin. The equation:  
ΔIL  
2
130mV  
RSENSE  
IOUT(MAX,BUCK)  
=
+
R1+R2  
V _UVLO=  
1.6V  
R2  
The maximum current sensing R  
mode is:  
value for the boost  
SENSE  
Power Good  
RSENSE(MAX,BOOST)  
=
The PGOOD pin is an open drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point, and tracks  
with margining.  
2•160mV • V  
2•IOUT(MAX,BOOST) • VOUT + ΔIL • V  
IN  
IN  
The maximum current sensing R  
mode is:  
value for the buck  
SENSE  
COMP Pin  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. A spice model will be provided for other control  
loop optimization.  
2•130mV  
RSENSE(MAX,BUCK)  
=
2•IOUT(MAX,BUCK) ΔIL  
A20%to30%marginonthecalculatedsensingresistoris  
usually recommended. Please refer to Table 3 for the rec-  
ommended sensing resistors for different applications.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
LTM4609 has a current mode controller, which inherently  
limitsthecycle-by-cycleinductorcurrentnotonlyinsteady  
state operation, but also in transient. Refer to Table 3.  
Soft-Start  
The SS pin provides a means to soft-start the regulator.  
A capacitor on this pin will program the ramp rate of the  
output voltage. A 1.7μA current source will charge up the  
external soft-start capacitor. This will control the ramp of  
the internal reference and the output voltage. The total  
soft-start time can be calculated as:  
To further limit current in the event of an overload condi-  
tion,theLTM4609providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 70%, then the maximum  
output current is progressively lowered to about 30% of  
its full current limit value for boost mode and about 40%  
for buck mode.  
2.4V CSS  
1.7µA  
tSOFTSTART  
=
Standby Mode (STBYMD)  
When the RUN pin falls below 1.6V, then soft-start pin is  
resettoallowforpropersoft-startcontrolwhentheregula-  
torisenabledagain.Currentfoldbackandforcecontinuous  
mode are disabled during the soft-start process. The soft-  
start function can also be used to control the output ramp  
up time, so that another regulator can be easily tracked.  
Do not apply more than 6V to the SS pin.  
Thestandbymode(STBYMD)pinprovidesseveralchoices  
for start-up and standby operational modes. If the pin is  
pulled to ground, the SS pin is internally pulled to ground,  
preventing start-up and thereby providing a single control  
pin for turning off the controller. If the pin is left open or  
decoupledwithacapacitortoground,theSSpinisinternally  
providedwithastartingcurrent,permittingexternalcontrol  
for turning on the controller. If the pin is connected to a  
Run Enable  
voltage greater than 1.25V, the internal regulator (INTV )  
CC  
The RUN pin is used to enable the power module. The pin  
can be driven with a logic input, and not exceed 6V.  
will be on even when the controller is shut down (RUN  
4609fa  
12  
LTM4609  
APPLICATIONS INFORMATION  
pin voltage <1.6V). In this mode, the onboard 6V linear  
regulator can provide power to keep-alive functions such  
as a keyboard controller.  
When the cooling is limited, proper output current de-  
rating is necessary, considering ambient temperature,  
airflow, input/output condition, and the need for increased  
reliability.  
INTV and EXTV  
CC  
CC  
The power loss curves in Figures 5 and 6 can be used  
in coordination with the load current derating curves in  
An internal P-channel low dropout regulator produces 6V  
at the INTV pin from the V supply pin. INTV powers  
Figures 7 to 14 for calculating an approximate θ for  
CC  
IN  
CC  
JA  
the control chip and internal circuitry within the module.  
the module. Column designation delineates between no  
heat sink, and a BGA heat sink. Each of the load current  
derating curves will lower the maximum load current as  
a function of the increased ambient temperature to keep  
the maximum junction temperature of the power module  
at 115°C allowing a safe margin for the maximum operat-  
ing temperature below 125°C. Each of the derating curves  
and the power loss curve that corresponds to the correct  
output voltage can be used to solve for the approximate  
TheLTM4609alsoprovidestheexternalsupplyvoltagepin  
EXTV . When the voltage applied to EXTV rises above  
CC  
CC  
5.7V, the internal regulator is turned off and an internal  
switch connects the EXTV pin to the INTV pin thereby  
CC  
CC  
supplyinginternalpower.Theswitchremainscloseaslong  
as the voltage applied to EXTV remains above 5.5V. This  
CC  
allows the MOSFET driver and control power to be derived  
from the output when (5.7V < V  
< 7V) and from the  
OUT  
θ ofthecondition.Acompleteexplanationofthethermal  
JA  
internalregulatorwhentheoutputisoutofregulation(start-  
characteristics is provided in the thermal application note  
up, short-circuit). If more current is required through the  
for the LTM4609.  
EXTV switchthanisspecified,anexternalSchottkydiode  
CC  
can be interposed between the EXTV and INTV pins.  
CC  
CC  
Ensure that EXTV ≤ V .  
DESIGN EXAMPLES  
CC  
IN  
The following list summarizes the three possible connec-  
tions for EXTV :  
Buck Mode Operation  
CC  
As a design example, use input voltage V = 12V to 36V,  
IN  
1. EXTV left open (or grounded). This will cause INTV  
CC  
CC  
V
= 12V and ƒ = 400kHz.  
OUT  
to be powered from the internal 6V regulator at the cost  
Set the PLLFLTR pin at 2.4V or more for 400kHz frequency  
and connect FCB to ground for continuous current mode  
operation.Ifadividerisusedtosetthefrequencyasshown  
in Figure 16, the bottom resistor R3 is recommended not  
to exceed 1kΩ.  
of a small efficiency penalty.  
2. EXTV connected directly to V  
(5.7V < V  
< 7V).  
CC  
OUT  
OUT  
This is the normal connection for a 6V regulator and  
provides the highest efficiency.  
3. EXTV connected to an external supply. If an external  
CC  
To set the output voltage at 12V, the resistor R from V  
pin to ground should be chosen as:  
FB  
FB  
supply is available in the 5.5V to 7V range, it may be  
used to power EXTV provided it is compatible with  
CC  
0.8V 100k  
VOUT 0.8V  
the MOSFET gate drive requirements.  
RFB =  
7.15k  
Thermal Considerations and Output Current Derating  
To choose a proper inductor, we need to know the current  
ripple at different input voltages. The inductor should be  
chosen by considering the worst case in the practical  
operating region. If the maximum output power P is 120W  
In different applications, LTM4609 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environmental thermal condition. Sufficient  
cooling should be provided to ensure reliable operation.  
4609fa  
13  
LTM4609  
APPLICATIONS INFORMATION  
at buck mode, we can get the current ripple ratio of the  
For the output capacitor, the output voltage ripple and  
transient requirements require low ESR capacitors. If  
assuming that the ESR dominates the output ripple, the  
output ripple is as follows:  
current ripple ΔI to the maximum inductor current I as  
L
L
follows:  
2
(V – VOUT )VOUT  
ΔIL  
IL  
IN  
=
ΔVOUT(P-P) =ESR • ΔIL  
V L • ƒ •P  
IN  
If a total low ESR of about 5mΩ is chosen for output ca-  
pacitors, the maximum output ripple of 21.5mV occurs at  
the input voltage of 36V with the current ripple at 4.3A.  
Figure 3 shows the current ripple ratio at different input  
voltagesbasedontheinductorvalues:2.5μH,3.3μH,4.7μH  
and 6μH. If we need about 40% ripple current ratio at all  
inputs, the 4.7μH inductor can be selected.  
Boost Mode Operation  
At buck mode, sensing resistor selection is based on  
the maximum output current and the allowed maximum  
sensing threshold 130mV.  
For boost mode operation, use input voltage V = 5V to  
IN  
12V, V  
= 12V and ƒ = 400kHz.  
OUT  
Set the PLLFLTR pin and R as in buck mode.  
FB  
2•130mV  
2•(P / VOUT )− ΔIL  
RSENSE  
=
If the maximum output power P is 50W at boost mode  
and the module efficiency η is about 90%, we can get  
the current ripple ratio of the current ripple ΔI to the  
Consider the safety margin about 30%, we can choose  
the sensing resistor as 9mΩ.  
