LTM4615IVPBF [Linear]

Triple Output, Low Voltage DC/DC μModule Regulator; 三路输出,低电压DC / DC μModule稳压器
LTM4615IVPBF
型号: LTM4615IVPBF
厂家: Linear    Linear
描述:

Triple Output, Low Voltage DC/DC μModule Regulator
三路输出,低电压DC / DC μModule稳压器

稳压器
文件: 总24页 (文件大小:408K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4615  
Triple Output, Low Voltage  
DC/DC µModule Regulator  
FEATURES  
DESCRIPTION  
TheLTM®4615isacomplete4Adualoutputswitchingmode  
DC/DC power supply plus an additional 1.5A VLDO (very  
low dropout) linear regulator. Included in the package are  
the switching controllers, power FETs, inductors, a 1.5A  
regulator and all support components. The dual 4A DC/DC  
converters operate over an input voltage range of 2.375V  
to 5.5V, and the VLDO operates from a 1.14V to 3.5V input.  
TheLTM4615supportsoutputvoltagesrangingfrom0.8V  
to 5V for the DC/DC converters, and 0.4V to 2.6V for the  
VLDO. The three regulator output voltages are set by a  
single resistor for each output. Only bulk input and output  
capacitors are needed to complete the design.  
n
Dual 4A Output Power Supply with 1.5A VLDO™  
n
Short-Circuit and Overtemperature Protection  
Power Good Indicators  
n
Switching Regulators Section—Current Mode Control  
n
Input Voltage Range: 2.375V to 5.5V  
n
4A DC Typical, 5A Peak Output Current Each  
n
0.8V Up to 5V Output Each, Parallelable  
n
2% Total DC Output Error  
n
Output Voltage Tracking  
n
Up to 95% Efficiency  
n
Programmable Soft-Start  
VLDO Section  
n
The low profile package (2.82mm) enables utilization of  
unused space on the bottom of PC boards for high density  
point of load regulation. High switching frequency and a  
current mode architecture enables a very fast transient  
response to line and load changes without sacrificing  
stability. The device supports output voltage tracking for  
supply rail sequencing.  
VLDO, 1.14V to 3.5V Input Range  
n
VLDO, 0.4V to 2.6V, 1.5A Output  
n
VLDO, 40dB Supply Rejection at f  
1% Total DC Output Error  
Small and Very Low Profile Package:  
15mm × 15mm × 2.82mm  
SW  
n
n
APPLICATIONS  
Additional features include overvoltage protection,  
foldback overcurrent protection, thermal shutdown and  
programmable soft-start. The power module is offered in  
a space saving and thermally enhanced 15mm × 15mm  
× 2.82mm LGA package. The LTM4615 is Pb-free and  
RoHS compliant.  
n
Telecom and Networking Equipment  
n
Industrial Power Systems  
n
Low Noise Applications  
FPGA, SERDES Power  
n
L, LT, LTC, LTM, Linear Technology, the Linear logo and μModule are registered trademarks of  
Linear Technology Corporation. VLDO is a trademark of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. Protected by U.S. Patents including  
5481178, 6580258, 6304066, 6127815, 6498466, 6611131, 6724174.  
TYPICAL APPLICATION  
Efficiency vs Output Current  
1.2V at 4A, 1.5V at 4A and 1V at 1A DC/DC μModule® Regulator  
91  
89  
87  
85  
83  
81  
79  
77  
75  
V
= 3.3V  
IN  
V
3V TO 5.5V  
IN  
PGOOD1  
10μF  
6.3V  
PGOOD2  
10μF  
6.3V  
V
OUT2  
1.5V  
V
V
IN2  
PGOOD2  
IN1  
PGOOD1  
10k  
10k  
V
1.5V  
4A  
V
OUT2  
OUT1  
1.2V  
4A  
V
OUT1  
1.2V  
V
FB1  
TRACK1  
RUN/SS1  
LDO_IN  
EN3  
V
OUT1  
OUT2  
FB2  
V
OUT3  
1V  
LTM4615  
GND2  
22μF  
6.3V  
22μF  
6.3V  
V
TRACK2  
RUN/SS2  
LDO_OUT  
FB3  
PGOOD3  
V
IN  
IN  
(V = 1.2V)  
IN  
10k  
5.76k  
V
OUT3  
1V AT 1A  
1.2V  
100μF  
6.3V  
100μF  
6.3V  
10μF  
6.3V  
PGOOD3  
3.32k  
10μF  
GND1  
GND3  
10k  
0
1
2
3
4
4615 TA01a  
V
LOAD CURRENT (A)  
OUT3  
4615 TA01b  
4615f  
1
LTM4615  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
(See Pin Functions, Pin Configuration Table)  
Switching Regulators  
IN1 IN2  
TOP VIEW  
V
, V , PGOOD1, PGOOD2 ..................... –0.3V to 6V  
M
COMP1, COMP2, RUN/SS1, RUN/SS2  
, V ,TRACK1, TRACK2 .......................–0.3V to V  
L
K
J
V
FB1 FB2  
IN  
SW, V ........................................–0.3V to (V + 0.3V)  
OUT  
IN  
Very Low Dropout Regulator  
H
G
F
LDO_IN, PGOOD3........................................ –0.3V to 6V  
LDO_OUT........................................................–0.3 to 4V  
(EN3, FB3) to GND3............... –0.3V to (LDO_IN + 0.3V)  
LDO_OUT Short-Circuit.................................... Indefinite  
Internal Operating Temperature Range  
E
D
C
B
A
(Note 2).................................................. –40°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –55°C to 125°C  
1
2
3
4
5
6
7
8
9
10  
11  
12  
LGA PACKAGE  
144-LEAD (15mm s 15mm s 2.8mm)  
T
= 125°C, θ  
= 2-3°C/W, θ = 15°C/W, θ  
= 25°C/W, wt = 1.61g  
JC-TOP  
JMAX  
JC-BOTTOM  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM4615EV#PBF  
LTM4615IV#PBF  
TRAY  
PART MARKING*  
LTM4615V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM4615EV#PBF  
LTM4615IV#PBF  
144-Lead (15mm × 15mm × 2.8mm) LGA  
144-Lead (15mm × 15mm × 2.8mm) LGA  
LTM4615V  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, LDO_IN = 1.2V unless otherwise noted.  
Per Typical Application Figure 12.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Switching Regulator Section: per Channel  
l
l
V
V
V
Input DC Voltage Range  
Output DC Voltage Range  
Output Voltage  
2.375  
0.8  
5.5  
5.0  
V
V
IN(DC)  
OUT(DC)  
OUT(DC)  
C
IN  
V
IN  
= 22μF, C  
= 100μF, R = 5.76k,  
OUT FB  
= 2.375V to 5.5V, I  
= 0A to 4A (Note 6)  
OUT  
0°C ≤ T ≤ 125°C  
1.460  
1.45  
1.49  
1.49  
1.12  
1.512  
V
V
J
l
V
Undervoltage Lockout Threshold  
I
= 0A  
1.6  
2
2.3  
V
IN(UVLO)  
OUT  
4615f  
2
LTM4615  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, LDO_IN = 1.2V unless otherwise noted.  
Per Typical Application Figure 12.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Input Inrush Current at Start-Up  
I
= 0A, C = 22μF, C  
IN  
= 100μF, V  
= 1.5V,  
OUT  
INRUSH(VIN)  
OUT  
V
IN  
OUT  
= 5.5V  
0.35  
A
I
Input Supply Bias Current  
Input Supply Current  
V
V
= 2.375V, V  
= 1.5V, Switching Continuous  
OUT  
28  
45  
7
mA  
mA  
μA  
Q(VIN)  
IN  
IN  
= 5.5V, V  
= 1.5V, Switching Continuous  
OUT  
Shutdown, RUN = 0, V = 5V  
12  
4
IN  
I
I
V
IN  
V
IN  
= 2.375V, V  
= 1.5V, I = 4A  
OUT  
3.2  
1.48  
A
A
S(VIN)  
OUT  
= 5.5V, V  
= 1.5V, I  
= 4A  
OUT  
OUT  
Output Continuous Current Range  
Load and Line Regulation Accuracy  
V
V
= 5.5V, V  
= 1.5V (Note 6)  
0
A
OUT(DC)  
IN  
OUT  
= 1.5V, 0A to 4A (Note 6)  
IN  
ΔV  
OUT  
OUT(LOAD + LINE)  
V
= 2.375V to 5.5V  
1.0  
1.3  
1.30  
1.6  
%
%
V
OUT  
l
V
Output Ripple Voltage  
I
I
= 0A, C  
IN  
= 100μF  
OUT  
OUT  
OUT(AC)  
OUT  
V
= 5V, V  
= 1.5V  
12  
mV  
P-P  
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
= 4A, V = 5V, V = 1.5V  
OUT  
1.25  
MHz  
s
OUT  
IN  
C
= 100μF, V  
= 0A  
= 1.5V, RUN/SS = 10nF,  
ΔV  
OUT  
OUT  
OUT(START)  
I
OUT  
V
= 3.3V  
= 5V  
20  
20  
mV  
mV  
IN  
IN  
V
t
Turn-On Time  
C
= 100μF, V  
= 1.5V, I  
= 1A Resistive  
OUT  
START  
OUT  
OUT  
IN  
Load, TRACK = V and RUN/SS = Float  
V
= 5V  
0.5  
25  
ms  
mV  
IN  
Peak Deviation for Dynamic Load  
Load: 0% to 50% to 0% of Full Load,  
= 100μF, V = 5V, V = 1.5V  
ΔV  
OUT(LS)  
C
OUT  
IN  
OUT  
t
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load,  
10  
8
μs  
A
SETTLE  
V
= 5V, V  
= 1.5V  
IN  
OUT  
I
Output Current Limit  
Voltage at FB Pin  
C
= 100μF, V = 5V, V  
= 1.5V  
OUT  
OUT(PK)  
OUT  
OUT  
IN  
V
I
= 0A, V  
= 1.5V  
0.790  
0.786  
0.8  
0.8  
0.807  
0.809  
V
V
FB  
OUT  
l
I
0.2  
0.75  
0.2  
μA  
V
FB  
V
RUN Pin On/Off Threshold  
TRACK Pin Current  
Offset Voltage  
0.6  
0.9  
RUN  
I
μA  
mV  
V
TRACK  
V
TRACK = 0.4V  
30  
TRACK(OFFSET)  
V
Tracking Input Range  
0
0.8  
TRACK(RANGE)  
R
Resistor Between V  
and FB Pins  
OUT  
4.96  
4.99  
7.5  
90  
5.02  
kΩ  
%
FBHI  
ΔV  
PGOOD Range  
PGOOD  
PGOOD  
R
PGOOD Resistance  
Open-Drain Pull-Down  
(Note 3)  
150  
3.5  
Ω
VLDO Section  
l
V
Operating Voltage  
Operating Current  
Shutdown Current  
1.14  
4.8  
V
mA  
μA  
V
LDO_IN  
I
I
I
= 0mA, V = 1V, EN3 = 1.2V  
OUT  
1
IN(LDO_IN)  
IN(SHDN)  
OUT  
EN3 = 0V, LDO_IN = 1.5V  
EN3 = 1.2V  
0.6  
5
20  
V
V
BOOST3 Output Voltage  
Undervoltage Lockout  
5.2  
BOOST3  
4.3  
V
BOOST3(UVLO)  
4615f  
3
LTM4615  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. VIN = 5V, LDO_IN = 1.2V unless otherwise noted.  
Per Typical Application Figure 12.  
SYMBOL  
PARAMETER  
CONDITIONS  
1mA ≤ I ≤ 1.5A, 1.14V ≤ V ≤ 3.5V,  
LDO_IN  
MIN  
TYP  
MAX  
UNITS  
V
FB3  
FB3 Internal Reference Voltage  
0.397  
0.395  
0.4  
0.4  
0.404  
0.405  
V
V
OUT  
l
BOOST3 = 5V, 1V ≤ V  
≤ 2.59V  
OUT  
V
V
Output Voltage Range  
Dropout Voltage  
0.4  
2.6  
250  
5.02  
V
mV  
kꢀ  
A
LDO_OUT  
V
V
= 1.5V, V = 0.38V, I  
= 1.5A (Note 4)  
100  
DO  
LDO_IN  
FB3  
OUT  
LDO_RHI  
LDO Top Feedback Resistor  
Output Current  
4.96  
1.5  
4.99  
l
l
I
I
= 1.2V  
EN3  
OUT  
LIM  
Output Current Limit  
Output Voltage Noise  
EN3 Input High Voltage  
EN3 Input Low Voltage  
EN3 Input Current  
(Note 5)  
Frequency = 10Hz to 1MHz, I  
2.5  
A
e
n
= 1A  
300  
μRMS  
V
LOAD  
V
V
1.14V ≤ V  
1.14V ≤ V  
≤ 3.5V  
≤ 3.5V  
1
IH_EN3  
IL_EN3  
IN_EN3  
LDO_IN  
LDO_IN  
0.4  
1
V
I
–1  
μA  
V
V
PGOOD Low Voltage  
I
= 2mA  
0.1  
0.4  
OL_PGOOD3  
PGOOD3  
PGOOD Threshold Output Threshold  
Relative to V  
PGOOD3 High to Low  
PGOOD3 Low to High  
–14  
–4  
–12  
–3  
–10  
–2  
%
%
FB3  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Minimum operating voltage required for regulation is:  
≥ V + V  
Note 4: Dropout voltage is the minimum input to output differential needed  
V
IN  
OUT(MIN)  
DROPOUT  
to maintain regulation at a specified output current. In dropout the output  
Note 2: The LTM4615E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4615I is guaranteed to meet specifications over the full  
internal operating temperature range. Note that the maximum ambient  
temperature is determined by specific operating conditions in conjunction  
with board layout, the rated package thermal resistance and other  
environmental factors.  
voltage will be equal to V – V  
.
IN  
DROPOUT  
Note 5: The IC has overtemperature protection that is intended to protect  
the device during momentary overload conditions. Junction temperatures  
will exceed 125°C when overtemperature is activated. Continuous  
overtemperature activation can impair long-term reliability.  
Note 6: See output current derating curves for different V , V  
and T .  
A
IN OUT  
4615f  
4
LTM4615  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switching Regulators  
Efficiency vs Output Current  
VIN = 2.5V  
Efficiency vs Output Current  
VIN = 3.3V  
Efficiency vs Output Current  
VIN = 5V  
95  
90  
100  
95  
100  
95  
90  
90  
85  
80  
85  
80  
75  
70  
65  
85  
80  
75  
V
V
V
V
V
V
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
75  
70  
65  
V
V
V
V
V
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
V
V
V
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
OUT  
OUT  
OUT  
OUT  
70  
65  
1
2
4
0
1
2
3
4
0
3
1
2
4
0
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
4615 G03  
4615 G01  
4615 G02  
Minimum Input Voltage  
at 4A Load  
Load Transient Response  
Load Transient Response  
3.5  
3.0  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 3.3V  
= 2.5V  
= 1.8V  
= 1.5V  
= 1.2V  
= 0.8V  
I
I
LOAD  
LOAD  
2.5  
2A/DIV  
2A/DIV  
V
OUT  
2.0  
1.5  
1.0  
0.5  
V
OUT  
20mV/DIV  
20mV/DIV  
4615 G06  
V
V
C
= 5V  
20μs/DIV  
IN  
4615 G05  
V
V
C
= 5V  
20μs/DIV  
IN  
= 1.5V  
OUT  
OUT  
= 1.2V  
OUT  
OUT  
= 100μF, 6.3V CERAMICS  
= 100μF, 6.3V CERAMICS  
0
0
1.5  
2.5  
2
3
3.5  
4 4.5  
5 5.5  
0.5  
1
V
(V)  
IN  
4615 G04  
Load Transient Response  
Load Transient Response  
Load Transient Response  
I
I
LOAD  
LOAD  
2A/DIV  
2A/DIV  
I
LOAD  
2A/DIV  
V
OUT  
V
V
OUT  
20mV/DIV  
OUT  
20mV/DIV  
20mV/DIV  
4615 G07  
4615 G08  
4615 G09  
V
V
C
= 5V  
20μs/DIV  
V
V
C
= 5V  
20μs/DIV  
V
V
C
= 5V  
OUT  
OUT  
20μs/DIV  
= 100μF, 6.3V CERAMICS  
IN  
IN  
IN  
= 1.8V  
= 2.5V  
= 3.3V  
OUT  
OUT  
OUT  
OUT  
= 100μF, 6.3V CERAMICS  
= 100μF, 6.3V CERAMICS  
4615f  
5
LTM4615  
TYPICAL PERFORMANCE CHARACTERISTICS  
Start-Up  
Start-Up  
VFB vs Temperature  
806  
804  
V
V
OUT  
OUT  
1V/DIV  
1V/DIV  
802  
800  
I
IN  
I
IN  
1A/DIV  
1A/DIV  
798  
796  
794  
4615 G10  
4615 G11  
V
V
C
= 5V  
200μs/DIV  
V
V
C
= 5V  
200μs/DIV  
IN  
IN  
= 2.5V  
= 2.5V  
OUT  
OUT  
OUT  
OUT  
= 100μF  
= 100μF  
NO LOAD  
4A LOAD  
(0.01μF SOFT-START CAPACITOR)  
(0.01μF SOFT-START CAPACITOR)  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
4615 G12  
Short-Circuit Protection  
1.5V Short, No Load  
Short-Circuit Protection  
1.5V Short, 4A Load  
Current Limit Foldback  
1.6  
1.4  
1.2  
1.0  
V
V
OUT  
OUT  
0.5V/DIV  
0.5V/DIV  
I
I
IN  
IN  
0.8  
0.6  
1A/DIV  
4A/DIV  
V
= 1.5V  
0.4  
0.2  
0
OUT  
4615 G14  
4615 G15  
20μs/DIV  
100μs/DIV  
V
IN  
V
IN  
V
IN  
= 5V  
= 3.3V  
= 2.5V  
4
5
7
3
8
6
OUTPUT CURRENT (A)  
4615 G13  
VLDO  
VFB3 vs Temperature  
Dropout Voltage vs Input Voltage  
Ripple Rejection  
200  
180  
160  
140  
120  
100  
80  
404  
403  
402  
401  
400  
399  
398  
397  
396  
60  
50  
40  
30  
20  
10  
0
V
= 0.38V  
FB3  
10kHz  
1MHz  
I
=1.5A  
LDO_OUT  
100kHz  
1mA  
1.5A  
60  
–40°C  
25°C  
85°C  
125°C  
V
V
I
= 5V  
BOOST3  
40  
=1.2V  
V
V
V
= 5V  
= 1.5V  
=1.2V  
LDO_OUT  
BOOST3  
LDO_IN  
LDO_OUT  
= 800mA  
OUT  
20  
C
= 10μF  
OUT  
0
1.4  
1.6 1.8 2.0  
2.4 2.6  
1.2  
2.2  
0
25  
50  
100 125  
1.2  
1.8 2.0 2.2  
2.4  
2.6  
–50 –25  
75  
1.4  
1.6  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
LDO_IN  
LDO_IN  
4615 G17  
4615 G16  
4615 G18  
4615f  
6
LTM4615  
TYPICAL PERFORMANCE CHARACTERISTICS  
Delay from Enable to Power Good  
Ripple Rejection  
Output Current Limit  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
70  
60  
50  
40  
30  
20  
10  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
V
= 0.8V  
= 8Ω  
V
= 0V  
LDO_OUT  
LDO_OUT  
LDO_OUT  
R
T
= 25°C  
A
–40°C  
25°C  
85°C  
CURRENT LIMIT  
V
V
V
= 5V  
BOOST3  
LDO_IN  
= 1.5V  
=1.2V  
THERMAL LIMIT  
LDO_OUT  
I
= 800mA  
OUT  
C
= 10μF  
OUT  
1.0  
1.5  
2.0  
V
2.5  
(V)  
3.0  
3.5  
1000  
10000  
1000000 1E+07  
1.5  
2.0  
V
3.0  
2.5  
(V)  
100  
100000  
1.0  
3.5  
FREQUENCY (Hz)  
LDO_IN  
LDO_IN  
4615 G21  
4615 G19  
4615 G20  
Output Load Transient Response  
IN Supply Transient Response  
1.5A  
2mA  
I
LDO_OUT  
2V  
V
LDO_IN  
1.5V  
V
LDO_OUT  
AC  
20mV/DIV  
V
LDO_OUT  
AC  
10mV/DIV  
4615 G22  
4615 G23  
V
C
V
V
= 1.5V  
50μs/DIV  
V
I
= 1.2V  
LDO_OUT  
OUT  
LDO_IN  
BOOST3  
10μs/DIV  
LDO_OUT  
LDO_OUT  
OUT  
BOOST3  
= 25°C  
= 10μF  
= 800mA  
= 1.7V  
= 5V  
C
= 10μF  
= 5V  
V
T
A
BOOST3 Ripple and Feedthrough to  
VLDO_OUT  
BOOST3/OUT Start-Up  
HI  
EN3  
LO  
5V  
BOOST3  
AC 20mV/DIV  
BOOST3  
1V  
1.5V  
V
LDO_OUT  
AC 5mV/DIV  
V
LDO_OUT  
0V  
4615 G25  
4615 G24  
V
V
I
= 1.2V  
= 1A  
200μs/DIV  
T
R
V
= 25°C  
LDO_OUT  
LDO_IN  
20μs/DIV  
A
= 1.5V  
= 1Ω  
LDO_OUT  
= 1.7V  
LDO_OUT  
LDO_IN  
C
= 10μF  
OUT  
T
= 25°C  
A
4615f  
7
LTM4615  
PIN FUNCTIONS  
V
, V (J1-J5, K1-K5); (C1-C6, D1-D5): Power Input  
COMP1, COMP2 (L5, E5): Current Control Threshold  
and Error Amplifier Compensation Point. The current  
comparator threshold increases with this control voltage.  
Two power modules can current share when this pin is  
connected in parallel with the adjacent module’s COMP  
pin. Each channel has been internally compensated. See  
the Applications Information section.  
IN1 IN2  
Pins. Apply input voltage between these pins and GND  
pins. Recommend placing input decoupling capacitance  
directly between V pins and GND pins.  
IN  
V
, V  
(K9-K12, L9-L12, M9-M12); (C9-C12,  
OUT2  
OUT1  
D9-D12, E11-E12): Power Output Pins. Apply output load  
between these pins and GND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and GND pins. Review Table 4.  
PGOOD1, PGOOD2 (L4, E4): Output Voltage Power  
Good Indicator. Open-drain logic output that is pulled to  
ground when the output voltage is not within 7.5% of  
the regulation point.  
GND1, GND2, (H1, H7-H12, J6-J12, K6-K8 L1, L7-L8,  
M1-M8); (A1-A12, B1, B7-B12, C7-C8, D6-D8, E1,  
E8-E10): Power Ground Pins for Both Input and Output  
Returns.  
RUN/SS1, RUN/SS2 (L2, E2): Run Control and Soft-Start  
Pin.Avoltageabove0.8Vwillturnonthemodule,andbelow  
0.5V will turn off the module. This pin has a 1M resistor to  
TRACK1, TRACK2 (L3, E3): Output Voltage Tracking Pins.  
When the module is configured as a master output, then a  
soft-start capacitor is placed on the RUN/SS pin to ground  
to control the master ramp rate, or an external ramp can  
be applied to the master regulator’s track pin to control it.  
Slave operation is performed by putting a resistor divider  
from the master output to the ground, and connecting the  
center point of the divider to this pin on the slave regulator.  
If tracking is not desired, then connect the TRACK pin to  
V and a 1000pF capacitor to GND. See the Applications  
IN  
Information section for soft-start information.  
SW1, SW2 (H2-H6, B2-B6): The switching node of the  
circuitisusedfortestingpurposes.Thiscanbeconnectedto  
copper on the board for improved thermal performance.  
LDO_IN (G1-G4): VLDO Input Power Pins. Place input  
capacitor close to these pins.  
LDO_OUT (G9-G12): VLDO Output Power Pins. Place  
output capacitor close to these pins. Minimum 1mA load  
is necessary for proper output voltage accuracy.  
V . Load current must be present for tracking. See the  
Applications Information section.  
IN  
FB1, FB2 (L6, E6): The Negative Input of the Switching  
BOOST3 (E7): Boost Supply for Driving the Internal VLDO  
NMOS Into Full Enhancement. The pin is use for testing  
the internal boost converter. The output is typically 5V.  
Regulators’ Error Amplifier. Internally, these pins are con-  
nected to V  
with a 4.99k precision resistor. Different  
OUT  
output voltages can be programmed with an additional  
resistorbetweentheFBandGNDpins.Twopowermodules  
can current share when this pin is connected in parallel  
with the adjacent module’s FB pin. See the Applications  
Information section.  
GND3(F1-F5,F7,F9-F12,G6-G8):Thepowergroundpins  
for both input and output returns for the internal VLDO.  
PGOOD3 (G5): VLDO Power Good Pin.  
EN3 (F8): VLDO Enable Pin.  
FB3 (F6): The Negative Input of the LDO Error Amplifier.  
Internally the pin is connected to LDO_OUT with a 4.99k  
resistor.Differentoutputvoltagescanbeprogrammedwith  
an additional resistor between the FB3 and GND pins. See  
the Applications Information section.  
4615f  
8
LTM4615  
SIMPLIFIED BLOCK DIAGRAM  
Switching Regulator Block Diagram  
V
PGOOD  
IN  
V
IN  
2.375V TO 5.5V  
22μF  
6.3V  
4.7μF  
6.3V  
R
SS  
1M  
RUN/SS  
C
C
SS  
1000pF  
SSEXT  
M1  
M2  
V
L
V
OUT  
OUT  
CONTROL, DRIVE  
POWER FETS  
4.99k  
TRACK  
COMP  
1.5V  
TRACK  
SUPPLY  
C2  
470pF  
4.7μF  
6.3V  
4A  
22μF  
6.3V  
s3  
5.76k  
R1  
4.99k  
INTERNAL  
COMP  
GND  
FB  
SW  
4615 F01a  
R
FB  
5.76k  
VLDO Block Diagram  
BOOST3  
4.7μF  
5V BOOST  
LDO_IN  
V
IN  
1.14V TO 3.5V  
4.7μF  
6.3V  
GND3  
10μF  
0.4V  
+
V
OUT  
GND3  
LDO_OUT  
CONTROL  
1V  
10μF 1.5A  
4.7μF  
6.3V  
GND3  
EN3  
LDO_RHI  
4.99k  
ENABLE  
GND3  
FB3  
R
FBLDO  
PGOOD3  
POWER GOOD  
3.32k  
GND3  
10k  
4615 F01b  
GND  
1V  
Figure 1. Simplified LTM4615 Block Diagram of Each Switching Regulator Channel and the VLDO  
DECOUPLING REQUIREMENTS TA = 25°C. Use Figure 1 configuration for each channel.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
I
= 4A  
22  
μF  
IN  
OUT  
(V = 2.375V to 5.5V, V  
= 1.5V)  
IN  
OUT  
C
External Output Capacitor Requirement  
I
= 4A  
66  
100  
10  
μF  
OUT  
OUT  
(V = 2.375V to 5.5V, V  
= 1.5V)  
IN  
OUT  
LDO_IN  
LDO Input Capacitance  
I
I
= 1A  
= 1A  
4.7  
10  
μF  
μF  
OUT  
LDO_OUT  
LDO Output Capacitance  
OUT  
4615f  
9
LTM4615  
OPERATION  
LTM4615 POWER MODULE DESCRIPTION  
The LTM4615 is internally compensated to be stable over  
the operating conditions. Table 4 provides a guideline for  
input and output capacitance for several operating condi-  
tions. The Linear Technology ꢁModule Power Design Tool  
will be provided for transient and stability analysis.  
Dual Switching Regulator Section  
The LTM4615 is a standalone dual nonisolated switching  
modeDC/DCpowersupplywithanadditionalonboard1.5A  
VLDO. It can deliver up to 4A of DC output current for each  
channelwithfewexternalinputandoutputcapacitors.This  
module provides two precisely regulated output voltages  
programmable via one external resistor for each channel  
from0.8VDCto5VDCovera2.375Vto5.5Vinputvoltage.  
The VLDO is an independent 1.5A linear regulator that can  
be powered from either switching converter. The typical  
application schematic is shown in Figure 12.  
The FB pins are used to program the specific output volt-  
age with a single resistor to ground.  
VLDO Section  
The VLDO (very low dropout) linear regulator operates  
from a 1.14V to 3.5V input. The VLDO uses an internal  
NMOS transistor as the pass device in a source-follower  
configuration. The BOOST3 pin is the output of an inter-  
nal boost converter that supplies the higher supply drive  
to the pass device for low dropout enhancement. The  
internal boost converter operates on very low current,  
thus optimizing high efficiency for the VLDO in close to  
dropout operation.  
The LTM4615 has two integrated constant frequency cur-  
rent mode regulators, with built-in power MOSFETs with  
fast switching speed. The typical switching frequency is  
1.25MHz.Withcurrentmodecontrolandinternalfeedback  
loop compensation, these switching regulators have suf-  
ficient stability margins and good transient performance  
under a wide range of operating conditions, and with a  
wide range of output capacitors, even all ceramic output  
capacitors.  
An undervoltage lockout comparator on the LDO ensures  
that the boost voltage is greater than 4.2V before enabling  
the LDO, otherwise the LDO is disabled.  
TheLDOprovidesahighaccuracyoutputcapableofsupply  
1.5A of output current with a typical drop out of 100mV.  
A single ceramic 10μF capacitor is all that is required  
for output capacitor bypassing. A low reference voltage  
allows the VLDO to have lower output voltages than the  
commonly available LDO.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit.Besides,currentlimitingisprovidedinanovercurrent  
condition with thermal shutdown. In addition, internal  
overvoltage and undervoltage comparators pull the open-  
drain PGOOD outputs low if the particular output feedback  
voltageexitsa 7.5%windowaroundtheregulationpoint.  
Furthermore, in an overvoltage condition, internal top FET,  
M1, is turned off and bottom FET, M2, is turned on and  
held on until the overvoltage condition clears, or current  
limit is exceeded.  
The device also includes current limit and thermal over-  
load protection. The NMOS follower architecture has fast  
transient response without the traditional high drive cur-  
rents in dropout. The VLDO includes a soft-start feature  
to prevent excessive current on the input during start-up.  
When the VLDO is enabled, the soft-start circuitry gradu-  
ally increases the 0.4V reference voltage over a period of  
approximately 200μs.  
Pulling each specific RUN pin below 0.8V forces the spe-  
cific regulator controller into its shutdown state, turning  
off both M1 and M2 for each power stage. At low load  
current, each regulator works in continuous current mode  
by default to achieve minimum output voltage ripple.  
The TRACK/SS pins are used for power supply tracking  
and soft-start programming for each specific regulator.  
See the Applications Information section.  
4615f  
10  
LTM4615  
APPLICATIONS INFORMATION  
Dual Switching Regulator  
For a buck converter, the switching duty cycle can be  
estimated as:  
The typical LTM4615 application circuit is shown in  
Figure 12. External component selection is primarily  
determined by the maximum load current and output  
voltage. Refer to Table 4 for specific external capacitor  
requirements for a particular application.  
VOUT  
D =  
V
IN  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
V to V  
Step-Down Ratios  
IN  
OUT  
IOUT(MAX)  
There are restrictions in the maximum V and V  
step-  
IN  
OUT  
ICIN(RMS)  
=
• D • 1D  
(
)
η%  
down ratio than can be achieved for a given input voltage  
on the two switching regulators. The LTM4615 is 100%  
In the above equation, η% is the estimated efficiency of  
the power module. The bulk capacitor can be a switcher-  
rated electrolytic aluminum OS-CON capacitor for bulk  
input capacitance due to high inductance traces or leads.  
If a low inductance plane is used to power the device,  
then no input capacitance is required. The internal 4.7μF  
ceramicsoneachchannelinputaretypicallyratedfor1Aof  
RMS ripple current up to 85°C operation. The worse-case  
ripple current for the 4A maximum current is 2A or less.  
An additional 10μF or 22μF ceramic capacitor can be used  
to supplement the internal capacitor with an additional 1A  
to 2A ripple current rating.  
duty cycle, but the V to V  
minimum dropout will be  
OUT  
IN  
a function the load current. A typical 0.5V minimum is  
sufficient.  
Output Voltage Programming  
Each regulator channel has an internal 0.8V reference  
voltage. As shown in the block diagram, a 4.99k internal  
feedback resistor connects the V  
and FB pins together.  
OUT  
The output voltage will default to 0.8V with no feedback  
resistor. Adding a resistor R from the FB pin to GND  
FB  
programs the output voltage:  
4.99k +RFB  
VOUT = 0.8V •  
RFB  
Output Capacitors  
The LTM4615 switchers are designed for low output volt-  
age ripple on each channel. The bulk output capacitors are  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
ments. The output capacitors can be a low ESR tantalum  
capacitor,lowESRpolymercapacitororceramiccapacitor.  
The typical output capacitance range is 66μF to 100μF.  
Additional output filtering may be required by the system  
designer, if further reduction of output ripple or dynamic  
transient spike is required. Table 4 shows a matrix of dif-  
ferent output voltages and output capacitors to minimize  
the voltage droop and overshoot during a 2A/μs transient.  
The table optimizes total equivalent ESR and total bulk  
capacitance to maximize transient performance.  
Table 1. FB Resistor Table vs Various Output Voltages  
V
0.8V  
1.2V  
10k  
1.5V  
1.8V  
2.5V  
3.3V  
OUT  
FB  
Open  
5.76k  
3.92k  
2.37k  
1.62k  
Input Capacitors  
The LTM4615 module should be connected to a low AC  
impedance DC source. One 4.7μF ceramic capacitor is  
included inside the module for each regulator channel.  
Additional input capacitors are needed if a large load step  
is required up to the full 4A level and for RMS ripple cur-  
rent requirements. A 47μF bulk capacitor can be used for  
more input bulk capacitance. This 47μF capacitor is only  
needed if the input source impedance is compromised by  
long inductive leads or traces.  
4615f  
11  
LTM4615  
APPLICATIONS INFORMATION  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
where R and C are shown in the block diagram of  
SS  
SS  
Figure 1, and the 1.8V is soft-start upper range. The  
soft-start function can also be used to control the output  
ramp-up time, so that another regulator can be easily  
tracked to it.  
The LTM4615 has current mode control, which inher-  
ently limits the cycle-by-cycle inductor current not only  
in steady-state operation, but also in transient.  
Output Voltage Tracking  
Along with foldback current limiting in the event of an  
overload condition, the LTM4615 has overtemperature  
shutdown protection that inhibits switching operation  
around 150°C for each channel.  
Output voltage tracking can be programmed externally  
using the TRACK pins. Either output can be tracked up  
or down with another regulator. The master regulator’s  
output is divided down with an external resistor divider  
thatisthesameastheslaveregulator’sfeedbackdividerto  
implement coincident tracking. The LTM4615 uses a very  
accurate4.99kresistorfortheinternaltopfeedbackresistor.  
Figure 2 shows an example of coincident tracking.  
Run Enable and Soft-Start  
The RUN/SS pins provide a dual function of enable and  
soft-start control for each channel. The RUN/SS pins are  
used to control turn on of the LTM4615. While each enable  
pin is below 0.5V, the LTM4615 will be in a low quiescent  
current state. At least a 0.8V level applied to the enable  
pins will turn on the LTM4615 regulators. This pin can be  
used to sequence the regulator channels. The soft-start  
Equations:  
RFB1  
4.99k +R  
TRACK1=  
Master  
FB1  
control is provided by a 1M pull-up resistor (R ) and a  
SS  
1000pF capacitor (C ) as drawn in the block diagram for  
SS  
4.99k  
RFB1  
Slave = 1+  
• TRACK1  
each channel. An external capacitor can be applied to the  
RUN/SS pin to increase the soft-start time. A typical value  
is 0.01μF. The approximate equation for soft-start:  
V
IN  
tSOFTSTART = In  
RSS CSS  
V – 1.8V  
IN  
V
IN  
3V TO 5.5V  
C2  
10μF  
6.3V  
C1  
10μF  
6.3V  
PGOOD2  
PGOOD1  
R4  
10k  
R3  
V
V
IN2  
PGOOD2  
IN1  
10k  
PGOOD1  
MASTER  
1.5V  
SLAVE  
1.2V  
4A  
V
FB1  
V
OUT1  
OUT2  
4A  
FB2  
COMP2  
TRACK2  
RUN/SS2  
LDO_OUT  
FB3  
PGOOD3  
R
TB  
4.99k  
COMP1  
TRACK1  
RUN/SS1  
LDO_IN  
EN3  
C10  
22μF  
6.3V  
C3  
22μF  
6.3V  
C6  
22μF  
6.3V  
C8  
22μF  
6.3V  
R
FB2  
1.5V  
R
V OR A CONTROL RAMP  
LTM4615  
GND2  
IN  
5.76k  
L1 0.2μH*  
1V LOW NOISE AT 1A  
C5  
22μF  
6.3V  
C4  
22μF  
6.3V  
1.2V  
C7  
C9  
C11  
10μF  
6.3V  
22μF  
22μF  
6.3V  
6.3V  
BOOST3  
PGOOD3  
R5  
3.32k  
C12  
R
TA  
C13  
SSEXT  
FB1  
R6  
10k  
GND1  
GND3  
10μF  
10k  
10k  
C
1V  
LOW NOISE  
4615 F02  
*FAIR-RITE 0805 2508056007Y6  
OPTIONAL FILTER  
Figure 2. Dual Outputs (1.5V and 1.2V) with Tracking  
4615f  
12  
LTM4615  
APPLICATIONS INFORMATION  
Figure 3 shows the output voltage tracking waveform for  
coincident tracking.  
TRACK1 is the track ramp applied to the slave’s track pin.  
TRACK1appliesthetrackreferencefortheslaveoutputup  
to the point of the programmed value at which TRACK1  
proceeds beyond the 0.8V reference value. The TRACK1  
pin must go beyond the 0.8V to ensure the slave output  
has reached its final value.  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR is  
TB  
slower than MR. Make sure that the slave supply slew rate  
ischosentobefastenoughsothattheslaveoutputvoltage  
will reach it final value before the master output.  
Ratiometric tracking can be achieved by a few simple  
calculationsandtheslewratevalueappliedtothemaster’s  
TRACK pin. As mentioned above, the TRACK pin has a  
control range from 0V to 0.8V. The control ramp slew rate  
applied to the master’s TRACK pin is directly equal to the  
master’s output slew rate in Volts/Time.  
For example, MR = 2.5V/ms and SR = 1.8V/1ms. Then  
R
= 6.98k. Solve for R to equal to 3.24k. The master  
TB  
TA  
output must be greater than the slave output for the  
tracking to work. Output load current must be present  
for tracking to operate properly during power-down.  
The equation:  
Power Good  
MR  
SR  
• 4.99k = RTB  
PGOOD1 and PGOOD2 are open-drain pins that can be  
usedtomonitorvalidoutputvoltageregulation.Thesepins  
monitor a 7.5% window around the regulation point.  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
tracking is desired, then MR and SR are equal, thus R  
is equal to 4.99k. R is derived from equation:  
COMP Pin  
TB  
This pin is the external compensation pin. The module has  
alreadybeeninternallycompensatedforalloutputvoltages.  
Table4isprovidedformostapplicationrequirements. The  
Linear Technology μModule Power Design Tool will be  
provided for other control loop optimization. The COMP  
pins must be tied together in parallel operation.  
TA  
0.8V  
VFB  
RTA  
=
VTRACK  
RTB  
VFB  
+
4.99k RFB  
where V is the feedback voltage reference of the regula-  
FB  
tor, and V  
is 0.8V. Since R is equal to the 4.99k top  
TB  
Parallel Switching Regulator Operation  
TRACK  
feedback resistor of the slave regulator in equal slew rate  
or coincident tracking, then R is equal to R with V  
The LTM4615 switching regulators are inherently current  
mode control. Paralleling will have very good current  
sharing. This will balance the thermals on the design.  
Figure 13 shows a schematic of a parallel design. The  
voltage feedback equation changes with the variable N  
as channels are paralleled.  
=
FB  
TA  
FB  
V . Therefore R = 4.99k and R = 10k in Figure 2.  
TRACK  
TB  
TA  
MASTER OUTPUT  
SLAVE OUTPUT  
The equation:  
4.99k  
+RFB  
N
VOUT = 0.8V •  
RFB  
N is the number of paralleled channels.  
TIME  
4615 F03  
Figure 3. Output Voltage Coincident Tracking  
4615f  
13  
LTM4615  
APPLICATIONS INFORMATION  
VLDO SECTION  
10μF value. The X7R and X5R dielectrics are more stable  
with DC bias and temperature, thus more preferred.  
Adjustable Output Voltage  
Short-Circuit/Thermal Protection  
The output voltage is set by the ratio of two resistors. A  
4.99k resistor is built onboard the module from LDO_OUT  
The VLDO has built-in short-circuit current limiting of  
~3A as well as overtemperature protection. During short-  
circuit conditions the device is in control to 3A, and as  
the internal temperature rises to approximately 150°C,  
then the internal boost and LDO are shut down until the  
internal temperature drops back to 140°C. The device will  
cycle in and out of this mode with no latchup or damage.  
Long term over stress in this condition can degrade the  
device over time.  
toFB3.Anadditionalresistor(R )isrequiredfromFB3  
FBLDO  
to GND3 to set the output voltage over a range of 0.4V to  
2.6V. Minimum output current of 1mA is required for full  
output voltage range.  
The equation:  
4.99k +RFBLDO  
VOUT = 0.4V •  
RFBLDO  
Reverse Current Protection  
Power Good Operation  
The VLDO features reverse current protection to limit  
current draw from any supplementary power source at  
the output. Figure 4 shows the reverse output current  
limit for constant input and output cases. Note: Positive  
input current represents current flowing into the LDO_IN  
pin. With LDO_OUT held at or below the output regula-  
tion voltage and LDO_IN varied, input current flow will  
follow Figure 4 curves. Input reverse current ramps up  
to 16μA as the LDO_IN approaches LDO_OUT. Reverse  
input current will spike up as LDO_IN approaches with in  
30mV of LDO_OUT as reverse current protection circuitry  
is disabled and normal operation resumes. As LDO_IN  
transitions above LDO_OUT the reverse current transi-  
tions into short circuit current as long as LDO_OUT is  
held below the regulation voltage.  
The VLDO includes an open-drain power good (PGOOD3)  
pin with hysteresis. If the VLDO is in shutdown or under  
UVLO conditions (BOOST3 < 4.2V), then PGOOD3 is low  
impedance to ground. PGOOD3 becomes high imped-  
ance when the VLDO output voltage rises to 93% of its  
regulated voltage. PGOOD3 stays high impedance until  
the output voltage falls to 91% of its regulated voltage. A  
pull-up resistor can be inserted between the PGOOD3 pin  
and a positive logic supply such as the VLDO output or  
V . LDO_IN should be at least 1.14V or greater for power  
IN  
good to operate properly.  
Output Capacitance and Transient Response  
The VLDO is designed to be stable with a wide range of  
ceramic output capacitors. The ESR of the output capaci-  
torsaffectsstability,especiallysmallervaluecapacitors.An  
output capacitor of 10μF or greater with an ESR of 0.05Ω  
or less is recommended to ensure stability. Larger value  
capacitors can be used to reduce the transient deviations  
under load changes. Bypass capacitors that are used at  
the load device can also increase the effective output  
capacitance. High ESR tantalum or electrolytic bulk ca-  
pacitance can be used, but a ceramic capacitor must be  
used in parallel at the output.  
30  
IN CURRENT  
LIMIT ABOVE 1.45V  
20  
10  
0
–10  
–20  
–30  
Extra consideration should be given to the use of ceramic  
capacitors related to dielectrics, temperature and DC bias  
effects on the capacitor. The VLDO requires a minimum  
0
0.9  
INPUT VOLTAGE (V)  
1.5  
0.3  
0.6  
1.2  
1.8  
4615 F04  
Figure 4. Reverse Current Limit for VLDO  
4615f  
14  
LTM4615  
TYPICAL APPLICATIONS  
Thermal Considerations and Output Current Derating  
power loss curves in Figures 5 and 6 show this amount of  
power loss as a function of load current that is specified  
for both channels. The monitored junction temperature of  
120°Cminustheambientoperatingtemperaturespecifies  
how much module temperature rise can be allowed. As an  
example in Figure 7 the load current is derated to 3A for  
each channel with 0LFM at ~90°C and the power loss for  
both channels at 5V to 1.2V at 3A output are ~1.4W, then  
include the VDLO power loss of 0.5W to equal 1.9W. If the  
90°C ambient temperature is subtracted from the 120°C  
maximum junction temperature, then the difference of  
30°C divided 1.9W equals a 15.7°C/W thermal resistance.  
Table 2 specifies a 15°C/W value which is very close. Table  
2 and Table 3 provide equivalent thermal resistances for  
1.2V and 3.3V outputs with and without air flow and heat  
sinking. The combined power loss for the two 4A outputs  
plus the VLDO power loss can be summed together and  
multiplied by the thermal resistance values in Tables 2  
and 3 for module temperature rise under the specified  
conditions. The printed circuit board is a 1.6mm thick  
four layer board with two ounce copper for the two outer  
layers and 1 ounce copper for the two inner layers. The  
PCB dimensions are 95mm × 76mm. The BGA heat sinks  
The power loss curves in Figures 5 and 6 can be used  
in coordination with the load current derating curves in  
Figures 7 to10 for calculating an approximate θ thermal  
JA  
resistance for the LTM4615 with various heat sinking and  
airflow conditions. Both of the LTM4615 outputs are at full  
4A load current, and the power loss curves in Figures 5  
and 6 are combined power losses plotted for both output  
voltages up to 4A each. The VLDO regulator is set to have  
a power dissipation of a 0.5W since it is generally used  
with dropout voltages of 0.5V or less. For example: 1.2V  
to 1V, 1.5V to 1V, 1.5V to 1.2V and 1.8V to 1.5V. Other  
drop voltages can be supported at VLDO maximum load,  
but further thermal analysis will be required for the VLDO.  
The 4A output voltages are 1.2V and 3.3V. These voltages  
are chosen to include the lower and higher output voltage  
ranges for correlating the thermal resistance. Thermal  
models are derived from several temperature measure-  
ments in a controlled temperature chamber along with  
thermal modeling analysis. The junction temperatures are  
monitoredwhileambienttemperatureisincreasedwithand  
without airflow. The junctions are maintained at ~120°C  
while lowering output current or power while increasing  
ambient temperature. The 120°C is chosen to allow for  
a 5°C margin window relative to the maximum 125°C.  
The decreased output current will decrease the internal  
module loss as ambient temperature is increased. The  
are listed below Table 3. The data sheet lists the θ (Junc-  
JP  
tion to pin) and θ (Junction to case) thermal resistances  
JC  
under the Pin Configuration diagram.  
3.0  
2.5  
V
= 5V  
V
= 5V  
IN  
IN  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.5  
1.0  
0.5  
0
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4615 F06  
4615 F05  
Figure 5. 1.2V Power Loss  
Figure 6. 3.3V Power Loss  
4615f  
15  
LTM4615  
APPLICATIONS INFORMATION  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
4.5  
V
= 5V  
V
= 5V  
IN  
IN  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0LFM HEATSINK  
200LFM HEATSINK  
400LFM HEATSINK  
0LFM NO HEATSINK  
200LFM NO HEATSINK  
400LFM NO HEATSINK  
0
0
40 50 60 70 80  
120  
90 100 110  
40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
120  
100 110  
AMBIENT TEMPERATURE (°C)  
4615 F08  
4615 F07  
Figure 7. 1.2V No Heat Sink  
Figure 8. 1.2V Heat Sink  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 5V  
V
= 5V  
IN  
IN  
0LFM HEATSINK  
200LFM HEATSINK  
400LFM HEATSINK  
0LFM NO HEATSINK  
200LFM NO HEATSINK  
400LFM NO HEATSINK  
0
0
40 50 60 70 80  
120  
90 100 110  
40 50 60 70 80  
AMBIENT TEMPERATURE (°C)  
120  
90 100 110  
AMBIENT TEMPERATURE (°C)  
4615 F10  
4615 F09  
Figure 9. 3.3V No Heat Sink  
Figure 10. 3.3V Heat Sink  
4615f  
16  
LTM4615  
APPLICATIONS INFORMATION  
Table 2. 1.2V Output  
DERATING CURVE  
Figure 7  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 5  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
15  
5
0
Figure 7  
5
5
5
5
5
Figure 5  
200  
400  
0
None  
12  
Figure 7  
Figure 5  
None  
10  
Figure 8  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
14  
Figure 8  
Figure 5  
200  
400  
9
Figure 8  
Figure 5  
8
Table 3. 3.3V Output  
DERATING CURVE  
Figure 9  
V
IN  
(V)  
POWER LOSS CURVE  
Figure 6  
AIRFLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)  
15  
5
5
5
5
5
5
0
Figure 9  
Figure 6  
200  
400  
0
None  
12  
Figure 9  
Figure 6  
None  
10  
Figure 10  
Figure 6  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
14  
Figure 10  
Figure 6  
200  
400  
9
Figure 10  
Figure 6  
8
HEAT SINK MANUFACTURER  
PART NUMBER  
WEBSITE  
Aavid  
375424b00034G  
www.aavid.com  
4615f  
17  
LTM4615  
APPLICATIONS INFORMATION  
Safety Considerations  
• Place high frequency ceramic input and output capaci-  
tors next to the V , GND and V  
pins to minimize  
IN  
OUT  
TheLTM4615modulesdonotprovideisolationfromV to  
IN  
high frequency noise.  
V
.Thereisnointernalfuse.Ifrequired,aslowblowfuse  
OUT  
with a rating twice the maximum input current needs to be  
• Place a dedicated power ground layer underneath the  
unit.  
provided to protect each unit from catastrophic failure.  
• Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnection  
between the top layer and other power layers.  
Layout Checklist/Example  
The high integration of LTM4615 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
• Do not put via directly on pads unless the via is  
capped.  
Figure 11 gives a good example of the recommended  
layout.  
• Use large PCB copper areas for high current path,  
including V , GND and V . It helps to minimize the  
IN  
OUT  
PCB conduction loss and thermal stress.  
V
CONTROL  
GND1  
OUT1  
C
IN1  
GND1  
M
L
C
C
OUT1 OUT2  
V
OUT1  
K
J
V
IN1  
SW1  
GND1  
GND1  
H
G
F
C
C
IN2  
OUT3  
LD0_IN  
GND3  
GND2  
LDO_OUT  
GND3  
E
C
C
OUT4 OUT5  
CONTROL  
D
C
B
A
V
OUT2  
V
IN2  
GND2  
GND2  
C
IN3  
1
2
3
4
5
6
7
8
9
10 11 12  
GND2  
4615 F11  
GND2  
SW2  
Figure 11. Recommended PCB Layout  
4615f  
18  
LTM4615  
APPLICATIONS INFORMATION  
V
3V TO 5.5V  
IN  
C
10μF  
6.3V  
C
IN2  
IN1  
10μF  
PGOOD1  
PGOOD2  
6.3V  
R3  
10k  
R4  
10k  
V
V
IN2  
PGOOD2  
IN1  
PGOOD1  
V
1.5V  
4A  
V
OUT2  
OUT1  
1.2V  
V
FB1  
V
OUT1  
OUT2  
4A  
FB2  
COMP2  
TRACK2  
RUN/SS2  
LDO_OUT  
FB3  
PGOOD3  
C
OUT2  
COMP1  
TRACK1  
RUN/SS1  
LDO_IN  
EN3  
100μF  
6.3V  
R
22μF  
6.3V  
22μF  
6.3V  
FB2  
100μF  
6.3V  
5.76k  
V
V
IN  
LTM4615  
GND2  
IN  
V
OUT3  
L1 0.2μH*  
1V LOW NOISE AT 1A  
C
OUT1  
1.2V  
22μF  
6.3V  
22μF  
6.3V  
C11  
10μF  
6.3V  
BOOST3  
PGOOD3  
R5  
C12  
10μF  
R
FB1  
R6  
10k  
GND1  
GND3  
3.32k  
10k  
V
OUT3  
4615 F12  
*FAIR-RITE 0805 2508056007Y6  
IF MORE FILTERING REQUIRED  
Figure 12. Typical 3V to 5.5VIN, 1.5V and 1.2V at 4A and 1V at 1A Design  
Table 4. Output Voltage Response vs Component Matrix (Refer to Figure 12) 0A to 2.5A Load Step Typical Measured Values  
C
AND C  
C
AND C  
OUT1  
OUT2  
OUT1 OUT2  
CERAMIC VENDORS  
VALUE  
PART NUMBER  
BULK VENDORS  
VALUE  
PART NUMBER  
10TPD150M  
4TPE220MF  
TDK  
22μF 6.3V  
22μF 16V  
100μF 6.3V  
100μF 6.3V  
C3216X7SOJ226M  
Sanyo POSCAP  
150μF 10V  
220μF 4V  
VALUE  
Murata  
TDK  
GRM31CR61C226KE15L Sanyo POSCAP  
C4532X5R0J107MZ  
GRM32ER60J107M  
C
IN  
BULK VENDORS  
PART NUMBER  
10CE100FH  
Murata  
Sanyo POSCAP  
100μF 10V  
V
C
C
C
AND C  
C
AND C  
V
DROOP PEAK-TO-PEAK RECOVERY LOAD STEP  
R
FB  
(kΩ)  
10  
10  
10  
OUT  
IN  
IN  
OUT1  
OUT2  
OUT1  
OUT2  
IN  
(V)  
(V)  
1.2  
1.2  
1.2  
1.2  
1.5  
1.5  
1.5  
1.5  
1.8  
1.8  
1.8  
2.5  
2.5  
2.5  
3.3  
(CERAMIC) (BULK)*  
(CER) EACH  
(POSCAP) EACH  
I
(mV)  
33  
25  
33  
25  
30  
28  
30  
27  
34  
30  
30  
50  
33  
50  
50  
DEVIATION  
TIME (μs)  
(A/μs)  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
TH  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
100μF  
None  
None  
220μF  
None  
220μF  
None  
220μF  
None  
220μF  
None  
220μF  
220μF  
None  
150μF  
150μF  
150μF  
None  
None  
5
5
68  
50  
68  
50  
60  
60  
60  
56  
68  
60  
60  
90  
60  
95  
90  
11  
9
8
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
10μF ×2  
100μF, 22μF ×2  
22μF ×1  
100μF, 22μF ×2  
22μF ×1  
100μF, 22μF ×2  
22μF ×1  
100μF, 22μF ×2  
22μF ×1  
None 3.3  
None 3.3  
10  
11  
11  
10  
10  
12  
12  
12  
10  
10  
12  
12  
10  
None  
None  
5
5
5.76  
5.76  
5.76  
5.76  
3.92  
3.92  
3.92  
2.37  
2.37  
2.37  
1.62  
None 3.3  
None 3.3  
None  
None  
5
5
100μF, 22μF ×2  
22μF ×1  
None 3.3  
22μF ×1  
22μF ×1  
22μF ×1  
22μF ×1  
None  
None  
5
5
100μF  
100μF  
100μF  
None 3.3  
None  
5
22μF ×1  
*Bulk capacitance is optional if V has very low input impedance.  
IN  
4615f  
19  
LTM4615  
APPLICATIONS INFORMATION  
V
3V TO 5.5V  
IN  
C2  
10μF  
6.3V  
C1  
10μF  
6.3V  
PGOOD1  
R3  
10k  
V
V
IN2  
PGOOD2  
IN1  
PGOOD1  
PGOOD1  
V
1.2V  
8A  
OUT2  
1.2V  
V
FB1  
COMP1  
TRACK1  
RUN/SS1  
V
OUT1  
OUT2  
FB2  
FB2  
COMP2  
TRACK2  
RUN/SS2  
FB2  
COMP2  
C6  
100μF  
6.3V  
C5  
100μF  
6.3V  
COMP2  
V
V
LTM4615  
GND2  
IN  
IN  
L1*  
0.2μH  
RUN/SS2  
V
1V LOW NOISE AT 1A  
OUT3  
1.2V  
LDO_IN  
EN3  
BOOST3  
LDO_OUT  
FB3  
PGOOD3  
C11  
10μF  
6.3V  
PGOOD3  
C13  
0.01μF  
R5  
3.32k  
C12  
10μF  
R1  
4.99k  
R6  
10k  
GND1  
GND3  
1V  
LOW NOISE  
*FAIR-RITE 0805 2508056007Y6  
IF MORE FILTERING REQUIRED  
4615 F13  
Figure 13. LTM4615 Parallel 1.2V at 8A Design, 1V at 1A Design  
4615f  
20  
LTM4615  
APPLICATIONS INFORMATION  
V
5V  
IN  
C1  
10μF  
6.3V  
C1  
10μF  
PGOOD1  
6.3V  
PGOOD2  
R4  
10k  
R3  
10k  
V
V
IN2  
PGOOD2  
IN1  
PGOOD1  
V
V
3.3V  
4A  
OUT1  
2.5V  
4A  
SLAVE  
3.3V  
MASTER  
OUT2  
V
FB1  
V
OUT1  
OUT2  
FB2  
COMP2  
TRACK2  
RUN/SS2  
LDO_OUT  
FB3  
PGOOD3  
R
TB  
C3  
22μF  
6.3V  
C6  
22μF  
6.3V  
COMP1  
TRACK1  
RUN/SS1  
LDO_IN  
EN3  
R
4.99k  
FB2  
1.62k  
V OR A CONTROL RAMP  
IN  
LTM4615  
GND2  
V
1.8V AT 1A  
R5  
PGOOD3  
OUT3  
C5  
22μF  
6.3V  
C4  
C9  
2.5V  
22μF  
6.3V  
C11  
10μF  
6.3V  
22μF  
6.3V  
BOOST3  
C12  
10μF  
2.37k  
R
R
TA  
1.43k  
FB1  
R6  
10k  
GND1  
GND3  
2.37k  
1.8V  
4615 F14  
Figure 14. 3.3V and 2.5V at 4A with Output Voltage Tracking Design, 1.8V at 1A  
4615f  
21  
LTM4615  
PACKAGE DESCRIPTION  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
4615f  
22  
LTM4615  
PACKAGE DESCRIPTION  
LTM4615 Component LGA Pinout  
PIN ID  
A1  
FUNCTION  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
PIN ID  
B1  
FUNCTION  
GND2  
SW2  
PIN ID  
C1  
FUNCTION  
PIN ID  
D1  
FUNCTION  
PIN ID  
E1  
FUNCTION  
GND2  
PIN ID  
F1  
FUNCTION  
GND3  
GND3  
GND3  
GND3  
GND3  
FB3  
V
V
V
V
V
V
V
V
V
V
V
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
IN2  
A2  
B2  
C2  
D2  
E2  
RUN/SS2  
TRACK2  
PGOOD2  
COMP2  
FB2  
F2  
A3  
B3  
SW2  
C3  
D3  
E3  
F3  
A4  
B4  
SW2  
C4  
D4  
E4  
F4  
A5  
B5  
SW2  
C5  
D5  
E5  
F5  
A6  
B6  
SW2  
C6  
D6  
GND2  
GND2  
GND2  
E6  
F6  
A7  
B7  
GND2  
GND2  
GND2  
GND2  
GND2  
GND2  
C7  
GND2  
GND2  
D7  
E7  
BOOST3  
GND2  
F7  
GND3  
EN3  
A8  
B8  
C8  
D8  
E8  
F8  
A9  
B9  
C9  
V
V
V
V
D9  
V
V
V
V
E9  
GND2  
F9  
GND3  
GND3  
GND3  
GND3  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
A10  
A11  
A12  
B10  
B11  
B12  
C10  
C11  
C12  
D10  
D11  
D12  
E10  
E11  
E12  
GND2  
F10  
F11  
F12  
V
V
OUT2  
OUT2  
PIN ID  
G1  
FUNCTION  
LDO_IN  
LDO_IN  
LDO_IN  
LDO_IN  
PGOOD3  
GND3  
PIN ID  
H1  
FUNCTION  
GND1  
SW1  
PIN ID  
J1  
FUNCTION  
PIN ID  
K1  
FUNCTION  
PIN ID  
L1  
FUNCTION  
GND1  
PIN ID  
M1  
FUNCTION  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
V
V
V
V
V
V
V
V
V
V
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
IN1  
G2  
H2  
J2  
K2  
L2  
RUN/SS1  
TRACK1  
PGOOD1  
COMP1  
FB1  
M2  
G3  
H3  
SW1  
J3  
K3  
L3  
M3  
G4  
H4  
SW1  
J4  
K4  
L4  
M4  
G5  
H5  
SW1  
J5  
K5  
L5  
M5  
G6  
H6  
SW1  
J6  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
K6  
GND1  
GND1  
GND1  
L6  
M6  
G7  
GND3  
H7  
GND1  
GND1  
GND1  
GND1  
GND1  
GND1  
J7  
K7  
L7  
GND1  
M7  
G8  
GND3  
H8  
J8  
K8  
L8  
GND1  
M8  
G9  
LDO_OUT  
LDO_OUT  
LDO_OUT  
LDO_OUT  
H9  
J9  
K9  
V
V
V
V
L9  
V
V
V
V
M9  
V
V
V
V
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
OUT1  
G10  
G11  
G12  
H10  
H11  
H12  
J10  
J11  
J12  
K10  
K11  
K12  
L10  
L11  
L12  
M10  
M11  
M12  
4615f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTM4615  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
LTM4600HV  
10A DC/DC μModule  
≤ 5V, LGA Package  
OUT  
IN  
LTM4600HVMP  
Military Plastic 10A DC/DC μModule  
Guaranteed Operation from –55°C to 125°C Ambient, LGA Package  
LTM4601/LTM4601A 12A DC/DC μModule with PLL, Output Tracking/Margining Synchronizable PolyPhase® Operation, LTM4601-1/LTM4601A-1  
and Remote Sensing  
Version Has No Remote Sensing, LGA Package  
LTM4602  
LTM4603  
6A DC/DC μModule  
Pin Compatible with the LTM4600, LGA Package  
6A DC/DC μModule with PLL and Output Tracking/  
Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No  
Remote Sensing, Pin Compatible with the LTM4601, LGA Package  
LTM4604A  
LTM4605  
LTM4607  
LTM4608A  
Low V 4A DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm  
IN  
IN  
OUT  
LGA Package  
5A to 12A Buck-Boost μModule  
5A to 12A Buck-Boost μModule  
4.5V ≤ V ≤ 20V, 0.8V ≤ V  
≤ 16V, 15mm × 15mm × 2.8mm  
≤ 25V, 15mm × 15mm × 2.8mm  
≤ 5V, 9mm × 15mm × 2.8mm  
≤ 5V, 15mm × 15mm × 2.8mm  
IN  
OUT  
OUT  
LGA Package  
4.5V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
LGA Package  
Low V 8A DC/DC Step-Down μModule  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
IN  
IN  
OUT  
LGA Package  
LTM4614  
LTM4616  
Dual 4A Low V DC/DC μModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
IN  
IN  
OUT  
Dual 8A Low V DC/DC μModule  
Current Share Input or Output, Similar to LTM4608,  
15mm × 15mm × 2.8mm  
IN  
LTM8020  
LTM8021  
LTM8022  
LTM8023  
High V 0.2A DC/DC Step-Down μModule  
4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V, 6.25mm × 6.25mm × 2.3mm  
IN  
IN  
OUT  
LGA Package  
High V 0.5A DC/DC Step-Down μModule  
3V ≤ V ≤ 36V, 0.4V ≤ V  
≤ 5V, 6.25mm × 11.25mm × 2.8mm  
IN  
IN  
OUT  
LGA Package  
High V 1A DC/DC Step-Down μModule  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 11.25mm × 9mm × 2.8mm  
≤ 10V, 11.25mm × 9mm × 2.8mm  
IN  
IN  
OUT  
OUT  
LGA Package  
High V 2A DC/DC Step-Down μModule  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
IN  
IN  
LGA Package  
PolyPhase is a registered trademark of Linear Technology Corporation.  
4615f  
LT 0709 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY