LTM8027EV#PBF [Linear]

LTM8027 - 60V, 4A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40°C to 85°C;
LTM8027EV#PBF
型号: LTM8027EV#PBF
厂家: Linear    Linear
描述:

LTM8027 - 60V, 4A DC/DC µModule (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40°C to 85°C

开关
文件: 总22页 (文件大小:608K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8027  
60V, 4A DC/DC  
µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®8027 is a complete 4A, DC/DC step-down power  
supply. Included in the package are the switching control-  
ler,powerswitches,inductorandallsupportcomponents.  
Operatingoveraninput voltage rangeof4.5V to 60V (7.5V  
minimum voltage to start), the LTM8027 supports output  
voltages up to 24V, and a switching frequency range of  
100kHz to 500kHz, each set by a single resistor. Only  
the bulk input and output filter capacitors are needed to  
finish the design.  
n
Complete Switch Mode Power Supply  
n
Wide Input Voltage Range: 4.5V to 60V  
(7.5V Minimum Voltage to Start)  
Wide Output Voltage Range: 2.5V to 24V  
n
(See Table 2)  
4A Output Current  
Programmable Soft-Start  
9µA Shutdown Supply Current  
n
n
n
n
Selectable Switching Frequency Current Mode  
Control  
Up to 95% Efficiency  
The low profile package (4.32mm) enables utilization of  
unused space on the bottom of PC boards for high den-  
sity point of load regulation. A built-in soft-start timer is  
adjustable with a small capacitor.  
n
n
SnPb (BGA) or RoHS Compliant (LGA and BGA)  
Finish  
n
Surface Mount LGA (15mm × 15mm × 4.32mm)  
The LTM8027 is packaged in a compact (15mm × 15mm  
×4.32mm)over-moldedlandgridarray(LGA)and(15mm  
× 15mm × 4.92mm) BGA package suitable for automated  
assembly by standard surface mount equipment. The  
LTM8027 is available with SnPb (BGA) or RoHS compli-  
ant terminal finish.  
and (15mm × 15mm × 4.92mm) BGA Packages  
APPLICATIONS  
n
12V and 42V Automotive and Heavy Equipment  
n
48V Telecom Power Supplies  
L, LT, LTC, LTM, Linear Technology, the Linear logo and µModule are registered trademarks of  
Linear Technology Corporation. All other trademarks are the property of their respective owners.  
n
Avionics and Industrial Control Systems  
Distributed Power Converters  
n
TYPICAL APPLICATION  
48W, 16VIN to 60VIN DC/DC µModule® Regulator  
Efficiency vs Load  
V
100  
OUT  
V
24V  
IN  
IN  
12V  
V
V
OUT  
IN  
16V TO 60V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
4.7µF  
×2  
4A  
1M  
LTM8027  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
22µF  
×4  
SYNC  
RT  
ADJ  
GND  
48.7k  
56.2k  
3845 TA01a  
0
1
2
3
4
LOAD (A)  
8027 TA01b  
8027fd  
1
For more information www.linear.com/LTM8027  
LTM8027  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
V Voltage................................................................65V  
Current Out of AUX ............................................. 200mA  
Internal Operating Temperature (Note 3)  
E-, I-Grade ......................................... –40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Peak Solder Reflow Body Temperature ................. 245°C  
Storage Temperature Range .................. –55°C to 125°C  
IN  
BIAS1........................................................................15V  
BIAS2........................................................................24V  
SYNC, ADJ, R , RUN, SS Voltages..............................5V  
T
Current into RUN Pin (Note 2)..................................1mA  
V , AUX.................................................................25V  
OUT  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
11  
10  
9
11  
10  
9
8
V
V
OUT  
OUT  
BANK 1  
BANK 1  
8
AUX  
BIAS1  
SS  
RUN  
BIAS2  
ADJ  
7
6
5
4
3
2
1
AUX  
BIAS1  
SS  
RUN  
BIAS2  
ADJ  
7
6
5
4
3
2
1
GND  
GND  
BANK 2  
BANK 2  
V
V
IN  
IN  
BANK 3  
BANK 3  
A
B
C
D
E
F G H J K L  
A
B
C
D
E
F G H J K L  
RT  
SYNC  
LGA PACKAGE  
113-LEAD (15mm × 15mm × 4.32mm)  
= 125°C, θ = 12.2°C/W, θ = 9.3°C/W,  
RT  
SYNC  
BGA PACKAGE  
113-LEAD (15mm × 15mm × 4.92mm)  
= 125°C, θ = 12.2°C/W, θ = 9.3°C/W,  
T
T
JMAX  
JMAX  
JA  
JC(TOP)  
JA  
JC(TOP)  
θ
= 3.6°C/W, θ  
= 7.54°C/W  
θ
= 3.6°C/W, θ  
= 7.54°C/W  
JC(BOTTOM)  
JBOARD  
JC(BOTTOM)  
JBOARD  
θ VALUES DETERMINED PER JESD 51-9  
θ VALUES DETERMINED PER JESD 51-9  
WEIGHT = 2.6 GRAMS  
WEIGHT = 2.6 GRAMS  
ORDER INFORMATION http://www.linear.com/product/LTM8027#orderinfo  
PART NUMBER  
PAD OR BALL FINISH  
PART MARKING*  
PACKAGE  
TYPE  
MSL  
RATING  
TEMPERATURE RANGE  
(See Note 3)  
DEVICE  
FINISH CODE  
LTM8027EV#PBF  
LTM8027IV#PBF  
LTM8027MPV#PBF  
LTM8027EY#PBF  
LTM8027IY#PBF  
LTM8027IY  
Au (RoHS)  
LTM8027V  
LTM8027V  
LTM8027V  
LTM8027Y  
LTM8027Y  
LTM8027Y  
LTM8027Y  
LTM8027Y  
e4  
e4  
e4  
e1  
e1  
e0  
e1  
e0  
LGA  
LGA  
LGA  
BGA  
BGA  
BGA  
BGA  
BGA  
3
3
3
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
Au (RoHS)  
Au (RoHS)  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
SAC305 (RoHS)  
SnPb (63/37)  
LTM8027MPY#PBF  
LTM8027MPY  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• Pb-free and Non-Pb-free Part Markings:  
www.linear.com/leadfree  
LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
8027fd  
2
For more information www.linear.com/LTM8027  
LTM8027  
ELECTRICAL CHARACTERISTICS The ldenotes the specifications which apply over the full internal operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 20V, BIAS1 = BIAS2 = 10V, RUN = 2V, unless otherwise noted.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
(Note 5)  
4.5  
60  
V
V
IN  
Maximum Output DC Voltage  
Output DC Current  
Minimum Start Voltage  
Line Regulation  
0A < I  
≤ 4A, V = 48V  
24  
OUT  
OUT  
OUT  
IN  
I
V
IN  
≤ 60V, V  
= 12V, (Note 4)  
0
4
A
OUT  
V
7.5  
V
IN(START)  
V
V
= 12V, 15V< V < 60V, I  
= 4A  
≤ 4A  
0.2  
0.2  
4.6  
%
%
V
V /V  
OUT  
IN  
LOAD  
OUT  
IN  
Load Regulation  
= 12V, V = 24V, 0A < I  
V /I  
OUT  
IN  
LOAD  
OUT LOAD  
UVLO(RISING)  
V
V
V
Input Undervoltage Lockout Threshold  
(Rising)  
(Note 5)  
Input Undervoltage Lockout Threshold  
(Falling)  
(Note 5)  
3.7  
V
UVLO(FALLING)  
ADJ  
ADJ Voltage  
1.224  
1.215  
1.238  
1.245  
V
V
l
I
Quiescent Current into IN  
V
BIAS  
V
RUN  
= V , V = 12VDC, No Load  
AUX OUT  
= 0V  
39  
9
mA  
µA  
Q(VIN)  
V
BIAS1 Undervoltage Lockout (Rising)  
BIAS1 Undervoltage Lockout (Falling)  
6.5  
6
V
V
BIAS1  
BIAS1  
I
Current into BIAS1  
No Load  
RUN = 0V  
25  
25  
mA  
µA  
V
Minimum BIAS2 Voltage  
3
1
V
µA  
V
BIAS2  
I
Current Into BIAS2  
BIAS2  
V
Minimum Voltage to Overdrive Internal  
8.5  
BIAS1(MINOV)  
Regulator (INTV  
)
CC  
R
Internal Feedback Resistor  
RUN Enable Voltage (Rising)  
RUN Enable Voltage (Falling)  
Switching Frequency  
499  
1.4  
1.2  
kΩ  
V
FB  
V
V
RUN(RISING)  
RUN(FALLING)  
V
f
R = 187kΩ  
T
100  
500  
kHz  
kHz  
SW  
T
R = 23.7kΩ  
R
SYNC Input Resistance  
SYNC Voltage Threshold  
Soft-Start Charging Current  
40  
kΩ  
V
SYNC  
l
V
f
= 350kHz  
2.3  
SYNC(TH)  
SYNC  
I
2
µA  
SS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
–40°C to 125°C internal operating temperature range. The LTM8027MP  
is guaranteed to meet specifications over the full –55°C to 125°C  
internal operating range. Note that the maximum internal temperature is  
determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 2: The RUN pin is internally clamped to 5V.  
Note 3: The LTM8027E is guaranteed to meet performance specifications  
from 0°C to 125°C internal operating temperature. Specifications over  
the full –40°C to 125°C internal operating temperature range are assured  
by design, characterization and correlation with statistical process  
controls. The LTM8027I is guaranteed to meet specifications over the full  
Note 4: The maximum continuous output current may be derated by the  
LTM8027 junction temperature.  
Note 5: V voltages below the start-up threshold (7.5V) are only  
IN  
supported when BIAS1 is externally driven above 6.5V.  
8027fd  
3
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Efficiency vs Load, VOUT = 2.5V  
Efficiency vs Load, VOUT = 3.3V  
Efficiency vs Load, VOUT = 5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
5V  
IN  
12V  
24V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
12V  
24V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
5V  
IN  
12V  
24V  
36V  
IN  
IN  
IN  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G01  
8027 G02  
8027 G03  
Efficiency vs Load, VOUT = 8V  
Efficiency vs Load, VOUT = 12V  
Efficiency vs Load, VOUT = 15V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
12V  
24V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
24V  
24V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
36V  
48V  
60V  
36V  
48V  
60V  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G04  
8027 G05  
8027 G06  
Input Current  
vs VIN Output Shorted  
Efficiency vs Load, VOUT = 18V  
Efficiency vs Load, VOUT = 24V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
24V  
IN  
IN  
IN  
IN  
36V  
48V  
60V  
36V  
48V  
60V  
IN  
IN  
IN  
0
1
2
3
4
0
30  
40  
50  
60  
70  
0
1
2
3
4
10  
20  
LOAD (A)  
LOAD (A)  
INPUT VOLTAGE (V)  
8027 G07  
8027 G09  
8027 G08  
8027fd  
4
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Input Current vs Load,  
VOUT = 2.5V  
Input Current vs Load,  
VOUT = 3.3V  
Input Current vs Load,  
VOUT = 5V  
3000  
2500  
3500  
3000  
2500  
2000  
1800  
1600  
1400  
1200  
1000  
800  
5V  
IN  
5V  
IN  
12V  
24V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
2000  
1500  
2000  
1500  
1000  
500  
0
1000  
500  
0
600  
400  
200  
0
1
2
4
0
1
2
3
3
3
4
0
3
0
1
2
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G10  
8027 G11  
8027 G12  
Input Current vs Load,  
Input Current vs Load,  
VOUT = 12V  
Input Current vs Load,  
VOUT = 15V  
V
OUT = 8V  
3000  
2500  
3500  
3000  
2500  
2500  
2000  
1500  
1000  
500  
24V  
IN  
12V  
24V  
IN  
IN  
36V  
IN  
24V  
36V  
48V  
60V  
36V  
IN  
IN  
IN  
IN  
IN  
48V  
IN  
60V  
IN  
48V  
IN  
60V  
IN  
2000  
1500  
2000  
1500  
1000  
500  
0
1000  
500  
0
0
0
1
2
3
4
1
2
4
0
2
3
0
1
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G15  
8027 G13  
8027 G14  
Input Current vs Load,  
VOUT = 18V  
Input Current vs Load,  
VOUT = 24V  
Bias Current vs Load,  
VOUT = 2.5V  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3500  
3000  
2500  
2000  
1500  
1000  
500  
15.50  
15.00  
14.50  
14.00  
13.50  
13.00  
12.50  
12.00  
24V  
36V  
48V  
60V  
36V  
48V  
60V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
36V  
24V  
12V  
IN  
IN  
IN  
0
0
0
1
2
4
0
1
2
3
4
2
0
1
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G16  
8027 G17  
8027 G18  
8027fd  
5
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Bias Current vs Load,  
VOUT = 3.3V  
Bias Current vs Load,  
VOUT = 5V  
Bias Current vs Load,  
VOUT = 8V  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
14.5  
14.0  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
22.0  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
48V  
36V  
24V  
12V  
48V  
36V  
24V  
12V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
48V  
36V  
24V  
IN  
IN  
IN  
0
1
2
3
4
0
1
2
3
3
3
2
4
0
1
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G19  
8027 G21  
8027 G20  
Bias Current vs Load,  
VOUT = 12V  
Bias Current vs Load,  
VOUT = 15V  
Bias Current vs Load,  
VOUT = 18V  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
29.5  
29.0  
28.5  
28.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
38  
37  
36  
35  
34  
33  
32  
31  
30  
48V  
36V  
24V  
48V  
36V  
24V  
IN  
IN  
IN  
IN  
IN  
IN  
48V  
IN  
IN  
36V  
2
0
1
3
4
1
2
3
0
4
0
1
2
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G22  
8027 G23  
8027 G24  
Bias Current vs Load,  
VOUT = 24V  
Minimum VIN vs Load,  
VOUT = 5V  
Minimum VIN vs Load,  
VOUT = 8V  
6.0  
5.9  
5.8  
5.7  
5.6  
5.5  
5.4  
5.3  
5.2  
5.1  
5.0  
10.0  
9.8  
9.6  
9.4  
9.2  
9.0  
8.8  
8.6  
8.4  
8.2  
8.0  
46  
44  
42  
40  
38  
36  
34  
32  
48V  
IN  
IN  
36V  
2
2
4
2
4
0
1
3
4
0
1
3
0
1
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G25  
8027 G26  
8027 G27  
8027fd  
6
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Minimum VIN vs Load,  
VOUT = 12V  
Minimum VIN vs Load,  
VOUT = 15V  
Minimum VIN vs Load,  
VOUT = 18V  
24  
23  
16.0  
15.5  
15.0  
14.5  
14.0  
13.5  
13.0  
12.5  
12.0  
19.0  
18.5  
18.0  
17.5  
17.0  
16.5  
16.0  
15.5  
15.0  
22  
21  
20  
19  
18  
2
0
2
4
0
1
2
3
4
0
1
3
3
3
4
1
3
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G28  
8027 G29  
8027 G30  
Minimum VIN vs Load,  
VOUT = 24V  
Minimum VIN vs VOUT  
,
Minimum VIN vs Load,  
VOUT = –3.3V  
IOUT = 4A  
32  
30  
28  
35  
30  
9
8
7
6
5
4
3
2
1
0
25  
20  
15  
10  
5
26  
24  
22  
20  
18  
0
1
2
4
5
10  
15  
(V)  
25  
0
0
20  
2
0
1
3
4
LOAD (A)  
V
OUT  
LOAD (A)  
8027 G31  
8027 G32  
8027 G33  
Minimum VIN vs Load,  
VOUT = –5V  
Minimum VIN vs Load,  
VOUT = –8V  
Minimum VIN vs Load,  
VOUT = –12V  
12  
10  
30  
25  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
8
6
20  
15  
4
2
0
10  
5
0
0
0
1
2
4
0
1
2
3
4
0
1
2
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G34  
8027 G35  
8027 G36  
8027fd  
7
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Temperature Rise vs Load,  
VOUT = 2.5V  
Temperature Rise vs Load,  
VOUT = 3.3V  
Temperature Rise vs Load,  
VOUT = 5V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
42  
37  
32  
27  
22  
17  
12  
7
45  
40  
35  
30  
25  
20  
15  
10  
5
60V  
IN  
60V  
IN  
36V  
IN  
48V  
IN  
48V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
5V  
IN  
12V  
IN  
12V  
IN  
IN  
5V  
0
2
0
2
2
4
0
1
3
4
2
0
1
3
0
1
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G37  
8027 G39  
8027 G38  
Temperature Rise vs Load,  
VOUT = 8V  
Temperature Rise vs Load,  
VOUT = 12V  
Temperature Rise vs Load,  
VOUT = 15V  
70  
60  
50  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60V  
IN  
60V  
IN  
60V  
IN  
48V  
IN  
48V  
IN  
48V  
IN  
36V  
IN  
36V  
IN  
36V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
12V  
IN  
20.5V  
IN  
16V  
IN  
40  
30  
20  
10  
0
1
2
4
0
3
2
2
0
1
3
4
0
1
3
4
LOAD (A)  
LOAD (A)  
LOAD (A)  
8027 G40  
8027 G41  
8027 G42  
Temperature Rise vs Load,  
VOUT = 18V  
Temperature Rise vs Load,  
VOUT = 24V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60V  
IN  
60V  
IN  
48V  
IN  
48V  
IN  
36V  
36V  
IN  
IN  
26V  
IN  
0
1
2
3
4
0
1
2
3
4
LOAD (A)  
LOAD (A)  
8027 G43  
8027 G44  
8027fd  
8
For more information www.linear.com/LTM8027  
LTM8027  
PIN FUNCTIONS  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8027 and the circuit components.  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
RT (Pin B1): The RT pin is used to program the switching  
frequency of the LTM8027 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
value based on the desired switching frequency. Minimize  
capacitance at this pin.  
V (Bank3):TheV pinssupplycurrenttotheLTM8027’s  
IN  
IN  
internal regulator and to the internal power switch. These  
pins must be locally bypassed with an external, low ESR  
capacitor (see Table 2).  
V
(Bank 1): Power Output Pins. Apply the output  
OUT  
filter capacitor and the output load between these and  
SYNC (Pin C1): The SYNC pin provides an external clock  
the GND pins.  
input for synchronization of the internal oscillator. The  
R resistor should be set such that the internal oscillator  
T
AUX (Pin A7): Low Current Voltage Source for BIAS1  
and BIAS2. In many designs, the BIAS pin is connected  
frequency is 10% to 25% below the external clock fre-  
quency. This external clock frequency must be between  
100kHz and 500kHz. If unused, tie the SYNC pin to GND.  
FormoreinformationseeOscillatorSyncintheApplication  
Information section of this data sheet.  
to V  
by way of the AUX pin. The AUX pin is internally  
OUT  
connectedtoV  
andisplacedneartheBIASpinstoease  
OUT  
printedcircuitboardrouting.Althoughthispinisinternally  
connected to V , do NOT connect this pin to the load. If  
OUT  
this pin is not tied to BIAS1 and BIAS2, leave it floating.  
ADJ(PinA2):TheLTM8027regulatesitsADJpinto1.23V.  
Connect the adjust resistor from this pin to ground. The  
BIAS1 (Pin A6): The BIAS1 pin connects to the internal  
power bus. Connect to a power source greater than 8.5V.  
If the output is greater than 8.5V, connect it to this pin. If  
the output voltage is less, connect this to a voltage source  
between 8.5V and 15V.  
value of R  
is given by the equation:  
ADJ  
R
ADJ  
= 613.77/(V  
– 1.23)  
OUT  
where R  
is in kΩ.  
ADJ  
SS (Pin A5): The soft-start pin is used to program the  
BIAS2 (Pin A3): Internal Biasing Power. Connect to AUX  
(if 24V or less) or a voltage source above 3V. Do not leave  
BIAS2 floating.  
supply soft-start function. Use the following formula to  
calculate C for a given output voltage slew rate:  
SS  
C
SS  
= 2µA(t /1.231V)  
SS  
RUN (Pin A4): Tie the RUN pin to ground to shut down  
the LTM8027. Tie to 1.4V or more for normal operation.  
The RUN pin is internally clamped to 5V, so when it is  
pulled up, be sure to use a pull-up resistor that limits the  
current into the RUN pin to less than 1mA. If the shutdown  
The pin should be left unconnected when not using the  
soft-start function.  
feature is not used, tie this pin to the V pin through a  
IN  
pull-up resistor.  
8027fd  
9
For more information www.linear.com/LTM8027  
LTM8027  
BLOCK DIAGRAM  
V
V
OUT  
6.8µH  
4.7pF  
IN  
499k  
2.2µF  
RUN  
SS  
AUX  
INTERNAL  
CURRENT  
MODE  
CONTROLLER  
CONNECTION  
TO V  
OUT  
SYNC  
BIAS1  
BIAS2  
INTERNAL  
LINEAR  
REGULATOR  
INTV  
CC  
V
IN  
GND  
R
T
ADJ  
8027 BD  
OPERATION  
The LTM8027 is a standalone nonisolated step-down  
switchingDC/DCpowersupplywithaninputvoltagerange  
of 4.5V to 60V that can deliver up to 4A of output current.  
This module provides a precisely regulated output volt-  
age up to 24V, programmable via one external resistor.  
Given that the LTM8027 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desiredoutputvoltageandloadcurrent. Asimplifiedblock  
diagram is given above. The LTM8027 contains a current  
mode controller, power switching element, power induc-  
tor, power MOSFETs and a modest amount of input and  
output capacitance.  
The LTM8027 is a fixed frequency PWM regulator. The  
switching frequency is set by simply connecting the ap-  
propriate resistor from the RT pin to GND.  
A linear regulator provides internal power (shown as  
INTV on the Block Diagram) to the control circuitry.  
CC  
The bias regulator normally draws power from the V  
IN  
pin, but if the BIAS1 pin is connected to an external volt-  
age higher than 8.5V, bias power will be drawn from the  
external source (typically the regulated output voltage).  
This improves efficiency. The RUN pin is used to enable  
or place the LTM8027 in shutdown, disconnecting the  
output and reducing the input current to less than 9µA.  
8027fd  
10  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
1. Look at Table 2 and find the row that has the desired  
input range and output voltage.  
Input Power Requirements  
2. Apply the recommended C , C , R and R values.  
IN OUT ADJ  
T
The LTM8027 is biased using an internal linear regulator  
to generate operational voltages from the V pin. Virtually  
3. Connect the BIAS pins as indicated.  
IN  
allofthecircuitryintheLTM8027isbiasedviathisinternal  
Whilethesecomponentandconnectioncombinationshave  
been tested for proper operation, it is incumbent upon the  
user to verify proper operation over the intended system’s  
line, load and environmental conditions.  
linear regulator output (INTV on the Block Diagram).  
CC  
This pin is internally decoupled with a low ESR capacitor  
to GND. The INTV regulator generates an 8V output  
CC  
provided there is ample voltage on the V pin. The INTV  
IN  
CC  
regulator has approximately 1V of dropout, and will follow  
the V pin with voltages below the dropout threshold.  
Capacitor Selection Considerations  
IN  
The C and C  
capacitor values in Table 2 are the  
IN  
OUT  
The LTM8027 has a typical start-up requirement of V >  
IN  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 2 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
7.5V. This assures that the onboard regulator has ample  
headroom to bring the internal regulator (INTV ) above  
CC  
its UVLO threshold. The INTV regulator can only source  
CC  
current, so forcing the BIAS1 pin above 8.5V allows use  
of externally derived power for the IC. This effectively  
shuts down the internal linear regulator and reduces  
powerdissipationwithintheLTM8027. Usingtheonboard  
regulator for start-up, then applying power to BIAS1 from  
the converter output or external supply maximizes con-  
version efficiencies and is a common practice. If BIAS1  
is maintained above 6.5V using an external source, the  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
LTM8027 can continue to operate with V as low as 4.5V.  
IN  
BIAS Power  
The internal circuitry of the LTM8027 is powered by the  
INTV bus, which is derived either from the afore men-  
CC  
tioned internal linear regulator or the BIAS1 pin, if it is  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8027. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8027 circuit is plugged into a live supply, the  
greater than 8.5V. Since the internal linear regulator is  
by nature dissipative, deriving INTV from an external  
CC  
sourcethroughtheBIASpinsreducesthepowerlostwithin  
the LTM8027 and can increase overall system efficiency.  
8027fd  
11  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
For example, suppose the LTM8027 needs to provide  
ing SS pin voltage, reducing the output voltage overshoot  
during a short-circuit recovery.  
5V from an input voltage source that is nominally 12V.  
From Table 2, the recommended R value is 75k, which  
T
The desired soft-start time (t ) is programmed via the  
SS  
corresponds to an operating frequency of 210kHz. From  
C
SS  
capacitor as follows:  
the graphs in the Typical Performance Characteristics, the  
2µA • tSS  
1.231V  
typical internal regulator (INTV ) current at 12V and  
CC  
IN  
CSS  
=
210kHz is 15mA. The power dissipated by the internal  
linear regulator at 12V is given by the equation:  
IN  
The amount of time in which the power supply must be  
P
= (V – 8) • I  
IN INTVCC  
INTVCC  
under a V , internal regulator (INTV ) or V  
UVLO  
IN  
CC  
SHDN  
fault condition (t  
) before the SS pin voltage enters  
or only 60mW. This has a small but probably acceptable  
effect on the operating temperature of the LTM8027.  
FAULT  
its active region is approximated by the following formula:  
CSS • 0.65V  
If the input rises to 60V, however, the power dissipation  
is a lot higher, over 780mW. This can cause unnecessarily  
tFAULT  
=
50µA  
high junction temperatures if the INTV regulator must  
CC  
dissipate this amount of power for very long.  
Operating Frequency Trade-offs  
Connect BIAS2 to AUX (if 24V or less) or a voltage source  
above 3V.  
The LTM8027 uses a constant frequency architecture that  
can be programmed over a 100kHz to 500kHz range with  
a single resistor from the RT pin to ground. The nominal  
voltage on the RT pin is 1V and the current that flows from  
this pin is used to charge an internal oscillator capacitor.  
Soft-Start  
The soft-start function controls the slew rate of the power  
supply output voltage during start-up. A controlled output  
voltagerampminimizesoutputvoltageovershoot,reduces  
The value of R for a given operating frequency can be  
T
chosen from Figure 1 or Table 1.  
inrush current from the V supply, and facilitates supply  
IN  
sequencing.AcapacitorconnectedfromtheSSpintoGND  
programs the slew rate. The capacitor is charged from an  
internal 2µA current source producing a ramped voltage  
that overrides the command reference to the controller,  
resulting in a smooth output voltage ramp. The soft-start  
circuitisdisabledoncetheSSpinvoltagehasbeencharged  
to 200mV above the internal reference of 1.231V.  
600  
500  
400  
300  
200  
100  
0
DuringaV UVLO,RUNevent,orundervoltageoninternal  
IN  
bias, the SS pin voltage is discharged with a 50µA current.  
Therefore, the value of the SS capacitor determines how  
long one of these events must be in order to completely  
discharge the soft-start capacitor. In the case of an output  
overload or short circuit, the SS pin voltage is clamped to  
a diode drop above the ADJ pin. Once the short has been  
0
50  
100  
(kΩ)  
150  
200  
R
T
8027 F01  
Figure 1. Timing Resistor (RT) Value  
removed the V  
pin voltage starts to recover. The soft-  
ADJ  
start circuit takes control of the output voltage slew rate  
once the V  
pin voltage has exceeded the slowly ramp-  
ADJ  
8027fd  
12  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
Table 1 lists typical resistor values for common operating  
frequencies.  
RUN Control  
The LTM8027 RUN pin uses a reference threshold of 1.4V.  
This precision threshold allows use of the RUN pin for both  
logic-levelcontrolledapplicationsandanalogmonitoringap-  
plications such aspower supply sequencing. TheLTM8027  
operational status is primarily controlled by a UVLO circuit  
on internal power source. When the LTM8027 is enabled  
Table 1. RT Resistor Values vs Frequency  
R (kΩ)  
T
f
(kHz)  
SW  
187  
118  
100  
150  
200  
250  
300  
350  
400  
450  
500  
82.5  
via the RUN pin, only the internal regulator (INTV ) is en-  
CC  
63.4k  
48.7k  
40.2k  
31.6k  
27.4k  
23.7k  
abled.SwitchingremainsdisableduntiltheUVLOthreshold  
is achieved at the BIAS1 pin, when the remainder of the  
LTM8027 is enabled and switching commences.  
Because the LTM8027 high power converter is a power  
transfer device, a voltage that is lower than expected on  
the input supply could require currents that exceed the  
sourcing capabilities of that supply, causing the system  
to lock up in an undervoltage state. Input supply start-  
up protection can be achieved by enabling the RUN pin  
It is recommended that the user apply the R value given  
T
in Table 2 for the input and output operating condition.  
Systemlevelorotherconsiderations,however,mayneces-  
sitate another operating frequency. While the LTM8027 is  
flexible enough to accommodate a wide range of operat-  
ing frequencies, a haphazardly chosen one may result  
in undesirable operation under certain operating or fault  
conditions. A frequency that is too high can damage the  
LTM8027 if the output is overloaded or short-circuited. A  
frequencythatistoolowcanresultinafinaldesignthathas  
too much output ripple or too large of an output capacitor.  
using a resistive divider from the V supply to ground.  
IN  
Setting the divider output to 1.4V when that supply is at  
an adequate voltage prevents an LTM8027 converter from  
drawing large currents until the input supply is able to  
provide the required power. 200mV of input hysteresis on  
the RUN pin allows for about 15% of input supply droop  
before disabling the converter.  
Input UVLO and RUN  
The maximum frequency (f  
) at which the LTM8027  
MAX  
should be allowed to switch and the minimum frequency  
set resistor value that should be used for a given set of  
input and output operating condition is given in Table 2  
The RUN pin has a precision voltage threshold with hys-  
teresis which can be used as an undervoltage lockout  
threshold (UVLO) for the power supply. Undervoltage  
lockout keeps the LTM8027 in shutdown until the supply  
input voltage is above a certain voltage programmed by  
theuser.Thehysteresisvoltagepreventsnoisefromfalsely  
as R  
. There are additional conditions that must be  
T(MIN)  
satisfied if the synchronization function is used. Please  
refer to the Synchronization section for details.  
tripping UVLO. Resistors are chosen by first selecting R  
(refer to Figure 2). Then:  
B
Output Voltage Programming  
The LTM8027 regulates its ADJ pin to 1.23V. Connect the  
V
IN(ON)  
RA =RB •  
–1  
adjust resistor from this pin to ground. The value of R  
ADJ  
– 1.23),  
1.4V  
is given by the equation R  
= 613.77/(V  
ADJ  
OUT  
where R  
is in kΩ.  
ADJ  
where V  
is the input voltage at which the undervolt-  
age lockout is disabled and the supply turns on.  
IN(ON)  
8027fd  
13  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
V
SUPPLY  
complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an under damped tank circuit, and the volt-  
R
A
RUN PIN  
age at the V pin of the LTM8027 can ring to twice the  
IN  
R
B
nominal input voltage, possibly exceeding the LTM8027’s  
rating and damaging the part. If the input supply is poorly  
controlledortheuserwillbepluggingtheLTM8027intoan  
energizedsupply, theinputnetworkshouldbedesignedto  
prevent this overshoot by introducing a damping element  
into the path of current flow. This is often done by add-  
ing an inexpensive electrolytic bulk capacitor across the  
input terminals of the LTM8027. The criteria for selecting  
this capacitor is that the ESR is high enough to damp the  
ringing, and the capacitance value is several times larger  
than the LTM8027 ceramic input capacitor. The bulk  
capacitor does not need to be located physically close to  
the LTM8027; it should be located close to the application  
board’s input connector instead.  
8027 F02  
Figure 2. Undervoltage Lockout Resistive Divider  
Example: Select R = 49.9k, V  
= 14.5V (based upon  
IN(ON)  
B
a 15V minimum input voltage)  
14.5V  
1.4V  
R = 49.9k •  
–1 = 464k  
A
The V turn off voltage is 15% below turn on. In the  
IN  
example the V  
would be 12.3V. The shutdown func-  
IN(OFF)  
tion can be disabled by connecting the RUN pin to the V  
IN  
pin through a large value pull-up resistor, (R ). This pin  
PU  
contains a low impedance clamp at 6V, so the RUN pin  
Synchronization  
will sink current from the R pull-up resistor:  
PU  
The oscillator can be synchronized to an external clock.  
V – 6V  
RPU  
IN  
ChoosetheR resistorsuchthattheresultantfrequencyis  
T
IRUN  
=
atleast10%belowthedesiredsynchronizationfrequency.  
It is recommended that the SYNC pin be driven with a  
square wave that has amplitude greater than 2.3V, pulse  
width greater than 1µs and rise time less than 500ns. The  
rising edge of the sync wave form triggers the discharge  
of the internal oscillator capacitor.  
Because this arrangement will clamp the RUN pin to  
6V, it will violate the 5V absolute maximum voltage  
rating of the pin. This is permitted, however, as long  
as the absolute maximum input current rating of 1mA  
is not exceeded. Input RUN pin currents of <100µA  
are recommended: a 1M or greater pull-up resistor is  
typically used for this configuration.  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8027. The LTM8027 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout.  
Hot-Plugging Safely  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8027. However, these capacitors  
can cause problems if the LTM8027 is plugged into a live  
supply (see Linear Technology Application Note 88 for a  
8027fd  
14  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
V
OUT  
C
OUT  
C
OUT  
GND  
AUX  
BIAS1  
SS  
RUN  
C
IN  
V
BIAS2  
IN  
R
ADJ  
R
T
GND  
8027 F03  
SYNC  
Figure 3. Suggested Layout  
Figure 3. The LTM8027 can benefit from the heat sinking  
afforded by vias that connect to internal GND planes at  
these locations, due to their proximity to internal power  
handling components. The optimum number of thermal  
vias depends upon the printed circuit board design.  
For example, a board might use very small via holes.  
It should employ more thermal vias than a board that  
uses larger holes.  
Ensurethatthegroundingandheatsinkingareacceptable.  
A few rules to keep in mind are:  
1. Place the R and R resistors as close as possible to  
ADJ  
T
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8027.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8027.  
OUT  
Thermal Considerations  
4. Place the C and C  
capacitors such that their  
OUT  
IN  
The LTM8027 output current may need to be derated if  
it is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Character-  
istics section can be used as a guide. These curves were  
ground current flow directly adjacent to or underneath  
the LTM8027.  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8027.  
2
generated by a LTM8027 mounted to a 58cm 4-layer FR4  
Use vias to connect the GND copper area to the board’s  
internalgroundplanes. LiberallydistributetheseGNDvias  
to provide both a good ground connection and thermal  
path to the internal planes of the printed circuit board. Pay  
attention to the location and density of the thermal vias in  
printedcircuitboard. Boardsofothersizesandlayercount  
can exhibit different thermal behavior, so it is incumbent  
upon the user to verify proper operation over the intended  
system’sline,loadandenvironmentaloperatingconditions.  
8027fd  
15  
For more information www.linear.com/LTM8027  
LTM8027  
APPLICATIONS INFORMATION  
The die temperature of the LTM8027 must be lower than  
the maximum rating of 125°C, so care should be taken  
in the layout of the circuit to ensure good heat sinking  
of the LTM8027. The bulk of the heat flow out of the  
LTM8027 is through the bottom of the module and the  
LGA pads into the printed circuit board. Consequently a  
poor printed circuit board design can cause excessive  
heating, resulting in impaired performance or reliability.  
Please refer to the PCB Layout section for printed circuit  
board design suggestions.  
The junction-to-air and junction-to-board thermal resis-  
tances given in the Pin Configuration diagram may also  
be used to estimate the LTM8027 internal temperature.  
These thermal coefficients are determined per JESD 51-9  
(JEDECstandard,testboardsforareaarraysurfacemount  
package thermal measurements) through analysis and  
physical correlation. Bear in mind that the actual thermal  
resistance of the LTM8027 to the printed circuit board  
depends upon the design of the circuit board.  
Table 2. Recommended Component Values and Configuration  
(TA = 25°C. See Typical Performance Characteristics for load Conditions)  
V
RANGE  
(V)  
V
R
f
R
f
R
MAX  
IN  
OUT  
ADJ  
OPTIMAL  
OPTIMAL  
MAX  
(V)  
3.3  
5
C
C
BIAS1  
8.5V to 15V  
8.5V to 15V  
8.5V to 15V  
AUX  
(kΩ)  
(kHz)  
(kΩ)  
(kHz)  
160  
230  
350  
500  
500  
500  
500  
(kΩ)  
IN  
OUT  
4.5 to 60  
7.5 to 60  
10.5 to 60  
16 to 60  
20.5 to 60  
26 to 60  
34 to 60  
301  
115  
210  
260  
300  
350  
400  
430  
154  
75.0  
59.0  
48.7  
40.2  
31.6  
28.7  
107  
2 × 4.7µF 2220 100V 5 × 100µF 1812 6.3V  
2 × 4.7µF 2220 100V 4 × 100µF 1210 6.3V  
2 × 4.7µF 2220 100V 4 × 47µF 1210 10V  
2 × 4.7µF 2220 100V 4 × 22µF 1210 16V  
2 × 4.7µF 2220 100V 4 × 22µF 1210 16V  
2 × 4.7µF 2220 100V 4 × 10µF 1812 25V  
2 × 4.7µF 2220 100V 4 × 10µF 1812 25V  
162  
68.2  
40.2  
23.7  
23.7  
23.7  
23.7  
8
90.9  
56.2  
44.2  
36.5  
26.7  
12  
15  
18  
24  
AUX  
8.5V to 15V  
8.5V to 15V  
4.5 to 40  
4.5 to 40  
7.5 to 40  
10.5 to 40  
16 to 40  
20.5 to 40  
26 to 40  
34 to 40  
2.5  
3.3  
5
8.5V to 15V  
8.5V to 15V  
8.5V to 15V  
8.5V to 15V  
AUX  
487  
301  
145  
165  
210  
260  
300  
350  
400  
430  
124  
102  
185  
240  
315  
500  
500  
500  
500  
500  
88.7  
64.9  
45.3  
23.7  
23.7  
23.7  
23.7  
23.7  
2 × 10µF 2220 50V 5 × 100µF 1812 6.3V  
2 × 10µF 2220 50V 4 × 100µF 1812 6.3V  
2 × 10µF 2220 50V 4 × 100µF 1210 6.3V  
2 × 10µF 2220 50V 4 × 47µF 1210 10V  
2 × 10µF 2220 50V 4 × 22µF 1210 16V  
1 × 10µF 2220 50V 4 × 22µF 1210 16V  
1 × 10µF 2220 50V 4 × 10µF 1812 25V  
1 × 10µF 2220 50V 4 × 10µF 1812 25V  
162  
75.0  
59.0  
48.7  
40.2  
31.6  
28.7  
8
90.9  
56.2  
44.2  
36.5  
26.7  
12  
15  
18  
24  
AUX  
8.5V to 15V  
8.5V to 15V  
4.5 to 56  
4.5 to 55  
10.5 to 52  
16 to 48  
–3.3  
–5  
8.5V to 15V Above Output  
8.5V to 15V Above Output  
8.5V to 15V Above Output  
AUX  
301  
162  
115  
190  
260  
300  
154  
90.9  
59.0  
48.7  
155  
230  
350  
500  
115  
68.2  
40.2  
23.7  
2 × 4.7µF 2220 100V 5 × 100µF 1812 6.3V  
2 × 4.7µF 2220 100V 4 × 100µF 1210 6.3V  
2 × 4.7µF 2220 100V 4 × 47µF 1210 10V  
2 × 4.7µF 2220 100V 4 × 22µF 1210 16V  
–8  
90.9  
56.2  
–12  
8027fd  
16  
For more information www.linear.com/LTM8027  
LTM8027  
TYPICAL APPLICATIONS  
3.3V VOUT Step-Down Converter  
5V VOUT Step-Down Converter  
V
3.3V  
4A  
V
5V  
4A  
OUT  
OUT  
V
*
V
IN  
IN  
V
V
V
V
OUT  
IN  
OUT  
IN  
4.5V TO 40V  
7.5V TO 60V  
10µF  
×2  
4.7µF  
×2  
1M  
1M  
LTM8027  
LTM8027  
9V  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
9V  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
100µF  
×4  
100µF  
×4  
SYNC  
RT  
SYNC  
RT  
ADJ  
ADJ  
GND  
GND  
102k  
301k  
75k  
162k  
*RUNNING VOLTAGE. SEE APPLICATIONS  
INFORMATION FOR START-UP DETAILS  
3845 TA02  
3845 TA03  
18V VOUT Step-Down Converter  
–12V VOUT Positive-to-Negative Converter  
V
OUT  
V
IN  
V
18V  
IN  
V
IN  
V
OUT  
V
IN  
V
OUT  
20V TO 48V  
26V TO 60V  
3A  
4A SURGE  
4.7µF  
×2  
4.7µF  
×2  
1M  
LTM8027  
1M  
LTM8027  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
9V  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
SCHOTTKY  
22µF  
×4  
10µF  
×4  
DIODE  
SYNC  
RT  
SYNC  
RT  
OPTIONAL  
ADJ  
ADJ  
GND  
GND  
56.2k  
48.7k  
31.6k  
36.5k  
V
–12V  
3A  
OUT  
3845 TA07  
3845 TA05  
PACKAGE PHOTOGRAPHS  
LGA  
BGA  
8027fd  
17  
For more information www.linear.com/LTM8027  
LTM8027  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8027#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
8027fd  
18  
For more information www.linear.com/LTM8027  
LTM8027  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8027#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
6 . 3 5 0  
5 . 0 8 0  
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
3 . 8 1 0  
5 . 0 8 0  
6 . 3 5 0  
a a a  
Z
8027fd  
19  
For more information www.linear.com/LTM8027  
LTM8027  
PACKAGE DESCRIPTION  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME  
GND  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
B9  
B10  
B11  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
D1  
D2  
D3  
D4  
D5  
GND  
ADJ  
D6  
D7  
D8  
D9  
D10  
D11  
E1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H5  
H6  
H7  
H8  
H9  
H10  
H11  
J1  
GND  
BIAS2  
RUN  
SS  
GND  
GND  
V
V
V
V
V
V
OUT  
OUT  
OUT  
IN  
BIAS1  
AUX  
GND  
GND  
GND  
GND  
RT  
E2  
E3  
J2  
IN  
E4  
J3  
IN  
E5  
J5  
GND  
GND  
GND  
GND  
E6  
J6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SYNC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
E7  
J7  
E8  
J8  
E9  
V
OUT  
V
OUT  
V
OUT  
J9  
V
V
V
V
V
V
OUT  
OUT  
OUT  
IN  
E10  
E11  
F1  
J10  
J11  
K1  
K2  
K3  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
L1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F2  
IN  
F3  
IN  
F4  
GND  
GND  
GND  
GND  
F5  
F6  
F7  
F8  
V
V
V
V
V
V
OUT  
OUT  
OUT  
IN  
F9  
V
V
V
OUT  
OUT  
OUT  
F10  
F11  
G5  
G6  
G7  
G8  
G9  
G10  
G11  
H1  
H2  
H3  
GND  
GND  
GND  
GND  
L2  
IN  
L3  
IN  
L5  
GND  
GND  
GND  
GND  
L6  
V
V
V
V
V
V
L7  
OUT  
OUT  
OUT  
IN  
L8  
L9  
V
V
V
OUT  
OUT  
OUT  
L10  
L11  
IN  
IN  
8027fd  
20  
For more information www.linear.com/LTM8027  
LTM8027  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
1/11  
Changed Shutdown Current Supply to 9µA in Features.  
Updated Absolute Maximum Ratings section.  
1
2
Updated V  
and Note 3 in Electrical Characteristics section.  
3
BIAS1(MINOV)  
Replaced graph 9.  
4
Updated Pin Functions section.  
9
Text edits to Applications Information.  
Updated Typical Applications.  
11-16  
17, 18  
22  
2
Updated Related Parts.  
B
9/11  
Added (Note 3) notation to the Order Information section.  
Updated minimum spec for V  
.
3
BIAS2  
Updated descriptions for AUX and BIAS2 in the Pin Functions section.  
Updated text in the Input Power Requirements section.  
Added text to end of the BIAS Power section.  
9
11  
12  
1, 2  
9
C
D
05/14 Add BGA package option  
Add advisory notice  
Add BGA package drawing  
19  
12  
22  
12/16 Corrected R value from 162k to 75k  
T
Updated Related Parts  
8027fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTM8027  
TYPICAL APPLICATION  
15V VOUT Step-Down Converter  
V
OUT  
V
15V  
IN  
V
IN  
V
OUT  
20.5V TO 60V  
3.5A  
4A SURGE  
4.7µF  
×2  
1M  
LTM8027  
RUN  
SS  
BIAS1  
BIAS2  
AUX  
22µF  
×4  
SYNC  
RT  
ADJ  
GND  
40.2k  
44.2k  
3845 TA04  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTM8050  
2A, 58V DC/DC µModule Regulator  
3.6V ≤ V ≤ 58V, 0.8V ≤ V  
≤ 24V, Synchronizable, Parallelable, 9mm ×  
IN  
OUT  
15mm × 4.92mm BGA  
LTM4601/  
LTM4601A  
12A DC/DC µModule Regulator with PLL, Output  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4601-1 Version has no Remote  
Sensing  
LTM4603  
6A DC/DC µModule with PLL and Output Tracking/ Synchronizable, PolyPhase Operation, LTM4603-1 Version has no Remote  
Margining and Remote Sensing  
Sensing, Pin Compatible with the LTM4601  
LTM4604A  
LTM4608A  
LTM8020  
LTM8022  
4A Low V DC/DC µModule Regulator  
2.375V ≤ V ≤ 5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm LGA  
IN  
IN  
OUT  
8A Low V DC/DC µModule Regulator  
2.7V ≤ V ≤ 5V, 0.6V ≤ V  
≤ 5V, 9mm × 15mm × 2.8mm LGA  
IN  
IN  
OUT  
200mA, 36V DC/DC µModule Regulator  
1A, 36V DC/DC µModule Regulator  
Fixed 450kHz Frequency, 1.25V ≤ V  
≤ 5V, 6.25mm × 6.25mm × 2.32mm LGA  
OUT  
Adjustable Frequency, 0.8V ≤ V  
Pin Compatible to the LTM8023  
≤ 5V, 9mm × 11.25mm × 2.82mm LGA,  
OUT  
LTM8023  
2A, 36V DC/DC µModule Regulator  
Adjustable Frequency, 0.8V ≤ V  
≤ 5V, 9mm × 11.25mm × 2.82mm LGA,  
OUT  
Pin Compatible to the LTM8022  
LTM8025  
LTM4624  
3A, 36V DC/DC µModule Regulator  
0.8V ≤ V ≤ 24V, 9mm × 15mm × 4.32mm LGA  
OUT  
14V , 4A, Step-Down µModule Regulator in Tiny 4V ≤ V ≤ 14V, 0.6V ≤ V  
≤ 5.5V, V  
Tracking, PGOOD, Light Load Mode,  
IN  
IN  
OUT  
OUT  
2
6.25mm × 6.25mm × 5.01mm BGA  
Complete Solution in 1cm (Single Sided PCB)  
≤ 5.5V, CLK Input and Output, V  
LTM4644  
Quad 4A, 14V Step-Down µModule Regulator with 4V ≤ V ≤ 14V, 0.6V ≤ V  
Configurable Output Array  
Tracking,  
OUT  
IN  
OUT  
PGOOD, 9mm × 15mm × 5.01mm BGA  
LTM8064  
LTM8056  
LTM8053  
58V , 6A C  
Step-Down μModule Regulator  
Buck-Boost μModule Regulator  
6V ≤ V ≤ 58V, 1.2V ≤ V  
≤ 36V, 16mm × 11.9mm × 4.92mm BGA Package  
≤ 48V, 15mm × 15mm × 4.92mm BGA Package  
IN  
VCC  
IN  
OUT  
58V , 48 V  
5V ≤ V ≤ 58V, 1.2V ≤ V  
IN  
IN  
OUT  
OUT  
40V , 3.5A Step-Down μModule Regulator  
3.4V ≤ V ≤ 40V, 0.97V ≤ V  
≤ 15V, 6.25mm × 9mm × 3.32mm BGA Package  
IN  
IN  
OUT  
8027fd  
LT 1216 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM8027  
LINEAR TECHNOLOGY CORPORATION 2009  

相关型号:

LTM8027EVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV

60V, 4A DC/DC Module Regulator
Linear

LTM8027IV#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027IVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027IY#PBF

LTM8027 - 60V, 4A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 113; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8027MPV

60V, 4A DC/DC Module Regulator
Linear

LTM8027MPVPBF

60V, 4A DC/DC Module Regulator
Linear

LTM8027V

Complete Switch Mode Power Supply
Linear

LTM8028

36VIN, UltraFast, Low Output Noise 5A μModule Regulator
Linear

LTM8028EYPBF

36VIN, UltraFast, Low Output Noise 5A μModule Regulator
Linear

LTM8028IY#PBF

LTM8028 - 36VIN, UltraFast, Low Output Noise 5A &#181;Module (Power Module) Regulator; Package: BGA; Pins: 114; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8028IYPBF

36VIN, UltraFast, Low Output Noise 5A μModule Regulator
Linear