LTM4642IY#PBF [Linear]

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC µModule Regulator; Package: BGA; Pins: 56; Temperature Range: -40°C to 85°C;
LTM4642IY#PBF
型号: LTM4642IY#PBF
厂家: Linear    Linear
描述:

LTM4642 - 20VIN, Dual 4A or Single 8A DC/DC µModule Regulator; Package: BGA; Pins: 56; Temperature Range: -40°C to 85°C

文件: 总32页 (文件大小:1100K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4642  
20V , Dual 4A or Single 8A  
IN  
DC/DC µModule Regulator  
FeaTures  
DescripTion  
TheLTM®4642isacompletedual4Aorsingle8Astep-down  
DC/DCμModule® (micromodule)regulator.Includedinthe  
packagearetheswitchingcontroller,powerFETs,inductor,  
and all support components. Operating over input voltage  
ranges of 4.5V to 20V, (2.375V min with external CPWR  
bias), the LTM4642 supports two outputs with voltage  
ranges of 0.6V to 5.5V, set by a single external resistor.  
Its high efficiency design delivers 4A continuous current  
(5A peak) for each output.  
n
Small Form Factor Dual 4A Power Supply  
n
Wide Input Voltage Range: 4.5V to 20V  
(2.375V Min with CPWR Bias)  
n
Dual 180° Out-of-Phase Outputs with 4A DC  
n
Dual Outputs with 0.6V to 5.5V Range  
n
Output Voltage Tracking  
n
1.5ꢀ Maꢁimum Total DC Output Voltage Error  
n
Up to 95ꢀ Maꢁimum Efficiency  
n
Phase-Lockable Fiꢁed Frequency 600kHz to 1.4MHz  
n
Constant On-Time, Valley Current Mode Architecture  
High switching frequency and a valley current mode  
architecture enable a very fast transient response to line  
and load changes without sacrificing stability. The two  
outputs are interleaved with 180° phase to minimize the  
ripple noise and reduce the I/O capacitors.  
Selectable Burst Mode® Operation  
n
n
Output Overvoltage and Overcurrent Protection  
n
9mm × 11.25mm × 4.92mm BGA Package  
applicaTions  
The power module is offered in a 9mm × 11.25mm ×  
4.92mm BGA package. The LTM4642 is RoHS compliant  
with Pb-free finish.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, Burst Mode, µModule and LTpowerCAD  
are registered trademarks of Analog Devices, Inc. All other trademarks are the property of their  
respective owners. Protected by U.S. Patents, including 5481178, 5847554, 6580258, 6304066,  
6476589, 6774611, 8163643.  
n
Telecom and Networking Equipment  
n
Servers  
n
FPGA Power  
Typical applicaTion  
Dual 4A 1V and 1.2V DC/DC µModule Regulator  
2.2Ω  
INTV  
CC  
V
Efficiency vs Load Current at 12V input  
IN  
4.75V TO 20V  
4.7µF  
22µF  
2×  
133k  
V
90  
1.2V (650kHz)  
V
CPWR  
DRV INTV  
CC  
IN1 IN2  
CC  
V
RNG1  
RUN1  
RUN2  
85  
10k 10k  
1V (650kHz)  
PGOOD1  
PGOOD2  
TRACK/SS1  
0.1µF  
80  
V
1V AT 4A LOAD  
OUT1  
OUT2  
V
V
OUT1  
OUT2  
TRACK/SS2  
+
V
1.2V AT 4A LOAD  
47µF  
100µF  
0.1µF  
LTM4642  
75  
70  
+
47µF  
100µF  
FREQ  
INTV  
MODE/PLLIN  
CC  
V
OUTS1  
2.7  
LOAD CURRENT (A)  
3
0
0.5  
1
1.5  
2
3.5  
4
V
OUTS  
61.9k  
V
FB2  
4642 TA01b  
470pF  
470pF  
V
OUT1  
V
OUT2  
V
FB1  
SGND  
GND  
90.9k  
60.4k  
PINS NOT USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
4642 TA01a  
4642fb  
1
For more information www.linear.com/LTM4642  
LTM4642  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
1
2
3
4
5
6
7
V
, V , SW1, SW2, CPWR .................... –0.3V to 22V  
IN1 IN2  
SW2  
INTV , DRV , PGOOD1,2, RUN1,2, EXTV ,  
A
B
C
D
E
GND  
PHASMD  
CC  
CC  
CC  
V
RUN2  
OUT2  
V
, V (Note 4) ....................–0.3V to INTV + 0.3V  
FB1 FB2  
CC  
V
IN2  
COMP1, COMP2 (Note 4).......................... –0.3V to 2.7V  
V
TRACK/SS2 CPWR  
MODE/PLLIN  
GND  
FB2  
MODE/PLLIN, FREQ, PHASMD,  
PGOOD2  
COMP2 CLKOUT  
EXTV  
CC  
V
V
V
.........................................–0.3V to INTV + 0.3V  
CC  
RNG1  
INTV  
SGNDCOMP1 FREQ  
GND  
V
GND DRV  
CC  
CC  
, V  
, V  
................................... –0.3V to 6V  
OUT1 OUT2 OUTS1  
OUTS  
.......................................................0.3V to 2.75V  
V
V
PGOOD1  
GND  
V
OUTS FB1  
OUTS1  
F
TK/SS1, TK/SS2............................................. 0.3V to 5V  
Internal Operating Temperature Range  
(Note 2).................................................. –40°C to 125°C  
Maximum Reflow Body Temperature.................... 245°C  
Storage Temperature Range .................. –55°C to 125°C  
V
TRACK/SS1  
RUN1  
SW1  
RNG1  
OUT1  
V
G
H
IN1  
GND  
BGA Package  
56-Lead (9mm × 11.25mm × 4.92mm)  
T
= 125°C, θ = 15°C/W, θ = 4°C/W  
JA JP  
JMAX  
θ
DERIVED FROM 95mm × 76mm PCB WITH 4 LAYERS  
JA  
WEIGHT = 1.2635g  
http://www.linear.com/product/LTM4642#orderinfo  
orDer inForMaTion  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM4642EY#PBF  
LTM4642IY#PBF  
LTM4642IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
BGA  
BGA  
BGA  
RATING  
LTM4642Y  
LTM4642Y  
LTM4642Y  
e1  
e1  
e0  
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures: www.linear.com/umodule/pcbassembly  
Terminal Finish Part Marking: www.linear.com/leadfree  
LGA and BGA Package and Tray Drawings: www.linear.com/packaging  
elecTrical characTerisTics  
The l denotes the specifications which apply over the full internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 27.  
Specified as each channel. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
2.375  
0.6  
TYP  
MAX  
20  
UNITS  
l
l
V
V
V
Input DC Voltage  
Output Voltage Range  
V
V
C
≤ 4.5V, Connect CPWR to a Bias > 4.5V  
= 6V to 20V  
V
V
IN(DC)  
IN  
IN  
IN  
5.5  
OUT1,2(RANGE)  
OUT1,2(DC)  
Output Voltage, Total Variation  
with Line and Load  
= 10µF ×2, C  
= 47µF Ceramic, 100µF POSCAP,  
OUT  
R
= 40.2kΩ  
IN  
SET  
V
l
= 12V, V  
= 1.5V, I = 4A  
OUT  
1.4775  
1.5 1.5225  
0.25  
V
OUT  
Input Specifications  
Input Inrush Current at Start-Up  
I
I
= 0A, C = 10µF, C  
= 47µF Ceramic and 100µF  
INRUSH(VIN)  
OUT  
IN  
OUT  
POSCAP, V  
= 1.5V  
A
OUT  
V
= 12V  
IN  
4642fb  
2
For more information www.linear.com/LTM4642  
LTM4642  
elecTrical characTerisTics The l denotes the specifications which apply over the full internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 27.  
Specified as each channel. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
I
CPWR Bias Current  
Input Supply Bias Current  
CPWR = 12V, MODE = Continuous  
20  
mA  
CPWR  
Q(VIN)  
V
V
V
V
= 12V, V  
= 12V, V  
= 20V, V  
= 20V, V  
= 1.5V, Switching Continuous  
= 1.5V, Switching Continuous  
= 1.5V, Switching Continuous  
= 1.5V, Switching Continuous  
25  
25  
22  
22  
10  
mA  
mA  
mA  
mA  
µA  
IN  
IN  
IN  
IN  
OUT1  
OUT2  
OUT1  
OUT2  
Shutdown, RUN = 0, V = 12V  
IN  
I
Input Supply Bias Current  
V
IN  
V
IN  
= 12V, V  
= 20V, V  
= 1.5V, I  
= 1.5V, I  
= 4A  
= 4A  
0.6  
0.356  
A
A
Q(VIN)  
OUT  
OUT  
OUT  
OUT  
DRV  
Internal V Voltage  
6V < V < 20V, No Load  
5
5.3  
–1.5  
200  
4.6  
5.6  
–3  
V
%
CC  
CC  
IN  
I
DRV Load Regulation  
I
= 0 to 100mA  
DRVCC  
DRVCC(REG)  
CC  
EXTV  
EXTV  
EXTV Switchover Hysteresis  
mV  
V
CC(HYS)  
CC  
CC  
EXTV Switchover Voltage  
EXTV Ramping Positive  
4.4  
0
4.8  
CC  
CC  
Output Specifications  
I
Output Continuous Current Range  
Line Regulation Accuracy  
V
V
= 12V, V = 1.5V (Note 5)  
OUT  
4
A
OUT1,2(DC)  
IN  
l
l
ΔV  
OUT1(LINE)  
= 1.5V, V from 4.5V to 20V,  
0.1  
0.3  
0.2  
%
OUT  
OUT  
IN  
I
= 0A For Each Output  
V
OUT(NOM)  
ΔV  
OUT2(LOAD)  
Load Regulation Accuracy  
Output Ripple Voltage  
For Each Output, V  
= 1.5V, 0A to 4A (Note 5)  
OUT  
V
= 12V  
0.5  
%
IN  
V
OUT2(NOM)  
V
I
= 0A, C  
= 100µF X5R Ceramic  
OUT  
OUT1,2(AC)  
OUT  
V
= 12V, V  
= 20V, V  
= 1.5V  
= 1.5V  
15  
15  
mV  
mV  
IN  
IN  
OUT  
OUT  
V
f
Output Ripple Voltage Frequency  
Turn-On Overshoot  
I
= 2A, V = 12V, V = 1.5V,  
OUT  
800  
kHz  
S
OUT  
IN  
FREQ = 49.9k to Ground  
ΔV  
C
I
= 100µF and 47µF X5R Ceramic, V  
= 0A  
= 1.5V,  
= 1.5V,  
OUT(START)  
OUT  
OUT  
OUT  
V
= 12V  
= 20V  
10  
10  
mV  
mV  
IN  
IN  
V
t
Turn-On Time  
C
I
= 100µF X5R and 47µF Ceramic, V  
OUT  
START  
OUT  
= 0A Resistive Load, TRACK/SS = 10nF  
OUT  
V
IN  
= 12V  
6
ms  
mV  
µs  
ΔV  
Peak Deviation for Dynamic Load Load: 0% to 50% to 0% of Full Load  
OUT(LS)  
C
= 100µF and 47µF X5R Ceramic, V  
IN  
= 1.5V,  
= 1.5V,  
OUT  
V
OUT  
= 12V  
50  
15  
t
I
Settling Time for Dynamic Load  
Step  
Load: 0% to 50% to 0% of Full Load  
C
SETTLE  
= 100µF and 47µF X5R Ceramic, V  
IN  
OUT  
V
OUT  
= 12V  
Output Current Limit  
C
= 100µF and 47µF X5R Ceramic,  
OUT(PK)  
OUT  
V
= 6V, V  
= 1.5V  
OUT  
7
7
A
A
IN  
IN  
V
= 20V, V  
= 1.5V  
OUT  
Control Section  
l
V
Regulated Differential Feedback  
Sensed at Load Point with Resistive Divider  
0.592  
0.592  
0.6  
0.608  
V
OUTS1(REG)  
V
V
V
V
-V  
OUTS1 OUTS  
I
I
I
Input Bias Current  
(Note 4)  
(Note 4)  
(Note 4)  
5
–25  
–5  
25  
–50  
nA  
nA  
nA  
V
VOUTS1  
OUTS1  
Input Bias Current  
VOUTS  
OUTS  
Input Bias Current  
FB2  
50  
VFB2  
l
V
Voltage at V Pin  
I
= 0A, V = 2.5V  
OUT  
0.6  
0.608  
FB2  
FB2  
OUT  
4642fb  
3
For more information www.linear.com/LTM4642  
LTM4642  
elecTrical characTerisTics  
The l denotes the specifications which apply over the full internal  
operating temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V. Per typical application in Figure 27.  
Specified as each channel. (Note 3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.0  
97  
MAX  
UNITS  
µA  
%
I
Soft-Start Charge Current  
Maximum Duty Factor  
Minimum On-Time  
0V < TRACK/SS1,2 < 0.6V  
In Dropout (Note 4)  
(Note 4)  
TRACK/SS1,2  
DF  
MAX  
ON(MIN)  
OFF(MIN)  
LOW  
t
t
f
f
f
30  
ns  
Minimum Off-Time  
(Note 4)  
90  
ns  
Low Frequency  
R
R
R
= 61.9k  
= 49.9k  
= 27.5k  
600  
730  
650  
800  
700  
850  
kHz  
kHz  
kHz  
kΩ  
V
FREQ  
FREQ  
FREQ  
Nominal Frequency  
NOM  
Highest Frequency  
1250  
1400 1500  
600  
HIGH  
R
MODE/PLLIN Input Resistance  
MODE/PLLIN Clock In High  
MODE/PLLIN Clock In Low  
RUN Pin ON/OFF Threshold  
RUN1, 2, Threshold Hysteresis  
MODE/PLLIN  
PLLIN(HIGH)  
PLLIN(LOW)  
RUN1, 2  
V
V
V
V
2
0.5  
V
l
RUN Rising  
1.1  
1.2  
200  
1.2  
5
1.3  
V
Delta RUN Rising to RUN Falling  
mV  
µA  
µA  
kΩ  
RUN1, 2(HYS)  
RUN1,2  
I
I
RUN Pin Pull-Up Current When Off RUN1,2 at SGND  
RUN1,2 Pull-Up Hysteresis  
RUN1,2 Resistance to Ground  
Undervoltage Lockout  
I
= I  
– I  
(Note 4)  
RUN1,2(OFF)  
RUN1,2(HYS)  
RUN1,2(HYST)  
RUN1,2(ON)  
RUN1,2 Res  
UVLO  
100  
l
l
INTV Falling (Note 4)  
3.3  
3.7  
4.2  
V
V
CC  
INTV Rising  
4.5  
CC  
R
, R  
FB1 FB2  
Resistor Between V  
and V  
FB  
60.1  
60.4  
60.7  
kΩ  
OUT  
Pins for Each Channel  
V
PGOOD Voltage Low  
I
= 2mA  
= 5V  
0.1  
0.3  
2
V
PGL  
PGOOD  
I
PGOOD Leakage Current  
PGOOD Range  
V
µA  
PGOOD  
PGOOD  
ΔV  
V
V
Ramping Negative  
Ramping Positive  
–5  
5
–7.5  
7.5  
–10  
10  
%
%
PGOOD  
FB  
FB  
Ch 2 Phase  
Channel 2 Phase (Relative to  
Channel 1)  
PHASMD = SGND  
180  
180  
240  
Deg  
Deg  
Deg  
PHASMD = Floating  
PHASMD = INTV  
CC  
CLKOUT Phase CLKOUT Phase (Relative to  
Channel 1)  
PHASMD = SGND  
60  
90  
120  
Deg  
Deg  
Deg  
PHASMD = Floating  
PHASMD = INTV  
CC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
temperature consistent with these specifications is determined by specific  
operating conditions in conjunction with board layout, the rated package  
thermal resistance and other environmental factors.  
Note 3: The two outputs are tested separately and the same testing  
Note 2: The LTM4642E is guaranteed to meet performance specifications  
over the 0°C to 125°C internal operating temperature range. Specifications  
over the full –40°C to 125°C internal operating temperature range are  
assured by design, characterization and correlation with statistical process  
controls. The LTM4642I is guaranteed to meet specifications over the full  
internal operating temperature range. Note that the maximum ambient  
condition is applied to each output.  
Note 4: 100% tested at wafer level only.  
Note 5: See Output Current Derating curves for different V , V  
Note 6: Consult factory for operation down at 2.375V to 2.5V input.  
and T .  
A
IN OUT  
Operating frequency nominal will be reduced.  
4642fb  
4
For more information www.linear.com/LTM4642  
LTM4642  
Typical perForMance characTerisTics  
(Refer to Figures 19 and 20) TA = 25°C, unless otherwise noted.  
Efficiency vs Load Current at  
3.3VIN, CCM Mode, Eꢁternal 5V  
Bias  
Efficiency vs Load Current at  
5VIN, CCM Mode  
Efficiency vs Load Current at  
12VIN, CCM Mode  
100  
98  
96  
94  
92  
90  
88  
86  
84  
100  
95  
90  
85  
80  
75  
70  
100  
95  
90  
85  
80  
75  
70  
12V TO 5V (1.2MHz)  
12V TO 3.3V (1MHz)  
12V TO 2.5V (1MHz)  
12V TO 1.8V (800kHz)  
12V TO 1.5V (800kHz)  
12V TO 1.2V (650kHz)  
12V TO 1V (650kHz)  
5V TO 3.3V (800kHz)  
3.3V TO 2.5V (600kHz)  
3.3V TO 1.8V (600kHz)  
3.3V TO 1.5V (600kHz)  
3.3V TO 1.2V (600kHz)  
3.3V TO 1V (600kHz)  
5V TO 2.5V (800kHz)  
5V TO 1.8V (750kHz)  
5V TO 1.5V (650kHz)  
5V TO 1.2V (650kHz)  
5V TO 1V (650kHz)  
2
2.5  
2
2.5  
2
2.5  
0
0.5  
1
1.5  
3
3.5  
4
0
0.5  
1
1.5  
3
3.5  
4
0
0.5  
1
1.5  
3
3.5  
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4642 G01  
4642 G02  
4642 G02  
3.3VIN to 1VOUT Transient  
Response  
Efficiency vs Load Current at  
20VIN, CCM Mode  
5VIN to 1VOUT Transient Response  
100  
95  
90  
85  
80  
75  
70  
65  
60  
IN  
OUT  
IN  
OUT  
20V TO 5V (1.2MHz)  
20V TO 3.3V (1MHz)  
20V TO 2.5V (1MHz)  
1V  
1V  
OUT  
OUT  
20mV/DIV  
20mV/DIV  
I
= 2A/µs  
2A/DIV  
I
= 2A/µs  
2A/DIV  
STEP  
STEP  
4642 G05  
4642 G06  
20µs/DIV  
= 100µF 15mΩ ESR POSCAP,  
20µs/DIV  
= 100µF 15mΩ ESR POSCAP,  
20V TO 1.8V (800kHz)  
20V TO 1.5V (800kHz)  
20V TO 1.2V (650kHz)  
20V TO 1V (650kHz)  
C
C
OUT  
OUT  
47µF CERAMIC  
47µF CERAMIC  
C
f
= 470pF  
= 600kHz  
C
f
= 470pF  
= 650kHz  
FF  
FF  
SW  
SW  
2
2.5  
0
0.5  
1
1.5  
3
3.5  
4
LOAD CURRENT (A)  
4642 G04  
12VIN to 1VOUT Transient  
Response  
3.3VIN to 1.5VOUT Transient  
Response  
5VIN to 1.5VOUT Transient  
Response  
IN  
OUT  
IN  
OUT  
IN  
OUT  
1V  
1.5V  
1.5V  
OUT  
50mV/DIV  
OUT  
OUT  
20mV/DIV  
50mV/DIV  
I
=
STEP  
I
= 2A/µs  
2A/DIV  
I
= 2A/µs  
2A/DIV  
STEP  
STEP  
2A/µs  
2A/DIV  
4642 G07  
4642 G08  
4642 G09  
20µs/DIV  
= 100µF 15mΩ ESR POSCAP,  
20µs/DIV  
= 120µF 22mΩ ESR OSCON SVP,  
20µs/DIV  
= 120µF 22mΩ ESR OSCON SVP,  
C
C
C
OUT  
OUT  
OUT  
47µF CERAMIC  
47µF CERAMIC  
47µF CERAMIC  
C
= 470pF  
= 650kHz  
C
= 470pF  
= 600kHz  
C
f
= 470pF  
= 650kHz  
FF  
FF  
FF  
f
f
SW  
SW  
SW  
4642fb  
5
For more information www.linear.com/LTM4642  
LTM4642  
Typical perForMance characTerisTics  
(Refer to Figures 19 and 20) TA = 25°C, unless otherwise noted.  
12VIN to 1.5VOUT Transient  
Response  
3.3VIN to 2.5VOUT Transient  
Response  
5VIN to 2.5VOUT Transient  
Response  
IN  
OUT  
IN  
OUT  
IN  
OUT  
1.5V  
2.5V  
2.5V  
OUT  
100mV/DIV  
OUT  
OUT  
50mV/DIV  
100mV/DIV  
I
=
STEP  
I
I
I
= 2A/µs  
2A/DIV  
I
= 2A/µs  
2A/DIV  
STEP  
STEP  
2A/µs  
2A/DIV  
4642 G10  
4642 G11  
4642 G14  
4642 G17  
4642 G12  
20µs/DIV  
= 120µF 22mΩ ESR OSCON SVP,  
20µs/DIV  
20µs/DIV  
C
C
C
SW  
= 47µF CERAMIC  
C
C
SW  
= 47µF CERAMIC  
OUT  
OUT  
OUT  
47µF CERAMIC  
= 68pF  
= 68pF  
FF  
FF  
C
= 470pF  
= 800kHz  
f
= 600kHz  
f
= 800kHz  
FF  
f
SW  
12VIN to 2.5VOUT Transient  
Response  
5VIN to 3.3VOUT Transient  
Response  
12VIN to 3.3VOUT Transient  
Response  
IN  
OUT  
IN  
OUT  
IN  
OUT  
2.5V  
100mV/DIV  
3.3V  
3.3V  
OUT  
100mV/DIV  
OUT  
OUT  
100mV/DIV  
I
=
STEP  
= 2A/µs  
2A/DIV  
I
= 2A/µs  
2A/DIV  
STEP  
STEP  
2A/µs  
2A/DIV  
4642 G13  
4642 G15  
20µs/DIV  
20µs/DIV  
20µs/DIV  
C
C
SW  
= 47µF CERAMIC  
= 68pF  
= 1MHz  
C
C
= 47µF CERAMIC  
C
C
SW  
= 47µF CERAMIC  
OUT  
OUT  
FF  
OUT  
= 68pF  
= 800kHz  
= 68pF  
FF  
FF  
f
f
f
= 1MHz  
SW  
12VIN to 5VOUT Transient  
Response  
6VIN to 5VOUT Transient Response  
Clock Synchronization  
IN  
OUT  
IN  
OUT  
EXTCLK  
5V/DIV  
5V  
5V  
OUT  
100mV/DIV  
OUT  
V
SW1  
100mV/DIV  
10V/DIV  
V
SW2  
I
=
10V/DIV  
STEP  
= 2A/µs  
2A/DIV  
STEP  
2A/µs  
2A/DIV  
4642 G16  
4642 G18  
20µs/DIV  
INPUT CAPACITOR 680µF 10V,  
20µs/DIV  
1µs/DIV  
C
C
= 47µF CERAMIC  
OUT  
LOW IMPEDANCE INPUT CAN USE MUCH LESS  
= 68pF  
= 1.2MHz  
FF  
C
C
SW  
= 47µF CERAMIC  
= 68pF  
= 600kHz  
f
OUT  
FF  
SW  
f
4642fb  
6
For more information www.linear.com/LTM4642  
LTM4642  
Typical perForMance characTerisTics  
(Refer to Figures 19 and 20) TA = 25°C, unless otherwise noted.  
Output Ripple, 10mV Typical  
Shorted Output  
PGOOD  
5V/DIV  
V
SW2  
20V/DIV  
1.5V  
V
OUT  
OUT  
10mV/DIV  
0.5V/DIV  
I
SHORT  
10A/DIV  
4642 G19  
4642 G20  
2µs/DIV  
50µs/DIV  
V
V
= 20V  
IN  
OUT  
12V TO 1.5V AT 4A  
= 100µF CERAMIC, 47µF CERAMIC  
= 1.5V  
C
SW  
OUT  
f
= 800kHz  
Load Regulation and Current  
Limit (No Airflow)  
Start-Up, 20V to 1.5V at 4A  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
RUN2  
5V/DIV  
V
SW2  
20V/DIV  
V
OUT2  
1V/DIV  
DRV  
INTV  
CC  
CC  
V
SW  
= 1.5V  
OUT  
5V/DIV  
f
= 1MHz  
4642 G21  
20ms/DIV  
MODE = CCM  
4.5V  
IN  
IN  
IN  
C
C
= 100µF CERAMIC, 47µF CERAMIC  
OUT  
SS  
12V  
20V  
= 0.1µF  
4
5
0
1
2
3
6
7
LOAD CURRENT (A)  
4642 G22  
4642fb  
7
For more information www.linear.com/LTM4642  
LTM4642  
pin FuncTions  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
COMP1, COMP2 (E3, D3): Current Control Threshold and  
ErrorAmplifierCompensationPoint.Themodulehasbeen  
internally compensated for all I/O ranges.  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
GND (A4-A7, C2, D1, D5, E1, E5, E7, F7, H4-H7): Power  
FREQ (E4): Frequency Selection Pin. Tie a resistor from  
thispintoSGNDtosetthefrequencyofoperationbetween  
600kHz to 1.4MHz for the specific output voltages. For  
3.3Vinputapplications,650kHzisanoptimizedfrequency.  
For 5V to 20V input applications, the optimized operating  
frequencyfortheoutputvoltageisasfollows:0.8Vto1.2V  
(650kHz), 1.5V to 1.8V (800kHz), 2.0V to 5V (1.2MHz), 5V  
from 20V input (1.4MHz). The resistor equation:  
ground pins for both input and output returns.  
PHASMD (B4): Phase Mode Selection Pin for Program-  
ming Clock Out Phase. See Electrical Characteristics and  
Applications Information sections.  
MODE/PLLIN(C3):ModeSelectionorExternalSynchroni-  
zation Pin. Tying this pin to SGND enables discontinuous  
mode. Tying this pin to INTV enables forced continuous  
CC  
41550  
operation. A clock on the pin will force the controller into  
the continuous mode of operation and synchronize the  
internal oscillator. The suitable synchronizable frequency  
range is 600kHz to 1400kHz subject to inductor ripple  
current limits described in the FREQ/PLLFLTR pin section.  
The external clock input high threshold is 2V, while the  
input low threshold is 0.5V.  
RFREQ kΩ =  
2.2  
(
)
FREQ kHz  
(
)
DRV (E6): This pin is the LDO 5.3V regulator output  
CC  
used to power the internal control circuits and MOSFET  
drivers.Thispinneedsa4.7µFceramicdecouplingcapaci-  
tor to GND. For input voltages less than or equal to 5.3V,  
connect this pin directly to the input voltage.  
CPWR (C7):Thispin is the main inputpowertothe control  
IC. This pin normally connects to the input source directly.  
This pin can be biased at a voltage greater than 4.5V to  
allowtheV andV tooperatedownto2.375Vinputfor  
V
(F2): Output Voltage Sense Point for Channel 1  
OUTS1  
Remote Sensing. This pin has a 49.9Ω resistor connected  
to V  
. This pin can be connected at the load point for  
OUT1  
IN1  
IN2  
accurate remote sensing.  
applications that operate at 2.5V or 3.3V input. If the bias  
is less than or equal to 5.3V, connect DRV to this pin.  
CC  
V
(F3):RemoteGroundSensePin.Connectatremote  
OUTS  
ground point.  
SGND (D2, E2): Signal Ground Pins. Return ground path  
for all analog and low power circuitry. Tie a single connec-  
tion to PGND in the application. See the Recommended  
Layout section.  
V
, V (F4, C4): The negative input of the error  
FB1  
FB2  
amplifier. Internally, this pin is connected to V  
with  
OUT  
a 60.4k precision resistor. Different output voltages can  
be programmed with an additional resistor between V  
CLKOUT (D4): Clock Out for Synchronizing Other Regula-  
tors to the Common Clock. Used for multiphase applica-  
tions. See Applications Information section.  
FB  
and SGND pins. See the Applications Information section  
for details.  
TRACK/SS1,TRACK/SS2(F5,C5):OutputVoltageTracking  
and Soft-Start Pins. Internal soft-start currents of 1.0µA  
charge the soft-start capacitors. See the Applications  
Information section to use the tracking function.  
EXTV (D6): External Power Input to Controller. When  
CC  
EXTV is higher than 4.7V, the internal 5.3V regulator is  
CC  
disabledandtheexternalsourcesuppliescurrenttoreduce  
the power dissipation in the module. This will improve the  
efficiency more at high input voltages.  
PGOOD1, PGOOD2 (F6, C6): Output Voltage Power Good  
Indicator. Open-drain logic output that is pulled to ground  
when the output voltage is not within 7.5% of the regula-  
INTV (D7): This pin powers the internal control circuits.  
CC  
TiethispintoDRV witha2.2Ωresistor. Thispinrequires  
CC  
tion point. In single output parallel operation when V is  
a few milliamps.  
FB2  
tied to INTV , the PGOOD2 pin is not to be used.  
CC  
4642fb  
8
For more information www.linear.com/LTM4642  
LTM4642  
pin FuncTions  
RUN1, RUN2 (G3, B3): Run Control Pins. A source can  
be used to enable the RUN pins with an external pull-up  
resistor. Forcing either of these pins below 1.2V will shut  
down the corresponding outputs. An additional 5µA pull-  
up current is added to this pin, once the RUN pin rises  
above 1.2V. Also, active control or pull-up resistors can  
be used to enable the RUN pin. The maximum voltage is  
6V on these pins. There are 100k resistors on RUN1,2  
to ground. It is recommended to use an external pull-up  
0.6Vto1V, resultinginamaximumsensevoltagebetween  
30mV and 50mV. For applications that require less than  
7A of the default peak current limit, the V  
pin voltage  
RNG  
can be scaled down to obtain a desired current limit level.  
V
(G5, G6, 67), V (B5, B6, B7): Power Input Pins.  
IN1  
IN2  
Apply input voltage between these pins and GND pins.  
Recommendplacinginputdecouplingcapacitancedirectly  
between V pins and GND pins.  
IN  
V
(F1, G1, G2, H1, H2), V  
(A1, A2, B1, B2, C1):  
resistor to V to enable the RUN pin. See the Applications  
OUT1  
OUT2  
IN  
Power Output Pins. Apply output load between these pins  
and PGND pins. Recommend placing output decoupling  
capacitance directly between these pins and PGND pins.  
Information section.  
V
(G4): Used at Final Test. Tie to INTV in normal  
CC  
RNG1  
operation. This pin can also be used to adjust the current  
SW1, SW2 (H3, A3): Switching Test Pins. These pins  
are provided externally to check the operation frequency.  
limitofchannel1. AnexternalresistivedividerfromINTV  
can be used to set the voltage on the V  
CC  
pin between  
RNG  
4642fb  
9
For more information www.linear.com/LTM4642  
LTM4642  
siMpliFieD block DiagraM  
INPUT VOLTAGE SOURCE LESS THAN 5.3V BUT GREATER  
THAN 4.5V, CONNECT DRV AND CPWR TO V . INPUT  
VOLTAGE LESS THAN 4.5V BUT GREATER THAN 2.375V,  
PROVIDE AN EXTERNAL BIAS TO CPWR 5V OR GREATER  
CC  
IN  
PGOOD1  
CPWR  
PGOOD1  
R5  
2.2Ω  
TRACK1  
V
C7  
0.1µF  
IN1  
TRACK1  
4.5V TO 20V  
V
IN1  
SS  
CAP  
C1  
22µF  
25V  
C7  
0.1µF  
MTOP1  
GND  
SW1  
OUT1  
RUN1*  
V
IN1  
RUN1 = 100k  
((MIN V /1.3) – 1)  
R
RUN1  
255k  
100k  
V
IN  
OUT1  
1.5V/4A  
1µH  
V
CLKOUT  
CLKOUT  
INTV  
+
+
C3  
47µF  
MBOT1  
2.2µF 49.9Ω  
GND  
C
MODE/PLLIN  
PHASMD  
FREQ  
OUT1  
CC  
PHASMD  
V
OUTS1  
POWER CONTROL  
60.4k  
R
FREQ  
49.9k  
V
FB1  
V
FB1  
SET1  
40.2k  
+
R
COMP1  
V
OUTS  
COMP1  
INTERNAL  
COMP  
SGND  
TRACK2  
RUN2  
TRACK2  
PGOOD2  
SS  
CAP  
PGOOD2  
V
IN2  
V
V
C4  
22µF  
25V  
IN2  
IN2  
4.5V TO 20V  
0.1µF  
R
RUN2  
255k  
MTOP2  
GND  
SW2  
OUT2  
100k  
INTV  
CC  
V
RNG1  
SW2  
V
OUT2  
1.2V/4A  
DRV  
1µH  
CC  
V
C6  
1µF  
+
4.7µF  
R4  
2.2Ω  
MBOT2  
1µF  
C
OUT2  
INTV  
CC  
GND  
GND  
C2  
1µF  
60.4k  
V
EXTV  
FB2  
CC  
V
FB2  
EXTV  
CC  
R
SET2  
60.4k  
COMP2  
COMP2  
INTERNAL  
COMP  
SGND  
SGND  
4642 F01  
* ABSOLUTE MAXIMUM = 6V  
Figure 1. Simplified LTM4642 Block Diagram  
TA = 25°C. Use Figure 1 configuration.  
CONDITIONS  
Decoupling requireMenTs  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
External Input Capacitor Requirement  
C
V
= 4.5V to 20V, V  
= 1.5V, V  
= 1.5V  
= 1.5V  
I
= 4A, I = 4A  
OUT2  
22  
µF  
IN  
IN  
OUT1  
OUT2  
OUT1  
External Output Capacitor Requirement  
= 4.5V to 20V, V = 1.5V, V  
C
OUT1  
C
OUT2  
V
IN  
I
I
= 4A  
= 4A  
150  
150  
µF  
µF  
OUT1  
OUT2  
OUT1  
OUT2  
4642fb  
10  
For more information www.linear.com/LTM4642  
 
LTM4642  
operaTion  
The LTM4642 is a dual independent input 4A nonisolated  
switching mode DC/DC power supply. It can deliver up to  
4A(DCcurrent)foreachoutputwithfewexternalinputand  
outputcapacitors.Thismoduleprovidespreciselyregulated  
output voltages programmable via external resistors from  
0.6V to 5.5V over a 4.5V to 20V input voltage range. The  
Typical Application schematic is shown in Figure 27. The  
input voltage source can operate down to 2.375V with an  
external bias applied to the CPWR pin. The external bias  
needs to be 5V or higher. See the Typical Applications  
schematics for examples.  
Currentmodecontrolprovidescycle-by-cyclefastcurrent  
limit and current foldback in a short-circuit condition. In-  
ternal overvoltage and undervoltage comparators pull the  
open-drain PGOOD pins output low if the output feedback  
voltageexitsa 7.5%windowaroundtheregulationpoint.  
The power good pin is disabled during start-up.  
Pulling the RUN pins below 1.2V forces the controller  
into its shutdown state, by turning off both MOSFETs.  
The TRACK/SS pins are used for programming the output  
voltage ramp and voltagetracking during start-up. See the  
Applications Information section.  
The LTM4642 has integrated constant on-time valley cur-  
rent mode regulators and built-in power MOSFET devices  
with fast switching speed. To reduce switching noise, the  
two outputs are interleaved with 180° phase internally and  
canbesynchronizedexternallyusingtheMODE/PLLINpin.  
The LTM4642 is internally compensated to be stable over  
all operating conditions. LTpowerCAD® is available for  
transient and stability analysis. The V pins are used to  
FB  
program the output voltage with a single external resistor  
to ground. Multiphase operation can be easily employed  
with clock synchronization.  
With current mode control and internal feedback loop  
compensation, the LTM4642 module has sufficient stabil-  
ity margins and good transient performance with a wide  
range of output capacitors, even with all ceramic output  
capacitors.  
High efficiency at light loads can be accomplished with  
selectablediscontinuousmodeusingtheMODE/PLLINpin.  
Efficiency graphs are provided for light load operations in  
the Typical Performance Characteristics section.  
4642fb  
11  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
The typical LTM4642 application circuit is shown in  
Figure27.Externalcomponentselectionisprimarilydeter-  
mined by the maximum load current and output voltage.  
For a buck converter, the switching duty-cycle can be  
estimated as:  
VOUT  
D=  
V
IN  
Output Voltage Programming  
Without considering the inductor ripple current, for each  
output, the RMS current of the input capacitor can be  
estimated as:  
ThePWMcontrollerhasaninternal0.6Vreferencevoltage.  
As shown in the Block Diagram, a 60.4k internal feedback  
resistor R connects V  
to the V pin. The output volt-  
FB  
OUT  
FB  
age will default to 0.6V with no feedback resistor. Adding  
I
ICIN(RMS)  
=
OUT(MAX) D(1D)  
a resistor R  
from the V pin to SGND programs the  
SET  
FB  
η
output voltage:  
In the above equation, η is the estimated efficiency of the  
power module. The bulk capacitor can be a switcher-rated  
aluminumelectrolyticcapacitororapolymercapacitor.One  
22µF ceramic input capacitor is typically rated for 2A of  
RMS ripple current, so the RMS input current at the worst  
case for each output at 4A maximum current is about 2A.  
If a low inductance plane is used to power the device, then  
two 22µF ceramic capacitors are enough for both outputs  
at 4A load and no external input bulk capacitor is required.  
60.4k+RSET  
V
OUT =0.6V •  
RSET  
or equivalently:  
60.4k  
VOUT  
RSET  
=
–1  
0.6V  
Table 1. RSET Resistor Table vs Various Output Voltages  
(V) 0.6 1.0 1.2 1.5 1.8 2.5 3.3  
(kΩ) Open 90.9 60.4 40.2 30.1 19.1 13.3 8.25  
V
5
Output Capacitors  
OUT  
R
SET  
The LTM4642 is designed for low output voltage ripple  
noise. The bulk output capacitors defined as C  
are  
OUT  
V
supportsfeedbackvoltagereferredremotesensing,  
OUT1  
as such the V  
chosen with low enough effective series resistance (ESR)  
to meet the output voltage ripple and transient require-  
pin can be tied to V  
OUTS  
is programmed with a resistor to ground. For  
at the load  
OUTS1  
sense point, and V  
OUT1  
is tied to ground at the load sense  
ments. C  
can be a low ESR tantalum capacitor, a low  
OUT  
point. V  
OUT2  
ESR polymer capacitor or ceramic capacitor. The typical  
output capacitance range for each output is from 47µF  
to 220µF. Additional output filtering may be required by  
the system designer, if further reduction of output ripple  
or dynamic transient spikes is required. LTpowerCAD is  
available for stability analysis. Multiphase operation will  
reduce effective output ripple as a function of the number  
of phases. Application Note 77 discusses this noise re-  
duction versus output ripple current cancellation, but the  
output capacitance should be considered carefully as a  
function of stability and transient response. LTpowerCAD  
calculates the output ripple reduction as the number of  
implemented phases increased by N times. See Table 6  
for output capacitor suggestions.  
a 2-phase single 8A output, the V pin can be connected  
toINTV todisablethechannel2erroramplifier,andinter-  
FB2  
CC  
nally connect the COMP2 pin to COMP1 pin. The COMP2  
pin can be left floating or connected to COMP1 externally.  
The TRACK/SS2 and PGOOD2 pins are not functional in  
this mode, thus they can be left floating. See the Typical  
Applications at the end of the data sheet.  
Input Capacitors  
The LTM4642 module should be connected to a low AC-  
impedance DC source. A 47µF to 100µF surface mount  
aluminumelectrolyticcapacitorcanbeusedformoreinput  
bulk capacitance. This bulk capacitor is only needed if the  
inputsourceimpedanceiscompromisedbylonginductive  
leads, traces or not enough source capacitance.  
4642fb  
12  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
Mode Selections and Phase-Locked Loop  
as well as the CLKOUT signal, as shown in Table 2. The  
phases tabulated are relative to zero degree (0°) being  
defined as the rising edge of the internal reference clock  
signal of channel 1. The CLKOUT signal can be used to  
synchronize additional power regulator modules. The  
system can be configured for up to 12-phase operation  
with a multichannel solution. Typical configurations are  
shown in Table 3 to interleave the phases of the channels.  
The applications will validate a 6 phase multiple regulator  
solution with multiple outputs.  
The LTM4642 can be enabled to operate in discontinuous  
orforcedcontinuousmode.Toselecttheforcedcontinuous  
operation, tie the MODE/PLLIN pin to INTV . To select  
CC  
discontinuous operation, or tie the MODE/PLLIN pin to  
ground. This will improve the light load efficiency.  
Frequency Selection and Eꢁternal Clock  
Synchronization  
An internal oscillator (clock generator) provides phase  
interleaved internal clock signals for individual channels  
to lock on to. The switching frequency and phase of each  
switching channel is independently controlled by adjust-  
ing the top MOSFET turn-on time (on-time) through the  
one-shot timer. This is achieved by sensing the phase  
relationship between a top MOSFET turn-on signal and  
its internal reference clock through a phase detector, and  
the time interval of the one-shot timer is adjusted on a  
cycle-by-cycle basis, so that the rising edge of the top  
MOSFET turn-on is always trying to synchronize to the  
internal reference clock signal for the respective channel.  
Each of the LTM4642 channels can be paralleled up to 8A  
of output, but cannot be paralleled from one module to  
the other modules. Twelve phases can be paralleled with  
no more than two phases per module.  
Table 2  
PHASMD  
Channel 1  
Channel 2  
CLKOUT  
SGND  
0°  
FLOAT  
0°  
INTVCC  
0°  
180°  
60°  
180°  
90°  
240°  
120°  
Table 3  
NUMBER OF  
PHASES  
NUMBER OF  
LTM4642*  
PIN CONNECTIONS  
[PIN NAME (CHIP NUMBER)]  
Thefrequencyoftheinternaloscillatorcanbeprogrammed  
from 600kHz to 1.4MHz by connecting a resistor, R  
,
FREQ  
2
3
1
PHASMD(1) = FLOAT or SGND  
fromtheFREQpintosignalground(SGND). Theequation:  
2 or  
PHASMD(1) = INTV  
CC  
1 + ½(LTM4642) MODE/PLLIN(2) = CLKOUT(1)  
41550  
RFREQ kΩ =  
2.2  
(
)
4
6
2
PHASMD(1) = FLOAT  
FREQ kHz  
(
)
PHASEMD(2) = FLOAT or SGND  
MODE/PLLIN(2) = CLKOUT(1)  
For applications with stringent frequency or interference  
requirements, an external clock source connected to the  
MODE/PLLIN pin can be used to synchronize the internal  
clock signals through a clock phase-locked loop (Clock  
PLL). The LTM4642 operates in forced continuous mode  
of operation when it is synchronized to the external clock.  
The external clock frequency has to be within 30% of the  
internal oscillator frequency for successful synchroniza-  
tion. The clock input levels should be no less than 2V for  
“high” and no greater than 0.5V for “low”. The MODE/  
PLLIN pin has an internal 600k pull-down resistor.  
3
PHASMD(1) = SGND  
PHASMD(2) = SGND  
MODE/PLLIN(2) = CLKOUT(1)  
PHASMD(3) = FLOAT or SGND  
MODE/PLLIN(3) = CLKOUT(2)  
*No more than two channels of any one module may be paralleled.  
Soft-Start and Tracking  
The LTM4642 has the ability to either soft-start by itself  
with a capacitor or track the output of another channel or  
externalsupply.Whenoneparticularchannelisconfigured  
to soft-start by itself, a capacitor should be connected to  
its TRACK/SS pin. This channel is in the shutdown state  
if its RUN pin voltage is below 1.2V. Its TRACK/SS pin is  
actively pulled to ground in this shutdown state.  
PHASMD Pin Programming  
The PHASMD pin determines the relative phases between  
the internal reference clock signals for the two channels  
4642fb  
13  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
Once the RUN pin voltage is above 1.2V, the channel pow-  
ers up. A soft-start current of 1µA then starts to charge  
its soft-start capacitor. Note that soft-start or tracking is  
achieved not by limiting the maximum output current of  
the controller but by controlling the output ramp voltage  
according to the ramp rate on the TRACK/SS pin. Current  
foldback is disabled during this phase to ensure smooth  
soft-start or tracking. The soft-start or tracking range is  
defined to be the voltage range from 0V to 0.6V on the  
TRACK/SSpin.Thetotalsoft-starttimecanbecalculatedas:  
V
isthetrackrampappliedtotheslave’sTRACK/SS2  
TRACK  
pin. V  
has a control range of 0V to 0.6V. When the  
TRACK  
master’s output is divided down with the same resistor  
values used to set the slave’s output, then the slave will  
coincident track with the master until it reaches its final  
value. The master will continue to its final value from the  
slave’s regulation point.  
Ratiometric modes of tracking can be achieved by select-  
ing different divider resistors values to change the output  
tracking ratio. The master output must be greater than the  
0.6V CSS µF  
( )  
tSOFT-START  
=
1µA  
MASTER OUTPUT  
Output voltage tracking can be programmed externally  
using the TRACK/SS pin. The master channel is divided  
down with an external resistor divider that is the same  
as the slave channel’s feedback divider to implement co-  
incident tracking. The LTM4642 uses an accurate 60.4k  
resistor internally for the top feedback resistor. Figure 2  
shows an example of coincident tracking. Figure 3 shows  
the output voltages with coincident tracking.  
SLAVE OUTPUT  
OUTPUT  
VOLTAGE  
4642 F03  
TIME  
R1  
R2  
VSLAVE = 1+  
V  
TRACK  
Figure 3. Coincident Tracking  
2.2Ω  
INTV  
V
CC  
IN  
4.75V TO 20V  
4.7µF  
C
C
IN2  
22µF  
IN1  
131k  
V
RUN1  
RUN2  
22µF  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
V
10k 10k  
PGOOD1  
PGOOD2  
PGOOD1  
PGOOD2  
TRACK/SS1  
TRACK/SS2  
0.1µF  
V
V
1.5V AT 4A LOAD  
1.0V AT 4A LOAD  
+
OUT1  
OUT2  
V
V
OUT1  
OUT2  
R1  
R2  
90.9k  
+
C
OUT3  
C
OUT4  
60.4k  
47µF  
100µF  
LTM4642  
C
OUT1  
C
OUT2  
100µF  
V
OUT1  
47µF  
FREQ  
V
INTV  
MODE/PLLIN  
OUTS1  
CC  
V
OUTS  
R
FREQ  
V
V
FB2  
FB1  
61.9k  
470pF  
470pF  
V
OUT1  
V
OUT2  
SGND  
GND  
R
R
FB2  
90.9k  
FB1  
40.2k  
4642 F02  
PINS NOT USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 2. Eꢁample of Coincident Tracking  
4642fb  
14  
For more information www.linear.com/LTM4642  
 
 
LTM4642  
applicaTions inForMaTion  
slave output for the tracking to work. Master and slave  
data inputs can be used to implement the correct resistors  
values for coincident or ratiometric tracking.  
RUN Pin  
The RUN pins can be used to enable or sequence the  
particular regulator channel. The RUN pins have their own  
internal 1.2µA current source to pull up the RUN pins to  
1.2V,andthecurrentwillincreaseto5µAabove1.2V.Board  
contaminationorresiduecanloaddownthesesmallpull-up  
currents, so a 100k resistor is placed from the RUN pins  
to ground. This 100k resistor can be used with a resistor  
Multiphase Operation  
Multiphase operation with the LTM4642 two regulator  
channels in parallel will lower the effective input RMS  
ripple current as well as the output ripple current due  
to the interleaving operation of the regulators. Figure 4  
provides a ratio of input RMS ripple current to DC load  
current as a function of duty cycle and the number of  
paralleled phases. Choose the corresponding duty cycle  
and the number of phases to get the correct ripple current  
value. For example, the 2-phase parallel for one LTM4642  
design provides 8A at 2.5V output from a 12V input. The  
duty cycle is DC = 2.5V/12V = 0.21. The 2-phase curve  
has a ratio of ~0.25 for a duty cycle of 0.21. This 0.25  
ratio of RMS ripple current to a DC load current of 8A  
equals ~2A of input RMS ripple current for the external  
input capacitors. No more than two phases of a module  
may be paralleled.  
to V to set the turn-on threshold for the RUN pins  
IN  
The resistor divider needs to be low enough resistance  
to swamp out the pull-up current sources to prevent  
unintended activation of the device. The RUN pin has a  
maximum rated voltage of 6V. See Figure 1 Block Diagram  
for set turn on equation.  
Power Good  
ThePGOODpinisconnectedtotheopendrainofaninternal  
N-channel MOSFET. The MOSFET turns on and pulls the  
PGOOD pin low when either V pin voltage is not within  
FB  
7.5% of the 0.6V reference voltage. The PGOOD pin is  
alsopulledlowwheneitherRUNpinisbelow1.2Vorwhen  
the LTM4642 is in the soft-start or tracking phase. When  
The effective output ripple current is lowered with  
multiphase operations as well. Figure 5 provides a ratio  
of peak-to-peak output ripple current to the normalized  
output ripple current as a function of duty cycle and the  
number of paralleled phases. Choose the corresponding  
duty cycle and the number of phases to get the correct  
output ripple current ratio value. If a 2-phase operation is  
the V pin voltage is within the 7.5% requirement, the  
FB  
MOSFET is turned off and the pin is allowed to be pulled  
up by an external resistor to a source of up to 6V. The  
PGOOD pin will flag power good immediately when both  
V
pins are within the 7.5% window. However, there is  
FB  
aninternal1spowerbadmaskwheneitherV goesout  
FB  
chosen at 12V to 2.5V  
with a duty cycle of 21%, then  
IN  
OUT  
of the 7.5% window. In parallel single output operation,  
only use PGOOD1.  
0.6 is the ratio of the normalized output ripple current to  
inductor ripple DIr at the corresponding duty cycle. This  
leads to ~1.3A of the effective output ripple current ΔI  
L
CPWR, DRV , INTV and EXTV  
CC  
CC  
CC  
if the DIr is at 2.2A. Refer to Application Note 77 for a  
detailed explanation of the output ripple current reduction  
as a function of paralleled phases.  
TheCPWRisthemainpowerinputtotheinternalcontrolIC.  
Thispinisnormallyconnectedtotheinputvoltagesource.  
This pin can be biased with a 5V supply when operating  
The output ripple voltage has two components that are  
related to the amount of bulk capacitance and effective  
series resistance (ESR) of the output bulk capacitance.  
Therefore, the output ripple voltage can be calculated with  
the known effective output ripple current. The equation:  
at input voltages below 4.5V. When 4.5V < V < 5.3V,  
IN  
Then tie CPWR to DRV . See the Typical Applications.  
CC  
The DRV is the internal 5.3V regulator that powers the  
CC  
LTM4642 internal MOSFET drivers for the internal power  
MOSFETs. The DRV requires a 4.7µF ceramic capacitor  
CC  
ΔV  
ΔI /(8 f N C ) + ESR ΔI  
L OUT L  
OUT(P-P)  
to ground. INTV powers the internal controller circuits  
CC  
and is connected to DRV through a 2.2Ω resistor. This  
wherefisfrequencyandNisthenumberofparallelphases.  
CC  
INTV bias is 20mA.  
CC  
4642fb  
15  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
0.60  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
*THE LTM4642 CAN ONLY HAVE THE TWO  
CHANNELS PER MODULE PARALLELED  
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4642 F04  
Figure 4. Normalized Input RMS Ripple Current vs Duty Cycle for One to Siꢁ Phases*  
1.00  
1-PHASE  
2-PHASE  
3-PHASE  
4-PHASE  
6-PHASE  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9  
DUTY CYCLE (V /V  
)
OUT IN  
4642 F05  
Figure 5. Normalized Output Ripple Current vs Duty Cycle, Dlr = VOUT T/L  
4642fb  
16  
For more information www.linear.com/LTM4642  
 
 
LTM4642  
applicaTions inForMaTion  
where f is the resonant frequency of the ring, and L is the  
total parasitic inductance in the switch path. If a resistor  
is selected that is equal to Z, then the ringing should be  
dampened. The snubber capacitor value is chosen so that  
its impedance is equal to the resistor at the ring frequency.  
Calculated by: Z = 1/(2πfC). These values are a good  
place to start with. Modification to these components  
should be made to attenuate the ringing with the least  
amount of power loss.  
A 5V output on channel 1 or 2 can be used to power the  
EXTV pin when the input voltage is at the high end of the  
CC  
supply range to reduce power dissipation in the module.  
For example, the dropout voltage for 20V input would be  
20V – 5V = 15V. This 15V headroom then multiplied by  
the power MOSFET drive current of ~30mA would equal  
~0.45W additional power dissipation. So utilizing a 5V  
( )  
C
outputontheEXTV wouldimprovedesignefficiencyand  
CC  
reduce device temperature rise. Otherwise try to operate  
CWPR off of a 5V bias when operating at higher supply  
voltages. See the Typical Applications section.  
Thermal Considerations and Output Current Derating  
Indifferentapplications,theLTM4642operatesinavariety  
of thermal environments. The maximum output current is  
limited by the environmental thermal condition. Sufficient  
cooling should be provided to ensure reliable operation.  
When the cooling is limited, proper output current derat-  
ing is necessary, considering the ambient temperature,  
airflow,input/outputconditions,andtheneedforincreased  
reliability.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
The LTM4642 has a current mode controller, which inher-  
ently limits the cycle-by-cycle inductor current not only in  
steady-state operation, but also in transient.  
To further limit current in the event of an overload condi-  
tion,theLTM4642providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 50%, then the maximum  
output current is progressively lowered to one-fourth of  
its full current limit value. Foldback current limiting is  
disabled during soft-start and tracking up.  
The two outputs of the LTM4642 are paralleled to charac-  
terize the output current derating curves. The power loss  
curves in Figure 8 to Figure 10 can be used in coordination  
with load current derating curves in Figure 11 to Figure 24  
for calculating an approximate θ for the module with  
JA  
SW Pins  
various cooling methods. Application Note 103 provides  
detailedexplanationoftheanalysisforthethermalmodels  
and the derating curves. Tables 4 and 5 provide a sum-  
The SW pins are generally for testing purposes by moni-  
toring these pins. These pins can also be used to dampen  
out switch node ringing caused by LC parasitic in the  
switched current paths. Usually a series R-C combina-  
tion is used called a snubber circuit. The resistor will  
dampen the resonance and the capacitor is chosen to  
only affect the high frequency ringing across the resistor.  
If the stray inductance or capacitance can be measured or  
approximated then a somewhat analytical technique can  
be used to select the snubber values. The inductance is  
usuallyeasiertopredict.Itcombinesthepowerpathboard  
inductance in combination with the MOSFET interconnect  
bond wire inductance.  
mary of the equivalent θ parameters are correlated to  
JA  
the measured values, and are improved with airflow.  
Thepowerlosscurvesaretakenatroomtemperature, and  
are increased with multiplicative factors according to the  
ambienttemperature.Theapproximatefactorsare:1.35for  
115°C and 1.4 for 120°C. The derating curves are plotted  
with CH1 and CH2 paralleled output current starting at 8A  
andtheambienttemperaturestartingat50°C. Thederated  
output voltages are 1.0V, 2.5V, 3.3V and 5.0V. Tables 4  
and 5 specify the approximate θ with airflow conditions  
JA  
for1Vand5Voutputs. Thesetwoconditionsarechosento  
includethelowerandhigheroutputvoltagerangesforcor-  
relatingthethermalresistance,butanyderatingcurvepoint  
along with power loss curve can be used to calculate the  
First the SW pin can be monitored with a wide bandwidth  
scope with a high frequency scope probe. The ring fre-  
quency can be measured for its value. The impedance Z  
can be calculated:  
θ .Thermalmodelsarederivedfromseveraltemperature  
JA  
measurementsinacontrolledtemperaturechamberalong  
Z
= 2πfL,  
(L)  
4642fb  
17  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
Table 4. 1V Output  
DERATING CURVE  
Figures 11, 13  
Figures 11, 13  
Figures 11, 13  
Figures 12, 14  
Figures 12, 14  
Figures 12, 14  
V
(V)  
POWER LOSS CURVE  
Figures 8, 9  
AIRFLOW (LFM)  
HEAT SINK  
none  
Θ
(°C/W)  
13  
IN  
JA  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
5, 12  
0
Figures 8, 9  
200  
400  
0
none  
10  
Figures 8, 9  
none  
9
Figures 8, 9  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
13  
Figures 8, 9  
200  
400  
8
Figures 8, 9  
7.5  
Table 5. 5V Output  
DERATING CURVE  
Figures 21, 23  
Figures 21, 23  
Figures 21, 23  
Figures 22, 24  
Figures 22, 24  
Figures 22, 24  
V
(V)  
POWER LOSS CURVE  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
Figures 9, 10  
AIRFLOW (LFM)  
HEAT SINK  
none  
Θ
JA  
(°C/W)  
15  
IN  
12, 20  
0
12, 20  
12, 20  
12, 20  
12, 20  
12, 20  
200  
400  
0
none  
13  
none  
12  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
14  
200  
400  
10  
10  
Table 6. Output Voltage Response vs Component Matriꢁ (Refer to Figure 27) 0A to 2A Load Step Typical Measured Values  
CERAMIC CAPACITOR  
VENDORS  
VALUE  
PART NUMBER  
BULK VENDORS  
Sanyo OSCON SVPC  
Panasonic SP  
VALUE  
PART NUMBER  
10SVPC120MV  
EEFCTOJ101R  
ESR  
Murata  
C
: 47µF 6.3V, X5R GRM21BR60J476ME15  
C
: 120µF 10V  
OUT  
22mΩ  
15mΩ  
OUT  
Murata  
C
: 47µF 10V, X5R  
GRM31CR61A476KE15  
GRM32ER71C226KEA8  
C
OUT  
: 100µF 6.3V  
OUT  
Murata  
C : 22µF, X7R, 16V  
IN  
C
C
C
C
(CER  
C
DROOP PEAK TO RECOVERY LOAD STEP  
R
FB  
FREQ  
(kHz)  
IN  
IN  
OUT1  
OUT2  
FF  
V
(V) (CERAMIC) (BULK)** (CERAMIC)  
AND BULK)  
(pF)  
V
(V)  
IN  
(mV)  
PEAK  
TIME (µs)  
(A/µs)  
(kΩ)  
90.9  
60.4  
40.2  
30.1  
19.1  
13.3  
8.25  
OUT  
1
22µF × 2  
22µF × 2  
22µF × 2  
22µF × 2  
22µF × 2  
22µF × 2  
22µF × 2  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
56µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
47µF  
100µF or 120µF 470 3.3, 5, 12  
100µF or 120µF 470 3.3, 5, 12  
100µF or 120µF 470 3.3, 5, 12  
100µF or 120µF 470 3.3, 5, 12  
31  
62  
20  
20  
20  
25  
20  
20  
20  
2
2
2
2
2
2
2
650  
650  
1.2  
30  
63  
1.5  
1.8  
2.5  
3.3  
5
35  
70  
700  
38  
80  
750  
68  
68  
68  
3.3, 5, 12  
5, 12  
100  
120  
185  
200  
240  
390  
1000  
1000  
1200  
** Bulk capacitance is optional if V has very low input impedance.  
IN  
HEAT SINK MANUFACTURER  
Cool Innovations  
PART NUMBER  
3-05040  
WEBSITE  
www.coolinnovations.com  
www.chomerics.com  
Chomerics  
T411 Interface  
4642fb  
18  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
withthermalmodelinganalysis.Thejunctiontemperatures  
aremonitoredwhileambienttemperatureisincreasedwith  
and without airflow. The power loss increase with ambient  
temperature change is factored into the derating curves.  
The junctions are maintained at 120°C maximum while  
lowering output current or power with increasing ambient  
temperature.Thedecreasedoutputcurrentwilldecreasethe  
internal module loss as ambient temperature is increased.  
The monitored junction temperature of 120°C minus  
the ambient operating temperature specifies how much  
module temperature rise can be allowed. As an example  
in Figure 14 the load current is derated to ~7A at ~100°C  
with no air or heat sink and the power loss for the 12V to  
1.0V at 7A output is about 1.2W (power loss at 3.5A load  
multiplied by 2). The 1.2W loss is multiplied by the 1.4  
multiplying factor at 120°C junction to get 1.68W. If the  
100°C ambient temperature is subtracted from the 120°C  
junction temperature, then the difference of 20°C divided  
by 1.68W equals a 12°C/W thermal resistance. Table 4  
specifies a 13°C/W value which is very close. Table 4 and  
Table 5 provide equivalent thermal resistances for 1.0V  
and 5V outputs with and without airflow and heat sinking.  
The derived thermal resistances in Tables 4 and 5 for the  
various conditions can be multiplied by the calculated  
power loss as a function of ambient temperature to derive  
temperature rise above ambient, thus maximum junction  
temperature. The printed circuit board is a 1.6mm thick  
four layer board with two ounce copper for the two outer  
layers and one ounce copper for the two inner layers. The  
PCB dimensions are 95mm × 76mm. The BGA heat sinks  
are listed below Table 5.  
Many designers may opt to use laboratory equipment  
and a test vehicle such as the demo board to anticipate  
the µModule regulator’s thermal performance in their ap-  
plicationatvariouselectricalandenvironmentaloperating  
conditions to compliment any FEA activities. Without FEA  
software, the thermal resistances reported in the Pin Con-  
figuration section are in-and-of themselves not relevant to  
providing guidance of thermal performance; instead, the  
derating curves provided in the data sheet can be used in  
a manner that yields insight and guidance pertaining to  
one’s application-usage, and can be adapted to correlate  
thermal performance to one’s own application.  
The Pin Configuration section gives four thermal coeffi-  
cients explicitly defined in JESD51-12; these coefficients  
are quoted or paraphrased below:  
1. θ , the thermal resistance from junction to ambi-  
JA  
ent, is the natural convection junction-to-ambient  
air thermal resistance measured in a one cubic foot  
sealed enclosure. This environment is sometimes  
referred to as “still air” although natural convection  
causes the air to move. This value is determined with  
the part mounted to a JESD51-9 defined test board,  
which does not reflect an actual application or viable  
operating condition.  
2. θ  
, the thermal resistance from junction to the  
JCbottom  
bottom of the product case, is determined with all of  
the component power dissipation flowing through the  
bottomofthepackage.InthetypicalµModule,thebulk  
of the heat flows out the bottom of the package, but  
there is always heat flow out into the ambient environ-  
ment. Asaresult, thisthermalresistancevaluemaybe  
useful for comparing packages but the test conditions  
don’t generally match the user’s application.  
The thermal resistances reported in the Pin Configura-  
tion section of the data sheet are consistent with those  
parameters defined by JESD51-12 and are intended for  
use with finite element analysis (FEA) software modeling  
tools that leverage the outcome of thermal modeling,  
simulation, and correlation to hardware evaluation per-  
formed on a µModule package mounted to a hardware  
test board defined by JESD51-9 (“Test Boards for Area  
Array Surface Mount Package Thermal Measurements”).  
The motivation for providing these thermal coefficients is  
found in JESD51-12 (“Guidelines for Reporting and Using  
Electronic Package Thermal Information”).  
3. θ  
, the thermal resistance from junction to top of  
JCtop  
the product case, is determined with nearly all of the  
componentpowerdissipationflowingthroughthetop  
of the package. As the electrical connections of the  
typical µModule are on the bottom of the package, it  
is rare for an application to operate such that most of  
the heat flows from the junction to the top of the part.  
As in the case of θ  
, this value may be useful  
JCbottom  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
4642fb  
19  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
4. θ , the thermal resistance from junction to the  
Within the LTM4642, be aware there are multiple power  
devices and components dissipating power, with a con-  
sequence that the thermal resistances relative to different  
junctions of components or die are not exactly linear with  
respect to total package power loss. To reconcile this  
complication without sacrificing modeling simplicity—  
but also, not ignoring practical realities—an approach  
has been taken using FEA software modeling along with  
laboratory testing in a controlled-environment chamber  
to reasonably define and correlate the thermal resistance  
valuessuppliedinthisdatasheet:(1)Initially,FEAsoftware  
is used to accurately build the mechanical geometry of  
the LTM4642 and the specified PCB with all of the cor-  
rect material coefficients along with accurate power loss  
source definitions; (2) this model simulates a software-  
defined JEDEC environment consistent with JESD51-12  
to predict power loss heat flow and temperature readings  
at different interfaces that enable the calculation of the  
JEDEC-defined thermal resistance values; (3) the model  
and FEA software is used to evaluate the LTM4642 with  
heat sink and airflow; (4) having solved for and analyzed  
these thermal resistance values and simulated various  
operating conditions in the software model, a thorough  
laboratory evaluation replicates the simulated conditions  
with thermocouples within a controlled-environment  
chamber while operating the device at the same power  
loss as that which was simulated. An outcome of this  
JB  
printed circuit board, is the junction-to-board thermal  
resistance where almost all of the heat flows through  
the bottom of the µModule and into the board, and  
is really the sum of the θ  
and the thermal re-  
JCbottom  
sistance of the bottom of the part through the solder  
joints and through a portion of the board. The board  
temperature is measured a specified distance from  
the package, using a two sided, two layer board. This  
board is described in JESD51-9.  
A graphical representation of the aforementioned ther-  
mal resistances is given in Figure 6; blue resistances are  
contained within the µModule regulator, whereas green  
resistances are external to the µModule package.  
As a practical matter, it should be clear to the reader that  
no individual or sub-group of the four thermal resistance  
parameters defined by JESD51-12 or provided in the  
Pin Configuration section replicates or conveys normal  
operating conditions of a µModule regulator. For example,  
in normal board-mounted applications, never does 100%  
of the device’s total power loss (heat) thermally conduct  
exclusively through the top or exclusively through bot-  
tom of the µModule package—as the standard defines  
for θ  
and θ , respectively. In practice, power  
JCbottom  
JCtop  
loss is thermally dissipated in both directions away from  
the package—granted, in the absence of a heat sink and  
airflow, a majority of the heat flow is into the board.  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
4642 F06  
µModule DEVICE  
Figure 6. Graphical Representation of JESD51-12 Thermal Coefficients  
4642fb  
20  
For more information www.linear.com/LTM4642  
 
LTM4642  
applicaTions inForMaTion  
process and due diligence yields a set of derating curves  
to the printed circuit board and the exposed top metal is  
thermally connected to the power devices and the power  
inductors.Anexternalheatsinkcanbeappliedtothetopof  
the device for excellent heat sinking with airflow. Basically  
all power dissipating devices are mounted directly to the  
substrate and the top exposed metal. This provides two  
low thermal resistance paths to remove heat.  
provided in other sections of this data sheet. After these  
laboratory tests have been performed, then the θ and  
JB  
θ
are summed together to correlate quite well with the  
BA  
LTM4642modelwithnoairfloworheatsinkinginaproperly  
define chamber. This θ + θ value is shown in the Pin  
JB  
BA  
Configuration section and should accurately equal the θ  
JA  
value because approximately 100% of power loss flows  
from the junction through the board into ambient with no  
airflow or top mounted heat sink. Each system has its own  
thermal characteristics, therefore thermal analysis must  
be performed by the user in a particular system.  
Safety Considerations  
The LTM4642 modules do not provide galvanic isolation  
from V to V . There is no internal fuse. If required,  
IN  
OUT  
a slow blow fuse with a rating twice the maximum input  
current needs to be provided to protect each unit from  
catastrophic failure.  
The LTM4642 has been designed to effectively remove  
heat from both the top and bottom of the package. The  
bottomsubstratematerialhasverylowthermalresistance  
I
PER  
HOT TEMP  
PEAK TEMP (°C)  
LOAD  
V
(V)  
V
OUT1  
(V)  
V
OUT2  
(V)  
PHASE (A)  
f (kHz)  
SW  
IN  
12  
2.5  
1.5  
4
1000  
56.6  
Figure 7. Thermal Plot for the Specified Operation. The Temperature Rise About 25°C Ambient Is About 30°C Rise  
4642fb  
21  
For more information www.linear.com/LTM4642  
LTM4642  
applicaTions inForMaTion  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20V to 5V  
20V to 1.5V  
20V to 1.2V  
20V to 1V  
12V to 5V  
5V to 3.3V  
5V to 2.5V  
5V to 1.8V  
5V to 1.5V  
5V to 1.2V  
5V to 1V  
20V to 3.3V  
20V to 2.5V  
20V to 1.8V  
12V to 3.3V  
12V to 2.5V  
12V to 1.8V  
12V to 1.5V  
12V to 1.2V  
12V to 1V  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
CURRENT LOAD (A)  
CURRENT LOAD (A)  
CURRENT LOAD (A)  
4642 F08  
4642 F09  
4642 F10  
Figure 8. 5V Input Power Loss  
Figure 9. 12V Input Power Loss  
Figure 10. 20V Input Power Loss  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
50  
60  
70  
80  
90 100 110 120  
(°C)  
50  
60  
70  
80  
90 100 110 120  
(°C)  
50  
60  
70  
80  
90 100 110 120  
(°C)  
t
t
t
AMB  
AMB  
AMB  
4642 F11  
4642 F12  
4642 F13  
Figure 11. 5VIN, 1VOUT 650kHz,  
No Heat Sink  
Figure 12. 5VIN, 1VOUT 650kHz,  
with Heat Sink  
Figure 13. 12VIN, 1VOUT 650kHz,  
No Heat Sink  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
AMB  
AMB  
AMB  
4642 F16  
4642 F14  
4642 F15  
Figure 14. 12VIN, 1VOUT 650kHz,  
with Heat Sink  
Figure 15. 5VIN, 3.3VOUT 650kHz,  
No Heat Sink  
Figure 16. 5VIN, 3.3VOUT 650kHz,  
with Heat Sink  
4642fb  
22  
For more information www.linear.com/LTM4642  
 
 
 
 
LTM4642  
applicaTions inForMaTion  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
50  
60  
70  
80  
90 100 110 120  
(°C)  
t
AMB  
AMB  
AMB  
4642 F17  
4642 F18  
4642 F19  
Figure 17. 12VIN, 2.5VOUT 1MHz,  
No Heat Sink  
Figure 18. 12VIN, 2.5VOUT 1MHz,  
with Heat Sink  
Figure 19. 20VIN, 2.5VOUT 1MHz,  
No Heat Sink  
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
9
8
7
6
5
4
3
2
1
0
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
0 LFM  
200 LFM  
400 LFM  
50  
60  
70  
80  
90 100 110 120  
(°C)  
50  
60  
70  
80  
90 100 110 120  
(°C)  
50  
60  
70  
80  
90 100 110 120  
(°C)  
t
t
t
AMB  
AMB  
AMB  
4642 F20  
4642 F21  
4642 F22  
Figure 20. 20VIN, 2.5VOUT 1MHz,  
with Heat Sink  
Figure 21. 12VIN, 5VOUT 1.2MHz,  
No Heat Sink  
Figure 22. 12VIN, 5VOUT 1.2MHz,  
with Heat Sink  
9
8
7
6
5
4
3
9
8
7
6
5
4
3
2
2
0 LFM  
0 LFM  
200 LFM  
400 LFM  
200 LFM  
400 LFM  
1
0
1
0
50  
60  
70  
80  
t
90 100 110 120  
50  
60  
70  
80  
t
90 100 110 120  
(°C)  
(°C)  
AMB  
AMB  
4642 F23  
4642 F24  
Figure 23. 20VIN, 5VOUT 1.2MHz,  
No Heat Sink  
Figure 24. 20VIN, 5VOUT 1.2MHz,  
with Heat Sink  
4642fb  
23  
For more information www.linear.com/LTM4642  
 
LTM4642  
applicaTions inForMaTion  
Layout Checklist/Eꢁample  
The high integration of LTM4642 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
Tominimizetheviaconductionlossandreducemodule  
thermal stress, use multiple vias for interconnections  
between top layer and other power layers.  
Do not put vias directly on the pads.  
Use large PCB copper areas for high current path, in-  
Use a separated SGND ground copper area for com-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
cluding V , V , PGND, V  
and V  
. It helps to  
IN1 IN2  
OUT1  
OUT2  
minimize the PCB conduction loss and thermal stress.  
Place high frequency ceramic input and output capaci-  
Decouple the input and output grounds to lower the  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
output ripple noise.  
high frequency noise.  
Figure25givesagoodexampleoftherecommendedlayout.  
Place a dedicated power ground layer underneath the  
unit.  
GND  
V
OUT2  
GND  
C
OUT2  
1
2
3
4
5
6
7
C
IN2  
C
IN4  
A
B
C
V
OUT2  
V
IN2  
D
E
C
INTVCC  
GND  
GND  
F
G
H
V
IN1  
C
C
IN3  
IN1  
V
OUT1  
GND  
C
OUT2  
V
OUT1  
GND  
4642 F25  
Figure 25. Recommended PCB Layout  
4642fb  
24  
For more information www.linear.com/LTM4642  
 
LTM4642  
Typical applicaTions  
2.2Ω  
INTV  
V
CC  
IN  
4.5V TO 20V  
4.7µF  
C
C
IN2  
22µF  
IN1  
131k  
V
RUN1  
RUN2  
22µF  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
V
10k 10k  
PGOOD1  
PGOOD2  
TRACK/SS1  
TRACK/SS2  
PGOOD1  
PGOOD2  
0.1µF  
0.1µF  
V
V
0.9V AT 4A LOAD  
OUT1  
OUT2  
V
V
OUT1  
OUT2  
+
C
1V AT 4A LOAD  
OUT3  
C
OUT4  
47µF  
100µF  
+
LTM4642  
C
OUT1  
C
OUT2  
47µF  
100µF  
FREQ  
V
INTV  
MODE/PLLIN  
OUTS1  
CC  
V
OUTS  
R
FREQ  
V
V
FB2  
FB1  
61.9k  
V
V
OUT2  
OUT1  
SGND  
GND  
R
R
FB2  
90.9k  
FB1  
C
C
FF  
FF  
121k  
470pF  
470pF  
4642 F26  
PINS NOT USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 26. 4.5V to 20V Input, 650kHz, 0.9V and 1.2V Outputs at 4A Each  
2.2Ω  
INTV  
V
CC  
IN  
5V  
4.7µF  
C
C
IN2  
22µF  
IN1  
131k  
V
RUN1  
RUN2  
22µF  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
V
10k 10k  
PGOOD1  
PGOOD2  
TRACK/SS1  
TRACK/SS2  
PGOOD1  
PGOOD2  
0.1µF  
0.1µF  
V
V
1.8V AT 4A LOAD  
2.5V AT 4A LOAD  
OUT1  
OUT2  
V
V
OUT1  
OUT2  
+
C
C
OUT3  
OUT2  
120µF  
47µF  
LTM4642  
OSCON SVP  
C
OUT1  
47µF  
FREQ  
V
OUTS1  
INTV  
MODE/PLLIN  
CC  
V
OUTS  
R
FREQ  
V
V
FB2  
FB1  
49.9k  
470pF  
470pF  
V
OUT1  
V
OUT2  
SGND  
GND  
R
R
FB2  
19.1k  
FB1  
30.2k  
4642 F27  
PINS NOT USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 27. 5V Input, 800kHz, 2.5V and 1.8V Outputs at 4A Each  
4642fb  
25  
For more information www.linear.com/LTM4642  
LTM4642  
Typical applicaTions  
2.2Ω  
INTV  
V
CC1  
IN  
4.75V TO 20V  
C
C
4.7µF  
IN1  
IN2  
131k  
V
RUN1  
RUN2  
22µF  
22µF  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
V
10k 10k  
60.4k  
60.4k  
TRACK/SS1  
TRACK/SS2  
PGOOD1  
PGOOD2  
60.4k  
1.2V AT 4A LOAD  
V
V
OUT1  
OUT2  
+
C
OUT1  
C
OUT2  
19.1k  
2.5V AT 4A LOAD  
C
LTM4642  
47µF  
100µF  
OUT3  
47µF  
FREQ  
V
OUTS1  
V
OUTS  
INTV  
MODE/PLLIN  
CC1  
V
V
FB2  
FB1  
470pF  
68pF  
R
FREQ  
39.2k  
V
OUT1  
V
OUT2  
SGND  
GND  
R
R
FB2  
FB1  
60.4k  
19.1k  
2.2Ω  
INTV  
V
CC2  
IN  
4.75V TO 20V  
C
C
4.7µF  
IN3  
IN4  
131k  
22µF  
22µF  
V
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
RUN1  
RUN2  
V
10k 10k  
60.4k  
3.3V  
TRACK/SS1  
PGOOD1  
PGOOD2  
121k  
TRACK/SS2  
0.1µF  
0.9V AT 4A LOAD  
V
V
OUT1  
OUT2  
+
C
OUT4  
C
OUT6  
3.3V AT 4A LOAD  
C
LTM4642  
47µF  
100µF  
OUT6  
47µF  
FREQ  
V
OUTS1  
V
INTV  
MODE/PLLIN  
OUTS  
CC2  
V
FB2  
470pF  
68pF  
R
FREQ1  
39.2k  
V
OUT1  
V
OUT2  
V
FB1  
SGND  
GND  
R
R
FB2  
13.3k  
FB3  
121k  
4642 F28  
PINS NOT USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 28. 1MHz 4-Phase, Four Outputs (3.3V, 2.5V, 1.2V, 0.9V) with Tracking to the 3.3V Output  
4642fb  
26  
For more information www.linear.com/LTM4642  
LTM4642  
Typical applicaTions  
2.2Ω  
INTV  
V
CC  
IN  
4.75V TO 20V  
4.7µF  
C
C
IN2  
22µF  
IN1  
131k  
V
RUN1  
RUN2  
22µF  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
V
10k  
PGOOD1  
TRACK/SS1  
TRACK/SS2  
PGOOD1  
PGOOD2  
0.1µF  
COMP1  
COMP2  
3.3V AT 8A  
V
V
OUT1  
LTM4642  
C
C
OUT2  
47µF  
OUT1  
47µF  
OUT2  
FREQ  
V
OUTS1  
V
INTV  
MODE/PLLIN  
OUTS  
CC  
INTV  
V
CC  
FB2  
R
39.2k  
1MHz  
FREQ  
68pF  
V
FB1  
SGND  
GND  
4642 F29  
R
FB1  
13.3k  
PINS NOT USED: PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 29. Output Paralleled LTM4642 Module for 3.3V at 8A Each  
4642fb  
27  
For more information www.linear.com/LTM4642  
LTM4642  
Typical applicaTions  
5V BIAS  
(~30mA)  
2.2Ω  
INTV  
V
CC  
IN  
3.3V  
4.7µF  
C
C
IN2  
22µF  
IN1  
100k  
V
22µF  
3.3V  
V
CPWR  
DRV INTV  
IN1 IN2  
CC  
CC  
RNG1  
RUN1  
V
10k 10k  
PGOOD1  
0.1µF  
RUN2  
PGOOD1  
PGOOD2  
PGOOD1  
PGOOD2  
TRACK/SS1  
TRACK/SS2  
0.1µF  
V
V
1V AT 4A LOAD  
OUT1  
OUT2  
V
C
OUT1  
OUT2  
+
C
OUT1  
1.8V AT 4A LOAD  
150µF  
47µF  
V
LTM4642  
15mΩ SANYO  
POSCAP  
OUT2  
+
C
OUT3  
C
OUT4  
47µF  
100µF  
FREQ  
INTV  
MODE/PLLIN  
CC  
V
OUTS1  
V
OUTS  
R
FREQ  
66.5k  
V
FB2  
470pF  
470pF  
600kHz  
V
V
OUT2  
V
OUT1  
FB1  
SGND  
GND  
R
R
FB2  
30.2k  
FB1  
90.9k  
4642 F30  
PINS USED: COMP1, COMP2, PHASEMD, CLKOUT, EXTV , SW1, SW2  
CC  
Figure 30. 3.3V Input to 1V and 1.8V at 4A Each, 1V Sequencing 1.8V Using PGOOD1 to Enable RUN2  
4642fb  
28  
For more information www.linear.com/LTM4642  
LTM4642  
package DescripTion  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Table 5. Pin Assignment  
PIN ID FUNCTION  
PIN ID  
B1  
FUNCTION  
PIN ID  
C1  
FUNCTION  
PIN ID FUNCTION  
PIN ID  
E1  
FUNCTION PIN ID  
FUNCTION  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
V
V
V
V
V
D1  
D2  
D3  
D4  
D5  
D6  
D7  
GND  
SGND  
GND  
SGND  
COMP1  
FREQ  
GND  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
V
OUT1  
OUT2  
OUT2  
OUT2  
OUT2  
OUT2  
B2  
C2  
GND  
E2  
V
V
OUTS1  
SW2  
GND  
GND  
GND  
GND  
B3  
RUN2  
C3  
MODE/PLLIN  
COMP2  
CLKOUT  
GND  
E3  
OUTS  
B4  
PHASMD  
C4  
V
E4  
V
FB1  
FB2  
B5  
V
V
V
C5  
TRACK/SS2  
PGOOD2  
CPWR  
E5  
TRACK/SS1  
PGOOD1  
GND  
IN2  
IN2  
IN2  
B6  
C6  
EXTV  
E6  
DVR  
CC  
CC  
CC  
B7  
C7  
INTV  
E7  
GND  
PIN ID FUNCTION  
PIN ID  
H1  
FUNCTION  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
V
V
V
OUT1  
V
OUT1  
OUT1  
OUT1  
H2  
RUN1  
H3  
SW1  
GND  
GND  
GND  
GND  
V
RNG1  
H4  
V
H5  
IN1  
IN1  
IN1  
V
H6  
V
H7  
4642fb  
29  
For more information www.linear.com/LTM4642  
LTM4642  
package DescripTion  
Please refer to http://www.linear.com/product/LTM4642#packaging for the most recent package drawings.  
/ / b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 0 0 0  
0 . 3 1 7
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
4642fb  
30  
For more information www.linear.com/LTM4642  
LTM4642  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
12/16 Absolute Maximum Rating VFB1, V changed to INTV to 0.3V  
2
FB2  
CC  
B
6/17  
Twelve phases can be paralleled with no more than two phases per regulator output  
13  
4642fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
31  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM4642  
package phoTograph  
Design resources  
SUBJECT  
DESCRIPTION  
Design:  
Selector Guides  
µModule Design and Manufacturing Resources  
Manufacturing:  
Quick Start Guide  
PCB Design, Assembly and Manufacturing Guidelines  
Package and Board Level Reliability  
Demo Boards and Gerber Files  
Free Simulation Tools  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM4614  
LTM4615  
LTM4616  
LTM4628  
Dual, 4A, Low V , DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 15mm × 15mm × 2.82mm LGA  
OUT  
IN  
IN  
Triple, Low V , DC/DC µModule Regulator  
Two 4A Outputs and One 1.5A, 15mm × 15mm × 2.82mm LGA, 2.375V ≤ V ≤ 5.5V  
IN  
IN  
Dual, 8A, Low V , DC/DC µModule Regulator  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.82mm LGA  
IN  
IN  
OUT  
Dual, 8A, 26V, DC/DC µModule Regulator  
4.5V ≤ V ≤ 28.5V, 0.6V ≤ V  
≤ 5.5V, Remote Sense Amplifier, Internal Temperature  
IN  
OUT  
Sensing Diode Output, 15mm × 15mm × 4.32mm LGA  
LTM4620A  
Dual, 16V, 13A, 26A, Step-Down µModule  
Regulator  
4.5V ≤ V ≤ 16V, 0.6V ≤ V ≤ 5.3V, 15mm × 15mm × 4.41mm LGA  
IN  
OUT  
4642fb  
LT 0617 Rev B • PRINTED IN USA  
www.linear.com/LTM4642  
32  
LINEAR TECHNOLOGY CORPORATION 2016  

相关型号:

LTM4643

Ultrathin Quad μModule Regulator with Configurable 3A Output Array
Linear

LTM4643

20VIN, Dual 5A or Single 10A Step-Down DC/DC μModule Regulator
ADI

LTM4643EV#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643EY#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643IV#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643IY

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643IY#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM4643MPV#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: LGA; Pins: 77; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4643MPY#PBF

LTM4643 - Ultrathin Quad &#181;Module Regulator with Configurable 3A Output Array; Package: BGA; Pins: 77; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM4644

LTM4644 - 具可配置 4A 输出阵列的四通道 DC/DC μModule 稳压器
Linear

LTM4644

Quad DC/DC μModule Regulator with Configurable Dual 12A, Dual 5A Output Array
ADI

LTM4644-1

Quad DC/DC μModule Regulator with Configurable 4A Output Array
Linear