LTM4613MPV#PBF [Linear]

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -55°C to 125°C;
LTM4613MPV#PBF
型号: LTM4613MPV#PBF
厂家: Linear    Linear
描述:

LTM4613 - EN55022B Compliant 36VIN, 15VOUT, 8A, DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 133; Temperature Range: -55°C to 125°C

开关
文件: 总28页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4613  
EN55022B Compliant  
36V , 15V , 8A,  
IN  
OUT  
DC/DC µModule Regulator  
DESCRIPTION  
The LTM®4613 is a complete, ultralow noise, 8A switch  
modeDC/DCpowersupply.Includedinthepackagearethe  
switching controller, power FETs, inductor and all support  
components. Operating over an input voltage range of 5V  
to 36V, the LTM4613 supports an output voltage range of  
3.3V to 15V, set by a single external resistor. Only bulk  
inputandoutputcapacitorsareneededtofinishthedesign.  
FEATURES  
n
Complete Low EMI Switch Mode Power Supply  
n
EN55022 Class B Compliant  
n
Wide Input Voltage Range: 5V to 36V  
n
8A Output Current  
n
3.3V to 15V Output Voltage Range  
n
Low Input and Output Referred Noise  
n
Output Voltage Tracking and Margining  
n
PLL Frequency Synchronization  
High switching frequency and an adaptive on-time current  
mode architecture enables a very fast transient response  
to line and load changes without sacrificing stability.  
n
2% Maximum Total DC Error  
n
Power Good Tracks with Margining  
n
Current Foldback Protection  
n
The onboard input filter and noise cancellation circuits  
achieve low noise coupling, thus effectively reducing  
the electromagnetic interference (EMI)—see Figure 7.  
Furthermore, the DC/DC µModule® regulator can be syn-  
chronized with an external clock to reduce undesirable  
frequency harmonics and allow PolyPhase® operation for  
high load currents.  
Parallel/Current Sharing  
n
Ultrafast Transient Response  
n
Current Mode Control  
n
Programmable Soft-Start  
n
Output Overvoltage Protection  
n
–55°C to 125°C Operating Temperature Range  
(LTM4613MPV)  
n
Small Surface Mount Footprint, Low Profile  
The LTM4613 is offered in a space saving and thermally  
enhanced 15mm × 15mm × 4.32mm LGA package, which  
enables utilization of unused space on the bottom of PC  
boards for high density point-of-load regulation. The  
LTM4613 is Pb-free and RoHS compliant.  
(15mm × 15mm × 4.32mm) LGA Package  
APPLICATIONS  
n
Telecom and Networking Equipment  
n
Industrial and Avionic Equipment  
L, LT, LTC, LTM, µModule, PolyPhase, Linear Technology, and the Linear logo are registered  
trademarks and LTpowerCAD is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
n
RF Systems  
TYPICAL APPLICATION  
Radiated Emission Scan with 24VIN to 12VOUT at 8A  
12V/8A Ultralow Noise µModule with 24V to 36V Input  
70  
60  
CLOCK SYNC  
V
IN  
24V  
TO 36V  
51k  
V
PLLIN  
V
12V  
8A  
50  
40  
30  
20  
10  
0
IN  
OUT  
V
OUT  
PGOOD  
RUN  
EN55022B LIMIT  
LTM4613  
22pF  
C
OUT  
COMP  
V
FB  
5.23k  
INTV  
DRV  
CC  
CC  
C
IN  
FCB  
f
SET  
MARG0  
MARG1  
MPGM  
MARGIN  
TRACK/SS  
V
D
CONTROL  
0.1µF  
10µF  
× 3  
392k  
5% MARGIN  
SGND PGND  
–10  
30  
226.2  
422.4  
613.6  
814.3 1010.0  
4613 TA01  
FREQUENCY (MHz)  
4613 TA01b  
4613f  
1
LTM4613  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
INTV DRV ............................................. –0.3V to 6V  
OUT  
CC,  
CC  
V
........................................................... –0.3V to 16V  
PLLIN, FCB, TRACK/SS, MPGM, MARG0,  
A
B
C
D
E
V
IN  
MARG1, PGOOD ....................–0.3V to INTV + 0.3V  
CC  
f
BANK 1  
SET  
V
D
MARG0  
MARG1  
RUN .............................................................0.3V to 5V  
SGND  
V , COMP................................................ –0.3V to 2.7V  
FB  
DRV  
CC  
PGND  
BANK 2  
V , V ....................................................... –0.3V to 36V  
F
V
IN  
D
FB  
G
H
J
K
L
PGOOD  
SGND  
NC  
NC  
NC  
Internal Operating Temperature Range (Note 2)  
E- and I-Grades..................................40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Package Body Temperature.......................... 245°C  
V
OUT  
BANK 3  
FCB  
M
1
2 3 4 5 6 7 8 9 10 11 12  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 4.32mm)  
T
JMAX  
= 125°C, θ  
= 17°C/w, θ  
= 2.3°C/W, θ = 11°C/W to 14°C/W,  
JCtop  
JCbottom JA  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.7g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4613EV#PBF  
LTM4613IV#PBF  
LTM4613MPV#PBF  
TRAY  
PART MARKING*  
LTM4613V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4613EV#PBF  
LTM4613IV#PBF  
LTM4613MPV#PBF  
133-Lead (15mm × 15mm × 4.32mm) LGA  
133-Lead (15mm × 15mm × 4.32mm) LGA  
133-Lead (15mm × 15mm × 4.32mm) LGA  
LTM4613V  
–40°C to 125°C  
LTM4613V  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
4613f  
2
LTM4613  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 24V, unless otherwise noted. Per Typical  
Application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
Input DC Voltage  
5
36  
V
V
IN(DC)  
Output Voltage, Total Variation  
with Line and Load  
11.83 12.07 12.31  
C
V
= 10µF × 3, C  
= 47µF × 4; FCB = 0,  
OUT  
OUT(DC)  
IN  
IN  
OUT  
= 24V to 36V, V  
= 12V  
Input Specifications  
V
Undervoltage Lockout Threshold  
Input Inrush Current at Start-Up  
I
I
= 0A  
3.2  
4.8  
V
IN(UVLO)  
OUT  
OUT  
I
= 0A; C = 10µF × 3, C  
= 47µF × 4; C = 22nF  
SS  
INRUSH(VIN)  
IN  
OUT  
V
= 12V  
OUT  
150  
120  
mA  
mA  
V
V
= 24V  
= 36V  
IN  
IN  
I
I
Input Supply Bias Current  
Input Supply Current  
V
V
= 36V, V  
= 24V, V  
= 12V, Switching Continuous, I  
= 12V, Switching Continuous, I  
= 0A  
= 0A  
78  
60  
50  
mA  
mA  
µA  
Q(VIN)  
S(VIN)  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
Shutdown, RUN = 0, V = 36V  
IN  
V
IN  
V
IN  
= 36V, V  
= 24V, V  
= 12V, I  
= 12V, I  
= 8A  
= 8A  
2.90  
4.26  
A
A
OUT  
OUT  
OUT  
OUT  
V
Internal V Voltage  
V
= 36V, RUN > 2V, I = 0A  
OUT  
4.7  
0
5
5.3  
V
INTVCC  
CC  
IN  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 24V, V  
= 12V (Note 4)  
OUT  
8
A
OUT(DC)  
IN  
∆V  
= 12V, FCB = 0V, V = 24V to 36V,  
OUT(LINE)  
OUT  
OUT  
IN  
l
I
= 0A  
0.05  
0.3  
%
V
OUT  
∆V  
Load Regulation Accuracy  
Input Ripple Voltage  
V
= 12V, FCB = 0V, I  
IN  
IN  
= 0A to 8A (Note 4)  
OUT(LOAD)  
OUT  
V
V
OUT  
l
l
= 36V  
= 24V  
0.5  
0.5  
0.75  
0.75  
%
%
V
OUT  
V
IN(AC)  
I
= 0A,  
OUT  
C
= 1 × 10µF X5R Ceramic and 1 × 100µF Electrolytic,  
IN  
3 × 10µF X5R Ceramic on V Pins  
D
V
= 24V, V  
= 12V (Note 5)  
10  
mV  
mV  
IN  
OUT  
P-P  
P-P  
V
Output Ripple Voltage  
I
= 0A,  
OUT(AC)  
OUT  
C
= 1 × 10µF, 4 × 47µF X5R Ceramic  
OUT  
V
= 24V, V  
= 12V  
OUT  
19  
IN  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
V
C
= 24V, V  
= 12V, I = 0A  
OUT  
600  
kHz  
S
IN  
OUT  
∆V  
= 47µF × 4, V  
IN  
IN  
= 12V, I  
= 12V, I  
= 0A, C = 22nF  
OUT(START)  
OUT  
V
V
OUT  
OUT  
SS  
20  
20  
mV  
mV  
= 36V  
= 24V  
t
Turn-On Time  
C
= 47µF × 4, V  
IN  
IN  
= 0A, C = Open  
START  
OUT  
V
V
OUT  
OUT  
SS  
0.3  
0.3  
ms  
ms  
= 36V  
= 24V  
∆V  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load  
= 1 × 10µF, 3 × 47µF X5R Ceramic, 1 × 47µF POSCAP  
OUT(LS)  
C
250  
100  
mV  
µs  
OUT  
V
= 24V, V  
= 12V  
OUT  
IN  
t
I
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load  
SETTLE  
C
= 1 × 10µF, 3 × 47µF X5R Ceramic, 1 × 47µF POSCAP  
OUT  
V
IN  
= 24V, V  
= 12V  
OUT  
Output Current Limit  
C
= 47µF × 4  
OUT(PK)  
OUT  
V
V
12  
12  
A
A
= 36V, V  
= 24V, V  
= 12V  
= 12V  
IN  
IN  
OUT  
OUT  
4613f  
3
LTM4613  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C (Note 2), VIN = 24V, unless otherwise noted. Per Typical  
Application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Control Section  
l
V
V
Voltage at V Pin  
I
= 0A, V = 12V  
OUT  
0.591  
1
0.6  
1.5  
–1.5  
0.6  
–1  
0.609  
1.9  
V
V
FB  
FB  
OUT  
RUN Pin On/Off Threshold  
Soft-Start Charging Current  
Forced Continuous Threshold  
Forced Continuous Pin Current  
Minimum On-Time  
RUN  
I
V
V
= 0V  
SS/TRACK  
–1  
–2  
µA  
V
SS/TRACK  
V
FCB  
0.57  
0.63  
–2  
I
t
t
= 0V  
FCB  
µA  
ns  
ns  
kΩ  
mA  
kΩ  
FCB  
(Note 3)  
(Note 3)  
50  
100  
400  
ON(MIN)  
OFF(MIN)  
Minimum Off-Time  
250  
50  
R
PLLIN Input Resistor  
PLLIN  
I
Current into DRV Pin  
V
= 12V, I  
= 0A, DRV = 5V  
22  
30  
DRVCC  
CC  
OUT  
OUT  
CC  
R
Resistor Between V  
Pins  
and V  
FB  
99.5  
100  
100.5  
FBHI  
OUT  
V
Margin Reference Voltage  
1.18  
1.4  
V
V
MPGM  
V
V
,
MARG0, MARG1 Voltage  
Thresholds  
MARG0  
MARG1  
PGOOD  
∆V  
∆V  
∆V  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
7
10  
–10  
1.5  
0.2  
13  
%
%
%
V
FBH  
FBL  
FB  
–7  
–13  
FB  
Returning  
FB(HYS)  
FB  
V
PGOOD Low Voltage  
I
= 5mA  
0.4  
PGL  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
is guaranteed and tested over the full –55°C to 125°C internal operating  
temperature range. Note that the maximum ambient temperature  
consistent with these specifications is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 2: The LTM4613 is tested under pulsed load conditions such that  
T ≈ T . The LTM4613E is guaranteed to meet performance specifications  
Note 3: 100% tested at die level only.  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4613I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. The LTM4613MP  
Note 4: See the Output Current Derating curves for different V , V  
IN OUT  
and T .  
A
Note 5: Guaranteed by design.  
4613f  
4
LTM4613  
TYPICAL PERFORMANCE CHARACTERISTICS (Refer to Figure 18)  
Efficiency vs Load Current with  
3.3VOUT (FCB = 0)  
Efficiency vs Load Current with  
5VOUT (FCB = 0)  
Efficiency vs Load Current with  
12VOUT (FCB = 0)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
60  
5V , 3.3V  
20V , 12V  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
12V , 5V  
IN  
12V , 3.3V  
IN  
24V , 12V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
24V , 5V  
IN  
24V , 3.3V  
IN  
36V , 3.3V  
IN  
28V , 12V  
IN  
36V , 12V  
IN  
36V , 5V  
IN  
4
5
4
5
4
5
0
1
2
3
6
7
8
0
1
2
3
6
7
8
0
1
2
3
6
7
8
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4613 G01  
4613 G02  
4613 G03  
Efficiency vs Load Current with  
15VOUT (FCB = 0)  
Transient Response from 12VIN  
to 3.3VOUT  
Transient Response from 12VIN  
to 5VOUT  
100  
95  
90  
85  
80  
75  
70  
65  
60  
I
I
OUT  
OUT  
5A/DIV  
5A/DIV  
V
OUT  
V
OUT  
100mV/DIV  
AC  
100mV/DIV  
AC  
4613 G06  
4613 G05  
100µs/DIV  
LOAD STEP: 0A TO 4A  
= 1 × 47µF POSCAP  
100µs/DIV  
LOAD STEP: 0A TO 4A  
= 1 × 47µF POSCAP  
24V , 15V  
IN  
OUT  
OUT  
OUT  
OUT  
C
C
28V , 15V  
OUT  
OUT  
IN  
1 × 10µF CERAMIC CAPACITOR AND  
3 × 47µF CERAMIC CAPACITORS  
1 × 10µF CERAMIC CAPACITOR AND  
3 × 47µF CERAMIC CAPACITORS  
32V , 15V  
IN  
36V , 15V  
IN  
4
5
0
1
2
3
6
7
8
LOAD CURRENT (A)  
4613 G04  
Transient Response from 24VIN  
to 12VOUT  
Start-Up with 24VIN to 12VOUT  
at IOUT = 0A  
Start-Up with 24VIN to 12VOUT at  
IOUT = 8A  
I
OUT  
I
IN  
I
IN  
5A/DIV  
1A/DIV  
200mA/DIV  
V
V
OUT  
5V/DIV  
OUT  
V
OUT  
200mV/DIV  
AC  
5V/DIV  
4613 G08  
4613 G09  
4613 G07  
10ms/DIV  
10ms/DIV  
100µs/DIV  
LOAD STEP: 0A TO 4A  
= 1 × 47µF POSCAP  
SOFT-START CAPACITOR: 0.1µF  
SOFT-START CAPACITOR: 0.1µF  
C
= 2 × 10µF CERAMIC CAPACITORS AND  
C
= 2 × 10µF CERAMIC CAPACITORS AND  
C
IN  
IN  
OUT  
1 × 100µF OS-CON CAPACITOR  
1 × 100µF OS-CON CAPACITOR  
1 × 10µF CERAMIC CAPACITOR AND  
3 × 47µF CERAMIC CAPACITORS  
4613f  
5
LTM4613  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up with 24VIN to 12VOUT at  
IOUT = 8A, TA = –55°C  
Short-Circuit with 24VIN to 12VOUT  
at IOUT = 0A  
Short-Circuit with 24VIN to 12VOUT  
at IOUT = 8A  
I
I
IN  
2A/DIV  
IN  
I
500mA/DIV  
OUT  
2A/DIV  
V
OUT  
V
V
OUT  
OUT  
5V/DIV  
5V/DIV  
5V/DIV  
4613 G10  
4613 G11  
4613 G12  
20ms/DIV  
SOFT-START CAPACITOR: 0.1µF  
20µs/DIV  
20µs/DIV  
C
= 1 × 47µF POSCAP,  
C
= 1 × 47µF POSCAP,  
OUT  
OUT  
C
= 2 × 10µF CERAMIC CAPACITORS AND  
IN  
1 × 10µF CERAMIC CAPACITORS  
1 × 10µF CERAMIC CAPACITORS  
1 × 100µF OS-CON CAPACITOR  
AND 3 × 47µF CERAMIC CAPACITORS  
AND 3 × 47µF CERAMIC CAPACITORS  
VIN to VOUT Step-Down Ratio  
Input Ripple  
Output Ripple  
36  
30  
24  
18  
12  
6
V
V
IN  
OUT  
100mV/DIV  
AC  
10mV/DIV  
AC  
4613 G14  
4613 G15  
1µs/DIV  
1µs/DIV  
V
V
C
= 24V  
V
V
C
= 24V  
IN  
OUT  
IN  
IN  
= 12V AT 8A RESISTIVE LOAD  
= 2 × 10µF CERAMIC CAPACITORS AND  
= 12V AT 8A RESISTIVE LOAD  
OUT  
OUT  
= 1 × 47µF POSCAP  
1 × 100µF OS-CON CAPACITOR  
1 × 10µF CERAMIC CAPACITOR AND  
3 × 47µF CERAMIC CAPACITORS  
0
3.3  
7
9
11  
13  
15  
5
OUTPUT VOLTAGE (V)  
4613 G13  
4613f  
6
LTM4613  
PIN FUNCTIONS (See Package Description for Pin Assignments)  
V (Bank 1): Power Input Pins. Apply input voltage be-  
FCB(PinM12):ForcedContinuousInput.Connectthispin  
IN  
tween these pins and PGND pins. Recommend placing  
to SGND to force continuous synchronization operation  
input decoupling capacitance directly between V pins  
at light load or to INTV to enable discontinuous mode  
IN  
CC  
and PGND pins.  
operation at light load.  
PGND (Bank 2): Power Ground Pins for Both Input and  
TRACK/SS(PinA9):OutputVoltageTrackingandSoft-Start  
Pin. When the module is configured as a master output,  
then a soft-start capacitor is placed on this pin to ground  
to control the master ramp rate. A soft-start capacitor can  
be used for soft-start turn-on as a standalone regulator.  
Slave operation is performed by putting a resistor divider  
from the master output to the ground, and connecting the  
center point of the divider to this pin. See the Applications  
Information section.  
Output Returns.  
V
(Bank 3): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
output decoupling capacitance directly between these pins  
and PGND pins (see the LTM4613 Pin Configuration below).  
V (Pins C1 to C7, B6 to B7, A6): Top FET Drain Pins.  
D
Add more high frequency ceramic decoupling capacitors  
between V and PGND to handle the input RMS current  
D
MPGM (Pins A12, B11): Programmable Margining In-  
put. A resistor from these pins to ground sets a current  
that is equal to 1.18V/R. This current multiplied by 10k  
will equal a value in millivolts that is a percentage of the  
0.6V reference voltage. Leave floating if margining is not  
used. SeetheApplicationsInformationsection. Toparallel  
LTM4613s, each requires an individual MPGM resistor. Do  
not tie MPGM pins together.  
and reduce the input ripple further.  
DRV (Pins C10, E11, E12): These pins normally con-  
CC  
nect to INTV for powering the internal MOSFET drivers.  
CC  
They can be biased up to 6V from an external supply  
with about 50mA capability. This improves efficiency at  
the higher input voltages by reducing power dissipation  
in the module. See the Applications Information section.  
INTV (Pin A7): This pin is for additional decoupling of  
CC  
f
(Pin B12): Frequency Set Internally to 600kHz at 12V  
SET  
the 5V internal regulator.  
Output. An external resistor can be placed from this pin  
to ground to increase frequency or from this pin to V  
to reduce frequency. See the Applications Information  
section for frequency adjustment.  
PLLIN(PinA8):ExternalClockSynchronizationInputtothe  
Phase Detector. This pin is internally terminated to SGND  
with a 50k resistor. Apply a clock above 2V and below  
IN  
INTV subjecttominimumon-timeandminimumoff-time  
CC  
requirements. See the Applications Information section.  
TOP VIEW  
A
B
C
D
E
V
IN  
f
BANK 1  
SET  
V
D
SGND  
MARG0  
MARG1  
DRV  
V
FB  
PGOOD  
SGND  
NC  
CC  
PGND  
BANK 2  
F
G
H
J
V
K
L
NC  
NC  
OUT  
BANK 3  
FCB  
M
1
2 3 4 5 6 7 8 9 10 11 12  
LGA PACKAGE  
133-LEAD (15mm × 15mm × 4.32mm)  
LTM4613 Pin Configuration  
4613f  
7
LTM4613  
PIN FUNCTIONS  
V
(Pin F12): The Negative Input of the Error Ampli-  
COMP (Pins A11, D11): Current Control Threshold and  
Error Amplifier Compensation Point. The current com-  
parator threshold increases with this control voltage. The  
voltage ranges from 0V to 2.4V with 0.7V corresponding  
to zero sense voltage (zero current).  
FB  
fier. Internally, this pin is connected to V  
with a 100k  
OUT  
0.5% precision resistor. Different output voltages can be  
programmed with an additional resistor between the V  
FB  
and SGND pins. See the Applications Information section.  
MARG0 (Pin C12): LSB Logic Input for the Margining  
Function. Together with the MARG1 pin, the MARG0 pin  
will determine if a margin high, margin low, or no margin  
state is applied. The pin has an internal pull-down resistor  
of 50k. See the Applications Information section.  
PGOOD (Pin G12): Output Voltage Power Good Indicator.  
Open-drain logic output that is pulled to ground when the  
output voltage is not within 10% of the regulation point,  
after a 25µs power bad mask timer expires.  
RUN (Pins A10, B9): Run Control Pins. A voltage above  
1.9V will turn on the module, and below 1V will turn off  
the module. A programmable UVLO function can be ac-  
MARG1(PinsC11, D12):MSBLogicInputfortheMargin-  
ingFunction.TogetherwiththeMARG0pin,theMARG1pin  
will determine if a margin high, margin low, or no margin  
stateisapplied.Thepinshaveaninternalpull-downresistor  
of 50k. See the Applications Information section.  
complished with a resistor from V to this pin that has a  
IN  
5.1V Zener to ground. Maximum pin voltage is 5V.  
MTP (Pins J12, K12, L12): No Connect Pins. Leave float-  
ing. Used for mounting to PCB.  
SGND (Pins D9, H12): Signal Ground Pins. These pins  
connect to PGND at output capacitor point.  
4613f  
8
LTM4613  
BLOCK DIAGRAM  
> 1.9V = ON  
< 1V = OFF  
MAX = 5V  
V
OUT  
RUN  
PGOOD  
COMP  
INPUT  
FILTER  
V
IN  
24V TO 36V  
+
5.1V  
ZENER  
1µF  
C
IN  
100k  
V
D
INTERNAL  
COMP  
10µF  
50V  
× 3  
POWER CONTROL  
M1  
M2  
SGND  
2.2µH  
V
OUT  
12V  
MARG1  
MARG0  
AT 8A  
NOISE  
V
FB  
10µF  
50k 50k  
CANCEL-  
LATION  
+
f
SET  
R
FB  
C
OUT  
5.23k  
133k  
PGND  
FCB  
10k  
MPGM  
TRACK/SS  
PLLIN  
C
SS  
50k  
4.7µF  
INTV  
DRV  
CC  
CC  
Figure 1. Simplified Block Diagram  
DECOUPLING REQUIREMENTS Specifications are at TA = 25°C. Use Figure 1 configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
IN  
I
= 8A  
30  
100  
µF  
IN  
OUT  
(V = 24V to 36V, V  
= 12V)  
OUT  
C
External Output Capacitor Requirement  
(V = 24V to 36V, V = 12V)  
I
= 8A  
100  
220  
µF  
OUT  
OUT  
IN  
OUT  
4613f  
9
LTM4613  
OPERATION  
Power Module Description  
off and bottom FET M2 is turned on and held on until the  
overvoltage condition clears.  
The LTM4613 is a standalone nonisolated switch mode  
DC/DC power supply. It can deliver 8A of DC output cur-  
rent with minimal external input and output capacitors.  
This module provides a precisely regulated output voltage  
Input filter and noise cancellation circuitry reduce the  
noise coupling to inputs and outputs, and ensure the  
electromagnetic interference (EMI) meets the limits of  
EN55022 Class B (see Figure 7).  
programmable via one external resistor from 3.3V to  
DC  
15V over a wide 5V to 36V input voltage. The typical  
application schematic is shown in Figure 18.  
DC  
Pulling the RUN pin below 1V forces the controller into  
its shutdown state, turning off both M1 and M2. At light  
load currents, discontinuous mode (DCM) operation can  
be enabled to achieve higher efficiency compared to con-  
tinuous mode (CCM) by setting FCB pin higher than 0.6V.  
The LTM4613 has an integrated constant on-time current  
mode regulator, ultralow R  
FETs with fast switching  
DS(ON)  
speedandintegratedSchottkydiodes.Thetypicalswitching  
frequencyis600kHzatfullloadat12Voutput.Withcurrent  
mode control and internal feedback loop compensation,  
the LTM4613 module has sufficient stability margins and  
good transient performance under a wide range of operat-  
ing conditions and with a wide range of output capacitors,  
even all ceramic output capacitors.  
WhentheDRV pinisconnectedtoINTV , anintegrated  
CC  
CC  
5V linear regulator powers the internal gate drivers. If a  
5V external bias supply is applied on DRV pin, then an  
CC  
efficiencyimprovementwilloccurduetothereducedpower  
loss in the internal linear regulator. This is especially true  
at the higher input voltage range.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limiting. Moreover, foldback current limiting is provided in  
The MPGM, MARG0, and MARG1 pins are used to sup-  
port voltage margining, where the percentage of margin  
is programmed by the MPGM pin, while the MARG0 and  
MARG1 select positive or negative margining. The PLLIN  
pin provides frequency synchronization of the device to  
an external clock. The TRACK/SS pin is used for power  
supply tracking and soft-start programming.  
an overcurrent condition when V drops. Internal over-  
FB  
voltageandundervoltagecomparatorspulltheopen-drain  
PGOOD output low if the output feedback voltage exits a  
10% window around the regulation point. Furthermore,  
in an overvoltage condition, internal top FET M1 is turned  
APPLICATIONS INFORMATION  
The typical LTM4613 application circuit is shown in Fig-  
ure 18. External component selection is primarily deter-  
minedbytheinputvoltage, themaximumloadcurrentand  
the output voltage. Refer to Table 2 for specific external  
capacitor requirements for a particular application.  
Output Voltage Programming and Margining  
The PWM controller has an internal 0.6V reference volt-  
age. As shown in the Block Diagram, a 100k 0.5% internal  
feedbackresistorconnectstheV  
andV pinstogether.  
FB  
OUT  
FB  
Adding a resistor, R , from the V pin to the SGND pin  
FB  
programs the output voltage.  
V to V  
Stepdown Ratios  
IN  
OUT  
100k + RFB  
VOUT = 0.6V •  
RFB  
There are restrictions in the maximum V and V  
step  
IN  
OUT  
down ratio that can be achieved for a given input voltage.  
These constraints are shown in the Typical Performance  
or equivalently,  
Characteristic curve labeled “V to V  
Step-Down  
IN  
OUT  
Ratio.” Note that additional thermal derating may be ap-  
plied. See the Thermal Considerations and Output Current  
Derating section in this data sheet.  
100k  
R
=
FB  
V
OUT  
1  
0.6V  
4613f  
10  
LTM4613  
APPLICATIONS INFORMATION  
Table 1. RFB Standard 1% Resistor Values vs VOUT  
Operating Frequency  
V
R
(V)  
3.3  
5
6
8
10  
12  
14  
15  
OUT  
The operating frequency of the LTM4613 is optimized to  
achieve the compact package size and the minimum  
output ripple voltage while still keeping high efficiency.  
As shown in Figure 2, the frequency is linearly increased  
with larger output voltages to keep the low output cur-  
rent ripple. Figure 3 shows the inductor current ripple ∆I  
with different output voltages. In most applications, no  
additional frequency adjusting is required.  
(kΩ) 22.1 13.7  
11  
8.06 6.34 5.23 4.42 4.12  
FB  
The MPGM pin programs a current that when multiplied  
by an internal 10k resistor sets up the 0.6V reference  
offset for margining. A 1.18V reference divided by the  
R
PGM  
resistor on the MPGM pin programs the current.  
Calculate V  
:
OUT(MARGIN)  
%VOUT  
100  
If lower output ripple is required, the operating frequency  
VOUT(MARGIN)  
=
VOUT  
f can be increased by adding a resistor R  
pin and SGND, as shown in Figure 19.  
between f  
fSET  
SET  
Where %V  
is the percentage of V  
to be margined,  
OUT  
OUT  
and V  
is the margin quantity in volts:  
OUT(MARGIN)  
VOUT  
f =  
1.5 1010  
R
(
||133k  
fSET  
VOUT  
1.18V  
0.6V VOUT(MARGIN)  
)
RPGM  
=
10k  
1000  
800  
600  
400  
200  
0
Where R  
is the resistor value to place on the MPGM  
PGM  
pin to ground.  
The output margining will be margining of the value.  
This is controlled by the MARG0 and MARG1 pins. See  
the truth table below:  
MARG1  
LOW  
MARG0  
LOW  
MODE  
NO MARGIN  
MARGIN UP  
MARGIN DOWN  
NO MARGIN  
LOW  
HIGH  
LOW  
2
4
6
8
10  
OUTPUT VOLTAGE (V)  
12  
14  
16  
HIGH  
HIGH  
HIGH  
4613 F02  
Figure 2. Operating Frequency vs Output Voltage  
Parallel Operation  
9
8
7
6
5
4
3
The LTM4613 device is an inherently current mode con-  
trolled device. This allows the paralleled modules to have  
very good current sharing and balanced thermal on the  
design.Figure21showsaschematicoftheparalleldesign.  
The voltage feedback equation changes with the variable  
N as modules are paralleled. The equation:  
100k  
V
V
V
V
= 16V  
= 24V  
= 28V  
= 36V  
IN  
IN  
IN  
IN  
2
1
0
N
VOUT  
RFB =  
1  
2
4
6
8
16  
10  
12  
14  
0.6V  
OUTPUT VOLTAGE (V)  
4613 F03  
where N is the number of paralleled modules.  
Figure 3. Pk-Pk Inductor Current Ripple vs Output Voltage  
4613f  
11  
LTM4613  
APPLICATIONS INFORMATION  
For output voltages more than 12V, the frequency can be  
higher than 600kHz, thus reducing the efficiency signifi-  
cantly. Additionally, the minimum off time 400ns normally  
limits the operation when the input voltage is close to the  
output voltage. Therefore, it is recommended to lower the  
frequency in these conditions by connecting a resistor  
required. Always contact the capacitor manufacturer for  
derating requirements.  
In a typical 8A output application, three very low ESR,  
X5R or X7R, 10µF ceramic capacitors are recommended  
for C1-C3. This decoupling capacitance should be placed  
directly adjacent to the module V pins in the PCB layout  
D
(R ) from the f pin to V , as shown in Figure 20.  
fSET  
SET  
IN  
to minimize the trace inductance and high frequency AC  
noise. Each 10µF ceramic is typically good for 2A of RMS  
ripple current. Refer to your ceramics capacitor catalog  
for the RMS current ratings.  
VOUT  
f =  
3 RfSET 133k  
5 1011  
R
2 133k  
fSET  
Toattenuatethehighfrequencynoise,extrainputcapacitors  
should be connected to the V pads and placed before the  
The load current can affect the frequency due to its con-  
stant on-time control. If constant frequency is a necessity,  
the PLLIN pin can be used to synchronize the frequency  
of the LTM4613 to an external clock subject to minimum  
on-time and off-time limits, as shown in Figures 21 to 23.  
IN  
high frequency inductor to form the π filter. One of these  
low ESR ceramic input capacitors is recommended to be  
closetotheconnectionintothesystemboard. Alargebulk  
100µF capacitor is only needed if the input source imped-  
ance is compromised by long inductive leads or traces.  
Input Capacitors  
Output Capacitors  
LTM4613 is designed to achieve the low input conducted  
EMI noise due to the fast switching of turn-on and turn-  
off. Additionally, a high-frequency inductor is integrated  
The LTM4613 is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
are chosen  
OUT  
with low enough effective series resistance (ESR) to meet  
into the input line for noise attenuation. V and V pins  
D
IN  
theoutputvoltagerippleandtransientrequirements. C  
are available for external input capacitors to form a high  
OUT  
can be low ESR tantalum capacitor, low ESR polymer ca-  
pacitor or ceramic capacitor. The typical capacitance is 4 ×  
47µF if all ceramic output capacitors are used. Additional  
output filtering may be required by the system designer,  
if further reduction of output ripple or dynamic transient  
spikeisrequired.Table2showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 4A load transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to maximize transient performance.  
frequency π filter. As shown in Figure 18, the ceramic  
capacitors, C1-C3, on the V pins is used to handle most  
D
of the RMS current into the converter, so careful attention  
is needed for capacitors C1-C3 selection.  
For a buck converter, the switching duty cycle can be  
estimated as:  
VOUT  
D=  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
Multiphase operation with multiple LTM4613 devices in  
parallel will also lower the effective output ripple current  
due to the phase interleaving operation. Refer to Figure 4  
for the normalized output ripple current versus the duty  
cycle. Figure 4 provides a ratio of peak-to-peak output  
ripple current to the inductor ripple current as functions  
of duty cycle and the number of paralleled phases. Pick  
the corresponding duty cycle and the number of phases  
to get the correct output ripple current value. For example,  
IOUT(MAX)  
ICIN(RMS)  
=
D1D  
(
)
η
In this equation,  
η
is the estimated efficiency of the  
power module. Note the capacitor ripple current ratings  
are often based on temperature and hours of life. This  
makes it advisable to properly derate the input capacitor,  
or choose a capacitor rated at a higher temperature than  
each phase’s inductor ripple current I is ~5.0A for a 36V  
L
4613f  
12  
LTM4613  
APPLICATIONS INFORMATION  
Table 2. Output Voltage Response Versus Component Matrix (Refer to Figure 19)  
TYPICAL MEASURED VALUES  
VENDORS  
Murata  
PART NUMBER  
VENDORS  
Murata  
TDK  
PART NUMBER  
GRM32ER61C476KEI5L (47µF, 16V)  
GRM32ER61C226KE20L (22µF, 16V)  
GRM32ER71H106K (10µF, 50V)  
C3225X5RIC226M (22µF, 16V)  
Murata  
LOAD STEP  
V
C
C
C
V
DROOP PK-TO-PK RECOVERY  
LOAD  
SLEW RATE  
(A/µS)  
R
FB  
OUT  
IN  
IN  
OUT1  
IN  
(V)  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
5
(CERAMIC)  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
2 × 10µF 50V  
(BULK)  
(CERAMIC)  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
2 × 22uF 16V  
4 × 47uF 16V  
C
OUT2  
(BULK) (V)  
150µF 16V  
None  
150µF 16V  
None  
150µF 16V  
None  
150µF 16V  
None  
150µF 16V  
None  
150µF 16V  
None  
150µF 16V  
None  
(mV)  
84  
(mV)  
175  
181  
188  
191  
200  
197  
222  
238  
228  
238  
231  
247  
363  
488  
369  
500  
TIME (µs) STEP (A)  
(kΩ)  
22.1  
22.1  
22.1  
22.1  
22.1  
22.1  
13.7  
13.7  
13.7  
13.7  
13.7  
13.7  
5.23  
5.23  
5.23  
5.23  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
100µF 50V  
5
5
50  
40  
50  
40  
50  
40  
60  
50  
60  
50  
60  
50  
150  
90  
150  
90  
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
91  
12  
12  
24  
24  
12  
12  
24  
24  
36  
36  
24  
24  
36  
36  
100  
100  
113  
103  
109  
122  
119  
122  
125  
128  
178  
238  
181  
244  
5
5
5
5
5
12  
12  
12  
12  
150µF 16V  
None  
1.00  
1-PHASE  
2-PHASE  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
3-PHASE  
4-PHASE  
6-PHASE  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
IN  
4612 F04  
O
Figure 4. Normalized Output Ripple Current vs Duty Cycle, ∆IL = VOT/LI  
4613f  
13  
LTM4613  
APPLICATIONS INFORMATION  
to 12V design. The duty cycle is about 0.33. The 2-phase  
curve shows a ratio of ~0.33 for a duty cycle of 0.33. This  
0.33 ratio of output ripple current to the inductor ripple  
another regulator can be easily tracked.  
Output Voltage Tracking  
current ∆I at 5.0A equals 1.65A of the output ripple cur-  
L
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The output can be tracked up  
and down with another regulator. Figure 5 shows an ex-  
ample of coincident tracking where the master regulator’s  
output is divided down with an external resistor divider  
that is the same as the slave regulator’s feedback divider.  
Ratiometricmodesoftrackingcanbeachievedbyselecting  
differentresistorvaluestochangetheoutputtrackingratio.  
The master output must be greater than the slave output  
rent (∆I ).  
O
The output voltage ripple has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
The equation is:  
IO  
8 f N C  
ESR IO  
VOUT(PP)  
+
N
OUT  
Where f is the frequency and N is the number of paral-  
leled phases.  
V
IN  
Fault Conditions: Current Limit and  
Overcurrent Foldback  
10µF  
51k  
×3  
V
V
PLLIN  
D
IN  
SLAVE  
PGOOD  
V
OUT  
OUTPUT  
LTM4613 has a current mode controller, which inherently  
limitsthecycle-by-cycleinductorcurrentnotonlyinsteady  
state operation, but also in transient.  
RUN  
V
FB  
C
OUT  
C
COMP  
FCB  
MARG0  
MARG1  
MPGM  
IN  
LTM4613  
INTV  
CC  
CC  
MASTER  
OUTPUT  
DRV  
To further limit current in the event of an overload condi-  
tion,theLTM4613providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to about one sixth  
of its full current limit value.  
R2  
100k  
f
SET  
TRACK/SS  
SGND PGND  
TRACK  
CONTROL  
R
FB  
5.23k  
R1  
5.23k  
4613 F05  
Figure 5. Coincident Tracking  
Soft-Start and Tracking  
The TRACK/SS pin provides a means to either soft-start  
the regulator or track it to a different power supply. A  
capacitor on this pin will program the ramp rate of the  
output voltage. A 1.5µA current source will charge up the  
external soft-start capacitor to 80% of the 0.6V internal  
voltage reference plus or minus any margin delta. This will  
control the ramp of the internal reference and the output  
voltage. The total soft-start time can be calculated as:  
MASTER OUTPUT  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
CSS  
1.5µA  
tSOFTSTART 0.8 0.6± 0.6 V Margin % •  
(
)
OUT  
4613 F06  
TIME  
If the RUN pin falls below 2.5V, then the soft-start pin  
is reset to allow for the proper soft-start again. Current  
foldback and force continuous mode are disabled during  
the soft-start process. The soft-start function can also  
be used to control the output ramp rising time, so that  
Figure 6. Coincident Output Tracking  
4613f  
14  
LTM4613  
APPLICATIONS INFORMATION  
for the tracking to work. Figure 6 shows the coincident  
output tracking.  
pin has an internal 5.1V Zener to ground. The pin can be  
driven with 5V logic levels.  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK pin. The TRACK pin has a control range from 0 to  
0.6V. The master’s TRACK pin slew rate is directly equal to  
the master’s output slew rate in Volts/Time. The equation:  
The RUN pin can also be used as an undervoltage lockout  
(UVLO) function by connecting a resistor divider from  
the input supply to the RUN pin. The equation for UVLO  
threshold:  
RA + RB  
VUVLO  
=
1.5V  
RB  
MR  
100k = R2  
SR  
where R is the top resistor, and R is the bottom resistor.  
A
B
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
tracking is desired, then MR and SR are equal, thus R2 is  
Power Good  
The PGOOD pin is an open-drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 10% window around the regulation point, and tracks  
with margining.  
equal the 100k. R is derived from equation:  
TA  
0.6V  
R1=  
VTRACK  
R2  
V
V
FB  
FB  
+
100k RFB  
COMP Pin  
The pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. Linear Technology provides LTpowerCAD™ for  
more control loop optimization.  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.6V. Since R2 is equal to the 100k top  
TRACK  
feedback resistor of the slave regulator in equal slew rate  
or coincident tracking, then R1 is equal to R with V  
=
FB  
FB  
V
. Therefore R2 = 100k, and R1 = 5.23k in Figure 5.  
TRACK  
FCB Pin  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R2 can be solved for when SR is  
slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach it final value before the master output.  
The FCB pin determines whether the bottom MOSFET  
remains on when current reverses in the inductor. Tying  
this pin above its 0.6V threshold enables discontinuous  
operation where the bottom MOSFET turns off when in-  
ductor current reverses. FCB pin below the 0.6V threshold  
forcescontinuoussynchronousoperation,allowingcurrent  
to reverse at light loads and maintaining high frequency  
operation.  
For example, MR = 1.5V/1ms, and SR = 1.2V/1ms. Then  
R2 = 125k. Solve for R1 to equal to 5.18k.  
Each of the TRACK pins will have the 1.5µA current source  
on when a resistive divider is used to implement tracking  
on that specific channel. This will impose an offset on the  
TRACK pin input. Smaller values resistors with the same  
ratios as the resistor values calculated from the above  
equation can be used. For example, where the 100k is  
used then a 10k can be used to reduce the TRACK pin  
offset to a negligible value.  
PLLIN Pin  
The power module has a phase-locked loop comprised  
of an internal voltage controlled oscillator and a phase  
detector.ThisallowstheinternaltopMOSFETturn-ontobe  
lockedtotherisingedgeoftheexternalclock. Theexternal  
clock frequency range must be within 30% around the  
set operating frequency. A pulse detection circuit is used  
to detect a clock on the PLLIN pin to turn on the phase-  
locked loop. The pulse width of the clock has to be at least  
RUN Enable  
The RUN pin is used to enable the power module. The  
400ns. The clock high level must be above 2V and clock  
4613f  
15  
LTM4613  
APPLICATIONS INFORMATION  
low level below 0.3V. During the start-up of the regulator,  
the phase-locked loop function is disabled.  
to achieve the low radiated EMI noise. Figure 7 shows a  
typical example for the LTM4613 to meet the EN55022  
Class B radiated emission limit.  
INTV and DRV Connection  
CC  
CC  
Thermal Considerations and Output Current Derating  
An internal low dropout regulator produces an internal  
5V supply that powers the control circuitry and DRV  
In different applications, LTM4613 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environment thermal condition. Sufficient  
cooling should be provided to help ensure reliable opera-  
tion. When the cooling is limited, proper output current  
derating is necessary, considering ambient temperature,  
airflow, input/output condition, and the needfor increased  
reliability.  
CC  
for driving the internal power MOSFETs. Therefore, if  
the system does not have a 5V power rail, the LTM4613  
can be directly powered by V . The gate driver current  
IN  
through the LDO is about 20mA. The internal LDO power  
dissipation can be calculated as:  
P
= 20mA • (V – 5V)  
IN  
LDO_LOSS  
TheLTM4613alsoprovidestheexternalgatedrivervoltage  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parametersdefinedbyJESD51-9.Theyareintendedforuse  
with finite element analysis (FEA) software modeling tools  
that leverage the outcome of thermal modeling, simula-  
tion and correlation to hardware evaluation performed on  
a µModule package mounted to a hardware test board.  
This is also defined by JESD51-9, “Test Boards for Area  
Array Surface Mount Package Thermal Measurements.”  
The motivation for providing these thermal coefficients in  
found in JESD51-12, “Guidelines for Reporting and Using  
Electronic Package Thermal Information.”  
pin DRV . If there is a 5V rail in the system, it is recom-  
CC  
mended to connect the DRV pin to the external 5V rail.  
CC  
This is especially true for higher input voltages. Do not  
apply more than 6V to the DRV pin.  
CC  
Radiated EMI Noise  
High radiated EMI noise is a disadvantage for switching  
regulators by nature. Fast switching turn-on and turn-off  
make the large di/dt change in the converters, which act  
as the radiation sources in most systems. LTM4613 inte-  
grates the feature to minimize the radiated EMI noise to  
meet the most applications with low noise requirements.  
An optimized gate driver for the MOSFET and a noise  
cancellation network are installed inside the LTM4613  
Many designers may opt to use laboratory equipment  
70  
60  
50  
EN55022B LIMIT  
40  
30  
20  
10  
0
–10  
30  
226.2  
422.4  
613.6  
814.3 1010.0  
FREQUENCY (MHz)  
4613 F07  
Figure 7. Radiated Emission Scan with 24VIN to  
12VOUT at 8A Measured in 10 Meter Chamber  
4613f  
16  
LTM4613  
APPLICATIONS INFORMATION  
and a test vehicle, such as the demo board, to anticipate  
the µModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without  
FEA software, the thermal resistances reported in the  
Pin Configuration section are in and of themselves not  
relevant to providing guidance of thermal performance.  
Instead, the derating curves provided in the data sheet  
can be used in a manner that yields insight and guid-  
ance pertaining to one’s application usage, and can be  
adapted to correlate thermal performance to one’s own  
application.  
dissipation flowing through the bottom of the pack-  
age. In the typical µModule regulator, the bulk of the  
heat flows out of the bottom of the package, but there  
is always heat flow out into the ambient environment.  
As a result, this thermal resistance value may be useful  
for comparing packages, but the test conditions do not  
generally match the user’s application.  
θ
, the thermal resistance from the junction to the  
JCtop  
top of the product case, is determined with nearly all of  
the component power dissipation flowing through the  
top of the package. As the electrical connections of the  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
The Pin Configuration section of the data sheet typi-  
cally gives four thermal coefficients, explicitly defined in  
JESD51-12. These coefficients are quoted or paraphrased  
below:  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages, but the test conditions do not  
generally match the user’s application.  
θ ,thethermalresistancefromjunction-to-ambient,is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
toaJESD51-9definedtestboard,whichdoesnotreflect  
an actual application or viable operating condition.  
θ , the thermal resistance from the junction to the  
JB  
printed circuit board, is the junction-to-board thermal  
resistance where almost all of the heat flows through  
thebottomoftheµModuleregulatorandintotheboard.  
It is really the sum of the θ  
and the thermal  
JCbottom  
resistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from the  
package,usingatwo-sided,two-layerboard.Thisboard  
is described in JESD51-9.  
θ
, the thermal resistance from the junction to  
JCbottom  
thebottomoftheproductcase, isthejunction-to-board  
thermal resistance with all of the component power  
JUNCTION-TO-AMBIENT RESISTANCE (JESD51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE (BOTTOM)  
RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
µModule REGULATOR  
4613 F08  
Figure 8. Graphical Representation of JESD51-12 Thermal Coefficients  
4613f  
17  
LTM4613  
APPLICATIONS INFORMATION  
A graphical representation of the aforementioned thermal  
resistances is given in Figure 8. Blue resistances are  
contained within the µModule package, whereas green  
resistances are external to the µModule package.  
3. The model and FEA software is used to evaluate the  
µModule regulator with heat sinks and airflow;  
4.Havingsolvedfor,andanalyzedthesethermalresistance  
values and simulated various operating conditions in  
the software model, a thorough laboratory evaluation  
replicatesthesimulatedconditionswiththermocouples  
within a controlled environment chamber while operat-  
ing the device at the same power loss as that which  
was simulated.  
As a practical matter, it should be clear to the reader that  
no individual or sub group of the four thermal resistance  
parameters defined by JESD51-12, or provided in the  
Pin Configuration section, replicates or conveys normal  
operating conditions of a µModule regulator. For example,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bottom  
An outcome of this process and due diligence yields a set  
of derating curves provided in other sections of this data  
sheet. After these laboratory tests have been performed  
of the package—as the standard defines for θ  
JCbottom  
and  
JCtop  
and correlated to the µModule regulator model, the θ  
JB  
θ
,respectively.Inpractice,powerlossisthermally  
and θ are summed together to correlate quite well with  
JA  
dissipated in both directions away from the package.  
Granted, in the absence of a heat sink and airflow, the  
majority of the heat flow is into the board.  
the µModule regulator model, with no airflow or heat sink-  
ing, in a properly defined chamber. This θ + θ value  
JB  
JA  
is shown in the Pin Configuration section, and should  
Within a SIP (System-In-Package) module, be aware that  
therearemultiplepowerdevicesandcomponentsdissipat-  
ingpower,withaconsequencethatthethermalresistances  
relative to different junctions of components or die are not  
exactly linear with respect to total package power loss. To  
reconcile this complication without sacrificing modeling  
simplicity—but also, not ignoring practical realities—an  
approach has been taken using FEA software modeling  
along with laboratory testing in a controlled environment  
chamber to reasonably define and correlate the thermal  
resistance values supplied in this data sheet:  
accurately equal the θ value in this section, because  
JA  
approximately 100% of power loss flows from the junc-  
tion through the board into ambient with no airflow or top  
mounted heat sink.  
The power loss curves in Figures 9 and 10 can be used  
in coordination with the load current derating curves in  
Figures 11 to 16 for calculating an approximate θ for  
JA  
the module. Each figure has three curves that are taken  
at three different airflow conditions. Graph designation  
delineatesbetweennoheatsink,andaBGAheatsink.Each  
of the load current derating curves will lower the maxi-  
mum load current as a function of the increased ambient  
temperature to keep the maximum junction temperature  
of the power module at 125°C maximum. This will main-  
tain the maximum operating temperature below 125°C.  
1. Initially, FEA software is used to accurately build the  
mechanical geometry of the µModule regulator and the  
specifiedPCBwithallofthecorrectmaterialcoefficients,  
along with accurate power loss source definitions;  
Table 3 provides the approximate θ for Figures 11 to 16.  
JA  
2. This model simulates a software-defined JEDEC envi-  
ronment consistent with JSED51-9 to predict power  
loss heat flow and temperature readings at different  
interfaces that enable the calculation of the JEDEC-  
defined thermal resistance values;  
A complete explanation of the thermal characteristics is  
provided in the thermal application note, AN110.  
4613f  
18  
LTM4613  
APPLICATIONS INFORMATION  
8
7
6
5
7
7
36V TO 5V  
IN  
OUT  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
4
3
2
1
0
OLFM  
200LFM  
400LFM  
36V TO 15V  
IN  
OUT  
OUT  
24V TO 12V  
IN  
65  
75  
95  
55  
105  
2
4
6
10  
85  
0
8
2
4
6
10  
0
8
AMBIENT TEMPERATURE (°C)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4613 F11  
4613 F10  
4613 F09  
Figure 9. Power Loss at 12VOUT and 15VOUT  
Figure 10. Power Loss at 5VOUT  
Figure 11. No Heat Sink with 36VIN  
to 5VOUT  
8
7
6
5
8
7
6
5
8
7
6
5
4
3
4
3
4
3
2
1
0
2
1
0
2
OLFM  
200LFM  
400LFM  
OLFM  
200LFM  
400LFM  
OLFM  
1
200LFM  
400LFM  
0
65  
75  
95  
65  
75  
95  
55  
105  
55  
105  
85  
85  
65  
75  
95  
55  
105  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4613 F13  
4613 F14  
4613 F12  
Figure 12. BGA Heat Sink with 36VIN to 5VOUT  
Figure 13. No Heat Sink  
with 24VIN to 12VOUT  
Figure 14. BGA Heat Sink  
with 24VIN to 12VOUT  
8
7
6
5
8
7
6
5
4
3
4
3
2
1
0
2
OLFM  
200LFM  
400LFM  
OLFM  
1
200LFM  
400LFM  
0
45 55 65 75  
AMBIENT TEMPERATURE (°C)  
95  
25 35  
105  
85  
45 55 65  
85 95  
25 35  
105  
75  
AMBIENT TEMPERATURE (°C)  
4613 F16  
4613 F15  
Figure 15. No Heat Sink with 36VIN to 15VOUT  
Figure 16. BGA Heat Sink with 36VIN to 15VOUT  
4613f  
19  
LTM4613  
APPLICATIONS INFORMATION  
Table 3. 12V and 15V Outputs  
DERATING CURVE  
Figures 13, 15  
Figures 13, 15  
Figures 13, 15  
Figures 14, 16  
Figures 14, 16  
Figures 14, 16  
V
(V)  
POWER LOSS CURVE  
Figure 9  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
≈14  
≈10  
≈10  
≈13  
≈8  
IN  
24, 36  
24, 36  
24, 36  
24, 36  
24, 36  
24, 36  
0
Figure 9  
200  
400  
0
None  
Figure 9  
None  
Figure 9  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
Figure 9  
200  
400  
Figure 9  
≈8  
Table 4. 5V Output  
DERATING CURVE  
Figure 11  
V
(V)  
POWER LOSS CURVE  
Figure 10  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
(°C/W)  
≈11  
≈9  
IN  
JA  
36  
0
Figure 11  
36  
36  
36  
36  
36  
Figure 10  
200  
400  
0
None  
Figure 11  
Figure 10  
None  
≈9  
Figure 12  
Figure 10  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
≈11  
Figure 12  
Figure 10  
200  
400  
≈8.5  
≈8.5  
Figure 12  
Figure 10  
Heat Sink Manufacturer  
Wakefield Engineering  
Part No: LTN20069  
Phone: 603-635-2800  
Safety Considerations  
• UseroundcornersforthePCBcopperlayertominimize  
the radiated noise.  
The LTM4613 modules do not provide isolation from V  
IN  
• To minimize the EMI noise and reduce module thermal  
stress, use multiple vias for interconnection between  
top layer and other power layers.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
to be provided to protect each unit from catastrophic  
failure.  
• Do not put vias directly on pads.  
• If vias are placed onto the pads, the the vias must be  
Layout Checklist/Example  
capped.  
The high integration of LTM4613 makes the PCB board  
layout very simple and easy. However, to optimize its  
electrical and thermal performance, some layout consid-  
erations are still necessary.  
• Interstitialvia placementcan also beused ifnecessary.  
• Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
• Use large PCB copper areas for high current path, in-  
cluding V , PGND and V . It helps to minimize the  
IN  
OUT  
• Place one or more high frequency ceramic capacitors  
PCB conduction loss and thermal stress.  
close to the connection into the system board.  
• Place high frequency ceramic input and output capaci-  
Figure17givesagoodexampleoftherecommendedlayout.  
tors next to the V , PGND and V  
pins to minimize  
D
OUT  
high frequency noise.  
• Place a dedicated power ground layer underneath the  
unit.  
4613f  
20  
LTM4613  
APPLICATIONS INFORMATION  
V
IN  
C
IN  
C
VD  
C
VD  
GND  
C
C
OUT  
OUT  
V
OUT  
4613 F17  
Figure 17. Recommended PCB Layout  
PULL-UP SUPPLY ≤ 5V  
CLOCK SYNC  
V
IN  
22V TO 36V  
C1 TO C3  
10µF  
50V  
×3  
R4  
51k  
R3  
51k  
V
V
PLLIN  
IN  
D
V
OUT  
V
OUT  
PGOOD  
RUN  
12V  
C5  
+
C
C
22µF  
16V  
OUT2 8A  
OUT1  
LTM4613  
22pF  
180µF  
16V  
V
ON/OFF  
COMP  
C
FB  
IN  
R
FB  
5.23k  
10µF  
INTV  
CC  
CC  
50V CERAMIC  
FCB  
DRV  
MARG0  
MARG1  
MPGM  
f
MARGIN  
REFER TO TABLE 2  
SET  
CONTROL  
TRACK/SS  
C4  
0.1µF  
SGND PGND  
R1  
392k  
5% MARGIN  
4613 F18  
Figure 18. Typical 22V to 36VIN, 12V at 8A Design  
4613f  
21  
LTM4613  
APPLICATIONS INFORMATION  
PULL-UP SUPPLY ≤ 5V  
CLOCK SYNC  
V
IN  
5V TO 36V  
C1 TO C3  
10µF  
50V  
×3  
R4  
51k  
R3  
51k  
V
V
PLLIN  
IN  
D
V
3.3V  
8A  
OUT  
V
OUT  
PGOOD  
RUN  
COMP  
C5  
C
22µF  
6.3V  
+
C
C
OUT1  
OUT2  
IN  
22pF  
180µF  
6.3V  
10µF  
50V CERAMIC  
V
ON/OFF  
FB  
LTM4613  
R
FB  
22.1k  
INTV  
CC  
FCB  
EXTERNAL 5V SUPPLY  
IMPROVES EFFICIENCY—  
ESPECIALLY FOR HIGH  
INPUT VOLTAGES  
REFER TO TABLE 2  
DRV  
CC  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
R
93.1k  
1%  
fSET  
SGND PGND  
R1  
392k  
5% MARGIN  
C4  
0.1µF  
4613 F19  
Figure 19. Typical 5V to 36VIN, 3.3V at 8A Design with 400kHz Frequency  
PULL-UP SUPPLY ≤ 5V  
CLOCK SYNC  
V
IN  
26V TO 36V  
C1 TO C3  
10µF  
50V  
×3  
R4  
51k  
R3  
51k  
V
V
PLLIN  
D
IN  
V
15V  
5A  
OUT  
V
OUT  
PGOOD  
RUN  
C5  
+
C
22µF  
16V  
C
OUT2  
220µF  
16V  
OUT1  
LTM4613  
22pF  
V
FB  
ON/OFF  
COMP  
R
R
562k  
1%  
FB  
4.12k  
fSET  
INTV  
CC  
CC  
FCB  
DRV  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
REFER TO TABLE 2  
CONTROL  
TRACK/SS  
C
10µF  
50V  
IN  
C4  
0.1µF  
R1  
392k  
5% MARGIN  
SGND PGND  
CERAMIC  
4613 F20  
Figure 20. 26V to 36VIN, 15V at 5A Design with 600kHz Frequency  
4613f  
22  
LTM4613  
APPLICATIONS INFORMATION  
PULL-UP SUPPLY ≤ 5V  
V
IN  
20V TO 36V  
C1  
10µF  
50V  
×3  
CLOCK SYNC  
0° PHASE  
R2  
51k  
R4  
51k  
V
D
V
PLLIN  
IN  
V
12V  
16A  
OUT  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
47pF  
LTM4613  
C3  
22µF  
16V  
+
C4  
180µF  
16V  
V
FB  
FCB  
INTV  
CC  
CC  
C2  
10µF  
50V  
DRV  
f
MARG0  
MARG1  
MPGM  
MARGIN  
CONTROL  
SET  
TRACK/SS  
C5  
100µF  
50V  
+
C7  
0.33µF  
R1  
392k  
R
FB  
2.61k  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
100k/N + R  
V
OUT1  
FB  
V
OUT  
= 0.6V •  
R
GND OUT2  
SET MOD  
C11  
0.1µF  
R5  
166k  
FB  
C11  
10µF  
50V  
×3  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
V
D
V
PLLIN  
IN  
V
PGOOD  
RUN  
COMP  
OUT  
C9  
22µF  
16V  
LTM4613  
C10  
180µF  
16V  
+
V
FB  
C8  
FCB  
INTV  
CC  
10µF  
50V  
MARG0  
MARG1  
MPGM  
DRV  
CC  
f
SET  
TRACK/SS  
R6  
392k  
SGND PGND  
4613 F21  
Figure 21. 2-Phase, Parallel 12V at 16A Design with 600kHz Frequency  
4613f  
23  
LTM4613  
APPLICATIONS INFORMATION  
PULL-UP SUPPLY ≤ 5V  
V
IN  
22V TO 36V  
C1  
10µF  
50V  
×3  
CLOCK SYNC  
0° PHASE  
R4  
51k  
R2  
51k  
V
V
IN  
PLLIN  
D
12V  
6A  
PGOOD  
RUN  
COMP  
V
OUT  
C6  
22pF  
C4  
180µF  
16V  
C3  
22µF  
16V  
+
LTM4613  
V
FB  
FCB  
INTV  
CC  
CC  
DRV  
C2  
10µF  
50V  
f
MARG0  
MARG1  
MPGM  
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
100µF  
50V  
+
R1  
392k  
R
FB1  
5.23k  
C7  
0.1µF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
PULL-UP SUPPLY ≤ 5V  
V
OUT1  
GND OUT2  
SET MOD  
C11  
0.1µF  
R5  
166k  
C11  
10µF  
50V  
×3  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R3  
51k  
R7  
51k  
V
V
PLLIN  
D
IN  
10V  
6A  
V
PGOOD  
RUN  
COMP  
OUT  
C1  
22pF  
C10  
180µF  
16V  
C9  
22µF  
16V  
+
LTM4613  
V
FB  
FCB  
INTV  
CC  
12V TRACK  
R8  
10µF  
50V  
MARG0  
MARG1  
MPGM  
MARGIN  
DRV  
CC  
C8  
CONTROL  
100k  
f
SET  
TRACK/SS  
R6  
392k  
R
R9  
6.34k  
FB2  
SGND PGND  
6.34k  
4613 F22  
Figure 22. 2-Phase, 12V and 10V at 6A Design with 600kHz Frequency and Output Voltage Tracking  
4613f  
24  
LTM4613  
APPLICATIONS INFORMATION  
5V  
V
IN  
7V TO 36V  
C1  
10µF  
50V  
×3  
CLOCK SYNC  
0° PHASE  
R4  
51k  
R2  
51k  
V
V
PLLIN  
D
IN  
5V  
8A  
V
OUT  
PGOOD  
RUN  
COMP  
C6  
22pF  
+
C3  
22µF  
6.3V  
C4  
180µF  
6.3V  
LTM4613  
V
FB  
INTV  
CC  
C2  
10µF  
50V  
FCB  
DRV  
CC  
MARG0  
MARG1  
MPGM  
f
MARGIN  
SET  
CONTROL  
TRACK/SS  
C5  
100µF  
50V  
+
R
fSET1  
133k  
R1  
392k  
R
FB1  
13.7k  
C7  
0.15µF  
SGND PGND  
2-PHASE  
OSCILLATOR  
+
5% MARGIN  
3.3V  
V
OUT1  
GND OUT2  
SET MOD  
C11  
0.1µF  
R5  
200k  
C11  
10µF  
50V  
×3  
LTC6908-1  
CLOCK SYNC  
180° PHASE  
R3  
51k  
R7  
51k  
V
V
PLLIN  
D
IN  
3.3V  
8A  
V
PGOOD  
RUN  
COMP  
OUT  
C1  
22pF  
C9  
22µF  
6.3V  
C10  
180µF  
6.3V  
+
V
FB  
LTM4613  
FCB  
INTV  
CC  
5V TRACK  
MARG0  
MARG1  
MPGM  
MARGIN  
DRV  
R8  
CC  
C8  
10µF  
50V  
CONTROL  
100k  
f
SET  
TRACK/SS  
R6  
392k  
R
R9  
R
fSET2  
FB2  
SGND PGND  
22.1k  
22.1k 64.9k  
4613 F23  
Figure 23. 2-Phase, 5V and 3.3V at 8A Design with 500kHz Frequency and Output Voltage Tracking  
4613f  
25  
LTM4613  
PACKAGE DESCRIPTION  
Pin Assignment Tables  
(Arranged by Pin Function)  
PIN NAME  
PIN NAME  
PGND  
PIN NAME  
PIN NAME  
A1  
A2  
A3  
A4  
A5  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
D1  
D2  
D3  
D4  
D5  
D6  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J10  
J11  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
A6  
V
D
PGND  
PGND  
PGND  
PGND  
PGND  
A7  
INTV  
CC  
A8  
A9  
A10  
A11  
A12  
PLLIN  
TRACK/SS  
RUN  
COMP  
MPGM  
B1  
B2  
B3  
B4  
B5  
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
B6  
V
V
D
D
B7  
B8  
B9  
RUN  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
V
V
V
V
V
V
V
V
V
V
V
B10  
B11  
B12  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
MPGM  
f
SET  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
C1  
V
V
V
V
V
V
V
D
D
D
D
D
D
D
C2  
C3  
C4  
C5  
C6  
C7  
C8  
L1  
L2  
L3  
L4  
L5  
L6  
L7  
L8  
L9  
L10  
L11  
V
V
V
V
V
V
V
V
V
V
V
C9  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
C10  
C11  
C12  
DRV  
CC  
MARG1  
MARG0  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
D7  
D8  
D9  
SGND  
D10  
D11  
D12  
COMP  
MARG1  
E9  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
V
V
V
V
V
V
V
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
E10  
E11  
E12  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
DRV  
DRV  
CC  
CC  
F10  
F11  
F12  
V
FB  
G12  
H12  
J12  
K12  
L12  
M12  
PGOOD  
SGND  
NC  
NC  
NC  
FCB  
4613f  
26  
LTM4613  
PACKAGE DESCRIPTION  
Z
/ / b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4613f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4613  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM4606  
EN55022B Compliant 28V , 6A DC/DC µModule  
EN55022 Class B Certified with PLL, Output Tracking and Margining,  
IN  
Regulator  
LTM4600  
10A DC/DC µModule Regulator  
Military Plastic 10A DC/DC µModule Regulator  
Basic 10A DC/DC µModule Regulator, LGA Package  
LTM4600HVMP  
Guaranteed Operation from –55°C to 125°C Ambient, LGA Package  
LTM4601/  
LTM4601A  
12A DC/DC µModule Regulator with PLL, Output  
Tracking/ Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1/LTM4601A-1 Version  
Has No Remote Sensing, LGA Package  
LTM4602  
LTM4603  
6A DC/DC µModule Regulator  
Pin Compatible with the LTM4600, LGA Package  
6A DC/DC µModule Regulator with PLL and Output  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No Remote  
Sensing, Pin Compatible with the LTM4601, LGA Package  
LTM4604A  
Low V 4A DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm  
IN  
IN  
OUT  
LGA Package  
LTM4608A  
LTM8020  
Low V 8A DC/DC µModule Regulator  
2.7V ≤ V ≤ 5.5V; 0.6V ≤ V  
≤ 5V; 9mm × 15mm × 2.8mm LGA Package  
OUT  
IN  
IN  
High V 0.2A DC/DC Step-Down µModule Regulator  
4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V 6.25mm × 6.25mm × 2.3mm  
IN  
IN  
OUT  
LGA Package  
LTM8021  
High V 0.5A DC/DC Step-Down µModule Regulator  
3V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 5V 6.25mm × 11.25mm × 2.8mm  
OUT  
IN  
IN  
LGA Package  
LTM8022/  
LTM8023  
36V , 1A and 2A DC/DC µModule Regulator  
Pin Compatible; 3.6V ≤ V ≤ 36V; 9mm × 11.25mm × 2.8mm  
IN  
IN  
LGA Package  
LTM4612  
EN55022B Compliant 36V , 5A µModule Regulator  
PLL Input, 5V ≤ V ≤ 36V, 15mm × 15mm × 2.8mm LGA Package  
IN  
IN  
4613f  
LT 0411 • PRINTED IN USA  
28 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM4614

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4614EV

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614EVPBF

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614IV

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4614IV#PBF

LTM4614 - Dual 4A per Channel Low VIN DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4614IVPBF

Dual 4A per Channel Low VIN DC/DC μModule Regulator
Linear

LTM4615

Triple Output, Low Voltage DC/DC μModule Regulator
Linear

LTM4615

Dual 8A or Single 16A DC/DC μModule Regulator
LINEAR_DIMENS

LTM4615EV

Triple Output, Low Voltage DC/DC μModule Regulator
Linear

LTM4615EV#PBF

LTM4615 - Triple Output, Low Voltage DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 144; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4615EVPBF

Triple Output, Low Voltage DC/DC μModule Regulator
Linear