L
maximum inductor current I as follows:  
L
2
For the input capacitor, use a low ESR sized capacitor to  
handle the maximum RMS current. Input capacitors are  
required to be placed adjacent to the module. In Figure 16,  
the 10μF ceramic input capacitors are selected for their  
ability to handle the large RMS current into the converter.  
The100μFbulkcapacitorisonlyneedediftheinputsource  
impedance is compromised by long inductive leads or  
traces.  
(VOUT V ) V η  
ΔIL  
IL  
IN  
IN  
=
VOUT L • ƒ •P  
Figure 4 shows the current ripple ratio at different input  
voltages based on the inductor values: 1.5μH, 2.5μH,  
3.3μH and 4.7μH. If we need 30% ripple current ratio at  
all inputs, the 3.3μH inductor can be selected.  
At boost mode, sensing resistor selection is based on  
the maximum input current and the allowed maximum  
sensing threshold 160mV.  
0.8  
2.5μH  
2•160mV  
0.6  
RSENSE  
=
3.3μH  
P
2•  
+ ΔIL  
η• V  
IN(MIN)  
4.7μH  
0.4  
0.2  
0
6μH  
Consider the safety margin about 30%, we can choose  
the sensing resistor as 8mΩ.  
12  
18  
24  
30  
36  
INPUT VOLTAGE V (V)  
IN  
4609 F03  
Figure 3. Current Ripple Ratio at Different Inputs for Buck Mode  
4609fa  
14  
LTM4609  
APPLICATIONS INFORMATION  
0.8  
Wide Input Mode Operation  
1.5μH  
Ifawideinputrangeisrequiredfrom5Vto36V,themodule  
will work in different operation modes. If input voltage  
0.6  
V = 5V to 36V, V  
= 12V and ƒ = 400kHz, the design  
IN  
OUT  
2.5μH  
0.4  
needs to consider the worst case in buck or boost mode  
design. Therefore, the maximum output power is limited  
to 60W. The sensing resistor is chosen at 8mΩ, the input  
capacitor is the same as the buck mode design and the  
output capacitor uses the boost mode design. Since the  
maximum output ripple normally occurs at boost mode  
in the wide input mode design, more inductor ripple cur-  
rent, up to 150% of the inductor current, is allowed at  
buck mode to meet the ripple design requirement. Thus,  
a 3.3μH inductor is chosen at the wide input mode. The  
maximum output ripple voltage is still 70mV if the total  
ESR is about 5mΩ.  
3.3μH  
4.7μH  
0.2  
0
5
6
7
8
9
10  
11  
12  
INPUT VOLTAGE V (V)  
IN  
4609 F04  
Figure 4. Current Ripple Ratio at Different Inputs for Boost Mode  
For the input capacitor, only minimum capacitors are  
needed to handle the maximum RMS current, since it  
is a continuous input current at boost mode. A 100μF  
capacitor is only needed if the input source impedance is  
compromised by long inductive leads or traces.  
Additionally, the current limit may become very high when  
the module runs at buck mode due to the low sensing  
resistor used in the wide input mode operation.  
Since the output capacitors at boost mode need to filter  
the square wave current, more capacitors are expected  
to achieve the same output ripples as the buck mode. If  
assuming that the ESR dominates the output ripple, the  
output ripple is as follows:  
Safety Considerations  
TheLTM4609modulesdonotprovideisolationfromV to  
IN  
V
OUT  
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
with a rating twice the maximum input current needs to be  
ΔVOUT(P-P) =ESR •IL(MAX)  
provided to protect each unit from catastrophic failure.  
If a total low ESR about 5mΩ is chosen for output capaci-  
tors,themaximumoutputrippleof70mVoccursattheinput  
voltage of 5V with the peak inductor current at 14A.  
An RC snubber is recommended on SW1 to obtain low  
switching noise, as shown in Figure 17.  
4609fa  
15  
LTM4609  
APPLICATIONS INFORMATION  
Table 3. Typical Components (ƒ = 400kHz)  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TDK  
C4532X7R1E226M (22μF, 25V)  
PART NUMBER  
Sanyo  
16SVP180MX (180μF, 16V), 20SVP150MX (150μF, 20V)  
PART NUMBER  
INDUCTOR VENDORS  
R
SENSE  
VENDORS  
Toko  
FDA1254  
Vishay  
Panasonic  
Power Metal Strip Resistors WSL1206-18  
Thick Film Chip Resistors ERJ12  
Sumida  
CDEP134, CDEP145, CDEP147  
V
(V)  
V
(V)  
R
Inductor  
(μH)  
C
C
C
C
I
*
OUT(MAX)  
IN  
OUT  
SENSE  
IN  
IN  
OUT1  
OUT2  
(0.5W RATING)  
(CERAMIC)  
(BULK)  
(CERAMIC)  
(BULK)  
(A)  
5
10  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
16  
16  
16  
16  
16  
16  
16  
20  
20  
20  
20  
24  
24  
24  
24  
2 × 16mW 0.5W  
2 × 18mW 0.5W  
2 × 20mW 0.5W  
2 × 18mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 14mΩ 0.5W  
2 × 16mW 0.5W  
2 × 18mW 0.5W  
2 × 18mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 18mW 0.5W  
2 × 16mW 0.5W  
2 × 14mW 0.5W  
2 × 20mW 0.5W  
2 × 20mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 18mΩ 0.5W  
2 × 18mΩ 0.5W  
1 × 12mΩ 0.5W  
1 × 13mΩ 0.5W  
2 × 16mΩ 0.5W  
2 × 18mΩ 0.5W  
1 × 14mΩ 0.5W  
1 × 13mΩ 0.5W  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
3.3  
3.3  
2.2  
2.2  
3.3  
4.7  
6
None  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 50V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 50V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 35V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
4 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
4 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
4 × 22μF 25V  
4 × 22μF 25V  
4 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
4 × 22μF 25V  
4 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
4 × 22μF 25V  
4 × 22μF 25V  
2 × 22μF 25V  
2 × 22μF 25V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 180μF 16V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 20V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
4
11  
10  
10  
9
15  
20  
24  
32  
36  
6
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 50V  
2 × 10μF 50V  
None  
9
4
16  
20  
24  
32  
36  
5
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 50V  
2 × 10μF 50V  
None  
11  
10  
9
9
9
2.5  
4
8
None  
12  
20  
24  
32  
36  
5
None  
8
2 × 10μF 25V  
2 × 10μF 25V  
2 × 10μF 50V  
2 × 10μF 50V  
NONE  
10  
10  
9
9
3.3  
3.3  
6
2
10  
32  
36  
5
NONE  
5
2 × 10μF 50V  
2 × 10μF 50V  
NONE  
9
8
8
3.3  
4.7  
4.7  
7
1.5  
5
12  
32  
36  
NONE  
2 × 10μF 50V  
2 × 10μF 50V  
8
8
4609fa  
16  
LTM4609  
APPLICATIONS INFORMATION  
Table 3. Typical Components (ƒ = 400kHz) Continued  
V
(V)  
V
(V)  
R
Inductor  
(μH)  
C
C
C
C
I
*
IN  
OUT  
SENSE  
IN  
IN  
OUT1  
OUT2  
OUT(MAX)  
(0.5W RATING)  
(CERAMIC)  
(BULK)  
(CERAMIC)  
(BULK)  
(A)  
5
30  
30  
30  
30  
34  
34  
34  
34  
2 × 16mꢀ 0.5W  
2 × 14mꢀ 0.5W  
1 × 12mꢀ 0.5W  
1 × 13mꢀ 0.5W  
2 × 18mꢀ 0.5W  
2 × 16mꢀ 0.5W  
1 × 12mꢀ 0.5W  
1 × 12mꢀ 0.5W  
3.3  
4.7  
2.5  
4.7  
3.3  
4.7  
5.6  
2.5  
NONE  
NONE  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
150μF 50V  
4 × 22μF 50V  
4 × 22μF 50V  
2 × 22μF 50V  
2 × 22μF 50V  
4 × 22μF 50V  
4 × 22μF 50V  
4 × 22μF 50V  
2 × 22μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
2 × 150μF 50V  
1.3  
3
12  
32  
36  
5
2 × 10μF 50V  
2 × 10μF 50V  
NONE  
8
8
1
12  
24  
36  
NONE  
3
NONE  
5
2 × 10μF 50V  
8
INDUCTOR MANUFACTURER  
WEBSITE  
PHONE NUMBER  
408-321-9660  
847-297-0070  
Sumida  
Toko  
www.sumida.com  
www.toko.com  
SENSING RESISTOR MANUFACTURER  
WEBSITE  
PHONE NUMBER  
949-462-1816  
814-362-5536  
800-433-5700  
Panasonic  
KOA  
www.panasonic.com/industrial/components  
www.koaspeer.com  
Vishay  
www.vishay.com  
*Maximum load current is based on the Linear Technology DC1198A at room temperature with natural convection. Poor board layout design may  
decrease the maximum load current.  
(Power Loss includes all external components)  
TYPICAL APPLICATIONS  
7
6
5
4
7
6
5
4
3
2
1
0
32V TO 12V  
IN  
OUT  
OUT  
36V TO 20V  
IN  
3
2
1
0
5V TO 16V  
IN  
OUT  
OUT  
5V TO 30V  
IN  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 F05  
4609 F06  
Figure 5. Boost Mode Operation  
Figure 6. Buck Mode Operation  
4609fa  
17  
LTM4609  
TYPICAL APPLICATIONS  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
5V TO 16V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
5V TO 16V  
IN  
5V TO 16V  
IN  
0
25 35 45 55 65 75 85 95 105 115  
AMBIENT TEMPERATURE (°C)  
25  
45  
65  
85  
105  
125  
AMBIENT TEMPERATURE (°C)  
4609 F07  
4609 F08  
5V TO 16V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
5V TO 16V  
IN  
5V TO 16V  
IN  
Figure 7. 5VIN to 16VOUT without Heat Sink  
Figure 8. 5VIN to 16VOUT with Heat Sink  
1.50  
1.25  
1.00  
0.75  
0.50  
1.50  
1.25  
1.00  
0.75  
0.50  
5V TO 30V  
IN  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
5V TO 30V  
IN  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
0.25  
0
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.25  
0
5V TO 30V  
IN  
5V TO 30V  
IN  
5V TO 30V  
IN  
5V TO 30V  
IN  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
4609 F10  
4609 F09  
Figure 9. 5VIN to 30VOUT without Heat Sink  
Figure 10. 5VIN to 30VOUT with Heat Sink  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
25  
35  
45  
55  
65  
75  
85  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
32V TO 12V  
WITH 0LFM  
32V TO 12V  
WITH 0LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
32V TO 12V  
WITH 200LFM  
32V TO 12V  
WITH 200LFM  
IN  
IN  
32V TO 12V  
WITH 400LFM 4609 F11  
32V TO 12V  
WITH 400LFM 4609 F12  
IN  
IN  
Figure 11. 32VIN to 12VOUT without Heat Sink  
Figure 12. 32VIN to 12VOUT with Heat Sink  
4609fa  
18  
LTM4609  
TYPICAL APPLICATIONS  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
25 35 45 55 65 75 85 95 105  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4609 F13  
4609 F14  
36V TO 20V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
36V TO 20V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
36V TO 20V  
36V TO 20V  
IN  
IN  
36V TO 20V  
36V TO 20V  
IN  
IN  
Figure 13. 36VIN to 20VOUT without Heat Sink  
Figure 14. 36VIN to 20VOUT with Heat Sink  
APPLICATIONS INFORMATION  
Table 4. Boost Mode  
DERATING CURVE  
Figure 7, 9  
V
(V)  
POWER LOSS CURVE  
Figure 5  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)*  
11.4  
8.5  
OUT  
JA  
16, 30  
16, 30  
16, 30  
16, 30  
16, 30  
16, 30  
0
Figure 7, 9  
Figure 5  
200  
400  
0
None  
Figure 7, 9  
Figure 5  
None  
7.5  
Figure 8, 10  
Figure 8, 10  
Figure 8, 10  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
11.0  
7.9  
Figure 5  
200  
400  
Figure 5  
7.1  
Table 5. Buck Mode  
DERATING CURVE  
Figure 11, 13  
V
(V)  
POWER LOSS CURVE  
Figure 6  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)*  
8.2  
OUT  
JA  
12, 20  
0
Figure 11, 13  
12, 20  
12, 20  
12, 20  
12, 20  
12, 20  
Figure 6  
200  
400  
0
None  
5.9  
Figure 11, 13  
Figure 6  
None  
5.4  
Figure 12, 14  
Figure 6  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
7.5  
Figure 12, 14  
Figure 6  
200  
400  
5.3  
Figure 12, 14  
Figure 6  
4.8  
HEAT SINK MANUFACTURER  
Wakefield Engineering  
Aaivd Thermalloy  
PART NUMBER  
LTN20069  
PHONE NUMBER  
603-635-2800  
603-224-9988  
375424B00034G  
*The results of thermal resistance from junction to ambient θ are based on the demo board DC 1198A. Thus, the maximum temperature on board is treated  
JA  
as the junction temperature (which is in the μModule for most cases) and the power losses from all components are counted for calculations. It has to be  
mentioned that poor board design may increase the θ  
.
JA  
4609fa  
19  
LTM4609  
APPLICATIONS INFORMATION  
Layout Checklist/Example  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
The high integration of LTM4609 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
Figure 15. gives a good example of the recommended  
layout.  
• UselargePCBcopperareasforhighcurrentpath,includ-  
SW1  
SW2  
V
IN  
ing V , R  
, SW1, SW2, PGND and V . It helps to  
IN SENSE  
OUT  
minimize the PCB conduction loss and thermal stress.  
L1  
• Place high frequency input and output ceramic capaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise  
+
• RouteSENSE andSENSE leadstogetherwithminimum  
PC trace spacing. Avoid sense lines passing through  
noisy areas, such as switch nodes.  
C
IN  
R
V
SENSE  
OUT  
• Place a dedicated power ground layer underneath the  
unit.  
C
OUT  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between the top layer and other power layers  
+
SGND  
PGND  
PGND  
R
4609 F15  
SENSE  
• Do not put vias directly on pads, unless the vias are  
capped.  
KELVIN CONNECTIONS TO R  
SENSE  
Figure 15. Recommended PCB Layout  
TYPICAL APPLICATIONS  
V
IN  
CLOCK SYNC  
12V TO 36V  
10μF  
50V  
×2  
V
12V  
10A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
100μF  
25V  
ON/OFF  
FCB  
L1  
4.7μH  
LTM4609  
COMP  
INTV  
SW1  
SW2  
CC  
R1  
PLLFLTR  
EXTV  
1.5k  
R
CC  
SENSE  
+
R3  
1k  
STBYMD  
SENSE  
C3  
0.1μF  
R2  
9mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA02  
Figure 16. Buck Mode Operation with 12V to 36V Input  
4609fa  
20  
LTM4609  
TYPICAL APPLICATIONS  
V
IN  
CLOCK SYNC  
5V TO 12V  
4.7μF  
35V  
V
12V  
4A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
330μF  
25V  
22μF  
25V  
×2  
ON/OFF  
FCB  
LTM4609  
COMP  
2200pF  
2Ω  
INTV  
SW1  
SW2  
CC  
R1  
1.5k  
PLLFLTR  
L1  
3.3μH  
OPTIONAL  
FOR LOW  
SWITCHING NOISE  
R3  
1k  
EXTV  
CC  
R
SENSE  
+
STBYMD  
SENSE  
C3  
0.1μF  
R2  
8mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA03  
Figure 17. Boost Mode Operation with 5V to 12V Input with Low Switching Noise (Optional)  
V
IN  
CLOCK SYNC  
5V TO 36V  
10μF  
50V  
×2  
V
12V  
4A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
330μF  
25V  
22μF  
25V  
×4  
ON/OFF  
FCB  
2200pF  
LTM4609  
COMP  
INTV  
SW1  
CC  
R1  
1.5k  
2Ω  
L1  
3.3μH  
PLLFLTR  
SW2  
R3  
1k  
EXTV  
CC  
R
SENSE  
+
STBYMD  
SENSE  
C3  
0.1μF  
R2  
8mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA04  
L1: TOKO FDA1254  
Figure 18. Wide Input Mode with 5V to 36V Input, 12V at 4A Output  
4609fa  
21  
LTM4609  
TYPICAL APPLICATIONS  
V
IN  
CLOCK SYNC  
8V TO 36V  
10μF  
50V  
×2  
V
32V  
2A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
220μF  
50V  
ON/OFF  
FCB  
L1  
4.7μH  
LTM4609  
COMP  
INTV  
SW1  
SW2  
CC  
R1  
PLLFLTR  
EXTV  
1.5k  
R
CC  
SENSE  
+
R3  
1k  
STBYMD  
SENSE  
C3  
0.1μF  
R2  
9mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
2.55k  
4609 TA05  
Figure 19. 32V at 2A Design  
V
IN  
5V TO 36V  
CLOCK SYNC 0° PHASE  
PLLIN  
10μF  
50V  
V
12V  
8A  
OUT  
R5  
100k  
V
IN  
PGOOD  
RUN  
V
OUT  
+
C2  
330μF  
25V  
FCB  
L1  
3.3μH  
22μF  
25V  
×2  
LTM4609  
COMP  
SW1  
SW2  
INTV  
CC  
LTC6908-1  
PLLFLTR  
R
5.1V  
SENSE  
+
C1  
EXTV  
CC  
SENSE  
0.1μF  
+
V
OUT1  
OUT2  
MOD  
R2  
8mΩ  
STBYMD  
R4  
324k  
GND  
SET  
SS  
SENSE  
C3  
0.1μF  
SGND  
V
FB  
PGND  
R
*
FB  
2-PHASE OSCILLATOR  
3.57k  
CLOCK SYNC 180° PHASE  
PLLIN  
10μF  
50V  
V
IN  
PGOOD  
V
OUT  
+
C4  
330μF  
25V  
FCB  
L2  
3.3μH  
22μF  
25V  
×2  
LTM4609  
RUN  
COMP  
SW1  
SW2  
INTV  
CC  
PLLFLTR  
EXTV  
R
SENSE  
+
*R IS SELECTED USING  
FB  
SENSE  
CC  
R3  
8mΩ  
STBYMD  
100k  
RFB  
N
SS  
VOUT 0.8V  
SENSE  
RFB  
WHERE N IS THE NUMBER  
OF PARALLELED MODULES.  
SGND  
V
FB  
PGND  
4609 TA06  
Figure 20. Two-Phase Parallel, 12V at 8A Design  
4609fa  
22  
LTM4609  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4609fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4609  
PACKAGE DESCRIPTION  
Pin Assignment Table 6  
(Arranged by Pin Number)  
PIN NAME  
A1 PGND  
A2 PGND  
A3 PGND  
A4 SENSE  
A5 SENSE  
A6 SS  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
J1 SW1  
J2 SW1  
J3 SW1  
J4 SW1  
PIN NAME  
L1 SW1  
L2 SW1  
L3 SW1  
L4 SW1  
C1 PGND  
C2 PGND  
C3 PGND  
C4 PGND  
C5 PGND  
C6 PGND  
C7 PGND  
C8 PGND  
C9 PGND  
E1  
E2  
V
V
G1  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
G2  
E3 PGND  
E4 PGND  
E5 PGND  
E6 PGND  
E7 PGND  
E8 PGND  
E9 PGND  
E10 PGND  
E11 PGND  
E12 PGND  
G3  
+
G4  
G5  
R
R
R
R
R
R
R
R
J5  
J6  
J7  
R
SENSE  
R
SENSE  
R
SENSE  
L5  
L6  
R
SENSE  
R
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
OUT  
G6  
A7 SGND  
A8 RUN  
A9 FCB  
G7  
L7 SW2  
L8 SW2  
L9 SW2  
G8  
J8 SW2  
J9 SW2  
G9  
A10 STBYMD C10 PGND  
G10  
G11  
G12  
H1  
J10  
J11  
J12  
V
IN  
V
IN  
V
IN  
L10  
L11  
L12  
V
IN  
V
IN  
V
IN  
A11 PGND  
A12 PGND  
B1 PGND  
B2 PGND  
B3 PGND  
B4 PGND  
C11 PGND  
C12 PGND  
D1 PGND  
D2 PGND  
D3 PGND  
D4 PGND  
F1  
F2  
F3  
F4  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
V
V
V
K1 SW1  
K2 SW1  
K3 SW1  
K4 SW1  
M1 SW1  
M2 SW1  
M3 SW1  
M4 SW1  
H2  
OUT  
H3  
OUT  
H4  
OUT  
B5 PGOOD D5 PGND  
F5 INTV  
H5  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
K5  
K6  
R
R
M5  
M6  
R
R
CC  
SENSE  
SENSE  
SENSE  
SENSE  
B6  
V
D6 PGND  
D7 PGND  
F6 EXTV  
H6  
FB  
CC  
B7 COMP  
F7  
H7  
K7 SW2  
K8 SW2  
K9 SW2  
M7 SW2  
M8 SW2  
M9 SW2  
B8 PLLFLTR D8 PGND  
F8  
H8  
B9 PLLIN  
B10 PGND  
B11 PGND  
B12 PGND  
D9 PGND  
D10 PGND  
D11 PGND  
D12 PGND  
F9  
H9  
F10  
F11  
F12  
R
R
R
H10  
H11  
H12  
K10  
K11  
K12  
V
IN  
V
IN  
V
IN  
M10 V  
M11 V  
M12 V  
SENSE  
SENSE  
SENSE  
IN  
IN  
IN  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Synchronous Operation; Single Inductor; 4V ≤ V ≤ 36V; 0.8V ≤ V  
LTC3780  
36V Buck-Boost Controller  
10V Buck-Boost Controller  
10A DC/DC μModule  
≤ 30V  
OUT  
IN  
LTC3785  
Synchronous; No R  
™; 2.7V ≤ V ≤ 10V; 2.7V ≤ V  
≤ 10V  
OUT  
SENSE  
IN  
LTM4600  
Basic 10A DC/DC μModule  
LTM4601/LTM4601A 12A DC/DC μModule with PLL, Output  
Synchronizable, PolyPhase® Operation to 48A, LTM4601-1 Has No Remote  
Tracking/ Margining and Remote Sensing  
Military Plastic 10A DC/DC μModule  
6A DC/DC μModule  
Sensing  
LTM4600HVMP  
LTM4602  
–55°C ≤ T ≤ 125°C Operation; 15mm × 15mm × 2.8mm LGA  
A
Pin Compatible with the LTM4600  
LTM4603  
6A DC/DC μModule with PLL and Output  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No Remote  
Sensing, Pin Compatible with the LTM4601  
LTM4604A  
4A, Low V , DC/DC μModule  
2.375V ≤ V ≤ 5.5V; 0.8V ≤ V  
≤ 5V; 9mm × 15mm × 2.3mm  
IN  
IN  
OUT  
LTM4605/LTM4607  
LTM4606/LTM4612  
LTM4608A  
5A High Efficiency Buck-Boost DC/DC μModules Pin Compatible with LTM4609, Lower Voltage Versions of the LTM4609  
Ultralow Noise DC/DC μModules  
Low EMI; LTM4606 Verified by Xilinx to Power Rocket IO™; CISPR22 Compliant  
8A, Low V , DC/DC μModule  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V ≤ 5V; 9mm × 15mm × 2.8mm  
IN  
IN  
OUT  
No R  
is a trademark of Linear Technology Corporation. PolyPhase is a registered trademark of Linear Technology Corporation.  
SENSE  
4609fa  
LT 0809 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY