LTM8026IV#PBF [Linear]

LTM8026 - 36VIN, 5A CVCC Step-Down µModule (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40°C to 85°C;
LTM8026IV#PBF
型号: LTM8026IV#PBF
厂家: Linear    Linear
描述:

LTM8026 - 36VIN, 5A CVCC Step-Down µModule (Power Module) Regulator; Package: LGA; Pins: 81; Temperature Range: -40°C to 85°C

开关
文件: 总28页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8026  
36V , 5A CVCC Step-Down  
IN  
µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®8026 is a 36V , 5A constant-voltage, constant-  
n
Complete Step-Down Switch Mode Power Supply  
IN  
Constant-Voltage Constant-Current Operation  
current(CVCC)step-downµModule® regulator.Includedin  
the package are the switching controller, power switches,  
inductor and support components. Operating over an  
input voltage range of 6V to 36V, the LTM8026 supports  
an output voltage range of 1.2V to 24V. CVCC operation  
allows the LTM8026 to accurately regulate its output  
current up to 5A over the entire output range. The output  
current can be set by a control voltage, a single resistor or  
a thermistor. Only resistors to set the output voltage and  
frequency and the bulk input and output filter capacitors  
are needed to finish the design.  
n
n
Selectable Output Current Up to 5A  
n
Parallelable for Increased Output Current, Even  
from Different Voltage Sources  
n
Wide Input Voltage Range: 6V to 36V  
n
1.2V to 24V Output Voltage  
n
Selectable Switching Frequency: 100kHz to 1MHz  
n
SnPb or RoHS Compliant Finish  
Programmable Soft-Start  
n
n
(11.25mm × 15mm × 2.82mm) LGA and (11.25mm  
× 15mm × 3.42mm BGA Packages  
The LTM8026 is packaged in a thermally-enhanced,  
compact (11.25mm × 15mm) overmolded land grid ar-  
ray (LGA) and ball grid array (BGA) packages suitable for  
automated assembly by standard surface mount equip-  
ment. The LTM8026 is available in SnPb (BGA) or RoHS  
compliant terminal finish.  
APPLICATIONS  
n
SuperCap Charging  
n
General Purpose Industrial  
n
Extreme Short-Circuit Protection or Accurate Output  
Current Limit  
L, LT, LTC, LTM, µModule, Linear Technology and the Linear logo are registered trademarks of  
Analog Devices Inc. All other trademarks are the property of their respective owners. Protected  
by U.S. Patents including 7199560, 7321203 and others pending.  
n
µController-Based Battery Charging  
n
High Power LED Drive  
n
Multiple Input, Single Output Voltage Conversion  
TYPICAL APPLICATION  
Typical Application  
VOUT vs IOUT, 12VIN  
3.0  
V
LTM8026  
OUT  
V
IN  
2.5V  
V
V
IN  
OUT  
6V TO 36V  
510k  
2.5  
5A  
10µF  
RUN  
SS  
V
REF  
+
2.0  
1.5  
SYNC  
CTL_I  
100µF  
330µF  
COMP  
CTL_T  
RT GND ADJ  
9.09k  
1.0  
0.5  
0
90.9k  
8026 TA01a  
0
1
2
3
4
5
6
OUTPUT CURRENT (A)  
8026 TA01b  
8026fd  
1
For more information www.linear.com/LTM8026  
LTM8026  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V ............................................................................40V  
Current Into RUN Pin ............................................100µA  
Internal Operating Temperature Range .. –40°C to 125°C  
Peak Solder Reflow Body Temperature ................. 245°C  
Storage Temperature.............................. –55°C to 125°C  
IN  
ADJ, RT, COMP, CTL_I, CTL_T, V ...........................3V  
REF  
V
OUT  
..........................................................................25V  
RUN, SYNC, SS...........................................................6V  
http://www.linear.com/product/LTM8026#orderinfo  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
8
8
7
7
SYNC  
RUN  
SYNC  
BANK 2 GND  
BANK 2 GND  
6
RUN  
6
5
4
3
2
1
5
4
BANK 1  
3
BANK 1  
V
OUT  
BANK 3  
V
BANK 3  
OUT  
2
1
V
V
IN  
IN  
J
K
L
A
B
C
D
E
F
G
H
J
K
L
A
B
C
D
E
F
G
H
LGA PACKAGE  
81-LEAD (15mm × 11.25mm × 2.82mm)  
= 125°C, θ = 18.6°C/W, θ = 5.4°C/W, θ = 5.6°C/W, θ  
BGA PACKAGE  
81-LEAD (15mm × 11.25mm × 3.42mm)  
T
= 10.8°C/W  
JMAX  
JA  
JC(bottom)  
JB  
JC(top)  
T
JMAX  
= 125°C, θ = 18.6°C/W, θ = 5.4°C/W, θ = 5.6°C/W, θ = 10.8°C/W  
JC(top)  
JA  
JC(bottom)  
JB  
WEIGHT = 1.4g, θ VALUES DERIVED FROM A 4-LAYER 7.62cm × 7.62cm  
WEIGHT = 1.4g, θ VALUES DERIVED FROM A 4-LAYER 7.62cm × 7.62cm  
ORDER INFORMATION  
PART NUMBER  
PAD OR BALL FINISH  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(Note 2)  
DEVICE  
FINISH CODE  
LTM8026EV#PBF  
LTM8026IV#PBF  
LTM8026MPV#PBF  
LTM8026EY#PBF  
LTM8026IY#PBF  
LTM8026IY  
Au (RoHS)  
LTM8026V  
LTM8026V  
LTM8026V  
LTM8026Y  
LTM8026Y  
LTM8026Y  
LTM8026Y  
LTM8026Y  
e4  
e4  
e4  
e1  
e1  
e0  
e1  
e0  
LGA  
LGA  
LGA  
BGA  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
Au (RoHS)  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
SAC305 (RoHS)  
SnPb (63/37)  
LTM8026MPY#PBF  
LTM8026MPY  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• Terminal Finish Part Marking:  
www.linear.com/leadfree  
LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
8026fd  
2
For more information www.linear.com/LTM8026  
LTM8026  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full internal  
operating temperature range, otherwise specifications are at TA = 25°C. RUN = 3V, unless otherwise noted. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
6
V
I
I
= 1A, R  
= 1A, R  
Open  
= 499Ω  
1.2  
24  
V
V
OUT  
OUT  
ADJ  
ADJ  
Output DC Current  
6V < V < 36V, V  
= 3.3V  
0
5
A
IN  
OUT  
Quiescent Current Into V  
RUN = 0V  
No Load  
0.1  
2
3
4
µA  
mA  
IN  
Line Regulation  
Load Regulation  
6V < V < 36V, I  
= 1A  
< 5A  
0.1  
0.7  
10  
%
%
IN  
OUT  
V
V
= 12V, 0A < I  
IN  
IN  
OUT  
Output RMS Voltage Ripple  
Switching Frequency  
= 12V, I  
= 4.5A  
mV  
OUT  
R = 40.2k  
1000  
100  
kHz  
kHz  
T
R = 453k  
T
l
Voltage at ADJ Pin  
1.16  
1.19  
100  
5.5  
1.22  
1.63  
V
µA  
µA  
V
Current Out of ADJ Pin  
RUN Pin Current  
ADJ = 0V, V  
OUT  
= 1V  
RUN = 1.45V  
RUN Threshold Voltage (Falling)  
RUN Input Hysteresis  
CTL_I Control Range  
CTL_I Pin Current  
1.47  
0
1.55  
130  
mV  
V
1.5  
1.5  
µA  
CTL_I Current Limit Accuracy  
CTL_I = 1.5V  
CTL_I = 0.75V  
5.1  
2.24  
5.6  
2.8  
6.1  
3.36  
A
A
CTL_T Control Range  
CTL_T Pin Current  
0
1.5  
1.5  
V
µA  
CTL_T Current Limit Accuracy  
CTL_T = 1.5V  
CTL_T = 0.75V  
5.1  
2.24  
5.6  
2.8  
6.1  
3.36  
A
A
V
Voltage  
0.5mA Load  
(Note 4)  
1.89  
2.04  
0.6  
1
V
µA  
V
REF  
SS Pin Current  
–11  
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
f
f
= 400kHz  
= 400kHz  
SYNC  
SYNC  
1.2  
V
SYNC = 0V  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: This µModule regulator includes overtemperature protection that  
is intended to protect the device during momentary overload conditions.  
Internal temperature will exceed 125°C when overtemperature protection  
is active. Continuous operation above the specified maximum internal  
operating junction temperature may impair device reliability.  
Note 3: The LTM8026E is guaranteed to meet performance specifications  
from 0°C to 125°C internal operating temperature. Specifications over the  
full –40°C to 125°C internal operating temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LTM8026I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. The LTM8026MP is  
guaranteed to meet specifications over the full –55°C to 125°C internal  
operating temperature range. Note that the maximum internal temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 4: Current flows out of pin.  
8026fd  
3
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
1.2VOUT Efficiency  
vs Output Current  
1.5VOUT Efficiency  
vs Output Current  
1.8VOUT Efficiency  
vs Output Current  
90  
85  
80  
75  
70  
65  
60  
55  
50  
90  
85  
80  
75  
90  
85  
80  
75  
70  
65  
70  
65  
60  
55  
50  
60  
55  
50  
6V  
6V  
IN  
6V  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
1
2
4
4
4
0
1
2
4
4
4
0
5
5
0
1
2
4
4
4
5
3
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G01  
8026 G02  
8026 G03  
2.5VOUT Efficiency  
vs Output Current  
3.3VOUT Efficiency  
vs Output Current  
5VOUT Efficiency  
vs Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
6V  
6V  
IN  
IN  
12V  
24V  
36V  
12V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
36V  
0
1
2
0
1
2
0
1
2
5
5
5
3
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G04  
8026 G05  
8026 G06  
8VOUT Efficiency  
vs Output Current  
12VOUT Efficiency  
vs Output Current  
18VOUT Efficiency  
vs Output Current  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
100  
95  
90  
85  
80  
75  
70  
65  
12V  
24V  
36V  
IN  
IN  
IN  
24V  
36V  
24V  
36V  
IN  
IN  
IN  
IN  
0
1
2
0
1
2
0
1
2
5
5
5
3
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G07  
8026 G08  
8026 G09  
8026fd  
4
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
24VOUT Efficiency  
vs Output Current  
–3.3VOUT Efficiency  
vs Output Current  
–5VOUT Efficiency  
vs Output Current  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
90  
85  
80  
75  
70  
65  
70  
65  
60  
55  
50  
60  
55  
50  
12V  
24V  
33V  
12V  
24V  
31V  
IN  
IN  
IN  
IN  
IN  
IN  
28V  
36V  
IN  
IN  
0
1
2
4
0
1
2
3
5
0
1
2
4
4
5
5
3
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G11  
8026 G10  
8026 G12  
–8VOUT Efficiency  
vs Output Current  
–12VOUT Efficiency  
vs Output Current  
Input Current vs Output Current  
1.2VOUT  
90  
85  
80  
75  
1.6  
1.4  
1.2  
1.0  
90  
85  
80  
75  
70  
65  
60  
6V  
IN  
12V  
24V  
36V  
IN  
IN  
IN  
70  
65  
0.8  
0.6  
60  
55  
50  
0.4  
0.2  
0
12V  
24V  
28V  
IN  
IN  
IN  
12V  
IN  
IN  
24V  
0
1
2
4
0
1
2
4
5
5
3
3
0
0.5  
1
1.5  
2
2.5  
3.5  
3
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G13  
8026 G15  
8026 G14  
Input Current vs Output Current  
1.5VOUT  
Input Current vs Output Current  
1.8VOUT  
Input Current vs Output Current  
2.5VOUT  
3.0  
2.5  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
6V  
IN  
6V  
IN  
6V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
36V  
IN  
24V  
IN  
36V  
IN  
24V  
IN  
36V  
IN  
2.0  
1.5  
1.0  
0.5  
0
0
1
2
4
0
1
2
4
5
5
3
3
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G16  
8026 G17  
8026 G18  
8026fd  
5
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Input Current vs Output Current  
3.3VOUT  
Input Current vs Output Current  
5VOUT  
Input Current vs Output Current  
8VOUT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6V  
IN  
8V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
36V  
24V  
IN  
36V  
IN  
IN  
IN  
36V  
IN  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G19  
8026 G20  
8026 G21  
Input Current vs Output Current  
12VOUT  
Input Current vs Output Current  
18VOUT  
Input Current vs Output Current  
24VOUT  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
22V  
IN  
15V  
IN  
28V  
IN  
36V  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G23  
8026 G22  
8026 G24  
Input Current vs Input Voltage  
(Output Shorted)  
Input Current vs Load Current  
–3.3VOUT  
Input Current vs Load Current  
–5VOUT  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
700  
600  
500  
1.6  
1.4  
1.2  
1.0  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
31V  
IN  
32.5V  
IN  
400  
300  
200  
100  
0
0.8  
0.6  
0.4  
0.2  
0
1
2
4
10  
20  
40  
0
3
5
0
30  
1
2
4
0
5
3
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
8026 G27  
8026 G25  
8026 G26  
8026fd  
6
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Input Current vs Load Current  
–8VOUT  
Input Current vs Load Current  
–12VOUT  
Minimum Required Input Running  
Voltage vs Negative Output Voltage  
25  
20  
15  
10  
3.0  
2.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
12V  
24V  
28V  
12V  
24V  
I
I
I
I
= 4A  
= 3A  
= 2A  
= 1A  
IN  
IN  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
2.0  
1.5  
1.0  
0.5  
0
5
0
0
–5  
–10  
–15  
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8026 G30  
8026 G28  
8026 G29  
Minimum Required Input Running  
Voltage vs Output Voltage,  
IOUT = 5A  
Minimum Required Input Voltage  
vs Load 3.3VOUT and Below  
Minimum Required Input Voltage  
vs Load 5VOUT  
30  
25  
20  
15  
10  
5
6.4  
6.2  
6.0  
5.8  
5.6  
7.2  
7.0  
6.8  
6.6  
6.4  
0
0
10  
15  
20  
25  
30  
5
0
1
2
3
4
5
0
1
2
3
4
5
OUTPUT VOLTAGE (V)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G33  
8026 G32  
8026 G31  
Minimum Required Input Voltage  
vs Load 8VOUT  
Minimum Required Input Voltage  
vs Load 12VOUT  
Minimum Required Input Voltage  
vs Load 18VOUT  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
14.4  
14.2  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
14.0  
13.8  
13.6  
13.4  
13.2  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G34  
8026 G35  
8026 G36  
8026fd  
7
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Minimum Required Input Voltage  
vs Load 24VOUT  
Minimum Required Input Voltage  
vs Load –3.3VOUT  
Minimum Required Input Voltage  
vs Load –5VOUT  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
35  
30  
35  
30  
TO START  
RUN CONTROLLED  
TO RUN  
TO START  
RUN CONTROLLED  
TO RUN  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
3
4
5
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G37  
8026 G38  
8026 G39  
Minimum Required Input Voltage  
vs Load –8VOUT  
Minimum Required Input Voltage  
vs Load –12VOUT  
Temperature Rise vs Load Current  
2.5VOUT  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
36V  
24V  
12V  
TO START  
RUN CONTROLLED  
TO RUN  
TO START  
RUN CONTROLLED  
TO RUN  
IN  
IN  
IN  
6V  
IN  
0
0
1
2
3
5
1
2
3
4
1
2
3
5
0
4
0
0
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G40  
8026 G41  
8026 G42  
Temperature Rise vs Load Current  
3.3VOUT  
Temperature Rise vs Load Current  
5VOUT  
Temperature Rise vs Load Current  
8VOUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
0
70  
60  
50  
40  
30  
20  
10  
0
36V  
IN  
36V  
IN  
36V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
IN  
6V  
7V  
IN  
0
1
2
3
5
1
2
3
5
0
5
0
4
0
4
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G43  
8026 G44  
8026 G45  
8026fd  
8
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
Temperature Rise vs Load Current  
12VOUT  
Temperature Rise vs Load Current  
18VOUT  
Temperature Rise vs Load Current  
24VOUT  
120  
100  
80  
60  
40  
20  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
36V  
IN  
28V  
IN  
36V  
IN  
24V  
IN  
36V  
IN  
24V  
15V  
IN  
IN  
1
2
3
5
0
4
0
1
2
3
4
5
1
2
3
5
0
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G47  
8026 G48  
8026 G46  
Temperature Rise vs Load Current  
–3.3VOUT  
Temperature Rise vs Load Current  
–5VOUT  
Temperature Rise vs Load Current  
–8VOUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
80  
70  
60  
50  
70  
60  
50  
40  
30  
20  
10  
0
12V  
IN  
12V  
IN  
12V  
IN  
31V  
IN  
28V  
IN  
32.5V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
40  
30  
20  
10  
0
0
1
2
4
0
5
3
1
2
3
5
0
5
0
4
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G50  
8026 G49  
8026 G51  
Temperature Rise vs Load Current  
–12VOUT  
Switching Frequency vs RT Value  
120  
100  
80  
60  
40  
20  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
24V  
12V  
IN  
IN  
0
1
2
3
4
0
0
0.2  
0.4  
0.6  
0.8  
1.0  
LOAD CURRENT (A)  
SWITCHING FREQUENCY (MHz)  
8026 G52  
8026 G53  
8026fd  
9
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted. Configured per Table 1, where applicable.  
CTL_I Voltage vs Load Current,  
CTL_T = 2V  
CTL_T Voltage vs Load Current,  
CTL_I = 2V  
2.5  
2.5  
2.0  
1.5  
1.0  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0
0
1
3
4
5
6
2
0
1
3
4
5
6
2
LOAD CURRENT (A)  
LOAD CURRENT (A)  
8026 G55  
8026 G54  
PIN FUNCTIONS  
CTL_I (Pin E8): The CTL_I pin reduces the maximum  
regulated output current of the LTM8026. The maximum  
control voltage is 1.5V. If this function is not used, tie  
V
(Bank 1): Power Output Pins. Apply the output filter  
OUT  
capacitor and the output load between these pins and  
GND pins.  
this pin to V  
.
REF  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8026 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8026  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
V
(Pin F8): Buffered 2V Reference Capable of 0.5mA  
REF  
Drive.  
RT (Pin G8): The RT pin is used to program the switching  
frequency of the LTM8026 by connecting a resistor from  
this pin to ground. The Applications Information section  
of the data sheet includes a table to determine the resis-  
tance value based on the desired switching frequency.  
When using the SYNC function, apply a resistor value  
equivalent to 20% lower than the SYNC pulse frequency.  
Do not leave this pin open.  
moredetails.Returnthefeedbackdivider(R )tothisnet.  
ADJ  
V (Bank3):TheV pinssupplycurrenttotheLTM8026’s  
IN  
IN  
internalregulatorandtotheinternalpowerswitches.These  
pins must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
COMP (Pin H8): Compensation Pin. This pin is generally  
not used. The LTM8026 is internally compensated, but  
some rare situations may arise that require a modification  
to the control loop. This pin connects directly to the PWM  
comparatoroftheLTM8026.Inmostcases,noadjustment  
isnecessary.Ifthisfunctionisnotused,leavethispinopen.  
CTL_T(PinD8):Connectaresistor/NTCthermistornetwork  
to the CTL_T pin to reduce the maximum regulated output  
current of the LTM8026 in response to temperature. The  
maximum control voltage is 1.5V. If this function is not  
used, tie this pin to V  
.
REF  
8026fd  
10  
For more information www.linear.com/LTM8026  
LTM8026  
PIN FUNCTIONS  
SS(PinJ8):TheSoft-StartPin.Placeanexternalcapacitor  
to ground to limit the regulated current during start-up  
conditions.Thesoft-startpinhasan1Achargingcurrent.  
higherthantheabsolutemaximumvoltageof6Vthrougha  
resistor, provided the pin current does not exceed 100µA.  
Do not leave this pin open. It may also be used to imple-  
ment a precision UVLO. See the Applications Information  
section for details.  
ADJ(PinK8):TheLTM8026regulatesitsADJpinto1.19V.  
Connect the adjust resistor from this pin to ground. The  
value of R  
is given by the equation:  
SYNC (Pin L7): Frequency Synchronization Pin. This pin  
ADJ  
allows the switching frequency to be synchronized to an  
11.9  
VOUT – 1.19  
RADJ  
=
external clock. The R resistor should be chosen to oper-  
T
ate the internal clock at 20% lower than the SYNC pulse  
frequency. This pin should be grounded when not in use.  
Do not leave this pin floating. When laying out the board,  
avoid noise coupling to or from the SYNC trace. See the  
Synchronization section in Applications Information.  
where R  
is in kΩ.  
ADJ  
RUN (Pin L6): The RUN pin acts as an enable pin and  
turns on the internal circuitry. The RUN pin is internally  
clamped, so it may be pulled up to a voltage source that is  
BLOCK DIAGRAM  
2.2µH  
R
SENSE  
V
V
OUT  
IN  
0.2µF  
2.2µF  
10k  
RUN  
SS  
SYNC  
CURRENT  
V
MODE  
REF  
INTERNAL  
REGULATOR  
CONTROLLER  
V
IN  
CTL_I  
CTL_T  
COMP  
GND  
RT  
ADJ  
8026 BD  
8026fd  
11  
For more information www.linear.com/LTM8026  
LTM8026  
OPERATION  
The LTM8026 is a standalone nonisolated step-down  
switching DC/DC power supply that can deliver up to 5A of  
outputcurrent.ThisµModuleregulatorprovidesaprecisely  
regulated output voltage programmable via one external  
resistor from 1.2V to 24V. The input voltage range is 6V  
to 36V. Given that the LTM8026 is a step-down converter,  
make sure that the input voltage is high enough to support  
the desired output voltage and load current.  
The RUN pin functions as a precision shutdown pin. When  
the voltage at the RUN pin is lower than 1.55V, switch-  
ing is terminated. Below the turn-on threshold, the RUN  
pin sinks 5.5µA. This current can be used with a resistor  
between RUN and V to the set a hysteresis. During start-  
IN  
up, the SS pin is held low until the part is enabled, after  
which the capacitor at the soft-start pin is charged with  
an 11µA current source.  
As shown in the Block Diagram, the LTM8026 contains a  
current mode controller, power switches, power inductor,  
and a modest amount of input and output capacitance.  
The LTM8026 is equipped with a thermal shutdown to  
protectthedeviceduringmomentaryoverloadconditions.  
It is set above the 125°C absolute maximum internal tem-  
perature rating to avoid interfering with normal specified  
operation, so internal device temperatures will exceed  
the absolute maximum rating when the overtemperature  
protection is active. So, continuous or repeated activation  
of the thermal shutdown may impair device reliability.  
During thermal shutdown, all switching is terminated and  
the SS pin is driven low.  
The LTM8026 utilizes fixed frequency, average current  
mode control to accurately regulate the inductor current,  
independently from the output voltage. This is an ideal  
solution for applications requiring a regulated current  
source. The control loop will regulate the current in the  
internal inductor. Once the output has reached the regula-  
tion voltage determined by the resistor from the ADJ pin  
to ground, the inductor current will be reduced by the  
voltage regulation loop.  
The switching frequency is determined by a resistor at  
the RT pin. The LTM8026 may also be synchronized to an  
external clock through the use of the SYNC pin.  
The current control loop has two reference inputs,  
determinedbythevoltageattheanalogcontrolpins,CTL_I  
and CTL_T. CTL_I is typically used to set the maximum  
allowable current output of the LTM8026, while CTL_T  
is typically used with a NTC thermistor to reduce the  
output current in response to temperature. The lower of  
the two analog voltages on CTL_I and CTL_T determines  
the regulated output current. The analog control range of  
both the CTL_I and CTL_T pin is from 0V to 1.5V.  
8026fd  
12  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
Whilethesecomponentcombinationshavebeentestedfor  
proper operation, it is incumbent upon the user to verify  
properoperation overthe intended system’sline, loadand  
environmentalconditions. Bearinmindthatthemaximum  
output current is limited by junction temperature, the  
relationship between the input and output voltage mag-  
nitude and polarity and other factors. Please refer to the  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. Apply the recommended C , C , R  
and R  
T
IN  
OUT  
ADJ  
values.  
Table 1. Recommended Component Values and Configuration.  
(TA = 25°C. See Typical Performance Characteristics for Load Conditions)  
V
V
C
C
CERAMIC ELECTROLYTIC  
C
R
ADJ  
f
R
f
R
T(MIN)  
IN  
OUT  
IN  
OUT  
OUT  
OPTIMAL  
T(OPTIMAL)  
MAX  
6V to 36V  
6V to 36V  
6V to 36V  
1.2  
1.5  
1.8  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9m_,Chemi-Con,  
APXF6R3ARA471MH80G  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9m_,Chemi-Con,  
APXF6R3ARA471MH80G  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9m_,Chemi-Con,  
APXF6R3ARA471MH80G  
Open 200kHz  
38.3k 300kHz  
19.6k 350kHz  
210k  
250kHz 169k  
350kHz 118k  
400kHz 102k  
140k  
118k  
6V to 36V  
6V to 36V  
7V to 36V  
10V to 36V  
15V to 36V 12  
22V to 36V 18  
28V to 36V 24  
9V to 15V  
9V to 15V  
9V to 15V  
2.5  
3.3  
5
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 3.09k 600kHz  
10µF,50V,1210 100µF,10V,1210 120µF,16V,27m_,OS-CON,16SVPC120M 1.74k 625kHz  
10µF,50V,1210 47µF,16V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.10k 650kHz  
10µF,50V,1210 22µF,25V,1210 47µF,20V,45mΩ,OS-CON,20SVPS47M  
4.7µF,50V,1210 10µF,50V,1206 47µF,35V,30mΩ,OS-CON,35SVPC47M  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
9.09k 450kHz  
5.62k 550kHz  
90.9k  
75.0k  
68.1k  
64.9k  
61.9k  
59.0k  
57.6k  
210k  
525kHz 78.7k  
625kHz 64.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
900kHz 44.2k  
8
604 675kHz  
523 700kHz  
Open 200kHz  
1MHz  
39.2k  
1.2  
1.5  
1.8  
525kHz 78.7k  
650kHz 61.9k  
800kHz 49.9k  
38.3k 300kHz  
19.6k 350kHz  
140k  
118k  
9V to 15V  
9V to 15V  
9V to 15V  
10V to 15V  
18V to 36V 1.2  
18V to 36V 1.5  
18V to 36V 1.8  
2.5  
3.3  
5
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 3.09k 600kHz  
10µF,50V,1210 100µF,10V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.74k 625kHz  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
9.09k 450kHz  
5.62k 550kHz  
90.9k  
75.0k  
68.1k  
64.9k  
210k  
1MHz  
1MHz  
1MHz  
1MHz  
250kHz 169k  
350kHz 118k  
400kHz 102k  
39.2k  
39.2k  
39.2k  
39.2k  
8
Open 200kHz  
38.3k 300kHz  
19.6k 350kHz  
140k  
118k  
10µF,50V,1210 100µF,6.3V,1210 470µF,6.3V,9,Chemi-Con,  
APXF6R3ARA471MH80G  
18V to 36V 2.5  
18V to 36V 3.3  
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
10µF,50V,1210 100µF,6.3V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 3.09k 600kHz  
10µF,50V,1210 100µF,10V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.74k 625kHz  
10µF,50V,1210 47µF,16V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.10k 650kHz  
9.09k 450kHz  
5.62k 550kHz  
90.9k  
75.0k  
68.1k  
64.9k  
61.9k  
75.0k  
525kHz 78.7k  
625kHz 64.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
625kHz 64.9k  
18V to 36V  
18V to 36V  
5
8
18V to 36V 12  
2.7V to  
32.5V*  
–3.3 10µF,50V,1210 100µF,6.3V,1210 330µF,4V,27mΩ,OS-CON,4SVPC330M  
5.62k 550kHz  
2V to 31V* –5  
2V to 28V* –8  
10µF,50V,1210 100µF,6.3V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 3.09k 600kHz  
10µF,50V,1210 100µF,10V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.74k 625kHz  
68.1k  
64.9k  
61.9k  
700kHz 57.6k  
750kHz 53.6k  
800kHz 49.9k  
3V to 24V* –12 10µF,50V,1210 47µF,16V,1210 120µF,16V,27mΩ,OS-CON,16SVPC120M 1.10k 650kHz  
*Running voltage. Requires at least 6V to start. Note: An input bulk capacitor is required.  
IN  
8026fd  
13  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
graphs in the Typical Performance Characteristics section  
for guidance.  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot Plugging Safely section.  
The maximum frequency (and attendant R value) at  
T
which the LTM8026 should be allowed to switch is given  
Programming Switching Frequency  
in Table 1 in the f  
column, while the recommended  
MAX  
The LTM8026 has an operational switching frequency  
range between 100kHz and 1MHz. This frequency is  
programmed with an external resistor from the RT pin to  
ground.Donotleavethispinopenunderanycircumstance.  
See Table 2 for resistor values and the corresponding  
switching frequencies.  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
OPTIMAL  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Switching Frequency Synchronization section for details.  
Capacitor Selection Considerations  
Table 2. RT Resistor Values and Their Resultant Switching  
Frequencies  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
SWITCHING FREQUENCY (MHz)  
R (kΩ)  
T
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
necessary. Again, it is incumbent upon the user to verify  
properoperation over theintended system’s line, load and  
environmental conditions.  
1
0.750  
0.5  
0.3  
0.2  
39.2  
53.6  
82.5  
140  
210  
453  
0.1  
In addition, the Typical Performance Characteristics sec-  
tion contains a graph that shows the switching frequency  
Ceramiccapacitorsaresmall,robustandhaveverylowESR.  
However, not all ceramic capacitors are suitable. X5R and  
X7Rtypesarestableovertemperature,appliedvoltageand  
give dependable service. Other types, including Y5V and  
Z5U have very large temperature and voltage coefficients  
ofcapacitance.Inanapplicationcircuittheymayhaveonly  
a small fraction of their nominal capacitance resulting in  
much higher output voltage ripple than expected.  
versus R value.  
T
To improve efficiency at light load, the part will enter  
discontinuous mode.  
Switching Frequency Trade-Offs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8026isflexibleenoughtoaccommodateawiderange  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8026 in some fault conditions. A frequency that is too  
low can result in a final design that has too much output  
ripple or too large of an output capacitor.  
Many of the output capacitances given in Table 1 specify  
an electrolytic capacitor. Ceramic capacitors may also be  
used in the application, but it may be necessary to use  
more of them. Many high value ceramic capacitors have a  
large voltage coefficient, so the actual capacitance of the  
component at the desired operating voltage may be only  
a fraction of the specified value. Also, the very low ESR of  
ceramic capacitors may necessitate additional capacitors  
for acceptable stability margin.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8026. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8026 circuit is plugged into a live supply, the  
Switching Frequency Synchronization  
The nominal switching frequency of the LTM8026 is  
determined by the resistor from the RT pin to GND and  
8026fd  
14  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
may be set from 100kHz to 1MHz. The internal oscillator  
may also be synchronized to an external clock through  
the SYNC pin. The external clock applied to the SYNC pin  
must have a logic low below 0.6V and a logic high greater  
than 1.2V. The input frequency must be 20% higher than  
the frequency determined by the resistor at the RT pin.  
In general, the duty cycle of the input signal should be  
greater than10% andlessthan90%. Input signalsoutside  
ofthesespecifiedparametersmaycauseerraticswitching  
behaviorandsubharmonicoscillations.TheSYNCpinmust  
be tied to GND if the synchronization to an external clock  
is not required. When SYNC is grounded, the switching  
frequency is determined by the resistor at the RT pin. At  
light loads, the LTM8026 will enter discontinuous opera-  
tion to improve efficiency even while a valid clock signal  
is applied to the SYNC pin.  
Load Current Derating Using the CTL_T Pin  
Inhighcurrentapplications,deratingthemaximumcurrent  
based on operating temperature may prevent damage  
to the load. In addition, many applications have thermal  
limitations that will require the regulated current to be  
reduced based on the load and/or board temperature. To  
achieve this, the LTM8026 uses the CTL_T pin to reduce  
the effective regulated current in the load. While CTL_I  
programs the regulated current in the load, CTL_T can  
be configured to reduce this regulated current based  
on the analog voltage at the CTL_T pin. The load/board  
temperature derating is programmed using a resistor  
dividerwithatemperaturedependantresistance(Figure2).  
Whentheboard/loadtemperaturerises,theCTL_Tvoltage  
will decrease. To reduce the regulated current, the CTL_T  
voltage must be lower than the voltage at the CTL_I pin.  
CTL_T may be higher than CTL_I, but then it will have  
no effect.  
Soft-Start  
The soft-start function controls the slew rate of the power  
supply output voltage during start-up. A controlled output  
voltagerampminimizesoutputvoltageovershoot,reduces  
Voltage Regulation and Output Overvoltage Protection  
The LTM8026 uses the ADJ pin to regulate the output  
voltage and to provide a high speed overvoltage lockout  
to avoid high voltage conditions. If the output voltage  
exceeds 125% of the regulated voltage level (1.5V at the  
ADJ pin), the LTM8026 terminates switching and shuts  
inrush current from the V supply, and facilitates supply  
IN  
sequencing. A capacitor connected from the SS pin to  
GND programs the slew rate. The capacitor is charged  
froman internal11µA currentsource to produce a ramped  
output voltage.  
V
2V  
REF  
Maximum Output Current Adjust  
LTM8026  
CTL_I OR CTL_T  
R1  
R2  
To adjust the regulated load current, an analog voltage is  
appliedtotheCTL_IpinorCTL_Tpins.Varyingthevoltage  
between0Vand1.5Vadjuststhemaximumcurrentbetween  
the minimum and the maximum current, 5.6A typical.  
Graphs of the output current vs CTL_I and CTL_T volt-  
ages are given in the Typical Performance Characteristics  
section. The LTM8026 provides a 2V reference voltage for  
conveniently applying resistive dividers to set the current  
limit. The current limit can be set as shown in Figure 1  
with the following equation:  
8026 F01  
Figure 1. Setting the Output Current Limit, IMAX  
R
R
V
V
V
REF  
R
R
R
R
R
R
X
LTM8026  
NTC  
NTC  
X
NTC  
NTC  
R2  
7.467 R2  
R1+R2  
CTL_T  
8026 F02  
IMAX  
=
Amps  
R1  
(OPTION A TO D)  
A
B
C
D
Figure 2. Load Current Derating vs Temperature Using NTC  
Resistor  
8026fd  
15  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
down switching for 13µs. The regulated output voltage  
must be greater than 1.21V and is set by the equation:  
dividerresistorsforprogrammingthefallingUVLOvoltage  
and rising enable voltage (V ) as configured in Figure 4.  
ENA  
11.9  
VOUT – 1.19  
1.55 R2  
UVLO1.55  
RADJ  
=
kΩ  
R1=  
V
– 1.084 UVLO  
5.5µA  
ENA  
R2 =  
where R  
is shown in Figure 3.  
ADJ  
The RUN pin has an absolute maximum voltage of 6V.  
To accommodate the largest range of applications, there  
is an internal Zener diode that clamps this pin, so that it  
can be pulled up to a voltage higher than 6V through a  
resistor that limits the current to less than 100µA. For  
applications where the supply range is greater than 4:1,  
size R2 greater than 375k.  
V
V
OUT  
OUT  
LTM8026  
ADJ  
RADJ  
8026 F03  
Figure 3. Voltage Regulation and Overvoltage Protection  
Feedback Connections  
V
V
IN  
IN  
LTM8026  
RUN  
Thermal Shutdown  
R2  
R1  
If the part is too hot, the LTM8026 engages its thermal  
shutdown, terminates switching and discharges the soft-  
startcapacitor.Whentheparthascooled,thepartautomati-  
cally restarts. This thermal shutdown is set to engage at  
temperaturesabovethe125°Cabsolutemaximuminternal  
operating rating to ensure that it does not interfere with  
functionality in the specified operating range. This means  
that internal temperatures will exceed the 125°C absolute  
maximum rating when the overtemperature protection is  
active, possibly impairing the device’s reliability.  
8026 F04  
Figure 4. UVLO Configuration  
Load Sharing  
Two or more LTM8026s may be paralleled to produce  
higher currents. To do this, simply tie V , SS, RUN  
OUT  
and ADJ together. The value of the ADJ resistor is given  
by the equation:  
11.9  
Shutdown and UVLO  
RADJ  
=
kΩ  
n V  
(
– 1.19  
)
OUT  
TheLTM8026hasaninternalUVLOthatterminatesswitch-  
ing,resetsalllogic,anddischargesthesoft-startcapacitor  
whentheinputvoltageisbelow6V. TheLTM8026alsohas  
a precision RUN function that enables switching when the  
voltage at the RUN pin rises to 1.68V and shuts down the  
LTM8026 when the RUN pin voltage falls to 1.55V. There  
is also an internal current source that provides 5.5μA of  
pull-downcurrenttoprogramadditionalUVLOhysteresis.  
For RUN rising, the current source is sinking 5.5µA until  
RUN = 1.68V, after which it turns off. For RUN falling, the  
current source is off until the RUN = 1.55V, after which it  
sinks5.5µA.Thefollowingequationsdeterminethevoltage  
where n is the number of LTM8026s in parallel. Given the  
LTM8026’s accurate current limit and CVCC operation,  
each paralleled unit will contribute a portion of the output  
current, up to the amount determined by the CTL_I and  
CTL_T pins. An example of this is given in the Typical  
Applications section.  
Two or more LTM8026s can share load current equally by  
using a simple op amp circuit to simultaneously modulate  
the CTL_I pins. Tie SS, RUN, and V  
of the paralleled LTM8026s together. An example of two  
and CTL_I of all  
OUT  
8026fd  
16  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
LTM8026s equally sharing output current is shown in the  
Typical Applications section. The modulation of the CTL_I  
inputs is performed at a high bandwidth, so use an op  
amp with a gain bandwidth product greater than 1MHz.  
The example circuit in the Typical Applications section  
uses the LTC6255, which has a minimum gain bandwidth  
product of 2MHz.  
SYNC  
RUN  
GND  
C
OUT  
The LTM8026’s CVCC operation provides the ability to  
powersharetheloadamongseveralinputvoltagesources.  
An example of this is shown in the Typical Applications  
section; please refer to the schematic while reading this  
discussion. Suppose the application powers 2.5V at 8A  
and the system under consideration has regulated 24V  
and 12V input rails available. The power budget for the  
power rails says that each can allocate only 750mA to  
produce 2.5V. From the Input Current vs Output Current  
graph in the Typical Performance Characteristics section  
V
V
V
IN  
OUT  
GND  
V
OUT  
C
IN  
GND  
THERMAL AND INTERCONNECT VIAS  
IN  
8026 F05  
Figure 5. Layout Showing Suggested External Components, GND  
Plane and Thermal Vias.  
for 2.5V , 750mA from the 24V rail can support more  
OUT  
than 5A output current, so apply a 66.5k/140k from V  
REF  
As seen in the graph accompanying the schematic in the  
Typical Applications section, the input currents to each  
LTM8026 stays below 750mA for all loads below 8A.  
to the CTL_I pin of the LTM8026 powered from 24V to  
IN  
set the output current to 5A. These resistor values were  
derived as follows:  
PCB Layout  
1. The typical output current limit is 5.6A for CTL_I = 1.5V  
and above.  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8026. The LTM8026 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 5  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
2. To get 5A, make the voltage on CTL_I = 1.5V • 5A/5.6A  
= 1.34V.  
3. The V  
node is a regulated 2V, so applying the  
REF  
66.5k/140k network yields 2V • 140k/(66.5k + 140k) =  
1.35V  
The LTM8026 powered from 12V needs to supply the  
IN  
rest of the load current, or 3A. Again referring to the Input  
CurrentvsOutputCurrentgraphintheTypicalPerformance  
A few rules to keep in mind are:  
Characteristics section for 2.5V , 750mA will support  
OUT  
1. Place the R and R resistors as close as possible to  
more than 3A when operated from 12V . Using a method  
ADJ  
T
IN  
their respective pins.  
similartotheabove,applyaresistornetworkof132k/78.7k  
to the CTL_I pin:  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8026.  
1. Toget2.5A,makethevoltageonCTL_I=1.5V3A/5.6A  
= 0.8V  
2. Applyinga132k/88.7knetworktoV andCTL_Iyields  
REF  
2V • 88.7k/(88.7k + 132k) = 0.8V  
8026fd  
17  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
3. Place the C  
capacitor as close as possible to the  
damps the circuit and eliminates the voltage overshoot.  
The extra capacitor improves low frequency ripple filter-  
ing and can slightly improve the efficiency of the circuit,  
though it is physically large.  
OUT  
V
and GND connection of the LTM8026.  
OUT  
4. Place the C and C  
capacitors such that their  
OUT  
IN  
ground current flow directly adjacent or underneath  
the LTM8026.  
Thermal Considerations  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8026.  
The LTM8026 output current may need to be derated if it  
is required to operate in a high ambient temperature. The  
amount of current derating is dependent upon the input  
voltage, output power and ambient temperature. The  
temperature rise curves given in the Typical Performance  
Characteristicssectioncanbeusedasaguide.Thesecurves  
6. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
board. Pay attention to the location and density of the  
thermal vias in Figure 5. The LTM8026 can benefit from  
theheatsinkingaffordedbyviasthatconnecttointernal  
GND planes at these locations, due to their proximity  
to internal power handling components. The optimum  
number of thermal vias depends upon the printed  
circuit board design. For example, a board might use  
very small via holes. It should employ more thermal  
vias than a board that uses larger holes.  
2
were generated by the LTM8026 mounted to a 58cm  
4-layer FR4 printed circuit board. Boards of other sizes  
and layer count can exhibit different thermal behavior, so  
it is incumbent upon the user to verify proper operation  
over the intended system’s line, load and environmental  
operating conditions.  
For increased accuracy and fidelity to the actual applica-  
tion, many designers use finite element analysis (FEA) to  
predict thermal performance. To that end, Page 2 of the  
data sheet typically gives four thermal coefficients:  
θ
JA  
– Thermal resistance from junction to ambient  
Hot Plugging Safely  
θ
– Thermal resistance from junction to the  
JCbottom  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8026. However, these capacitors  
can cause problems if the LTM8026 is plugged into a live  
input supply (see Application Note 88 for a complete dis-  
cussion). The low loss ceramic capacitor combined with  
stray inductance in series with the power source forms an  
bottom of the product case  
θ
– Thermal resistance from junction to top of the  
JCtop  
product case  
θ
– Thermal resistance from junction to the printed  
JB  
circuit board.  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
underdamped tank circuit, and the voltage at the V pin  
IN  
of the LTM8026 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8026’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the user will be plugging the LTM8026 into an  
energized supply, the input network should be designed  
to prevent this overshoot. This can be accomplished by  
θ
JA  
is the natural convection junction-to-ambient air  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
“still air” although natural convection causes the air to  
move. This value is determined with the part mounted to  
a JESD 51-9 defined test board, which does not reflect an  
actual application or viable operating condition.  
installing a small resistor in series to V , but the most  
IN  
popular method of controlling input voltage overshoot is  
to add an electrolytic bulk capacitor to the V net. This  
IN  
capacitor’s relatively high equivalent series resistance  
8026fd  
18  
For more information www.linear.com/LTM8026  
LTM8026  
APPLICATIONS INFORMATION  
θ
is the junction-to-board thermal resistance with  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule regulator. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
JCbottom  
allofthecomponentpowerdissipationflowingthroughthe  
bottom of the package. In the typical µModule regulator,  
the bulk of the heat flows out the bottom of the package,  
but there is always heat flow out into the ambient envi-  
ronment. As a result, this thermal resistance value may  
be useful for comparing packages but the test conditions  
don’t generally match the user’s application.  
θ
isdeterminedwithnearlyallofthecomponentpower  
JCtop  
dissipation flowing through the top of the package. As the  
electrical connections of the typical µModule regulator are  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
A graphical representation of these thermal resistances  
is given in Figure 6.  
tion to the top of the part. As in the case of θ  
, this  
JCbottom  
The blue resistances are contained within the µModule  
device, and the green are outside.  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
The die temperature of the LTM8026 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8026. The bulk of the heat flow out of the LTM8026  
is through the bottom of the module and the pads into  
the printed circuit board. Consequently a poor printed  
circuit board design can cause excessive heating, result-  
ing in impaired performance or reliability. Please refer to  
the PCB Layout section for printed circuit board design  
suggestions.  
θ
is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
µModule regulator and into the board, and is really the  
sum of the θ  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
a specified distance from the package, using a 2-sided,  
2-layer board. This board is described in JESD 51-9.  
and the thermal resistance of the  
JCbottom  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
BOARD-TO-AMBIENT  
RESISTANCE  
RESISTANCE  
8026 F06  
µMODULE DEVICE  
Figure 6  
8026fd  
19  
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL APPLICATIONS  
36VIN, 3.3VOUT Step-Down CVCC Converter  
V
3.3V  
5A  
LTM8026  
OUT  
V
IN  
V
V
IN  
OUT  
6V TO 36V  
510k  
10µF  
RUN  
SS  
V
+
REF  
330µF  
SYNC  
CTL_I  
100µF  
COMP  
CTL_T  
RT GND ADJ  
5.62k  
75.0k  
8026 TA02  
36VIN, 5.6A Two 2.5V Series Supercapacitor Charger  
LTM8026  
V
V
OUT  
IN  
V
V
IN  
OUT  
5V  
7V TO 36V  
510k  
10µF  
RUN  
SS  
2.5V  
2.2F  
V
REF  
47µF  
SYNC  
CTL_I  
2.5V  
2.2F  
COMP  
CTL_T  
RT GND ADJ  
3.09k  
68.1k  
8026 TA03  
36VIN, 12VOUT Step-Down CVCC Converter  
V
LTM8026  
OUT  
V
IN  
12V  
V
V
IN  
OUT  
15V TO 36V  
510k  
3.5A  
10µF  
RUN  
SS  
V
+
REF  
120µF  
SYNC  
CTL_I  
47µF  
COMP  
CTL_T  
RT GND ADJ  
1.1k  
61.9k  
8026 TA04  
8026fd  
20  
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL APPLICATIONS  
31VIN, –5VOUT Negative CVCC Converter  
LTM8026  
V
IN  
V
V
IN  
OUT  
7V TO 31V  
10µF  
RUN  
SS  
+
120µF  
V
REF  
5V  
2N3906  
20k  
SYNC  
CTL_I  
100µF  
OPTIONAL  
0
COMP  
CTL_T  
RT GND ADJ  
3.09k  
20k  
68.1k  
20k  
V
–5V  
5A  
OUT  
8026 TA05  
OPTIONAL: SEE DESIGN NOTE 1021  
Two LTM8026s Operating in Parallel to Produce 2.5VOUT at 10A  
LTM8026  
V
2.5V  
10A  
OUT  
V
IN  
V
V
IN  
OUT  
6V TO 36V  
324k  
10µF  
RUN  
SS  
V
REF  
SYNC  
CTL_I  
100µF  
COMP  
CTL_T  
RT GND ADJ  
75k  
4.53k  
LTM8026  
V
V
IN  
OUT  
RUN  
SS  
V
REF  
+
SYNC  
CTL_I  
100µF  
330µF  
COMP  
CTL_T  
RT GND ADJ  
75k  
8026 TA06  
8026fd  
21  
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL APPLICATIONS  
Two LTM8026s Operating in Parallel to Produce 2.5VOUT at 10A, Equally Sharing Current  
LTM8026  
V
2.5V  
10A  
OUT  
V
IN  
V
V
IN  
OUT  
6V TO 36V  
324k  
10µF  
RUN  
SS  
V
REF  
SYNC  
CTL_T  
100µF  
COMP  
CTL_I  
RT GND ADJ  
75k  
4.02k  
470pF  
680k  
V
V
REF  
OUT  
LTM8026  
V
V
IN  
OUT  
0.47µF  
RUN  
SS  
100µF  
330µF  
150k 100k  
+
V
REF  
V
OUT  
+
SYNC  
CTL_T  
LTC6255  
COMP  
CTL_I  
0.1µF  
RT GND ADJ  
100k 100k  
75k  
8026 TA09  
8026fd  
22  
For more information www.linear.com/LTM8026  
LTM8026  
TYPICAL APPLICATIONS  
Two LTM8026s Running from 12V and 24V. At Max Load, Each LTM8026  
Draws Less Than 750mA from Their Respective Input Sources  
V
LTM8026  
<750mA  
V
2.5V  
8A  
IN1  
OUT  
REGULATED  
24V  
V
V
OUT  
IN  
324k  
10µF  
RUN  
SS  
V
REF  
SYNC  
CTL_I  
100µF  
COMP  
CTL_T  
RT GND ADJ  
66.5k  
140k  
90.9k  
4.53k  
V
LTM8026  
IN1  
<750mA  
10µF  
REGULATED  
12V  
V
V
IN  
OUT  
RUN  
SS  
V
REF  
SYNC  
CTL_I  
100µF  
+
COMP  
CTL_T  
330µF  
RT GND ADJ  
132k  
90.9k  
88.7k  
8026 TA07  
Input Current vs Output Current  
700  
600  
25  
20  
15  
10  
5
24V INPUT CURRENT  
12V INPUT CURRENT  
TOTAL INPUT POWER  
500  
400  
300  
200  
100  
0
0
4
6
8
0
2
OUTPUT CURRENT (A)  
8026 TA07b  
8026fd  
23  
For more information www.linear.com/LTM8026  
LTM8026  
PACKAGE DESCRIPTION  
Table 3. Pin Assignment Table  
(Arranged by Pin Number)  
PIN  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
NAME  
PIN  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
NAME  
PIN  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
NAME  
PIN  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
NAME  
PIN  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
NAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CTL_I  
PIN  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
NAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
V
V
V
V
V
V
V
V
OUT  
V
OUT  
V
OUT  
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CTL_T  
V
REF  
PIN  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
NAME  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RT  
PIN  
NAME  
PIN  
J1  
NAME  
PIN  
K1  
K2  
K3  
NAME  
PIN  
L1  
NAME  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
IN  
V
V
V
IN  
IN  
IN  
J2  
L2  
J3  
L3  
H5  
H6  
H7  
H8  
GND  
GND  
J5  
J6  
J7  
J8  
GND  
GND  
GND  
SS  
K5  
K6  
K7  
K8  
GND  
GND  
GND  
ADJ  
L5  
L6  
L7  
L8  
GND  
RUN  
SYNC  
GND  
GND  
COMP  
PACKAGE PHOTO  
2.82mm  
3.42mm  
15mm  
15mm  
11.25mm  
11.25mm  
8026fd  
24  
For more information www.linear.com/LTM8026  
LTM8026  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8026#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
8026fd  
25  
For more information www.linear.com/LTM8026  
LTM8026  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8026#packaging for the most recent package drawings.  
Z
Z
/ / b b b  
Z
4 . 4 4 5  
3 . 1 7 5  
1 . 9 0 5  
0 . 6 3 5  
0 . 6 3 5  
0 . 0 0 0  
1 . 9 0 5  
3 . 1 7 5  
4 . 4 4 5  
a a a  
Z
8026fd  
26  
For more information www.linear.com/LTM8026  
LTM8026  
REVISION HISTORY  
REV  
DATE  
8/12  
5/13  
DESCRIPTION  
PAGE NUMBER  
A
Added MP-Grade  
2-3  
B
Update maximum solder temperature  
Update Package Description drawing  
2
24  
C
D
07/15 Added BGA Package  
1, 2, 26  
06/17 Corrected Device Part Marking of LTM8026MPV#PBF  
2
8026fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM8026  
TYPICAL APPLICATION  
36VIN, 3.3VOUT Step-Down Converter with 4.75A Accurate Current Limit  
LTM8026  
V
OUT  
V
IN  
V
V
3.3V  
IN  
OUT  
6V TO 36V  
510k  
4.75A  
10µF  
RUN  
SS  
V
REF  
+
SYNC  
CTL_I  
100µF  
330µF  
COMP  
CTL_T  
RT GND ADJ  
5.62k  
71.5k  
127k  
75k  
8026 TA08  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
µModule Design and Manufacturing Resources  
Design:  
Manufacturing:  
• Selector Guides  
• Quick Start Guide  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM8062  
32V , 2A µModule Battery Charger with Maximum Peak Adjustable V  
up to 14.4V, C/10 or Timer Termination,  
BATT  
IN  
Power Tracking (MPPT)  
9mm × 15mm × 4.32mm LGA Package  
LTM8027  
LTM8052  
60V , 4A DC/DC Step-Down µModule Regulator  
4.5V ≤ V ≤ 60V, 2.5V ≤ V ≤ 24V, 15mm × 15mm × 4.32mm LGA Package  
IN  
IN  
OUT  
36V , 5A µModule Regulator with Adjustable Accurate 6V ≤ V ≤ 36V, 1.2V ≤ V  
≤ 24V, –5V ≤ I  
≤ 5A, Synchronizable, Pin  
IN  
IN  
OUT  
OUT  
Current Limit  
Compatible with LTM8026, 11.25mm × 15mm × 2.82mm LGA Package  
LTM4618  
LTM4612  
LTC2978  
LTC2974  
26V , 6A Step-Down µModule Regulator  
4.5V ≤ V ≤ 26.5V, 0.8V ≤ V ≤ 5V, Synchronizable, V Tracking, 9mm ×  
IN  
IN  
OUT  
OUT  
15mm × 4.3mm LGA Package  
5A EN55022 Class B DC/DC Step-Down µModule  
Regulator  
5V ≤ V ≤ 36V, 3.3V ≤ V  
≤ 15V, PLL Input, V  
Tracking and Margining,  
IN  
OUT  
OUT  
15mm × 15mm × 2.8mm LGA Package  
2
Octal Digital Power Supply Manager with EEPROM  
I C/PMBus Interface, Configuration EEPROM, Fault Logging,  
16-Bit ADC with 0.25% TUE, 3.3V to 15V Operation  
2
Quad Digital Power Supply Manager with EEPROM  
I C/PMBus Interface, Configuration EEPROM, Fault Logging,  
Per Channel Voltage, Current and Temperature Measurements  
8026fd  
LT 0617 REV D • PRINTED IN USA  
www.linear.com/LTM8026  
28  
LINEAR TECHNOLOGY CORPORATION 2012  

相关型号:

LTM8026IY#PBF

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8026MPY

LTM8026 - 36VIN, 5A CVCC Step-Down &#181;Module (Power Module) Regulator; Package: BGA; Pins: 81; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8026_1208

36VIN, 5A CVCC Step-Down μModule Regulator
Linear

LTM8027

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV

60V, 4A DC/DC Module Regulator
Linear

LTM8027EV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027EVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027IVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IY#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027MPV

60V, 4A DC/DC Module Regulator
Linear