LTM4634EY#PBF [Linear]

LTM4634 - Triple Output 5A/5A/4A Step-Down DC/DC µModule (Power Module) Regulator; Package: BGA; Pins: 144; Temperature Range: -40°C to 85°C;
LTM4634EY#PBF
型号: LTM4634EY#PBF
厂家: Linear    Linear
描述:

LTM4634 - Triple Output 5A/5A/4A Step-Down DC/DC µModule (Power Module) Regulator; Package: BGA; Pins: 144; Temperature Range: -40°C to 85°C

文件: 总32页 (文件大小:737K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4634  
Triple Output 5A/5A/4A  
Step-Down DC/DC  
®
µModule Regulator  
FeaTures  
DescripTion  
The LTM®4634 integrates three complete 5A/5A/4A high  
efficiencyswitchingmodeDC/DCconvertersintoonesmall  
package.Switchingcontrollers,powerFETs,inductors,and  
mostsupportcomponentsareincluded.Operatingoveran  
inputvoltagerangeof4.75Vto28V, theLTM4634provides  
n
Three Independent High Efficiency Regulator  
Channels  
OUT1,2  
n
I
= 5A, I  
= 4A  
OUT3  
n
n
n
n
n
n
n
n
n
n
n
n
n
n
Input Voltage Range: 4.75V to 28V  
Independent V for Each Channel  
IN  
V
V
Voltage Range: 0.8V to 5.5V  
three independent output voltages. V  
adjustable from 0.8V to 5.5V, while V  
from 0.8V to 13.5V. Each output voltage is set by a single  
external resistor.  
and V  
OUT3  
are  
OUT1,2  
OUT1  
OUT2  
is adjustable  
Voltage Range: 0.8V to 13.5V  
OUT3  
1.5ꢀ ꢁaꢂiꢃuꢃ Total DC Output Error  
Current ꢁode Control/Fast Transient Response  
Frequency Synchronization  
Highswitchingfrequencyandacurrentmodearchitecture  
enable a very fast transient response to line and load  
changes without sacrificing stability. The device supports  
frequency synchronization, multiphase parallel opera-  
tion, soft-start and output voltage tracking for supply rail  
sequencing.  
Output Overvoltage and Overcurrent Protection  
PolyPhase® Operation with Current Sharing  
General Purpose Teꢃperature ꢁonitors  
Soft-Start/Voltage Tracking  
Power Good Monitors  
SnPb or RoHS Compliant Finish  
15mm × 15mm × 5.01mm BGA Package  
Fault protection features include overvoltage protection,  
overcurrent protection and temperature monitoring. The  
power module is offered in a space saving, thermally  
enhanced 15mm × 15mm × 5.01mm BGA package. The  
LTM4634 is available with SnPb (BGA) or RoHS compliant  
terminal finish.  
applicaTions  
n
Telecom, Networking and Industrial Equipment  
High Density Point of Load Voltage Regulation  
n
L, LT, LTC, LTM, µModule, PolyPhase, Burst Mode, Linear Technology and the Linear logo  
are registered trademarks and PowerPath, LTpowerCAD and UltraFast are trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Protected by U.S. Patents, including 5481178, 5705919, 5929620, 6100678, 6144194,  
6177787, 6304066, 6580258 and 8163643. Other patents pending.  
Typical applicaTion  
24V Input to 3.3V, 5V and 12V Output Regulator  
24V Input Efficiency  
100  
95  
90  
85  
80  
75  
70  
65  
60  
5V  
24V  
IN  
4.7µF  
6.3V  
2Ω  
40k  
10k  
10k  
V
V
V
IN3  
EXTV  
INTV  
FREQ/PLLLPF  
CC  
IN1  
IN2  
CC  
CNTL_PWR  
RUN1  
PGOOD12  
PGOOD3  
3.3V  
5V  
V
V
V
OUT1  
RUN2  
19.1k  
1µF  
V
RUN3  
FB1  
LTM4634  
TK/SS1  
TK/SS2  
TK/SS3  
OUT2  
11.5k  
4.32k  
V
= 5V  
EXTVCC  
V
FB2  
24V to 3.3V EFF (750kHz) CH1  
24V to 5V EFF (750kHz) CH2  
24V to 12V EFF (750kHz) CH3  
12V  
OUT3  
V
FB3  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
MODE/PLLIN GND SGND  
LOAD CURRENT (A)  
4634 TA01a  
4634 TA01b  
4634f  
1
For more information www.linear.com/LTM4634  
LTM4634  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
CNTL_PWR ............................................... –0.3V to 30V  
FREQ/PLLLPF  
TKSS2  
TK/SS1 TK/SS3  
V
V
V
V
, V , V ........................................... –0.3V to 30V  
OUT1 OUT2  
COMP1  
COMP2  
FB1 GND  
IN1 IN2 IN3  
M
L
PGOOD12  
PGOOD3  
, V  
........................................... –0.3V to 5.75V  
MODE/PLLIN  
RUN1  
RUN2  
RUN3  
V
FB2  
......................................................... –0.3V to 14V  
OUT3  
EXTV  
CC  
V
FB3  
SGND  
COMP3  
K
J
Switch Voltage (SW1, SW2 and SW3) ...........–1V to 30V  
GND  
GND  
MODE/PLLIN, TK/SS1, TK/SS2, TK/SS3,  
INTV  
CC  
CNTL_PWR  
H
G
F
FREQ/PLLLPF .......................................–0.3V to INTV  
CC  
V
IN3  
V
V
IN1  
GND  
GND  
IN2  
COMP1, COMP2, COMP3, V , V , V  
FB1 FB2 FB3  
(Note 3).................................................–0.3V to INTV  
CC  
SW3  
SW1  
SW2  
E
RUN1, RUN2, RUN3, INTV , EXTV ,  
CC  
CC  
GND  
D
C
B
A
PGOOD12, PGOOD3..................................... –0.3V to 6V  
TEMP1, TEMP2......................................... –0.3V to 0.8V  
V
OUT2  
TEMP2  
TEMP1  
INTV Peak Output Current................................100mA  
CC  
V
V
OUT1  
OUT3  
Operating Junction Temperature Range  
1
2
3
4
5
6
7
8
9
10 11 12  
(Note 2).................................................. –40°C to 125°C  
Storage Temperature Range .................. –55°C to 125°C  
Peak Solder Reflow Body Temperature................. 245°C  
GND  
GND  
BGA PACKAGE 144 LEAD (15mm × 15mm × 5.01mm)  
= 125°C, θ = 7.5°C/W, θ = 4°C/W, θ = 5°C/W  
T
JMAX  
JA  
JCbottom  
JCtop  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4-LAYER, WEIGHT = 3.2g  
JA  
θ VALUES DETERMINED PER JESD51-12  
orDer inForMaTion  
PART ꢁARKING*  
PACKAGE  
TYPE  
ꢁSL  
TEꢁPERATURE RANGE  
(See Note 2)  
PART NUꢁBER  
LTM4634EY#PBF  
LTM4634IY#PBF  
LTM4634IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
RATING  
LTM4634Y  
LTM4634Y  
LTM4634Y  
e1  
e1  
e0  
BGA  
BGA  
BGA  
4
4
4
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Markings:  
www.linear.com/leadfree  
4634f  
2
For more information www.linear.com/LTM4634  
LTM4634  
elecTrical characTerisTics The ldenotes the specifications which apply over the specified internal  
operating teꢃperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 24V, per the typical application for each regulator  
channel.  
SYꢁBOL  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX UNITS  
l
V
V
Input DC Voltage  
CNTL_PWR Powered Tied to Input Supply  
4.75  
28  
V
IN  
l
l
Output Voltage Range V  
Output Voltage Range V  
, V  
OUT3  
0.8  
0.8  
5.5  
13.5  
V
V
OUT(RANGE)  
OUT1 OUT2  
l
V
Output Voltage, Total Variation with Line  
and Load, V , V , V  
4.925  
5.0  
5.075  
V
C
= 22µF × 3, C  
= 100µF Ceramic × 3,  
OUT(DC)  
IN  
FB  
OUT  
R
= 11.5k, MODE/PLLIN = 0V, V = 5.5V to 28V,  
IN  
OUT1 OUT2 OUT3  
I
= 0A to 5A, I  
= 0A to 4A (Note 4)  
OUT1,2  
OUT3  
Input Specifications  
V
V
RUN1, RUN2, RUN3 Pin ON Threshold  
RUN Pin Hysteresis  
V
Rising  
1.15  
1.3  
1.4  
V
RUN  
RUN  
175  
mV  
RUN(HYS)  
Q(VIN)  
I
Input Supply Bias Current Each Channel  
V
V
V
= 5V, Burst Mode Operation, I  
= 0A  
= 0A  
= 0A  
0.5  
1.6  
45  
mA  
mA  
mA  
µA  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
= 5V, Pulse-Skipping Mode, I  
= 5V, Switching Continuous, I  
Shutdown, RUN = 0V, V = 24V  
10  
IN  
I
Input Supply Current Each Channel  
V
V
= 12V, EXTV = 5V  
I = 5A  
OUT1,2  
2.21  
1.76  
A
A
S(VIN)  
IN  
CC  
OUT  
= 5V, V  
= 5V  
OUT1,2  
OUT3  
I
= 4A  
OUT3  
Output Specifications (Note 4)  
I
Output Continuous Current Range Each  
Channel  
V
V
= 5V  
0
0
5
4
A
A
OUT(DC)  
OUT1,2  
OUT3  
= 5V  
l
l
Line Regulation Accuracy per Channel  
V
OUT  
= V from 5.5V to 28V  
0.015 0.02  
%/V  
V  
V  
V
OUT1  
IN  
OUT(LINE)  
I
= 0A, CNTL_PWR Tie to V  
IN  
V
OUT  
Load Regulation Accuracy per Channel  
V
= 5V, I  
= 0A to 5A  
OUT1,2  
0.3  
0.5  
%
OUT  
OUT(LOAD)  
Ch1, Ch2, I  
= 0A to 4A  
OUT3  
V
OUT  
Output Ripple Voltage per Channel  
Turn-On Overshoot per Channel  
Turn-On Time per Channel  
75  
50  
6
mV  
mV  
ms  
mV  
I
= 0A, C  
= 100µF Ceramic × 3,  
= 5V  
OUT(AC)  
OUT  
OUT  
OUT  
V
= 24V, V  
IN  
V  
OUT(START)  
C
= 100µF Ceramic × 3, V  
= 5V,  
= 5V,  
OUT  
OUT  
OUT  
I
= 0A, TK/SS = 0.01µF  
t
C
= 100µF Ceramic × 3, V  
START  
OUT  
OUT  
OUT  
I
= 0A, TK/SS = 0.01µF  
V
OUTLS  
Peak Deviation for Dynamic Load per  
Channel  
Load: 0% to 50% to 0% of Full Load,  
C
V
200  
= 100µF Ceramic × 3,  
= 5V Typical Bench Data  
OUT  
OUT  
t
I
Settling Time for Dynamic Load Step per Load: 0% to 50% to 0% of Full Load,  
50  
8
µs  
A
SETTLE  
Channel  
C
V
= 100µF Ceramic × 3,  
OUT  
OUT  
= 5V Typical Bench Data  
Output Current Limit per Channel  
V
= 5V  
OUT(PK)  
OUT  
Control Specifications  
V
Voltage at V Pin per Channel  
I
= 0A, V = 5V  
OUT  
0.794 0.80 0.806  
0.792 0.80 0.808  
V
V
FB  
FB  
OUT  
l
l
I
Current at V Pin per Channel  
(Note 3)  
–10  
–50  
nA  
V
FB  
FB  
V
Feedback Overvoltage Lockout per  
Channel  
0.84  
1.1  
0.86  
0.88  
OVL  
I
Track Pin Soft-Start Pull-Up Current per TK/SS = 0V  
Channel  
1.5  
1.9  
µA  
TK/SS  
t
Minimum On-Time  
(Note 3)  
90  
95  
ns  
%
ON(MIN)  
Max DC  
Maximum Duty Cycle  
5.5V to 5V at 5A (Note 5)  
R
FBHI  
Resistor Between V  
and V Pins  
60.0  
60.4  
60.8  
kΩ  
OUT  
FB  
4634f  
3
For more information www.linear.com/LTM4634  
LTM4634  
elecTrical characTerisTics The ldenotes the specifications which apply over the specified internal  
operating teꢃperature range (Note 2), otherwise specifications are at TA = 25°C. VIN = 24V, per the typical application for each regulator  
channel.  
SYꢁBOL  
PARAꢁETER  
CONDITIONS  
ꢁIN  
TYP  
ꢁAX UNITS  
V
PGOOD Trip Level  
PGOOD12  
PGOOD3  
V
With Respect to Set Output  
FB  
FB  
PGOOD  
FB  
V
V
Ramping Negative  
Ramping Positive  
–7.5  
7.5  
%
%
V
PGOOD Voltage Low  
I
= 2mA  
0.1  
0.3  
5.2  
V
PGL  
PGOOD  
INTV Linear Regulator  
CC  
V
V
V
V
V
Internal V Voltage  
6V < V < 28V, I = 0mA  
4.8  
4.5  
5
1
V
%
INTVCC  
LDOINT  
EXTVCC  
LDOEXT  
LDOHYS  
CC  
IN  
CC  
INTV Load Regulation  
I
= 0mA to 100mA  
CC  
CC  
Float  
MODE/PLLIN  
l
EXTV Switchover Voltage  
EXTV Ramping Positive  
4.7  
30  
200  
V
CC  
CC  
EXTV Voltage Drop  
I
= 20mA, V = 5V  
EXTVCC  
75  
mV  
mV  
CC  
CC  
EXTV Hysteresis  
CC  
Oscillator and Phase-Locked Loop  
f
f
SYNC Capture Range  
Clock Input Duty Cycle = 50%  
250  
700  
750  
825  
kHz  
kHz  
kΩ  
V
SYNC  
S
Switching Frequency  
V
= INTV  
750  
250  
FREQ/PLLLPF  
CC  
R
MODE/PLLIN Input Resistance  
Clock Input Level High  
Clock Input Level Low  
MODE/PLLIN  
V
V
2.0  
IH(MODE/PLLIN)  
IL(MODE/PLLIN)  
0.8  
V
Clock Phase  
V
OUT2  
V
OUT3  
V
OUT1  
to V  
to V  
to V  
Phase  
Phase  
Phase  
V
= 1.2V (Note 3)  
120  
120  
120  
Deg  
Deg  
Deg  
OUT1  
OUT2  
OUT3  
FREQ/PLLLPF  
V
Temperature Diode Forward Voltage  
Temperature Coefficient  
I
= 100µA  
TEMP  
0.598  
–2.0  
V
TEMP1,2  
TC V  
mV/°C  
TEMP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: 100% tested at wafer level.  
Note 4: See output current derating curves for different V , V  
Note 5: High duty designs need to be validated based on maximum  
and T .  
IN OUT  
A
temperature rise and derating in ambient conditions.  
Note 2: The LTM4634 is tested under pulsed load conditions such that  
T ≈ T . The LTM4634E is guaranteed to meet performance specifications  
J
A
over the 0°C to 125°C internal operating temperature range. Specifications  
over the –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM4634I is guaranteed to meet specifications over the  
–40°C to 125°C internal operating temperature range. Note that the  
maximum ambient temperature consistent with these specifications is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
4634f  
4
For more information www.linear.com/LTM4634  
LTM4634  
Typical perForMance characTerisTics  
5V Input Efficiency (Ch3)  
12V Input Efficiency (Ch1 and Ch2)  
5V Input Efficiency (Ch1 and Ch2)  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
V
= 5V  
EXTVCC  
12V TO 1.0V EFF (250kHz)  
12V TO 1.2V EFF (250kHz)  
12V TO 1.5V EFF (250kHz)  
12V TO 1.8V EFF (250kHz)  
12V TO 2.5V EFF (250kHz)  
12V TO 3.3V EFF (250kHz)  
12V TO 5.0V EFF (250kHz)  
5V TO 1.0V EFF (250kHz)  
5V TO 1.2V EFF (250kHz)  
5V TO 1.5V EFF (250kHz)  
5V TO 1.8V EFF (250kHz)  
5V TO 2.5V EFF (250kHz)  
5V TO 3.3V EFF (250kHz)  
5V TO 1.OV EFF (250kHz)  
5V TO 1.2V EFF (250kHz)  
5V TO 1.5V EFF (250kHz)  
5V TO 1.8V EFF (250kHz)  
5V TO 2.5V EFF (250kHz)  
5V TO 3.3V EFF (250kHz)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
2.0 2.5  
0.5 1.0 1.5  
LOAD CURRENT (A)  
0
3.0 3.5 4.0  
0
0.5 1.0 1.5  
3.0 3.5 4.0 4.5  
5.0  
2.0 2.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4634 G01  
4634 G02  
4634 G03  
12V Input Efficiency (Ch3)  
24V Input Efficiency (Ch1 and Ch2)  
24V Input Efficiency (Ch3)  
100  
95  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
100  
95  
90  
90  
85  
80  
75  
85  
80  
75  
V
= 5V  
EXTVCC  
70  
65  
60  
55  
50  
45  
40  
70  
65  
60  
55  
50  
45  
40  
V
= 5V  
V
= 5V  
EXTVCC  
24 TO 1.0V EFF (250kHz)  
24 TO 1.2V EFF (250kHz)  
24 TO 1.5V EFF (250kHz)  
24 TO 1.8V EFF (300kHz)  
24 TO 2.5V EFF (300kHz)  
24 TO 3.3V EFF (350kHz)  
24 TO 5.0V EFF (500kHz)  
24 TO 12V EFF (750kHz)  
EXTVCC  
12V TO 1.0V EFF (250kHz)  
12V TO 1.2V EFF (250kHz)  
12V TO 1.5V EFF (250kHz)  
12V TO 1.8V EFF (250kHz)  
12V TO 2.5V EFF (250kHz)  
12V TO 3.3V EFF (250kHz)  
12V TO 5.0V EFF (250kHz)  
24V TO 1.0V EFF (250kHz)  
24V TO 1.2V EFF (250kHz)  
24V TO 1.5V EFF (300kHz)  
24V TO 1.8V EFF (350kHz)  
24V TO 2.5V EFF (350kHz)  
24V TO 3.3V EFF (600kHz)  
24V TO 5.0V EFF (750kHz)  
2.0 2.5  
0.5 1.0 1.5  
LOAD CURRENT (A)  
0
3.0 3.5 4.0  
2.0 2.5  
0.5 1.0 1.5  
LOAD CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
0
3.0 3.5 4.0  
LOAD CURRENT (A)  
4634 G04  
4634 G05  
4634 G06  
24V Input Continuous, Pulse-  
Skipping and Burst ꢁode Operation  
24V to 5V Load Step Response  
24V to 3.3V Load Step Response  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
OUTPUT  
OUTPUT  
100mV/DIV  
100mV/DIV  
LOAD  
STEP  
1A/DIV  
LOAD  
STEP  
1A/DIV  
4634 G08  
4634 G09  
100µs/DIV  
100µs/DIV  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
C
= 2 × 100µF CERAMIC CAPACITOR  
C
= 2 × 100µF CERAMIC CAPACITOR  
5.0V  
5.0V  
5.0V  
(750kHz) BURST  
(750kHz) PULSE  
(750kHz) CONT  
OUT  
OUT  
OUT  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
4634 G07  
4634f  
5
For more information www.linear.com/LTM4634  
LTM4634  
Typical perForMance characTerisTics  
24V to 12V Load Step Response  
12V to 1V Load Step Response  
12V to 1.2V Load Step Response  
OUTPUT  
50mV/DIV  
OUTPUT  
50mV/DIV  
OUTPUT  
100mV/DIV  
LOAD  
STEP  
1A/DIV  
LOAD  
STEP  
1A/DIV  
LOAD  
STEP  
1A/DIV  
4634 G10  
4634 G11  
4634 G12  
100µs/DIV  
100µs/DIV  
100µs/DIV  
0A TO 2A, 2A/µs LOAD STEP  
OUT  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
C
= 2 × 100µF CERAMIC CAPACITOR  
C
= 2 × 100µF CERAMIC CAPACITOR  
C
= 2 × 100µF CERAMIC CAPACITOR  
AND 100µF 16V 16TQC100MYF POS CAPACITOR  
AND 470µF 2V 2TPE470MAJB POS CAPACITOR  
AND 470µF 2V 2TPE470MAJB POS CAPACITOR  
12V to 1.5V Load Step Response  
12V to 1.8V Load Step Response  
12V to 2.5V Load Step Response  
OUTPUT  
50mV/DIV  
OUTPUT  
50mV/DIV  
OUTPUT  
50mV/DIV  
LOAD  
STEP  
1A/DIV  
LOAD  
STEP  
1A/DIV  
LOAD  
STEP  
1A/DIV  
4634 G13  
4634 G14  
4634 G15  
100µs/DIV  
100µs/DIV  
100µs/DIV  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
0A TO 2.5A, 2.5A/µs LOAD STEP  
OUT  
C
= 2 × 100µF CERAMIC CAPACITOR  
C
= 2 × 100µF CERAMIC CAPACITOR  
C
= 2 × 100µF CERAMIC CAPACITOR  
AND 470µF 2V 2TPE470MAJB POS CAPACITOR  
24V to 5V No Load Start-Up  
24V to 5V No Load Short  
24V to 5V Full Load Start-Up  
V
OUT  
V
V
OUT  
OUT  
2V/DIV  
1V/DIV  
1V/DIV  
I
I
I
IN  
OUT  
OUT  
1A/DIV  
1A/DIV  
1A/DIV  
4634 G16  
4634 G17  
4634 G18  
V
V
I
= 24V  
= 5V  
OUT  
20ms/DIV  
20ms/DIV  
V
V
I
= 24V  
= 5V  
OUT  
20µs/DIV  
V
V
I
= 24V  
= 5V  
OUT  
IN  
OUT  
IN  
OUT  
IN  
OUT  
= 0A  
= 5A  
= 0A  
C
= 2 × 100µF X5R 1210  
C
= 2 × 100µF X5R 1210  
C
= 2 × 100µF X5R 1210  
OUT  
OUT  
OUT  
4634f  
6
For more information www.linear.com/LTM4634  
LTM4634  
Typical perForMance characTerisTics  
24V to 5V Full Load Short  
Start-Up into Pre-Bias  
Steady-State Output Ripple  
RUN  
5V/DIV  
V
OUT  
V
OUT  
RIPPLE  
V
OUT1  
2V/DIV  
10mV/DIV  
1V/DIV  
SW NODE  
5V/DIV  
I
SW  
10V/DIV  
IN  
1A/DIV  
4634 G19  
4634 G20  
4634 G21  
V
V
I
= 24V  
= 5V  
OUT  
20µs/DIV  
20ms/DIV  
2µs/DIV  
12V TO 3.3V AT 5A LOAD  
IN  
OUT  
PREBIAS 1.5V OUTPUT STARTING AT 0.5V BIAS  
12V INPUT  
= 5A  
C
= 2 × 100µF X5R 1210  
OUT  
pin FuncTions  
PACKAGE ROW AND COLUꢁN LABELING ꢁAY VARY  
AꢁONG µꢁodule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
V
,V ,V  
(F9-F10,G9-G10,H9-H10);(F5-F6,G5-  
IN1 IN2 IN3  
G6,H5-H6);(F1-F2,G1-G2,H1-H2): Power Input Pins.  
Apply input voltage between these pins and the GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
between the V pins and the GND pins. The V paths  
GND (A4, A8-A9, D1- D12, E1-E12, F4, F8, F12, G3-G4,  
G7-G8, G11-G12, H3-H4, H7-H8, H11-H12, J1-J5, J7,  
J9-J12, K1-K3, K8-K10, K12,L1-L2,L12, ꢁ1, ꢁ6-ꢁ8,  
ꢁ12): Ground Pins for Both Input and Output Returns.  
All ground pins need to connect with large copper areas  
underneath the unit.  
IN  
IN  
can be all combined from one power source, or powered  
from independent power sources. See the Applications  
Information section.  
SW1 (F11), SW2 (F7), SW3 (F3): The internal switch  
node for each of the regulator channels for monitoring  
the switching waveform. An R-C snubber circuit can be  
placed on these pins to ground to eliminate switch node  
ringing noise.  
V
, V  
, V  
(A10-A12, B9-B12, and C10-C12);  
OUT1 OUT2 OUT3  
(A5-A7, B5-B8, C6-C8); (A1-A3, B1-B4, C1-C4): Power  
Output Pins. Apply output load between these pins and  
the GND pins. Recommend placing output decoupling  
capacitance directly between these pins and the GND  
pins. See Table 4.  
CNTL_PWR (J6): Input Supply to an Internal Bias LDO to  
Power the Internal Controller and MOSFET Drivers. The  
operating voltage range is 4.75V to 28V under all condi-  
TEꢁP1 AND TEꢁP2 (C9, C5): Two Onboard Temperature  
Diodes for Monitoring the VBE Junction Voltage Change  
with Temperature. Each of these two temperature diode  
connected PNP transistors is placed in the middle of  
channel 1 and channel 2, and in the middle of channel 2  
and channel 3. See the Applications Information section  
and an example in Figure 25. Leave floating if not used.  
tions. If the voltage at CNTL_PWR is ≤5.8V, the INTV  
CC  
pin should be tied to CNTL_PWR for optimum efficiency.  
If the voltage at CNTL_PWR is >5.8V, leave INTV float-  
CC  
ing with the recommended decoupling capacitor. To  
eliminate power loss in the onboard linear regulator and  
improve efficiency connect a 5V supply at EXTV . Ensure  
CC  
CNTL_PWR > EXTV at all times to avoid reverse polarity  
CC  
on the internal bias LDO.  
4634f  
7
For more information www.linear.com/LTM4634  
LTM4634  
pin FuncTions  
INTV (J8): Output of the Internal Bias LDO for Powering  
RUN1,RUN2,RUN3(L10,L11,K11):RunControlInputs.  
A voltage above 1.3V on any RUN pin turns on that par-  
ticular channel. However, forcing any of these RUN pins  
below 1.15V causes that channel to shut down. Each of  
the RUN pins has an internal 10k resistor to ground. This  
resistor can be used with an external pull-up resistor to  
the input voltage to set a UVLO for that channel, or simply  
to turn on the channel. The RUN pins have a maximum  
voltage of 6V. See the Applications Information section.  
CC  
InternalControlCircuitry.Connecta4.7µFceramiccapaci-  
tor to ground for decoupling. If the voltage at CNTL_PWR  
is ≤5.8V, tie the INTV pin to CNTL_PWR for optimum  
CC  
efficiency. If the voltage at CNTL_PWR is >5.8V, leave  
INTV floating. See the Applications Information section.  
CC  
SGND (K6-K7, L6-L7): Signal Ground Connections. The  
signal ground connection in the module is separated from  
normal power ground (GND) by an internal 2.2Ω resistor.  
This allows the designer to connect the signal ground pin  
close to GND near the external output capacitors on the  
regulatorchannel’soutputs.Theentireinternalsmall-signal  
feedback circuitry is referenced to SGND, thus allowing  
for better output regulation. See the recommended layout  
in the Applications Information section.  
PGOOD12, PGOOD3 (ꢁ2, ꢁ3): Output Voltage Power  
Good Indicator for V  
and V Combined, and V  
OUT2 OUT3  
OUT1  
Separate. The open-drain logic output is pulled to ground  
when the output voltage is not within 7.5% of the regula-  
tion point.  
COꢁP1, COꢁP2, COꢁP3 (ꢁ4, L4, K4): Current Control  
Threshold and Error Amplifier Compensation Point. The  
current comparator threshold increases with this control  
voltage. The LTM4634 regulator channels are all internally  
compensatedforproperstability. COMP1andCOMP2can  
be tied together for PolyPhase 10A parallel operation. See  
the Applications Information section.  
EXTV (L3): External Bias Power Input. The internal bias  
CC  
LDO is bypassed whenever the voltage at EXTV is above  
CC  
4.7V. Never exceed 6V at this pin and ensure CNTL_PWR >  
EXTV atalltimestoavoidreversepolarityontheinternal  
CC  
bias LDO. Connect a 1µF capacitor to ground when used  
otherwise leave floating. Use a 5V bias or 5V output to  
power this pin to improve efficiency.  
V
, V , V (ꢁ5, L5, K5): The Negative Input of the  
FB1 FB2 FB3  
FREQ/PLLLPF(L8):FrequencySetandPLLLowpassFilter  
Pin. This pin is driven with a DC voltage to set the oper-  
ating frequency. The recommended operating frequency  
will be supplied in the efficiency graphs for optimal per-  
formance. A specific frequency can be chosen as long as  
the minimum on-time is not violated, and inductor ripple  
current is optimized. When an external clock is used, then  
the FREQ/PLLLPF pin must not be connected to any DC  
voltage. The pin must be floating and will have the proper  
internal compensation for the internal loop filter. See the  
Applications Information section.  
Error Amplifier for Each of the Three Channels. Internally,  
each of these pins is connected to their respective output  
with a 60.4k precision resistor. Different output voltages  
can be programmed with an additional resistor between  
eachindividualV pinandground.InPolyPhaseoperation,  
FB  
tying the V and V pins together allows for parallel  
FB1  
FB2  
operation up to 10A. See the Applications Information  
section for details.  
TK/SS1,TK/SS2,TK/SS3(ꢁ9,10,11):OutputVoltage  
TrackingandSoft-StartInputs.Whenoneparticularchannel  
is configured to be the master, a capacitor to ground at  
this pin sets the ramp rate for the master channel’s output  
voltage. When the channel is configured to be the slave,  
ꢁODE/PLLIN(L9):ForcedContinuousMode,BurstMode,  
or Pulse-Skipping Mode Selection Pin and External Syn-  
chronization Input to Phase Detector Pin. Connect this pin  
to SGND to force all channels into the continuous mode  
the V voltage of the master channel is reproduced by a  
FB  
resistor divider and applied to this pin. Internal soft-start  
currents of 1.5μA are charging the soft-start capacitors.  
In dual output (2 + 1) mode, TK/SS1 and TK/SS2 need to  
be shorted externally.  
of operation. Connect to INTV to enable pulse-skipping  
CC  
mode of operation. Leave floating to enable Burst Mode  
operation. A clock on the pin will force the controller into  
continuousmodeofoperationandsynchronizetheinternal  
oscillator. See the Applications Information section.  
4634f  
8
For more information www.linear.com/LTM4634  
LTM4634  
block DiagraM  
INTERNAL BLOCK DIAGRAM  
MODE/PLLIN  
CNTL_PWR  
1µF  
50V  
2Ω  
C
4.7µF  
50V  
V
IN1  
FREQ/PLLLPF  
24V  
INTV  
24V  
CC  
IN1  
1µF  
INTERNAL  
FILTER  
GND  
SW1  
MTOP1  
MBOT1  
R1  
150k  
1.5µH  
V
OUT1  
V
=
V
OUT1  
IN(UVLO)  
SGND  
RUN1  
3.3V  
5A  
(R1 + 10k)1.3V  
10k  
+
R
RUN1  
10k  
R
FBHI1  
0.1µF  
C
OUT1  
60.4k  
TK/SS1  
COMP1  
GND  
SS  
CAP1  
V
FB1  
SGND  
R
V
FB1  
19.1k  
FB1  
INTERNAL  
COMP  
SGND  
LOCATED NEAR POWER STAGES  
SGND  
SGND  
TEMP1  
PNP  
SGND  
INTV  
CC  
R4  
10k  
V
IN2  
PGOOD12  
C
4.7µF  
50V  
+
IN3  
100µF  
50V  
1µF  
GND  
SW2  
INTV  
CC  
MTOP2  
MBOT2  
4.7µF  
1.5µH  
V
5V  
5A  
OUT2  
V
EXTV  
OUT2  
CC  
5V  
+
24V  
R
FBHI2  
60.4k  
0.1µF  
C
OUT2  
R2  
150k  
GND  
3-CHANNEL  
POWER CONTROL  
RUN2  
R
RUN2  
10k  
SGND  
TK/SS2  
SS  
CAP2  
TEMP2  
PNP  
INTV  
CC  
SGND  
V
FB2  
V
FB2  
R5  
10k  
R
FB2  
LOCATED NEAR  
POWER STAGES  
PGOOD3  
COMP2  
11.5k  
V
SGND  
IN3  
C
IN5  
INTERNAL  
COMP  
1µF  
4.7µF  
50V  
GND  
SW3  
OUT3  
24V  
R3  
MTOP3  
MBOT3  
SGND  
3.3µH  
V
12V  
4A  
OUT3  
V
150k  
RUN3  
+
R
FBHI3  
60.4k  
R
0.1µF  
RUN3  
10k  
C
OUT3  
GND  
TK/SS3  
COMP3  
SS  
CAP3  
V
FB3  
SGND  
R
V
FB3  
FB3  
SGND  
INTERNAL  
COMP  
4.32k  
SGND  
2.2Ω  
SGND  
SGND  
4634 F01  
Figure 1. Siꢃplified LTꢁ4634 Block Diagraꢃ  
4634f  
9
For more information www.linear.com/LTM4634  
LTM4634  
operaTion  
Power ꢁodule Description  
is cleared. There are two temperatures monitors in the  
LTM4634. TEMP1 monitors the close relative tempera-  
ture of channels 1 and 2, and TEMP2 monitors the close  
relative temperature of channels 2 and 3. The two diode  
connected PNP transistors are grounded in the module  
andcanbeusedasgeneralpurposetemperaturemonitors  
usingadevicethatisdesignedtomonitorthesingle-ended  
connection.  
The LTM4634 µModule regulator is a high performance  
triple output nonisolated switching mode DC/DC power  
supply. It can provide 5A/5A/4A outputs with a few ex-  
ternal input and output capacitors. This module provides  
precisely regulated output voltages programmable via  
external resistors from 0.8V DC to 5.5V DC (V  
and  
OUT1  
). When apply-  
V
), and 0.8V DC to 13.5V DC (V  
OUT2  
OUT3  
ing control bias in the range from 4.75V to 5.8V, then  
Pulling any of the RUN pins below 1.15V forces that  
regulator channel into a shutdown state. The TK/SS pins  
are used for programming the output voltage ramp and  
voltage tracking during start-up for each of the channels.  
See the Applications Information section.  
connect the bias to CNTL_PWR and INTV , otherwise  
CC  
if >5.8V only the CNTL_PWR pin needs to be biased. The  
typical application schematic is shown in Figure 22.  
TheLTM4634hasthreeintegratedconstant-frequencycur-  
rent mode regulators, power MOSFETs, power inductors,  
and other supporting discrete components. The typical  
switching frequency is 750kHz. For switching noise-  
sensitive applications, it can be externally synchronized  
from 250kHz to 750kHz. Operating frequency range will  
TheLTM4634isinternallycompensatedtobestableoverall  
operatingconditions.Table4providesaguidelineforinput  
and output capacitances for several operating conditions.  
The LTpowerCAD™ software tool is provided for transient  
and stability analysis. The V pin is used to program the  
FB  
be dependent upon specific V and V  
requirements  
output voltage with a single external resistor to ground.  
IN  
OUT  
as they pertain to minimum on-time and inductor ripple  
current of less than 60% of the load current. See the Ap-  
plications Information section.  
Each of the channels, operate 120° phase shift for mul-  
tiphase operation. V  
and V  
can be combined to  
OUT2  
OUT1  
provide a single 10A output. The two channels will not be  
operating180°phaseshift,but120°phasewhencombined  
for a 10A design. So the input RMS current may be higher  
than a 180° phase shifted design. See the Applications  
Information section for details.  
With current mode control and internal feedback loop  
compensation, the LTM4634 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectable Burst Mode operation using the MODE/PLLIN  
pin. These light load features will accommodate battery  
operation. Efficiencygraphsareprovidedforlightloadop-  
erationintheTypicalPerformanceCharacteristicssection.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit in an overcurrent condition. An internal overvoltage  
monitor protects the output voltages in the event of an  
overvoltage >10%. The top MOSFET is turned off and the  
bottom MOSFET is turned on until the output overvoltage  
4634f  
10  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
The typical LTM4634 application circuit is shown in Fig-  
ure 22. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable4forspecificexternalcapacitorrequirements  
for particular applications.  
Input Capacitors  
The LTM4634 module should be connected to a low AC  
impedance DC source. Additional input capacitors are  
neededfortheRMSinputripplecurrentrating.TheI  
CIN(RMS)  
equation which follows can be used to calculate the input  
capacitor requirement for each channel. Typically 4.7µF  
to 10µF X7R ceramics are a good choice with RMS ripple  
currentratingsof~2Aeach.A4Fto100µFsurfacemount  
aluminumelectrolyticcapacitorcanbeusedformoreinput  
bulk capacitance. This bulk input capacitor is only needed  
if the input source impedance is compromised by long  
inductive leads, traces or not enough source capacitance.  
If low impedance power planes are used, then this bulk  
capacitor is not needed.  
V to V  
Step-Down Ratios  
IN  
OUT  
There are restrictions in the V to V  
step-down ratio  
IN  
OUT  
that can be achieved for a given input voltage. The V to  
IN  
V
OUT  
minimum dropout is a function of load current and  
at very low input voltage and high duty cycle applications  
output power may be limited as the internal top power  
MOSFET is not rated for 5A operation at higher ambient  
temperatures. Atverylowdutycyclestheminimum100ns  
on-time must be maintained. See the Frequency Adjust-  
ment section and temperature derating curves.  
For a buck converter, the switching duty cycle can be  
estimated as:  
Output Voltage Prograꢃꢃing  
VOUT  
D=  
V
The PWM controller has an internal 0.8V 1% reference  
voltage. As shown in the Block Diagram, a 60.4k preci-  
sion internal feedback resistor connects the V  
pins together.  
IN  
Without considering the inductor ripple current, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
and V  
OUT  
FB  
The output voltage will default to 0.8V with no feedback  
I
ICIN(RMS)  
=
OUT(MAX) D1D  
resistor. Adding a resistor R from V to ground pro-  
FB  
FB  
(1)  
(
)
η%  
grams the output voltage:  
60.4k+ RFB  
48.32k  
VOUT 0.8  
In the previous equation, η% is the estimated efficiency  
VOUT = 0.8V •  
or RFB =  
of the power module in decimal form (0.nn) for a given  
RFB  
V
OUT  
-to-V ratio.  
IN  
Table 1. VFB Resistor Table vs Various Output Voltages  
(V) 0.8 1.0 1.2 1.5 1.8 2.5 3.3 5.0 12.0  
The selection of C is simplified by the 3-phase architec-  
IN  
V
OUT  
ture and its impact on the worst-case RMS current draw  
occurs when only one channel is operating. This is true  
when the three channels are powered from a common  
R
(kΩ) Open 243 121 69.8 48.7 28.7 19.1 11.5 4.32  
FB  
In the parallel operation the following pins should be tied  
together, V and V pins, COMP1 and COMP2 pins,  
V . The channel with the highest duty cycle D peaking at  
IN  
FB1  
FB2  
0.5 and maximum load current needs to be used in the  
aboveformula. ThiswillgivethemaximumRMScapacitor  
current requirement. Increasing the output current drawn  
from the other channels will actually decrease the input  
RMS ripple current from its maximum value. The out-of-  
phase technique typically reduces the input capacitor’s  
RMS ripple current by a factor of 50% when compared to  
asinglephasepowersupplysolution. Ifthethreechannels  
are powered from independent input sources, then each  
TK/SS1 and TK/SS2, and RUN1 and RUN2.  
For parallel operation of V and V , connect V  
FB1  
OUT1  
OUT2  
and V together with a single resistor to ground whose  
FB2  
value is determined by:  
60.4k  
2
RFB =  
VOUT  
–1  
0.8  
4634f  
11  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
of the input RMS current ratings will need to be calculated  
specific to that channel.  
sleep line goes low, and the LTM4634 resumes normal  
operation. The next oscillator cycle will turn on the top  
power MOSFET and the switching cycle repeats.  
Output Capacitors  
Pulse-Skipping ꢁode Operation  
The LTM4634 is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
Inapplicationswherelowoutputrippleandhighefficiency  
OUT  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
at intermediate currents are desired, pulse-skipping  
mode should be used. Pulse-skipping operation allows  
the LTM4634 to skip cycles at low output loads, thus  
increasing efficiency by reducing switching loss. Tying  
ments. C  
can be a low ESR tantalum capacitor, low  
OUT  
ESR Polymer capacitor or ceramic capacitor. The typical  
outputcapacitancerangeisfrom200µFto470µF.Additional  
output filtering may be required by the system designer  
if further reduction of output ripple or dynamic transient  
spikesisrequired.Table4showsamatrixofdifferentoutput  
voltages and output capacitors to minimize the voltage  
droop and overshoot during a 5A/µs transient. The table  
optimizes total equivalent ESR and total bulk capacitance  
to optimize the transient performance. Stability criteria  
are considered in the Table 4 matrix, and LTpowerCAD is  
available for stability analysis. LTpowerCAD can calculate  
the output ripple reduction as the number of implemented  
phases increases by N times.  
the MODE/PLLINpin to INTV enables pulse-skipping  
CC  
operation. With pulse-skipping mode at light load, the  
internalcurrentcomparatormayremaintrippedforseveral  
cycles, thus skipping operation cycles. This mode has  
lower ripple than Burst Mode operation and maintains a  
higher frequency operation than Burst Mode operation.  
Forced Continuous Operation  
In applications where fixed frequency operation is more  
critical than low current efficiency, and where the lowest  
output ripple is desired, forced continuous operation  
should be used. Forced continuous operation can be  
enabled by tying the MODE/PLLIN pin to ground. In this  
mode, inductor current is allowed to reverse during low  
output loads, the COMP voltage is in control of the current  
comparator threshold throughout, and the top MOSFET  
alwaysturnsonwitheachoscillatorpulse.Duringstart-up,  
forced continuous mode is disabled and inductor current  
is prevented from reversing until the LTM4634 output  
voltage is in regulation.  
Burst ꢁode Operation  
The LTM4634 is capable of Burst Mode operation in  
which the power MOSFETs operate intermittently based  
on load demand, thus saving quiescent current. For ap-  
plications where maximizing the efficiency at very light  
loads is a high priority, Burst Mode operation should be  
applied. To enable Burst Mode operation, simply float  
the MODE/PLLIN pin. During Burst Mode operation, the  
peak current of the inductor is set to approximately 30%  
of the maximum peak current value in normal operation  
even though the voltage at the COMP pin indicates a  
lower value. The voltage at the COMP pin drops when  
the inductor’s average current is greater than the load  
requirement. As the COMP voltage drops below 0.5V, the  
burst comparator trips, causing the internal sleep line to  
go high and turn off both power MOSFETs.  
Frequency Synchronization  
The LTM4634 device operates up to 750kHz. It can also be  
synchronizedwithaninputclockthathasahighlevelabove  
2V and a low level below 0.8V at the MODE/PLLIN pin. The  
FREQ/PLLLPF pin must be floating when synchronized to  
an incoming clock. Once the LTM4634 is synchronized to  
an external clock frequency, it will always be running in  
forced continuous operation. The synchronizing range is  
from 250kHz to 750kHz. For V  
≤ 1.5V use 250kHz  
In sleep mode, the internal circuitry is partially turned  
off, reducing the quiescent current. The load current is  
now being supplied from the output capacitors. When the  
output voltage drops, causing COMP to rise, the internal  
OUT1,2,3  
≤ 2.5V use 400kHz, 2.5V ≤  
to 300kHz, 1.5V ≤ V  
OUT1,2,3  
V
≤ 5V use 600kHz. If V  
is greater than 5V  
up to 12V set the operating frequency to 750kHz. These  
OUT1,2,3  
OUT3  
4634f  
12  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
frequencies optimize efficiency, eliminate minimum on-  
timeissuesforlessthan1Voutput,andcontroltheinductor  
ripple currents over the input and output voltage ranges.  
where FREQV is the voltage at the FREQ/PLLLPF pin in  
Figure 2 that corresponds to a particular frequency. See  
Figure 25 for an example.  
800  
700  
600  
500  
400  
300  
200  
24Vinputapplicationsthatconverttooutputvoltagesequal  
to 5V (V  
) and up to 12V (V  
) will be required to  
OUT1,2  
OUT3  
set the LTM4634 switching frequency to 750kHz. This is  
required to maintain less than 60% inductor ripple current  
at the higher output voltages. The 750kHz requirement  
for these higher output conversions from 24V will limit  
outputvoltagesonotherchannelstobenolowerthan1.5V  
due to minimum on-time considerations. There is a way  
around this issue by taking one of these outputs, either  
5V or 12V, and using it as the source for the 0.8V to 1.5V  
output. An example circuit is shown in Figure 26. 5V and  
12V input conversions on all three channels can be oper-  
ated at lower frequencies across the output ranges so that  
minimum on-time is not an issue at low output voltages.  
The minimum on-time equation on the next page can be  
used to verify that no switching frequency is violating this  
0
0.5  
1
1.5  
2
2.5  
FREQ/PLLLPF PIN VOLTAGE (V)  
4634 F02  
Figure 2. Relationship Between Oscillator Frequency  
and Voltage at the FREQ/PLLLPF Pin  
Parallel Channel Operation  
parameter. The equations for checking I  
%:  
For outputs that demand more than 5A of load current,  
the LTM4634 device can parallel V  
ply 10A of load current. The two channels will operate at  
120° of phase shift. The input RMS ripple current can be  
calculated using Equation 1. For example, 12V to 1.2V at  
10A equates to duty cycle D = 0.1.  
RIPPLE  
and V  
to sup-  
OUT1  
OUT2  
V – V  
V
(
)
IRIPPLE  
CH#MaxLoad  
IN  
OUT OUT  
= FREQ,  
= IRIPPLE  
%
LIRIPPLE V  
IN  
This verifies that the operating frequencies are selected to  
limitinductorripplecurrentstobebelow60%ofmaximum  
10A  
0.85  
load, where FREQ is selected frequency in Hertz, I  
RIPPLE  
ICIN(RMS)  
=
0.110.1  
(
)
and maximum load current in amps, and L is inductance  
in Henrys. Ch1, Ch2 L = 1.5µH, and Ch3 L = 3.3µH. Maxi-  
I
=3.5A  
capacitors rated at 2A  
,use2× 22µF16VX5RorX7Rceramic  
RMS  
CIN(RMS)  
mum load current I  
RIPPLE  
= 5A, and I  
= 4A, therefore  
OUT1,2  
OUT3  
each.  
RMS  
I
should try to stay below 2.5A for Ch1, Ch2, and  
2A for Ch3, except for 12V output. The efficiency curves  
will show the recommended optimal operating frequency  
for the different conversions  
The LTM4634 regulators are inherently current mode  
controlled devices, so the paralleling of V and V  
OUT1  
OUT2  
channels will have good current sharing. This will balance  
the thermals in the design. Tie the COMP, V , TK/SS  
FB  
A DC voltage should be applied to the FREQ/PLLLPF pin  
to set the operating frequency when clock synchroniza-  
tion is not used. Figure 2 shows the frequency selection  
as a function of the applied DC voltage. This can be done  
and RUN pins together for these two channels to share  
the current evenly. Figure 24 shows a schematic of the  
parallel design.  
with a voltage divider from the INTV (5V) pin to SGND.  
CC  
ꢁiniꢃuꢃ On-Tiꢃe  
A 10k resistor can be selected as the bottom resistor. The  
Minimum on-time, t , is the smallest time duration that  
top resistor, R  
, can be determined by using equation:  
FREQ  
ON  
anyofthethreeregulatorchannelsiscapableofturningon  
the top MOSFET. It is determined byinternaltimingdelays,  
and the gate charge required to turn on the top MOSFET.  
4634f  
5V 10k  
FREQV  
RFREQ  
=
10k  
13  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
Low duty cycle applications may approach this minimum  
on-time limit and care should be taken to ensure that:  
60.4k resistor internally for the top feedback resistor for  
each channel. Figure 3 shows an example of coincident  
tracking for V  
and V  
. V  
is the master and  
OUT1  
is the slave:  
OUT2 OUT1  
VOUT  
> tON(MIN)  
V
OUT2  
V FREQ  
IN  
60.4k  
RTA  
VSLAVE = 1+  
VTRACK  
If the duty cycle falls below what can be accommodated  
by the minimum on-time, the controller will begin to skip  
cycles.Theoutputvoltagewillcontinuetoberegulated,but  
the output ripple and inductor ripple current will increase.  
The minimum on-time can be increased by lowering the  
switching frequency. A good rule of thumb is to use a  
100ns on-time.  
V
V
is the track ramp applied to the slave’s track pin.  
has a control range of 0V to 0.8V, or the internal  
TRACK  
TRACK  
reference voltage. When the master’s output is divided  
down with the same resistor values used to set the slave’s  
output, then the slave will coincident track with the master  
until it reaches its final value. The master will continue to  
its final value from the slave’s regulation point. Voltage  
tracking is disabled when V  
Figure 3 will be equal to the R for coincident tracking.  
Output Voltage Tracking  
Output voltage tracking can be programmed externally  
using the TK/SS pins. The output can be tracked up and  
downwithanotherregulator.Themasterregulator’soutput  
is divided down with an external resistor divider that is the  
same as the slave regulator’s feedback divider to imple-  
ment coincident tracking. The LTM4634 uses an accurate  
is more than 0.8V. R in  
TRACK TA  
FB2  
The TK/SS pin of the master can be controlled by a capaci-  
tor placed on the master regulator TK/SS pin to ground. A  
1.5µA current source will charge the TK/SS pin up to the  
5.5V TO 16V  
C
22µF  
16V  
C
22µF  
16V  
C
22µF  
16V  
C
22µF  
16V  
IN4  
IN3  
IN2  
IN1  
4.7µF  
6.3V  
V
IN1  
SW1  
V
IN2  
SW2  
V
SW3 INTV EXTV  
CC CC  
IN3  
CNTL_PWR  
MODE/PLLIN  
RUN1  
FREQ/PLLLPF  
COMP1  
UVLO SET AT 4.7V ON RUN PINS.  
RUN PINS CAN BE SEQUENCED OR  
ENABLED FROM LOGIC CONTROL  
10k  
10k  
7.87k  
COMP2  
RUN2  
COMP3  
LTM4634  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
60.4k  
V
TK/SS1  
OUT3  
R
60.4k  
TB  
69.8k  
V
TK/SS2  
TK/SS3  
OUT3  
TEMP2  
R
C
TA  
SS3  
121k  
0.1µF  
V
V
V
V
V
V
GND SGND  
OUT1  
FB1  
OUT2  
FB2  
OUT3  
FB3  
4633 F03  
V
V
V
FB3  
FB1  
FB2  
C
OUT  
, SEE TABLE 5  
R
R
R
FB3  
19.1k  
FB1  
FB2  
69.8k  
121k  
SOFT-START MASTER  
RAMP SET BY C OR  
C
C
OUT4  
220µF  
OUT1  
SS3  
220µF  
EXTERNAL RAMP  
47pF  
3.3V  
1.2V  
C
C
C
OUT7  
100µF  
V
OUT2  
OUT5  
FB3  
220pF  
220µF  
220µF  
47pF  
1.5V  
MASTER  
V
V
FB2  
FB1  
C
OUT8  
100µF  
Figure 3. Triple Outputs (1.5V and 1.2V) with Tracking and 3.3V  
4634f  
14  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
referencevoltageandthenproceeduptoINTV . Afterthe  
tracking is desired, then MR and SR are equal, thus R  
TB  
CC  
0.8V ramp, the TK/SS pin will no longer be in control, and  
the internal voltage reference will control output regula-  
tion from the feedback divider. Foldback current limit is  
disabled during this sequence of turn-on during tracking  
or soft-starting. The TK/SS pins are pulled low when the  
is equal the 60.4k. R is derived from equation:  
TA  
0.8V  
RTA  
=
V
V
VTRACK  
RTB  
FB  
FB  
+
60.4k RFB  
RUN pin is below 1.15V or INTV drops below 3.5V. The  
CC  
where V is the feedback voltage reference of the regula-  
FB  
total soft-start time can be calculated as:  
tor, and V  
is 0.8V. Since R is equal to the 60.4k top  
TRACK  
TB  
feedback resistor of the slave regulator in equal slew rate  
or coincident tracking, then R is equal to R with V  
0.8V C  
1.5µA  
SS   
tSS  
=
=
FB  
TA  
FB  
V
.ThereforeR =60.4k,andR =60.4kinFigure3.  
TRACK  
TB TA  
Regardless of the mode selected by the MODE/PLLIN pin,  
the regulator channels will always start in pulse-skipping  
mode up to TK/SS = 0.64V. Between TK/SS = 0.64V and  
0.74V, it will operate in forced continuous mode and revert  
totheselectedmodeonceTK/SS>0.74V.Theoutputripple  
is minimized during the 100mV forced continuous mode  
window ensuring a clean PGOOD signal.  
Inratiometrictracking, adifferentslewratemaybedesired  
for the slave regulator. R can be solved for when SR is  
TB  
slower than MR. Make sure that the slave supply slew  
rate is chosen to be fast enough so that the slave output  
voltage will reach it final value before the master output.  
Power Good  
When the channel is configured to track another supply,  
the feedback voltage of the other supply is duplicated by  
a resistor divider and applied to the TK/SS pin. Therefore,  
thevoltageramprateonthispinisdeterminedbytheramp  
rate of the other supply’s voltage. Note that the small soft-  
startcapacitorchargingcurrentisalwaysflowing,produc-  
ing a small offset error. To minimize this error, select the  
trackingresistivedividervaluetobesmallenoughtomake  
thiserrornegligible.Inordertotrackdownanotherchannel  
orsupplyafterthesoft-startphaseexpires,theLTM4634is  
The PGOOD12 pin is an open-drain pin that can be used  
to monitor valid output voltage regulation for V  
and  
OUT1  
. These pins  
V
, and PGOOD3 for monitoring V  
OUT2  
OUT3  
monitor a 7.5% window around the 0.8V feedback volt-  
age on either V from the output regulation point. A  
FB1,2,3  
resistor can be pulled up to a particular supply voltage  
no greater than 6V maximum for monitoring. Any of the  
PGOOD pins are pulled low when the RUN pin of the cor-  
responding channel is pulled low.  
forced into continuous mode of operation as soon as V  
Overcurrent and Overvoltage Protection  
FB  
isbelowtheundervoltagethresholdof0.74Vregardlessof  
thesettingoftheMODE/PLLINpin. However, theLTM4634  
should always be set in forced continuous mode tracking  
downwhenthereisnoload. AfterTK/SSdropsbelow0.1V,  
its channel will operate in discontinuous mode.  
Each of the regulator channels senses the peak inductor  
current on a cycle-by-cycle basis in current mode opera-  
tion. When current limit is reached the output voltage will  
begin to fall and the internal current limit threshold will  
begin fold back as the output voltage falls below 50% of  
its value. Foldback current limit is disabled during start-  
up or track-up. Under short-circuit condition at low duty  
cycle operation, each of the regulator channels will begin  
to skip cycles to limit the short-circuit current.  
The master’s TK/SS pin slew rate is directly equal to the  
master’s output slew rate in Volts/Time. The equation:  
MR  
SR  
R =  
60.4k  
TB  
Overvoltage protection is implemented by monitoring  
each one of the regulator’s V pins. When the V volt-  
where MR is the master’s output slew rate and SR is the  
slave’s output slew rate in Volts/Time. When coincident  
FB  
FB  
age exceeds ~7.5% of the 0.8V reference value, then an  
4634f  
15  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
switched current path. Usually a series R-C combination  
is used called a snubber circuit. The resistor will dampen  
the resonance and the capacitor is chosen to only affect  
the high frequency ringing across the resistor.  
internal comparator monitor will turn off the top power  
switch, andturnonthebottompowerswitchtoprotectthe  
load. If the top power switch faults as a short, then a fuse  
or circuit breaker would be recommended to protect the  
system. This is due to the top switch being shorted while  
the bottom switch is turning on to protect the output from  
over voltage. High currents will flow and could damage  
the bottom switch.  
If the stray inductance or capacitance can be measured  
or approximated then a somewhat analytical technique  
can be used to select the snubber values. The inductance  
is usually easier to predict. It combines the PowerPath™  
board inductance in combination with the MOSFET inter-  
connect inductance.  
Stability Coꢃpensation  
First the SW pin can be monitored with a wide bandwidth  
scope with a high frequency scope probe. The ring fre-  
quency can be measured for its value. The impedance, Z,  
can be calculated:  
The module has already been internally compensated for  
all output voltages. Table 4 is provided for most applica-  
tion requirements with verified stability. LTpowerCAD is  
available for other control loop optimization.  
Z
(L)  
= 2π • f • L  
Run Enable  
where f is the resonant frequency of the ring, and L is the  
total parasitic inductance in the switch path. If a resistor  
is selected that is equal to Z, then the ringing should be  
dampened. The snubber capacitor value is chosen so that  
its impedance is equal to the resistor at the ring frequency.  
Calculated by:  
The RUN 1, 2, 3 pins have an enable threshold of 1.4V  
maximum, typically 1.3V with 175mV of hysteresis. They  
control the turn-on of their respective channel. There is  
a 10k resistor on each pin to ground. The RUN pins can  
be pulled up to V for 5V operation, or a resistor can be  
IN  
placed on the pins and connected to V for higher than 5V  
IN  
1
input. This resistor can be set along with the onboard 10k  
resistor such that an undervoltage lockout (UVLO) level  
can be programmed to shut down a particular regulator  
Z(C)  
=
2π fC  
these values are a good place to start with. Modification to  
these components should be made to attenuate the ring-  
ing without lowering the regulator’s conversion efficiency.  
channel if V falls below a set value. Use the equation:  
IN  
10k UVLO1.3V  
(
)
R=  
1.3V  
INTV and EXTV  
CC  
CC  
where R is the resistor from the RUN pin to V to set the  
IN  
The LTM4634 has an onboard linear regulator fed by  
CNTL_PWR which delivers a roughly 5V output at INTV  
UVLO trip point. For example, if the UVLO point is to be  
CC  
6.25V while operating at 12V input:  
to power the internal controller and MOSFET drivers for all  
10k 6.25V 1.3V  
(
)
38k  
three regulator channels. Apply a 4.7µF ceramic capacitor  
R=  
1.3V  
between INTV and ground for decoupling. CNTL_PWR  
CC  
requires a voltage between 4.75V to 28V. If the voltage  
See the Block Diagram in Figure 1. The RUN pins must  
never exceed 6V maximum voltage. The RUN pins have  
to be pulled up to enable the regulators.  
supplied to CNTL_PWR is ≤ 5.8V, connect INTV to  
CC  
CNTL_PWR. Otherwise, INTV should be left floating.  
CC  
To eliminate power loss in the onboard linear regulator  
and improve efficiency connect a supply from 4.7V to 6V  
SW Pins  
at EXTV . Biasing EXTV at 5V will reduce the power  
CC  
CC  
The SW pins are generally for testing purposes by moni-  
toring the pin. The SW pin can also be used to dampen  
out switch node ringing caused by LC parasitics in the  
loss in the internal LDO by (V  
and is recommended for V  
– 5V) • 90mA  
≥ 12V when all  
CNTL_PWR  
CNTRL_POWER  
three channels are operating. If EXTV is used add a 1µF  
CC  
4634f  
16  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
ceramic capacitor to ground at EXTV and ensure the  
2. θ  
: The thermal resistance from the junction to  
CC  
JCbottom  
voltage at CNTL_PWR is always greater than the voltage  
the bottom of the product case, is determined with all  
of the internal power dissipation flowing through the  
bottom of the package. In a typical µModule regulator,  
the bulk of the heat flows out the bottom of the pack-  
age, but there is always heat flow out into the ambient  
environment. As a result, this thermal resistance value  
may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
at EXTV at all times during start-up and shutdown.  
CC  
Connecting V  
to EXTV may present a convenient  
OUT3  
CC  
way to meet the sequencing requirement. Otherwise float  
EXTV if not used.  
CC  
Therꢃal Considerations and Output Current Derating  
The thermal resistances reported in the Pin Configuration  
section of the data sheet are consistent with those param-  
eters defined by JESD51-12 and are intended for use with  
finite element analysis (FEA) software modeling tools that  
leverage the outcome of thermal modeling, simulation,  
and correlation to hardware evaluation performed on a  
µModule package mounted to a hardware test board.  
The motivation for providing these thermal coefficients is  
found in JESD51-12 (“Guidelines for Reporting and Using  
Electronic Package Thermal Information”).  
3. θ  
: The thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetopof  
the package. As the electrical connections of the typical  
µModule regulator are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
, this value may be useful  
JCbottom  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to predict the  
µModule regulator’s thermal performance in their appli-  
cation at various electrical and environmental operating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are, in and of themselves, not relevant  
to providing guidance of thermal performance; instead,  
the derating curves provided in the data sheet can be used  
in a manner that yields insight and guidance pertaining to  
one’s application usage, and can be adapted to correlate  
thermal performance to one’s own application.  
4. θ : The thermal resistance from junction to the printed  
JB  
circuitboard,isthejunction-to-boardthermalresistance  
where almost all of the heat flows through the bottom  
oftheµModulepackageandintotheboard, andisreally  
the sum of the θ  
and the thermal resistance of  
JCbottom  
the bottom of the part through the solder joints and  
through a portion of the board. The board temperature  
is measured at a specified distance from the package.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 4; blue resistances are  
contained within the μModule regulator, whereas green  
resistances are external to the µModule package.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD51-12. These coefficients  
are quoted or paraphrased as follows:  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the Pin  
Configuration section replicates or conveys normal oper-  
ating conditions of a μModule regulator. For example, in  
normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally con-  
duct exclusively through the top or exclusively through  
1. θ :Thethermalresistancefromjunctiontoambient, is  
JA  
the natural convection junction-to-ambient air thermal  
resistance measured in a one cubic foot sealed enclo-  
sure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted  
to a 95mm × 76mm PCB with four layers.  
4634f  
17  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
JUNCTION-TO-AMBIENT RESISTANCE COMPONENTS  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4633 F04  
µMODULE DEVICE  
Figure 4. Graphical Representations of JESD51-12 Therꢃal Coefficients  
bottom of the µModule package—as the standard defines  
for θ and θ , respectively. In practice, power  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow; a majority of the heat flow is into the board.  
conditions in the software model, a thorough laboratory  
evaluation replicates the simulated conditions with ther-  
mocoupleswithinacontrolledenvironmentchamberwhile  
operating the device at the same power loss as that which  
was simulated. The outcome of this process and due  
diligence yields the set of derating curves shown in this  
data sheet.  
JCtop  
JCbottom  
Within the LTM4634, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also, not ignoring practical realities—an approach  
has been taken using FEA software modeling along with  
laboratory testing in a controlled environment chamber  
to reasonably define and correlate the thermal resistance  
valuessuppliedinthisdatasheet:(1)Initially,FEAsoftware  
is used to accurately build the mechanical geometry of  
the LTM4634 and the specified PCB with all of the cor-  
rect material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
andFEAsoftwareisusedtoevaluatetheLTM4634withheat  
sink and airflow; (4) having solved for and analyzed these  
thermalresistancevaluesandsimulatedvariousoperating  
After these laboratory tests have been performed and cor-  
related to the LTM4634 model, then the θ and θ are  
JB  
BA  
summed together to correlate quite well with the device  
modelconditionsofnoairfloworheatsinkinginaproperly  
define chamber. This θ + θ value should accurately  
JB  
BA  
equaltheθ valuebecauseapproximately100%ofpower  
JA  
loss flows from the junction through the board into ambi-  
ent with no air-flow or top mounted heat sink.  
LTꢁ4634 Therꢃal Considerations and Output Current  
Derating  
Thepowerlosscurvesat5Vinput,12Vinput,and24Vinput  
are shown in Figures 8 to 13. These power loss curves  
can be used in coordination with the load current derating  
curves in Figures 14 to 21 for calculating an approximate  
θ
thermal resistance for the LTM4634 with various heat  
JA  
sinking and airflow conditions. The power loss curves  
are taken at room temperature, and are increased with a  
multiplicative factor of 1.4 at 120°C junction.  
4634f  
18  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
The derating curves are plotted with the output current  
starting at 15A (5A/CH) and the ambient temperature at  
~40°C. The 15A comes from each of the three channels  
operating at 5A each. This simplifies the loading for this  
thermal testing. The output voltages are 3.3V, and 5V  
when all three channels are loaded together in parallel.  
Channel 1 and Channel 2 are designed to operate with  
outputs up to 5V, and Channel 3 is designed for 12V. The  
power loss curve values at a particular output voltage and  
output current for each output are taken and multiplied by  
1.4 for increased power loss at 120°C junction. Thermal  
models are derived from several temperature measure-  
ments in a controlled temperature chamber along with  
thermal modeling analysis. The junction temperatures  
are monitored while ambient temperature is increased  
with and without airflow. The power loss increase with  
ambient temperature change is factored into the derating  
curves. The junctions are maintained at 120°C maximum  
while lowering output current or power with increasing  
ambient temperature. The decreased output current will  
decrease the internal module loss as ambient tempera-  
ture is increased. The monitored junction temperature of  
120°Cminustheambientoperatingtemperaturespecifies  
how much module temperature rise can be allowed. As  
an example, in Figure 17 the 5.0V load current is derated  
to ~12.6A at ~71°C with no air and with no heat sink. In  
Figure 10, the 12V to 5.0V power loss at 4.2A per chan-  
nel is 1.25W. The total loss would be 3 times 1.25W for  
3.75W total power loss. The 3.75W is then multiplied by  
the 1.4 multiplier for 120°C junction. This 5.25W value is  
used with the total temperature rise of 120°C minus the  
belowthe120°Cmaximumjunctiontemperature.Thermal  
measurements or infrared analysis should be performed  
to validate the values. Ambient temperature power loss  
can be derived from the power loss curves in Figures 8 to  
13 and adjusted with the 1.4 multiplier. The printed circuit  
board is a 1.6mm thick four-layer board with two ounce  
copper for the two outer layers and 1 ounce copper for  
the two inner layers. The PCB dimensions are 95mm ×  
76mm. The BGA heat sinks are listed in Table 3.  
Teꢃperature ꢁonitoring (TEꢁP1 and TEꢁP2)  
Diode connected PNP transistors are used for the TEMP1,  
TEMP2monitoringfunctionsincethediodeforwardvoltage  
varies with temperature. The temperature dependence of  
the diodes can be understood in the equation:  
   
ID  
VD = nVT ln  
   
I
   
S
where V is the thermal voltage (kT/q), and n, the ideality  
T
factor, is 1 for the two diode connected PNPs being used  
in the LTM4634. I is expressed by the typical empirical  
S
equation:  
VG0  
VT  
IS = I0 exp  
where I is a process and geometry-dependent current (I  
0
0
is typically around 20 orders of magnitude larger than I  
S
at room temperature), and V is the band gap voltage of  
G0  
1.2V extrapolated to absolute zero or –273°C.  
71°C ambient to calculate θ thermal resistance. If the  
JA  
If we take the I equation and substitute into the V equa-  
S
D
71°C ambient temperature is subtracted from the 120°C  
tion, then we get:  
junction temperature, then the difference of 49°C divided  
   
kT  
q
I0  
kT  
q
5.25W equals a 9.3°C/W θ thermal resistance. Table 2  
JA  
VD = VG0 –  
ln  
, VT =  
   
I
specifies a 9.0°C/W value which is very close. Tables 2  
and 3 provide equivalent thermal resistances for 3.3V and  
5V outputs with and without air flow and heat sinking. The  
derivedthermalresistancesinTables2and3forthevarious  
conditions can be multiplied by the calculated power loss  
as a function of the 120°C maximum junction tempera-  
ture to determine if the temperature rise plus ambient is  
   
D
The expression shows that the diode voltage decreases  
(linearly if I were constant) with increasing temperature  
0
and constant diode current. Figure 5 shows a plot of V  
D
vs Temperature over the operating temperature range of  
the LTM4634.  
4634f  
19  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
If we take this equation and differentiate it with respect to  
temperature T, then:  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
I
D
= 100µA  
dVD  
dT  
VG0 VD  
T
= –  
This dV /dT term is the temperature coefficient equal to  
D
about –2mV/K or –2mV/°C. The equation is simplified for  
the first order derivation.  
Solving for T, T = (V – V )/(dV /dT) provides the  
G0  
D
D
temperature.  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
4634 F05  
1st Example: Figure 5 for 27°C, or 300K the diode  
voltage is 0.598V, thus, 300K = –(1200mV – 598mV)/  
–2.0 mV/K)  
Figure 5. Diode Voltage VD vs Teꢃperature T(°C)  
2nd Example: Figure 5 for 75°C, or 350K the diode  
voltage is 0.50V, thus, 350K = –(1200mV – 500mV)/  
–2.0mV/K)  
Converting the Kelvin scale to Celsius is simply taking the  
Kelvin temp and subtracting 273 from it.  
A typical forward voltage is given in the electrical charac-  
teristics section of the data sheet, and Figure 5 is the plot  
of this forward voltage. Measure this forward voltage at  
27°C to establish a reference point. Then using the above  
expression while measuring the forward voltage over  
temperature will provide a general temperature monitor.  
Connect resistors between TEMP1, TEMP2 and V to set  
IN  
the currents to 100µA each. See Figure 25 for an example.  
Figure 6. Therꢃal Plot 24V to 3.3V at 5A, 5V at 5A, and 12V  
at 4A, Airflow = 200LFꢁ, Aꢃbient = 25°C  
Safety Considerations  
The LTM4634 module does not provide galvanic isolation  
from V to any of the three V s. There is no internal  
IN  
OUT  
the internal bottomMOSFET willturn on indefinitely trying  
to protect the load. Under this fault condition, the input  
voltage will source very large currents to ground through  
the failed internal top MOSFET and enabled internal bot-  
tom MOSFET. This can cause excessive heat and board  
damage depending on how much power the input voltage  
can deliver to this system. A fuse or circuit breaker can  
be used as a secondary fault protector in this situation.  
fuse. If required, a slow blow fuse with a rating higher  
than the maximum input current can be used to protect  
the unit in case of a catastrophic failure. An inline circuit  
breaker function can also be used instead of a fuse.  
The fuse or circuit breaker should be selected to limit the  
current to the regulator during overvoltage in case of an  
internaltopMOSFETfault. IftheinternaltopMOSFETfails,  
then turning it off will not resolve the overvoltage, thus  
4634f  
20  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
Layout Checklist/Eꢂaꢃple  
Place a dedicated powerground layerunderneaththe unit.  
To minimize the via conduction loss and reduce module  
thermal stress, use multiple vias for interconnection be-  
tween top layer and other power layers.  
The high integration of LTM4634 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
Donotputviasdirectlyonthepads,unlesstheyarecapped  
or plated over. Use a separated SGND ground copper area  
for components connected to signal pins. Connect the  
SGND to GND underneath the unit. Bring out test points  
on the signal pins for monitoring. Figure 7 gives a good  
example of the recommended layout.  
Use large PCB copper areas for high current paths, in-  
cluding V , GND, V  
, V  
, and V . It helps to  
OUT3  
IN  
OUT1 OUT2  
minimize the PCB conduction loss and thermal stress.  
Place high frequency ceramic input and output capacitors  
next to the V , GND and the V  
pins to minimize high  
IN  
OUT  
frequency noise.  
FARSIDE COMPONENTS  
R
, R , R  
FB1 FB2 FB3  
CONTROL  
CONTROL  
INTVCC  
GND  
R
R
R
FB1  
FB2  
FB3  
M
L
C
GND  
GND  
C
IN3  
K
J
FARSIDE COMPONENTS  
IN1 IN2  
IN1  
C
IN2  
C
, C  
H
C
V
G
F
IN3  
GND  
C
C
OUT6  
OUT4  
FARSIDE COMPONENTS  
E
C
, C  
C
OUT4 OUT5, OUT6  
GND  
D
C
B
A
C
C
OUT1  
OUT3  
V
OUT3  
V
OUT1  
1
2
3
4
5
6
7
8
9
10 11 12  
“A1” INDICATOR  
4634 F07  
V
GND  
V
GND  
V
OUT1  
OUT3  
OUT2  
LTM4634Y BGA TOP VIEW  
Figure 7. Recoꢃꢃended PCB Layout  
4634f  
21  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
1.4  
1.3  
1.2  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5V TO 3.3V POWER  
LOSS CURVE  
5V TO 2.5V POWER  
LOSS CURVE  
5V TO 1.8V POWER  
LOSS CURVE  
5V TO 1.5V POWER  
LOSS CURVE  
5V TO 1.2V POWER  
LOSS CURVE  
5V TO 1V POWER  
LOSS CURVE  
5V TO 3.3V POWER  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
LOSS CURVE  
5V TO 2.5V POWER  
LOSS CURVE  
5V TO 1.8V POWER  
LOSS CURVE  
5V TO 1.5V POWER  
LOSS CURVE  
5V TO 1.2V POWER  
LOSS CURVE  
5V TO 1V POWER  
LOSS CURVE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
4634 F08  
4634 F09  
Figure 8. 5V Input Power Loss  
(Ch1 and Ch2)  
Figure 9. 5V Input Power Loss (Ch3)  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
12V TO 5V POWER  
LOSS CURVE  
12V TO 3.3V POWER  
LOSS CURVE  
12V TO 2.5V POWER  
LOSS CURVE  
12V TO 1.8V POWER  
LOSS CURVE  
12V TO 1.5V POWER  
LOSS CURVE  
12V TO 1.2V POWER  
LOSS CURVE  
12V TO 1V POWER  
LOSS CURVE  
12V TO 5V POWER  
LOSS CURVE  
12V TO 3.3V POWER  
LOSS CURVE  
12V TO 2.5V POWER  
LOSS CURVE  
12V TO 1.8V POWER  
LOSS CURVE  
12V TO 1.5V POWER  
LOSS CURVE  
12V TO 1.2V POWER  
LOSS CURVE  
12V TO 1V POWER  
LOSS CURVE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
4634 F10  
4634 F11  
Figure 10. 12V Input Power Loss  
(Ch1 and Ch2)  
Figure 11. 12V Power Loss (Ch3)  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
24V TO 12V POWER  
LOSS CURVE  
24V TO 5V POWER  
LOSS CURVE  
24V TO 3.3V POWER  
LOSS CURVE  
24V TO 2.5V POWER  
LOSS CURVE  
24V TO 1.8V POWER  
LOSS CURVE  
24V TO 1.5V POWER  
LOSS CURVE  
24V TO 1.2V POWER  
LOSS CURVE  
24V TO 1V POWER  
LOSS CURVE  
24V TO 5V POWER  
LOSS CURVE  
24V TO 3.3V POWER  
LOSS CURVE  
24V TO 2.5V POWER  
LOSS CURVE  
24V TO 1.8V POWER  
LOSS CURVE  
24V TO 1.5V POWER  
LOSS CURVE  
24V TO 1.2V POWER  
LOSS CURVE  
24V TO 1V POWER  
LOSS CURVE  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
LOAD CURRENT (A)  
4634 F12  
4634 F12  
Figure 12. 24V Power Loss  
(Ch1 and Ch2)  
Figure 13. 24V Power Loss (Ch3)  
4634f  
22  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
6
4
4
4
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
2
2
2
0
0
0
40  
60  
80  
100  
40  
60  
80  
100  
40  
60  
80  
100  
0
20  
120  
0
20  
120  
0
20  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4634 F14  
4634 F15  
4634 F16  
Figure 14. 12VIN, 3.3VOUT, with Heat  
Sink, All Channels at 5A Each  
Figure 15. 12VIN, 3.3VOUT, without  
Heat Sink, All Channels at 5A Each  
Figure 16. 12VIN, 5V, with Heat  
Sink, All Channels at 5A Each  
16  
14  
12  
10  
8
16  
16  
14  
12  
10  
8
14  
12  
10  
8
6
6
6
4
4
4
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
2
0
2
2
0
0
40  
60  
80  
100  
40  
60  
80  
100  
40  
60  
80  
100  
0
20  
120  
0
20  
120  
0
20  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4634 F17  
4634 F18  
4634 F19  
Figure 18. 24VIN, 3.3V, with Heat  
Sink, All Channels at 5A Each  
Figure 19. 24VIN, 3.3V, without  
Heat Sink, All Channels at 5A Each  
Figure 17. 12VIN, 5V, without Heat  
Sink, All Channels at 5A Each  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
6
6
4
4
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
0 LFM AIR FLOW  
200 LFM AIR FLOW  
400 LFM AIR FLOW  
2
0
2
0
40  
60  
80  
100  
40  
60  
80  
100  
0
20  
120  
0
20  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
4634 F20  
4634 F21  
Figure 20. 24VIN, 5V, with Heat  
Sink, All Channels at 5A Each  
Figure 21. 24VIN, 5V, without Heat  
Sink, All Channels at 5A Each  
4634f  
23  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
Table 2. 3.3V Output  
DERATING CURVE  
Figures 15, 19  
Figures 15, 19  
Figures 15, 19  
Figures 14, 18  
Figures 14, 18  
Figures 14, 18  
V
(V)  
POWER LOSS CURVE  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
AIR FLOW (LFꢁ)  
HEAT SINK  
None  
θ
(°C/W)  
9.0  
IN  
JA  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
200  
400  
0
None  
7.5  
None  
6.5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.0  
200  
400  
6.5  
6.0  
Table 3. 5V Output  
DERATING CURVE  
Figures 17, 20  
Figures 17, 20  
Figures 17, 20  
Figures 16, 21  
Figures 16, 21  
Figures 16, 21  
V
(V)  
POWER LOSS CURVE  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
Figures 8 to 13  
AIR FLOW (LFꢁ)  
HEAT SINK  
None  
θ
(°C/W)  
9.0  
IN  
JA  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
12, 24  
0
200  
400  
0
None  
7.5  
None  
6.5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
9.0  
200  
400  
6.5  
6.0  
Heat Sink ꢁanufacturer Part Nuꢃber Website  
Aavid Thermalloy  
Cool Innovations  
375424B00034G  
www.aavid.com  
www.coolinnovations.com  
4-050503P to  
4-050508P  
4634f  
24  
For more information www.linear.com/LTM4634  
LTM4634  
applicaTions inForMaTion  
Table 4. Output Voltage Response Versus Coꢃponent ꢁatriꢂ  
(Refer to Figure 26) 0 to 2.5A Load Step Typical ꢁeasured Values  
C
CERAꢁIC  
OUT  
VENDORS  
Murata  
TDK  
VALUE  
PART NUꢁBER  
220µF, 4V, X5R 1206 Case Size  
GRM31CR60G277M  
100µF, 6.3V, X5R 1210 Case Size C3225X5R0J107M  
22µF, 25V, X7R, 1210 Case Size GRM32ER71E226K  
Murata  
Panasonic  
Poscap  
100µF, 16V, D2 Case Size  
150µF, 16V, D3L Case Size  
4.7µF, 50V  
16TQC100M  
16TQC100M  
Murata  
GRU55ER71H475K  
GRM32ER71H06KA12L  
10µF, 50V  
PEAK-TO-PEAK  
V
,
C
C
C
C
OUT2  
DEVIATION AT RECOVERY LOAD  
OUT1  
IN  
IN  
OUT1  
V
(CERAꢁIC) (BULK)* (CERAꢁIC) (BULK)  
C
FF  
C
C
V
DROP 2.5A LOAD STEP  
TIꢁE  
STEP  
R
FB  
FREQ  
OUT2  
BOT  
COꢁP  
IN  
1V  
1V  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
None  
None  
47pF None None 12V 50mV  
47pF None None 12V 40mV  
100mV  
80mV  
90µs  
2.5A/µs 243kΩ 500kHz  
2.5A/µs 243kΩ 500kHz  
2.5A/µs 121kΩ 500kHz  
2.5A/µs 69.8kΩ 500kHz  
2.5A/µs 48.7kΩ 500kHz  
2.5A/µs 28.7kΩ 500kHz  
2.5A/µs 28.7kΩ 500kHz  
2.5A/µs 19.1kΩ 500kHz  
2.5A/µs 19.1kΩ 750kHz  
2.5A/µs 19.1kΩ 500kHz  
2.5A/µs 19.1kΩ 750kHz  
2.5A/µs 11.5kΩ 750kHz  
2.5A/µs 11.5kΩ 750kHz  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
22µF × 3  
100µF × 2  
220µF × 2  
220µF × 2  
220µF × 2  
220µF × 2  
220µF × 2  
220µF × 3  
220µF × 2  
220µF × 2  
220µF × 3  
100µF × 2  
100µF × 2  
100µF × 3  
90µs  
1.2V  
1.5V  
1.8V  
2.5V  
2.5V  
3.3V  
3.3V  
3.3V  
3.3V  
5V  
None 47pF None None 12V 48mV  
None 47pF None None 12V 50mV  
96mV  
90µs  
100mV  
100mV  
150mV  
140mV  
200mV  
200mV  
180mV  
200mV  
340mV  
280mV  
100µs  
100µs  
100µs  
100µs  
120µs  
120µs  
120µs  
120µs  
100µs  
100µs  
None  
None  
None  
None  
None  
None  
None  
None  
None  
47pF None None 12V 50mV  
47pF None None 12V 75mV  
47pF None None 12V 70mV  
47pF None None 12V 100mV  
47pF None None 12V 100mV  
47pF None None 12V 90mV  
47pF None None 12V 100mV  
47pF None None 12V 170mV  
47pF None None 12V 140mV  
5V  
PEAK-TO-PEAK  
C **  
C
C
C
OUT2  
DEVIATION AT RECOVERY LOAD  
IN  
IN  
OUT1  
V
OUT3  
(CERAꢁIC) (BULK)* (CERAꢁIC) (BULK)  
C
C
C
V
DROP 2.5A LOAD STEP  
TIꢁE  
120µs  
120µs  
120µs  
120µs  
120µs  
120µs  
120µs  
200µs  
200µs  
200µs  
200µs  
200µs  
200µs  
STEP  
R
FB  
FREQ  
FF  
BOT  
COꢁP  
IN  
5
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
150µF  
None  
None  
47pF None None 24V 170mV  
47pF None None 24V 140mV  
47pF None None 24V 120mV  
47pF None None 24V 120mV  
47pF None None 24V 120mV  
47pF None None 24V 110mV  
47pF None None 24V 110mV  
47pF None None 24V 300mV  
47pF None None 24V 300mV  
47pF None None 24V 250mV  
47pF None None 24V 240mV  
47pF None None 24V 230mV  
47pF None None 24V 220mV  
340mV  
280mV  
240mV  
240mV  
240mV  
220mV  
220mV  
600mV  
600mV  
500mV  
480mV  
460mV  
440mV  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 11.5kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
2.5A/µs 4.32kΩ 600kHz  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
4.7µF × 3  
100µF × 2  
100µF × 3  
5
5
100µF × 1 100µF × 1  
22µF × 1 100µF × 1  
22µF × 2 100µF × 1  
22µF × 1 100µF × 1  
22µF × 2 100µF × 1  
5
5
5
5
12  
12  
12  
12  
12  
12  
None  
None  
22µF × 2  
22µF × 3  
22µF × 1 100µF × 1  
22µF × 2 100µF × 1  
22µF × 1 100µF × 1  
22µF × 2 100µF × 1  
*Bulk capacitor is optional if VIN has very low input impedance. Slew rate: 2.5A/µs. **50V  
4634f  
25  
For more information www.linear.com/LTM4634  
LTM4634  
Typical applicaTions  
5V  
24V INPUT  
+
C
4.7µF  
50V  
C
4.7µF  
50V  
C
4.7µF  
50V  
C
IN3  
4.7µF  
50V  
100µF  
50V  
IN4  
IN1  
IN2  
4.7µF  
6.3V  
V
IN1  
SW1  
V
SW2  
V
IN3  
SW3 INTV EXTV  
CC CC  
IN2  
2Ω  
CNTL_PWR  
MODE/PLLIN  
RUN1  
FREQ/PLLLPF  
COMP1  
1µF  
10k  
10k  
COMP2  
RUN2  
COMP3  
50k  
LTM4634  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
TK/SS1  
TK/SS2  
TK/SS3  
TEMP2  
C
C
C
SS1  
SS2  
SS3  
0.1µF  
V
V
V
V
V
V
FB3  
GND SGND  
0.1µF  
0.1µF  
OUT1  
FB1  
OUT2  
FB2  
OUT3  
4634 F22  
V
V
V
FB3  
FB1  
FB2  
R
R
R
FB3  
4.32k  
FB1  
FB2  
FOR C , R , COMP AND C  
OUT FB  
FF  
19.1k  
11.5k  
SEE TABLE 4  
C
22µF  
16V  
OUT9  
C
C
C
47pF  
3.3V  
47pF  
5V  
47pF  
12V  
OUT2  
OUT7  
22µF  
OUT4  
100µF  
100µF  
V
FB1  
V
FB2  
V
FB3  
6.3V  
16V  
6.3V  
C
C
22µF  
6.3V  
C
OUT3  
OUT5  
OUT8  
22µF  
100µF  
6.3V  
16V  
Figure 22. LTꢁ4634 Typical 24V Input to 3.3V at 5A, 5V at 5A, 12V at 4A  
4634f  
26  
For more information www.linear.com/LTM4634  
LTM4634  
Typical applicaTions  
24V  
+
C
4.7µF  
50V  
C
IN2  
4.7µF  
50V  
IN1  
56µF  
50V  
12V  
C
22µF  
16V  
C
IN6  
IN5  
22µF  
16V  
5V  
C
22µF  
6.3V  
C
22µF  
6.3V  
IN8  
IN9  
V
IN1  
SW1  
V
SW2  
V
SW3 INTV EXTV  
CC CC  
IN2  
IN3  
CNTL_PWR  
MODE/PLLIN  
RUN1  
FREQ/PLLLPF  
COMP1  
4.7µF  
6.3V  
10k  
10k  
COMP2  
5V INPUT  
12V INPUT  
50k  
RUN2  
COMP3  
120k  
C
LTM4634  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
TK/SS1  
TK/SS2  
TK/SS3  
C
TEMP2  
C
SS1  
SS2  
0.1µF  
SS3  
0.1µF  
0.1µF  
V
OUT1  
V
V
V
V
V
FB3  
GND SGND  
FB1  
OUT2  
FB2  
OUT3  
4634 F23  
V
V
V
FB3  
FB1  
FB2  
R
R
R
FB1  
FB2  
FB3  
28.7k  
69.8k  
19.1k  
C
C
OUT4  
C
OUT1  
OUT7  
220µF  
220µF  
100µF  
4V  
4V  
6.3V  
2.5V  
47pF  
1.5V  
47pF  
3.3V  
47pF  
C
C
C
OUT8  
OUT2  
OUT5  
100µF  
6.3V  
220µF  
4V  
220µF  
4V  
V
V
V
FB3  
FB1  
FB2  
Figure 23. LTꢁ4634 Triple Input and Triple Output (2.5V, 1.5V and 3.3V) at 5A, 5A and 4A  
4634f  
27  
For more information www.linear.com/LTM4634  
LTM4634  
Typical applicaTions  
24V INPUT  
+
C
4.7µF  
50V  
C
IN7  
4.7µF  
50V  
IN6  
56µF  
50V  
12V  
AT 1.2A  
OUT  
C
22µF  
16V  
C
22µF  
16V  
IN4  
IN3  
5V BIAS  
SW3 INTV EXTV  
CC  
4.7µF  
10k  
V
SW1  
V
SW2  
V
IN3  
IN1  
IN2  
CC  
2Ω  
24V  
10k  
CNTL_PWR  
FREQ/PLLLPF  
COMP1  
1µF  
MODE/PLLIN  
10k  
COMP2  
RUN1  
RUN2  
COMP3  
120k  
LTM4634  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
24V  
TK/SS1  
TK/SS2  
TK/SS3  
TEMP2  
C
C
SS3  
SS1  
V
V
V
V
V
V
FB3  
GND SGND  
0.22µF  
0.1µF  
OUT1  
FB1  
OUT2  
C
FB2  
OUT3  
4634 F24  
V
V
FB3  
FB1  
R
R
FB3  
FB1  
121k  
C
OUT  
, SEE TABLE 4  
4.32k  
C
OUT7  
C
R
= (60.4k/2)/(V /0.8) – 1  
OUT  
OUT1  
100µF  
6.3V  
OUT4  
100µF  
6.3V  
FB1  
22µF  
16V  
C
C
C
OUT2  
OUT5  
OUT8  
22µF  
100µF  
6.3V  
100µF  
6.3V  
47pF  
47pF  
16V  
1V  
V
V
FB1  
FB3  
C
C
OUT6  
100µF  
6.3V  
OUT3  
100µF  
6.3V  
12V  
OUT  
12V AT 2.8A  
FOR OTHER CIRCUITS  
1V AT 10A  
Figure 24. 24V to 12V at 2.8A, Then 12V to 1V at 10A  
4634f  
28  
For more information www.linear.com/LTM4634  
LTM4634  
Typical applicaTions  
7V TO 28V INPUT  
+
C
4.7µF  
50V  
C
4.7µF  
50V  
C
IN1  
4.7µF  
50V  
IN3  
IN2  
4.7µF  
6.3V  
35.7k  
(400kHz)  
5V BIAS  
56µF  
50V  
2Ω  
V
IN1  
SW1  
V
IN2  
SW2  
V
SW3 INTV EXTV  
CC CC  
IN3  
CNTL_PWR  
MODE/PLLIN  
RUN1  
FREQ/PLLLPF  
COMP1  
1µF  
10k 10k 10k  
13.3k  
COMP2  
3.3V  
3.3V  
6.04k  
RUN2  
COMP3  
LTM4634  
6.04k  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
TK/SS1  
TK/SS2  
TK/SS3  
V
V
IN  
TEMP2  
6.98k  
4.87k  
C
SS3  
0.22µF  
R
V
V
V
V
V
V
FB3  
GND SGND  
T
OUT1  
FB1  
OUT2  
C
FB2  
OUT3  
C
TO ADC  
TO ADC  
R
R
R
FB3  
19.1k  
FB1  
FB2  
IN  
69.8k  
48.7k  
C
REDUCED TRACKING FEEDBACK  
DIVIDER BY A FACTOR OF 10 TO  
REDUCE TK/SS CURRENT ERROR  
OUT1  
OUT2  
100µF  
6.3V  
OUT3  
100µF  
100µF  
R
T
3.3V  
6.3V  
6.3V  
4634 F25  
V
IN  
C
C
C
OUT4  
OUT6  
OUT7  
R
=
T
1.5V  
1.8V  
100µA  
100µF  
6.3V  
100µF  
6.3V  
100µF  
6.3V  
Figure 25. 7V to 28V Input, 1.5V, 1.8V and 3.3V at 5A,5A, 4A with Tracking  
4634f  
29  
For more information www.linear.com/LTM4634  
LTM4634  
package DescripTion  
LTꢁ4634 Coꢃponent BGA Pinout  
PIN ID FUNCTION PIN ID FUNCTION  
PIN ID FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
E1  
FUNCTION  
GND  
PIN ID FUNCTION  
A1  
A2  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
C1  
C2  
V
OUT3  
V
OUT3  
V
OUT3  
V
OUT3  
D1  
D2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F1  
F2  
V
V
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT3  
OUT2  
OUT2  
OUT2  
OUT2  
OUT1  
OUT1  
OUT1  
OUT1  
IN3  
IN3  
B2  
E2  
GND  
A3  
B3  
C3  
D3  
E3  
GND  
F3  
SW3  
GND  
A4  
GND  
B4  
C4  
D4  
E4  
GND  
F4  
A5  
V
B5  
C5  
TEMP2  
D5  
E5  
GND  
F5  
V
V
OUT2  
OUT2  
OUT2  
IN2  
IN2  
A6  
V
V
B6  
C6  
V
OUT2  
V
OUT2  
V
OUT2  
D6  
E6  
GND  
F6  
A7  
B7  
C7  
D7  
E7  
GND  
F7  
SW2  
GND  
A8  
GND  
GND  
B8  
C8  
D8  
E8  
GND  
F8  
A9  
B9  
C9  
TEMP1  
D9  
E9  
GND  
F9  
V
V
IN1  
IN1  
A10  
A11  
A12  
V
B10  
B11  
B12  
C10  
C11  
C12  
V
OUT1  
V
OUT1  
V
OUT1  
D10  
D11  
D12  
E10  
E11  
E12  
GND  
F10  
F11  
F12  
OUT1  
OUT1  
OUT1  
V
V
GND  
SW1  
GND  
GND  
PIN ID FUNCTION  
PIN ID  
H1  
FUNCTION  
PIN ID  
J1  
FUNCTION  
GND  
PIN ID FUNCTION  
PIN ID  
L1  
FUNCTION  
GND  
PIN ID FUNCTION  
G1  
G2  
V
IN3  
V
IN3  
V
IN3  
V
IN3  
K1  
K2  
GND  
GND  
M1  
M2  
GND  
H2  
J2  
GND  
L2  
GND  
PGOOD12  
PGOOD3  
COMP1  
G3  
GND  
GND  
H3  
GND  
GND  
J3  
GND  
K3  
GND  
L3  
EXTV  
M3  
CC  
G4  
H4  
J4  
GND  
K4  
COMP3  
L4  
COMP2  
M4  
G5  
V
V
H5  
V
V
J5  
GND  
K5  
V
L5  
V
M5  
V
FB1  
IN2  
IN2  
IN2  
IN2  
FB3  
FB2  
G6  
H6  
J6  
CNTL_PWR  
GND  
K6  
SGND  
SGND  
GND  
L6  
SGND  
SGND  
M6  
GND  
GND  
G7  
GND  
GND  
H7  
GND  
GND  
J7  
K7  
L7  
M7  
G8  
H8  
J8  
INTV  
K8  
L8  
FREQ/PLLLPF  
MODE/PLLIN  
RUN1  
M8  
GND  
CC  
G9  
V
IN1  
V
IN1  
H9  
V
IN1  
V
IN1  
J9  
GND  
GND  
GND  
GND  
K9  
GND  
L9  
M9  
TK/SS1  
TK/SS2  
TK/SS3  
GND  
G10  
G11  
G12  
H10  
H11  
H12  
J10  
J11  
J12  
K10  
K11  
K12  
GND  
L10  
L11  
L12  
M10  
M11  
M12  
GND  
GND  
GND  
GND  
RUN3  
GND  
RUN2  
GND  
package phoTo  
4634f  
30  
For more information www.linear.com/LTM4634  
LTM4634  
package DescripTion  
Please refer to http://www.linear.coꢃ/designtools/packaging/ for the ꢃost recent package drawings.  
Z
/ / b b b  
Z
6 . 9 8 2 0  
2 . 7 1 2 0  
4 . 4 4 2 0  
3 . 1 7 2 0  
1 . 9 0 2 0  
0 . 6 3 2 0  
0 . 0 0 0 0  
0 . 6 3 2 0  
1 . 9 0 2 0  
3 . 1 7 2 0  
4 . 4 4 2 0  
2 . 7 1 2 0  
6 . 9 8 2 0  
a a a  
Z
4634f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
31  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4634  
Typical applicaTion  
24V INPUT  
+
C
4.7µF  
50V  
C
IN7  
4.7µF  
50V  
IN6  
56µF  
50V  
5V  
AT 3A  
OUT  
C
22µF  
6.3V  
C
22µF  
6.3V  
IN4  
IN3  
5V  
OUT  
4.7µF  
30k  
V
SW1  
V
SW2  
V
SW3 INTV EXTV  
CC CC  
IN1  
IN2  
IN3  
2Ω  
24V  
CNTL_PWR  
FREQ/PLLLPF  
COMP1  
1µF  
MODE/PLLIN  
10k 10k  
RUN3  
10k  
COMP2  
RUN1  
RUN2  
COMP3  
120k  
LTM4634  
RUN3  
PGOOD12  
PGOOD3  
TEMP1  
24V  
TK/SS1  
TK/SS2  
TK/SS3  
TEMP2  
C
SS1  
0.1µF  
C
SS3  
0.1µF  
V
V
V
V
V
V
GND SGND  
OUT1  
FB1  
OUT2  
FB2  
OUT3  
FB3  
4634 F26  
V
V
FB1  
FB3  
C
OUT  
SEE TABLE 4  
R
FB1  
60.4k  
R
FB3  
11.5k  
C
OUT7  
C
OUT1  
C
OUT4  
220µF  
4V  
100µF  
6.3V  
220µF  
4V  
+
C
C
C
22µF  
6.3V  
OUT2  
OUT5  
OUT8  
220µF  
4V  
220µF  
4V  
1.2V  
47pF  
47pF  
V
V
FB3  
FB1  
5V  
OUT  
5V AT 1A  
FOR OTHER CIRCUITS  
Figure 26. 24V to 5V at 1A, Then 5V Output to 1.2V at 10A  
relaTeD parTs  
PART NUꢁBER DESCRIPTION  
COꢁꢁENTS  
LTM4633  
LTM4630  
LTM4644  
LTM4676  
Triple 10A, 16V Step-Down DC/DC µModule 4.7V ≤ V ≤ 16V, 0.8V ≤ V  
≤ 1.8V, 0.8V ≤ V  
≤ 5.5V, PLL Input, V  
Soft-Start  
IN  
IN  
OUT1,2  
OUT3  
OUT  
Regulator  
and Tracking, PGOOD, Internal Temperature Monitor, 15mm × 15mm × 5.01mm BGA  
Dual 15V , 18A or Single 36A Step-Down  
4.5V ≤ V ≤ 15V, 0.6V ≤ V ≤ 1.8V, PLL Input, Remote Sense Amplifier, V Tracking,  
IN  
IN  
OUT  
OUT  
µModule Regulator with V  
Up to 1.8V  
PGOOD, CLKOUT, Internal Temperature Monitor, 16mm × 16mm × 4.41mm LGA  
OUT  
Quad 4A, 14V Step-Down µModule Regulator 4V ≤ V ≤ 14V, 0.6V ≤ V  
≤ 5.5V, CLK Input and Output, V Tracking, PGOOD,  
IN  
OUT  
OUT  
with Configurable Output Array  
9mm × 15mm × 5.01mm BGA  
Dual 13A or Single 26A µModule Regulator  
with Digital Power System Management  
4.5V ≤ V ≤ 26V, 0.5V ≤ V  
≤ 4.0V, 0.5V ≤ V  
≤ 5.4V, Digital I/F for Control and  
IN  
OUT0  
OUT1  
2
Monitoring, Integrated 16-Bit ADC, PMBus Compliant I C Interface, Remote Sense  
Amplifiers, 16mm × 16mm × 5.01mm BGA  
LTM8028  
LTM4637  
LTM8045  
36V , UltraFast™, Low Output Noise 5A  
6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 1.8V Set Via 3-Pin Three-State Interface, <1mV V  
IN  
IN  
OUT OUT  
µModule Regulator  
Ripple, 10% Accurate Current Limit, PGOOD, 15mm × 15mm × 4.9mm BGA  
20V , 20A DC/DC µModule Step-Down  
4.5V ≤ V ≤ 20V, 0.6V ≤ V ≤ 5.5V, PLL Input, V Tracking, Remote Sense Amplifier,  
IN  
IN  
OUT  
OUT  
Regulator  
PGOOD, 15mm × 15mm × 4.32mm LGA and 15mm × 15mm × 4.92mm BGA  
Inverting or SEPIC _Module DC/DC Converter 2.8V ≤ V ≤ 18V, 2.5V ≤ V  
with Up to 700mA Output Current  
15V, Synchronizable, No Derating or Logic-Level Shift  
IN  
OUT  
for Control Inputs When Inverting, 6.25mm × 11.25mm × 4.92mm BGA  
0.25% TUE 16-Bit ADC, Voltage/Temperature Monitoring and Supervision  
0.25% TUE 16-Bit ADC, Voltage/Current/Temperature Monitoring and Supervision  
LTC2977  
LTC2974  
8-Channel PMBus Power System Manager  
4-Channel PMBus Power System Manager  
4634f  
LT 0814 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM4634  
LINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY