LTM8032IVPBF [Linear]

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule; 超低噪声,电磁兼容标准的36V , 2A DC / DC微型模块
LTM8032IVPBF
型号: LTM8032IVPBF
厂家: Linear    Linear
描述:

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
超低噪声,电磁兼容标准的36V , 2A DC / DC微型模块

文件: 总20页 (文件大小:305K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8032  
Ultralow Noise  
EMC Compliant 36V, 2A  
DC/DC µModule  
FEATURES  
DESCRIPTION  
The LTM®8032 is an electromagnetic compatible (EMC)  
36V, 2A DC/DC μModule® buck converter designed to  
meet the radiated emissions requirements of EN55022.  
Conducted emission requirements can be met by adding  
standardltercomponents.Includedinthepackagearethe  
switching controller, power switches, inductor, lters and  
all support components. Operating over an input voltage  
range of 3.6V to 36V, the LTM8032 supports an output  
voltage range of 0.8V to 10V, and a switching frequency  
range of 200kHz to 2.4MHz, each set by a single resistor.  
Only the bulk input and output filter capacitors are needed  
to finish the design. The low profile package (2.82mm)  
enables utilization of unused space on the bottom of PC  
boards for high density point of load regulation.  
n
Complete Step-Down Switch Mode Power Supply  
n
Wide Input Voltage Range: 3.6V to 36V  
n
2A Output Current  
0.8V to 10V Output Voltage  
Selectable Switching Frequency: 200kHz to 2.4MHz  
n
n
n
EN55022 Class B Compliant  
Current Mode Control  
n
n
(e4) RoHS Compliant Package with Gold Pad Finish  
n
Programmable Soft-Start  
n
Low Profile (9mm × 15mm × 2.82mm)  
Surface Mount LGA Package  
APPLICATIONS  
n
Automotive Battery Regulation  
TheLTM8032ispackagedinathermallyenhanced,compact  
(9mm× 15mm)andlowprofile(2.82mm)overmoldedland  
gridarray(LGA)packagesuitableforautomatedassembly  
by standard surface mount equipment. The LTM8032 is  
RoHS compliant.  
n
Power for Portable Products  
n
Distributed Supply Regulation  
n
Industrial Supplies  
n
Wall Transformer Regulation  
, LT, LTC, LTM and μModule are registered trademarks of Linear Technology  
Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Ultralow Noise 5V/2A DC/DC μModule Regulator  
LTM8032 EMI Performance  
90  
V
5V  
2A  
OUT  
V
*
IN  
OUT  
V
IN  
7VDC TO 36VDC  
80  
70  
10μF  
FIN  
AUX  
RUN/SS  
60  
LTM8032  
BIAS  
50  
2.2μF  
EN55022  
40  
CLASS B  
SHARE  
PGOOD  
LIMIT  
30  
RT  
SYNC GND ADJ  
20  
10  
44.2k  
47.5k  
8032 TA01a  
0
f
= 700kHz  
SW  
–10  
0
100 200 300 400 500 600 700 800 900 1000  
FREQUENCY (MHz)  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
8031 TA01b  
8032fa  
1
LTM8032  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , FIN, RUN/SS Voltage..........................................40V  
IN  
1
2
3
4
5
6
7
ADJ, RT, SHARE Voltage.............................................5V  
V
GND  
OUT  
V
, AUX .................................................................10V  
OUT  
A
B
C
D
E
F
Current from AUX ................................................100mA  
PGOOD, SYNC ..........................................................30V  
BIAS..........................................................................25V  
BANK 1  
BANK 2  
BANK 3  
V + BIAS.................................................................56V  
IN  
Maximum Junction Temperature (Note 2)............. 125°C  
Solder Temperature (Note 3)................................. 245°C  
G
H
J
RT  
SHARE  
ADJ  
BIAS  
AUX  
K
L
PGOOD  
V
FIN RUN/SS SYNC  
LGA PACKAGE  
IN  
71-LEAD (9mm s 15mm s 2.82mm)  
T
= 125°C, θ = 15.8°C/W, θ = 5.5°C/W  
JA JC  
JMAX  
θ
JA  
DERIVED FROM 6.35cm × 5.6 PCB WITH 4 LAYERS  
WEIGHT = 1.2g  
ORDER INFORMATION  
LEAD FREE FINISH  
LTM8032EV#PBF  
LTM8032IV#PBF  
LTM8032MPV#PBF  
TRAY  
PART MARKING*  
LTM8032V  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
LTM8032EV#PBF  
LTM8032IV#PBF  
LTM8032MPV#PBF  
71-Lead (9mm × 15mm × 2.82mm) LGA  
71-Lead (9mm × 15mm × 2.82mm) LGA  
71-Lead (9mm × 15mm × 2.82mm) LGA  
LTM8032V  
–40°C to 125°C  
LTM8032MPV  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
8032fa  
2
LTM8032  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 10V, VRUN/SS = 10V, VBIAS = 3V, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
V
V
Input DC Voltage  
Output DC Voltage  
3.6  
36  
V
IN  
0.2A < I  
0.2A < I  
≤ 2A, R  
≤ 2A, R  
Open  
= 21.6k  
0.8  
10  
V
V
OUT  
OUT  
OUT  
ADJ  
ADJ  
I
I
Continuous Output DC Current  
V
= 24V  
2
A
OUT  
IN  
V
Quiescent Current  
V
V
V
= 0.2V  
= 3V, Not Switching  
= 0V, Not Switching  
0.6  
25  
88  
μA  
μA  
μA  
Q(VIN)  
IN  
RUN/SS  
BIAS  
BIAS  
l
l
60  
120  
I
BIAS Quiescent Current  
V
V
V
= 0.2V  
= 3V, Not Switching  
= 0V, Not Switching  
0.03  
60  
1
μA  
μA  
μA  
Q(BIAS)  
RUN/SS  
BIAS  
BIAS  
120  
5
Line Regulation  
10V ≤ V ≤ 36V, I  
= 1A, V  
OUT  
= 3.3V  
= 3.3V  
0.1  
0.3  
6
%
%
ΔV  
OUT  
IN  
OUT  
OUT  
V
Load Regulation  
V
IN  
V
IN  
= 24V, 0.2A ≤ I  
≤ 2A, V  
OUT OUT  
V
Output Ripple (RMS)  
= 24V, I  
= 2A, V = 3.3V  
OUT  
mV  
kHz  
mV  
V
OUT(AC_RMS)  
OUT  
f
SW  
Switching Frequency  
R = 113k  
T
325  
790  
1.9  
4
l
V
ADJ  
Voltage at ADJ Pin  
765  
2.5  
815  
2.8  
V
Minimum BIAS Voltage for Proper Operation  
Current Out of ADJ Pin  
RUN/SS Pin Current  
BIAS(MIN)  
ADJ  
I
I
V
V
= 0V, V  
= 2.5V  
= 0V, V = 1V  
OUT  
μA  
μA  
V
RUN/SS  
ADJ  
5
10  
0.2  
1
RUN/SS  
RUN/SS  
V
V
V
RUN/SS Input High Voltage  
RUN/SS Input Low Voltage  
ADJ Voltage Threshold for PGOOD to Switch  
PGOOD Leakage  
IH(RUN/SS)  
IL(RUN/SS)  
PG(TH)  
V
730  
0.1  
mV  
μA  
μA  
V
I
I
V
V
= 30V  
PGO  
PG  
PGOOD Sink Current  
= 0.4V  
200  
0.7  
800  
PGSINK  
PG  
V
V
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Pin Bias Current  
f
f
= 550kHz  
= 550kHz  
0.5  
SYNCIL  
SYNC  
SYNC  
V
SYNCIH  
I
V
SYNC  
= 0V, V = 0V  
BIAS  
0.1  
μA  
SYNC(BIAS)  
V
550kHz Narrowband Conducted Emission  
1MHz Narrowband Conducted Emission  
3MHz Narrowband Conducted Emission  
V
= 24V, V  
= 3.3V, I  
= 2A, f = 550kHz,  
89  
69  
51  
dBμV  
dBμV  
dBμV  
IN(RIPPLE)  
IN  
OUT  
OUT  
SW  
5μH LISN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8032E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the –40°C to 125°C  
internal temperature range are assured by design, characterization and  
correlation with statistical process controls. LTM8032I is guaranteed  
to meet specifications over the full –40°C to 125°C internal operating  
temperature range. The LTM8032MP is guaranteed to meet specifications  
over the full –55°C to 125°C internal operating temperature range. Note  
that the maximum internal temperature is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 3: See Linear Technology Application Note 100.  
8032fa  
3
LTM8032  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
3.3VOUT Efficiency  
5VOUT Efficiency  
8VOUT Efficiency  
100  
90  
100  
90  
100  
90  
80  
70  
60  
80  
70  
60  
80  
70  
60  
50  
40  
50  
40  
50  
40  
30  
20  
10  
0
30  
20  
10  
0
30  
20  
10  
0
5.5V  
12V  
IN  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
36V  
IN  
IN  
0.01  
1
10  
0.01  
1
10  
0.01  
1
10  
0.1  
0.1  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8031 G01  
8031 G02  
8031 G03  
Input Current vs Output Current,  
3.3VOUT  
Input Current vs Output Current,  
5VOUT  
Input Current vs Output Current,  
8VOUT  
1200  
1000  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1800  
1600  
1400  
1200  
1000  
800  
5.5V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
24V  
36V  
36V  
IN  
36V  
IN  
IN  
IN  
800  
600  
400  
200  
0
600  
400  
200  
0
1000  
OUTPUT CURRENT (mA)  
0
500  
1500  
2000  
0
500  
1000  
1500  
2000  
1000  
OUTPUT CURRENT (mA)  
1
500  
1500  
2000  
OUTPUT CURRENT (mA)  
8032 G04  
8032 G05  
8032 G06  
Minimum Required Input Voltage  
vs Output Voltage, IOUT = 2A  
Minimum Required Input Voltage  
vs Load Current, VOUT = 2.5V  
Minimum Required Input Voltage  
vs Load Current, VOUT = 3.3V  
14  
12  
6.0  
5.5  
5.0  
4.5  
10  
8
5.0  
4.5  
4.0  
3.5  
6
4
2
4.0  
3.5  
3.0  
3.0  
2.5  
2.0  
TO RUN  
TO START  
TO RUN  
RUN/SS ENABLED  
TO START  
0
2
4
6
8
10  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
OUTPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8032 G07  
8032 G09  
8032 G08  
8032fa  
4
LTM8032  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Minimum Required Input Voltage  
vs Load Current, VOUT = 5V  
Minimum Required Input Voltage  
vs Load Current, VOUT = 8V  
Bias Current vs Output Current  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
30  
25  
11.0  
10.5  
3.3V  
OUT  
5V  
8V  
OUT  
OUT  
20  
15  
10.0  
9.5  
10  
5
9.0  
8.5  
8.0  
TO RUN  
TO START  
RUN/SS ENABLED  
TO RUN  
TO START  
RUN/SS ENABLED  
0
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
0
500  
1000  
1500  
2000  
OUTPUT CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
8032 G10  
8032 G12  
8032 G11  
Output Current vs Input Voltage  
(Output Shorted)  
Input Current vs Input Voltage  
(Output Shorted)  
Temperature Rise vs  
Load Current, VOUT = 2.5V  
3200  
3000  
2800  
2600  
2400  
2200  
2000  
1800  
1600  
1200  
1000  
35  
30  
25  
20  
15  
10  
5
800  
600  
400  
200  
0
5V  
IN  
12V  
IN  
IN  
IN  
24V  
36V  
0
20  
0
10  
30  
40  
500  
1000  
1500  
2500  
0
2000  
0
10  
20  
30  
40  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
8032 G13  
8032 G15  
8032 G14  
Temperature Rise vs  
Load Current, VOUT = 3.3V  
Temperature Rise vs  
Temperature Rise vs  
Load Current, VOUT = 5V  
Load Current, VOUT = 8V  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
20  
15  
10  
5
10  
5
5V  
IN  
12V  
24V  
36V  
12V  
24V  
36V  
12V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
36V  
0
0
0
0
500  
1000  
1500  
2000  
2500  
500  
1000  
LOAD CURRENT (mA)  
2000  
500  
1000  
LOAD CURRENT (mA)  
2000  
0
2500  
0
2500  
1500  
1500  
LOAD CURRENT (mA)  
8032 G18  
8032 G16  
8032 G17  
8032fa  
5
LTM8032  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Temperature Rise vs  
Load Current, VOUT = 10V  
Radiated Emissions  
Radiated Emissions  
90  
70  
90  
70  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
50  
50  
30  
30  
10  
10  
–10  
–10  
0
100 200 300 400 500 600 700 800 9001000  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
8031 G20  
8031 G21  
V
V
= 36V  
OUT  
V
V
= 13V  
IN  
IN  
= 10V AT 2A  
= 10V AT 2A  
OUT  
24V  
36V  
IN  
IN  
0
0
500  
1000  
1500  
2000  
2500  
LOAD CURRENT (mA)  
8032 G19  
PIN FUNCTIONS  
V (Bank3):TheV pinsuppliescurrenttotheLTM8032’s  
BIAS(PinH4):TheBIASpinconnectstotheinternalpower  
bus. Connect to a power source greater than 2.8V. If the  
output is greater than 2.8V, connect this pin to AUX. If the  
output voltage is less, connect this to a voltage source  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor of at least 2.2μF.  
between 2.8V and 25V. Also, make sure that BIAS + V  
is less than 56V.  
IN  
FIN (K3, L3): Filtered Input. This is the node after the input  
EMI filter. Use this only if there is a need to modify the  
behavior of the integrated EMI filter or if V rises or falls  
RUN/SS (Pin L5): Pull RUN/SS pin to less than 0.2V to  
shut down the LTM8032. Tie to 2.5V or more for normal  
operation. If the shutdown feature is not used, tie this pin  
IN  
rapidly; otherwise, leave these pins unconnected. See the  
Applications Information section for more details.  
to the V pin. RUN/SS also provides a soft-start function;  
IN  
GND (Bank 2): Tie these GND pins to a local ground plane  
see the Applications Information section.  
below the LTM8032 and the circuit components. Return  
the feedback divider (R ) to this net.  
RT (Pin G7): The RT pin is used to program the switching  
frequency of the LTM8032 by connecting a resistor from  
thispintoground.TheApplicationsInformationsectionof  
the data sheet includes a table to determine the resistance  
value based on the desired switching frequency. Minimize  
capacitance at this pin.  
ADJ  
V
(Bank 1): Power Output Pins. Apply the output filter  
OUT  
capacitor and the output load between these pins and  
GND pins.  
AUX (Pin H5): Low Current Voltage Source for BIAS. In  
many designs, the BIAS pin is simply connected to V  
.
OUT  
and is placed  
SHARE (Pin H7): Tie this to the SHARE pin of another  
LTM8032 when paralleling the outputs. Otherwise, do  
not connect.  
The AUX pin is internally connected to V  
OUT  
adjacent to the BIAS pin to ease printed circuit board rout-  
ing. Although this pin is internally connected to V , do  
OUT  
not connect this pin to the load. If this pin is not tied to  
BIAS, leave it floating.  
8032fa  
6
LTM8032  
PIN FUNCTIONS  
SYNC (Pin L6): This is the external clock synchronization  
input.GroundthispinforlowrippleBurstMode® operation  
at low output loads. Tie to a stable voltage source greater  
than 0.7V to disable Burst Mode operation. Do not leave  
this pin floating. Tie to a clock source for synchronization.  
Clockedgesshouldhaveriseandfalltimesfasterthan1μs.  
See synchronizing section in Applications Information.  
ADJ (Pin J7): The LTM8032 regulates its ADJ pin to 0.79V.  
Connect the adjust resistor from this pin to ground. The  
value of R  
is given by the equation:  
ADJ  
196.71  
VOUT 0.79  
RADJ  
=
where R  
is in kΩ.  
ADJ  
Burst Mode is a registered trademark of Linear Technology Corporation.  
PGOOD (Pin K7): The PGOOD pin is the open-collector  
outputofaninternalcomparator.PGOODremainslowuntil  
the ADJ pin is within 10% of the final regulation voltage.  
The PGOOD output is valid when V is above 3.6V and  
IN  
RUN/SS is high. If this function is not used, leave this  
pin floating.  
BLOCK DIAGRAM  
FIN  
EMI FILTER  
4.7μH  
V
OUT  
V
IN  
AUX  
249k  
10μF  
GND  
GND  
BIAS  
SHARE  
CURRENT  
MODE  
CONTROLLER  
RUN/SS  
SYNC  
RT  
PGOOD  
ADJ  
8032 BD  
8032fa  
7
LTM8032  
OPERATION  
The LTM8032 is a standalone nonisolated step-down  
switching DC/DC power supply. It can deliver up to 2A of  
DC output current with only bulk external input and output  
capacitors. This module provides a precisely regulated  
output voltage programmable via one external resistor  
from 0.8VDC to 10VDC. The input voltage range is 3.6V  
to 36V. Given that the LTM8032 is a step-down converter,  
make sure that the input voltage is high enough to support  
the desired output voltage and load current. A simplified  
Block Diagram is given on the previous page.  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The bias regulator can draw power from the V pin, but if  
IN  
theBIASpinisconnectedtoanexternalvoltagehigherthan  
2.8V, bias power will be drawn from the external source  
(typically the regulated output voltage). This improves  
efficiency. The RUN/SS pin is used to place the LTM8032  
in shutdown, disconnecting the output and reducing the  
input current to less than 1μA.  
To further optimize efficiency, the LTM8032 automatically  
switches to Burst Mode operation in light load situations.  
Betweenbursts,allcircuitryassociatedwithcontrollingthe  
output switch is shut down reducing the input supply cur-  
rentto5Ainatypicalapplication. Theoscillatorreduces  
theLTM8032’soperatingfrequencywhenthevoltageatthe  
ADJ pin is low. This frequency foldback helps to control  
the output current during start-up and overload.  
TheLTM8032isdesignedwithaninputEMIlterandother  
features to make its radiated emissions compliant with  
several EMC specifications including EN55022 class B.  
Compliance with conducted emissions requirements may  
be obtained by adding a standard input filter.  
The LTM8032 contains a current mode controller, power  
switching element, power inductor, power Schottky diode  
andamodestamountofinputandoutputcapacitance.The  
LTM8032 is a fixed frequency PWM regulator. The switch-  
ing frequency is set by simply connecting the appropriate  
resistor value from the RT pin to GND.  
The LTM8032 contains a power good comparator which  
trips when the ADJ pin is at 90% of its regulated value.  
The PGOOD output is an open-collector transistor that is  
off when the output is in regulation, allowing an external  
resistor to pull the PGOOD pin high. Power good is valid  
when the LTM8032 is enabled and V is above 3.6V.  
IN  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
Capacitor Selection Considerations  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
2. Apply the recommended C , C , R  
and R  
T
IN  
OUT  
ADJ  
values.  
3. Connect BIAS as indicated.  
AstheintegratedinputEMIltermayringinresponsetoan  
applicationofastepinputvoltage,abulkcapacitance,series  
resistanceorsomeclampingmechanismmayberequired.  
See the Hot-Plugging Safely section for details.  
Ceramic capacitors are small, robust and have very low  
ESR. However, notallceramiccapacitorsaresuitable. X5R  
and X7R types are stable over temperature and applied  
voltage and give dependable service. Other types, includ-  
ing Y5V and Z5U have very large temperature and voltage  
coefficients of capacitance. In an application circuit they  
Whilethesecomponentcombinationshavebeentestedfor  
proper operation, it is incumbent upon the user to verify  
proper operation over the intended system’s line, load and  
environmental conditions.  
8032fa  
8
LTM8032  
APPLICATIONS INFORMATION  
Table 1: Recommended Component Values and Configuration  
V
V
C
C
R
ADJ  
BIAS  
f
R
f
R
T(MIN)  
IN  
OUT  
IN  
OUT  
OPTIMAL  
T(OPTIMAL)  
MAX  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
3.6V to 36V  
4.0V to 36V  
4.3V to 36V  
5.5V to 36V  
7V to 36V  
10.5V to 36V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
3.6V to 15V  
4.0V to 15V  
4.3V to 15V  
5.5V to 15V  
7V to 15V  
0.82V  
1.00V  
1.20V  
1.50V  
1.80V  
2.00V  
2.20V  
2.50V  
3.30V  
5.00V  
8.00V  
0.82V  
1.00V  
1.20V  
1.50V  
1.80V  
2.00V  
2.20V  
2.50V  
3.30V  
5.00V  
0.82V  
1.00V  
1.20V  
1.50V  
1.80V  
2.00V  
2.20V  
2.50V  
3.30V  
5.00V  
8.00V  
10.00V  
0.82V  
1.00V  
1.20V  
1.50V  
1.80V  
2.00V  
2.20V  
2.50V  
3.30V  
5.00V  
8.00V  
10.00V  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
2.2μF  
200μF 1206  
200μF 1206  
147μF 1206  
147μF 1206  
100μF 1206  
68μF 1206  
68μF 1206  
47μF 1206  
22μF 1206  
10μF 1206  
10μF 1206  
200μF 1206  
200μF 1206  
147μF 1206  
147μF 1206  
100μF 1206  
68μF 1206  
68μF 1206  
47μF 1206  
22μF 1206  
10μF 1206  
200μF 1206  
200μF 1206  
147μF 1206  
147μF 1206  
100μF 1206  
68μF 1206  
47μF 1206  
22μF 1206  
22μF 1206  
10μF 1206  
10μF 1206  
10μF 1206  
200μF 1206  
200μF 1206  
147μF 1206  
147μF 1206  
100μF 1206  
68μF 1206  
47μF 1206  
22μF 1206  
22μF 1206  
10μF 1206  
10μF 1206  
10μF 1206  
5.62M  
953k  
487k  
280k  
196k  
165k  
140k  
115k  
78.7k  
47.5k  
27.4k  
5.62M  
953k  
487k  
280k  
196k  
165k  
140k  
115k  
78.7k  
47.5k  
5.62M  
953k  
487k  
280k  
196k  
165k  
140k  
115k  
78.7k  
47.5k  
27.4k  
21.5k  
5.62M  
953k  
487k  
280k  
196k  
165k  
140k  
115k  
78.7k  
47.5k  
27.4k  
21.5k  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
AUX  
250k  
150k  
124k  
105k  
88.7k  
78.7k  
78.7k  
69.8k  
61.9k  
54.9k  
44.2k  
39.2k  
150k  
124k  
105k  
88.7k  
78.7k  
78.7k  
69.8k  
61.9k  
54.9k  
44.2k  
150k  
124k  
105k  
88.7k  
78.7k  
78.7k  
69.8k  
61.9k  
54.9k  
44.2k  
39.2k  
34.0k  
150k  
124k  
105k  
88.7k  
78.7k  
78.7k  
69.8k  
61.9k  
54.9k  
44.2k  
39.2k  
34.0k  
250k  
300k  
350k  
400k  
450k  
450k  
500k  
600k  
700k  
1M  
1.5M  
600k  
700k  
800k  
900k  
1M  
1.1M  
1.25M  
1.3M  
1.7M  
2M  
400k  
450k  
500k  
550k  
650k  
700k  
750k  
800k  
1M  
1.5M  
1.5M  
1.3M  
250k  
300k  
350k  
400k  
450k  
450k  
500k  
600k  
700k  
1M  
150k  
124k  
105k  
300k  
350k  
400k  
450k  
450k  
500k  
550k  
600k  
700k  
800k  
250k  
300k  
350k  
400k  
450k  
450k  
500k  
550k  
600k  
700k  
250k  
300k  
350k  
400k  
450k  
450k  
500k  
550k  
600k  
700k  
800k  
900k  
250k  
300k  
350k  
400k  
450k  
450k  
500k  
550k  
600k  
700k  
800k  
900k  
88.7k  
78.7k  
78.7k  
69.8k  
54.9k  
44.2k  
29.4k  
16.2k  
54.9k  
44.2k  
39.2k  
34.0k  
29.4k  
26.1k  
22.1k  
21.0k  
14.0k  
10.0k  
88.7k  
79.0k  
69.8k  
61.9k  
49.9k  
44.2k  
42.2k  
39.2k  
29.4k  
16.2k  
16.2k  
21.0k  
150k  
AUX  
AUX  
V
V
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
AUX  
AUX  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
9V to 24V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
AUX  
9V to 24V  
9V to 24V  
AUX  
AUX  
AUX  
10.5V to 24V  
13V to 24V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
≥2.8V, <25V  
AUX  
124k  
105k  
88.7k  
78.7k  
78.7k  
69.8k  
54.9k  
44.2k  
29.4k  
16.2k  
21.0k  
AUX  
AUX  
AUX  
1.5M  
1.3M  
Note: An input bulk capacitor is required. 200μF is 2 × 100μF, 147 is 100μF||47μF  
8032fa  
9
LTM8032  
APPLICATIONS INFORMATION  
may have only a small fraction of their nominal capaci-  
tance resulting in much higher output voltage ripple than  
expected. Ceramic capacitors are also piezoelectric. In  
BurstModeoperation,theLTM8032’sswitchingfrequency  
depends on the load current, and can excite a ceramic  
capacitor at audio frequencies, generating audible noise.  
SincetheLTM8032operatesatalowercurrentlimitduring  
Burst Mode operation, the noise is typically very quiet to a  
casual ear. If this audible noise is unacceptable, use a high  
performanceelectrolyticcapacitorattheoutput. Theinput  
capacitor can be a parallel combination of a 2.2μF ceramic  
capacitor and a low cost electrolytic capacitor.  
Table 2. Switching Frequency vs RT Value  
SWITCHING FREQUECNY (MHz)  
R VALUE (kΩ)  
T
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.5  
1.8  
2
187  
124  
88.7  
69.8  
54.9  
44.2  
39.2  
34  
29.4  
23.7  
19.1  
16.2  
13.3  
11.5  
9.76  
8.66  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8032. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8032 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
2.2  
2.4  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8032 if the output is overloaded or short-circuited.  
A frequency that is too low can result in a final design  
that has too much output ripple or too large of an output  
Electromagnetic Compliance  
The LTM8032 is compliant with the radiated emissions  
requirementsofEN55022classB.GraphsoftheLTM8032’s  
EMC performance are given in the Typical Performance  
Characteristicssection.Furtherdata,operatingconditions  
and test setup are detailed in an EMI Test report available  
from Linear Technology.  
cap. The maximum frequency (and attendant R value) at  
which the LTM8032 should be allowed to switch is given  
T
in Table 1 in the f  
column, while the recommended  
MAX  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
OPTIMAL  
Frequency Selection  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
TheLTM8032usesaconstantfrequencyPWMarchitecture  
thatcanbeprogrammedtoswitchfrom200kHzto2.4MHz  
by using a resistor tied from the RT pin to ground. Table 2  
BIAS Pin Considerations  
provides a list of R resistor values and their resultant  
T
frequencies.  
TheBIASpinisusedtoprovidedrivepowerfortheinternal  
power switching stage and operate internal circuitry. For  
proper operation, it must be powered by at least 2.8V. If  
the output voltage is programmed to be 2.8V or higher,  
Operating Frequency Trade-Offs  
It is recommended that the user apply the optimal R  
T
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8032 is flexible enough to accommodate a wide range  
simply tie BIAS to AUX. If V  
is less than 2.8V, BIAS  
OUT  
can be tied to V or some other voltage source. In all  
IN  
cases, ensure that the maximum voltage at the BIAS pin  
is both less than 25V and the sum of V and BIAS is less  
IN  
8032fa  
10  
LTM8032  
APPLICATIONS INFORMATION  
than 56V. If BIAS power is applied from a remote or noisy  
voltage source, it may be necessary to apply a decoupling  
capacitor locally to the LTM8032.  
6.0  
5.5  
V
= 3.3V  
OUT  
5.0  
4.5  
Load Sharing  
TwoormoreLTM8032smaybeparalleledtoproducehigher  
currents. This may, however, alter the EMI performance of  
4.0  
3.5  
3.0  
theLTM8032s.Todothis,tietheV ,ADJ,V andSHARE  
IN  
OUT  
TO RUN  
TO START  
pinsofalltheparalleledLTM8032stogether.Toensurethat  
paralleledmodulesstartuptogether,theRUN/SSpinsmay  
be tied together, as well. Synchronize the LTM8032s to an  
external clock to eliminate beat frequencies, if required. If  
the RUN/SS pins are not tied together, make sure that the  
samevaluedsoft-startcapacitorsareusedforeachmodule.  
An example of two LTM8032 modules configured for load  
sharing is given in the Typical Applications section.  
RUN/SS ENABLED  
0
500  
1000  
1500  
2000  
LOAD CURRENT (mA)  
8032 F01a  
7.5  
7.0  
6.5  
6.0  
5.5  
5.0  
V
= 5V  
OUT  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8032 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizingtheinputquiescentcurrent.DuringBurstMode  
operation, the LTM8032 delivers single cycle bursts of  
current to the output capacitor followed by sleep periods  
wheretheoutputpowerisdeliveredtotheloadbytheoutput  
TO RUN  
TO START  
RUN/SS ENABLED  
0
500  
1000  
1500  
2000  
LOAD CURRENT (mA)  
8032 F01b  
Figure 1. The LTM8032 Needs More Voltage to Start Than Run  
capacitor. In addition, V and BIAS quiescent currents are  
IN  
reduced to typically 20μA and 50μA respectively during  
the sleep time. As the load current decreases towards a  
no-loadcondition,thepercentageoftimethattheLTM8032  
operates in sleep mode increases and the average input  
current is greatly reduced, resulting in higher efficiency.  
BurstModeoperationisenabledbytyingSYNCtoGND. To  
disable Burst Mode operation, tie SYNC to a stable voltage  
above 0.7V. Do not leave the SYNC pin floating.  
5.5V to start. If the LTM8032 is enabled via the RUN/SS  
IN  
pin, the minimum voltage to start at light loads is lower,  
about 4.5V. A similar curve for 5V  
provided in Figure 1.  
operation is also  
OUT  
Soft-Start  
The RUN/SS pin can be used to soft-start the LTM8032,  
reducing the maximum input current during start-up. The  
RUN/SS pin is driven through an external RC network to  
create a voltage ramp at this pin. Figure 2 shows the start-  
up and shutdown waveforms with the soft-start circuit. By  
choosinganappropriateRCtimeconstant,thepeakstart-up  
current can be reduced to the current that is required to  
regulate the output, with no overshoot. Choose the value  
of the resistor so that it can supply at least 20μA when  
the RUN/SS pin reaches 2.5V.  
Minimum Input Voltage  
The LTM8032 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. In addition, the input voltage required to turn  
on is higher than that required to run, and depends upon  
whether the RUN/SS is used. As shown in Figure 1, it  
takes only about 3.6V for the LTM8032 to run a 3.3V  
IN  
output at light load. If RUN/SS is pulled up to V , it takes  
IN  
8032fa  
11  
LTM8032  
APPLICATIONS INFORMATION  
V
V
V
V
OUT  
IN  
IN  
OUT  
RUN/SS  
LTM8032  
AUX  
I
L
RUN  
15k  
1A/DIV  
BIAS  
ADJ  
R
SYNC GND  
T
RUN/SS  
V
RUN/SS  
2V/DIV  
GND  
0.22μF  
V
OUT  
8032 F03  
2V/DIV  
Figure 3. The Input Diode Prevents a Shorted Input from  
Discharging a Back-Up Battery Tied to the Output. It Also  
Protects the Circuit from a Reversed Input. The LTM8032  
Runs Only When the Input is Present  
8023 F02  
2ms/DIV  
Figure 2. To Soft-Start the LTM8032, Add a Resistor  
and Capacitor to the RUN/SS Pin  
PCB Layout  
Synchronization  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8032. The LTM8032 is neverthe-  
less a switching power supply and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 4  
for a suggested layout.  
The internal oscillator of the LTM8032 can be synchro-  
nized by applying an external 250kHz to 2MHz clock to  
the SYNC pin. Do not leave this pin floating. The resistor  
tied from the RT pin to ground should be chosen such  
that the LTM8032 oscillates 20% lower than the intended  
synchronization frequency (see the Frequency Selection  
section).TheLTM8032willnotenterBurstModeoperation  
while synchronized to an external clock, but will instead  
skip pulses to maintain regulation.  
Ensurethatthegroundingandheatsinkingareacceptable.  
A few rules to keep in mind are:  
Shorted Input Protection  
1. Place the R and R resistors as close as possible to  
ADJ  
T
Care needs to be taken in systems where the output will  
be held high when the input to the LTM8032 is absent.  
This may occur in battery charging applications or in  
battery back-up systems where a battery or some other  
supply is diode ORed with the LTM8032’s output. If the  
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
and GND connection of the LTM8032. If a capacitor  
is connected to the FIN terminals, place it as close  
as possible to the FIN terminals, such that its ground  
V pin is allowed to float and the RUN/SS pin is held high  
IN  
connection is as close as possible to that of the C  
capacitor.  
IN  
(either by a logic signal or because it is tied to V ), then  
IN  
the LTM8032’s internal circuitry will pull its quiescent  
current through its internal power switch. This is fine if  
your system can tolerate a few milliamps in this state. If  
you ground the RUN/SS pin, the internal switch current  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8032.  
OUT  
4. Place the C and C  
capacitors such that their  
IN  
OUT  
will drop to essentially zero. However, if the V pin is  
IN  
ground currents flow directly adjacent or underneath  
grounded while the output is held high, then parasitic  
the LTM8032.  
diodes inside the LTM8032 can pull large currents from  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8032.  
the output through the V pin, potentially damaging the  
IN  
device. Figure 3 shows a circuit that will run only when  
the input voltage is present and that protects against a  
shorted or reversed input.  
8032fa  
12  
LTM8032  
APPLICATIONS INFORMATION  
If the input supply is poorly controlled or the user will  
be plugging the LTM8032 into an energized supply, the  
input network should be designed to prevent this over-  
shoot. Figure 5 shows the waveforms that result when  
an LTM8032 circuit is connected to a 24V supply through  
six feet of 24-gauge twisted pair. The first plot (5a) is the  
response with a 2.2μF ceramic capacitor at the input. The  
input voltage rings as high as 35V and the input current  
peaks at 20A. One method of damping the tank circuit  
is to add another capacitor with a series resistor to the  
circuit. An alternative solution is shown in Figure 5b. A  
0.7Ω resistor is added in series with the input to eliminate  
the voltage overshoot (it also reduces the peak input cur-  
rent). A 0.1μF capacitor improves high frequency filtering.  
For high input voltages its impact on efficiency is minor,  
reducing efficiency less than one-half percent for a 5V  
output at full load operating from 24V. By far the most  
popularmethodofcontrollingovershootisshowninFigure  
5c, where an aluminum electrolytic capacitor has been  
connected to FIN. This capacitor’s high equivalent series  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripple filtering and can slightly improve the efficiency of  
the circuit, though it is likely to be the largest component  
in the circuit. Figure 5c shows the capacitor added to the  
GND  
C
SYNC  
OUT  
AUX  
BIAS  
RUN/SS  
FIN  
V
IN  
OPTIONAL  
FIN  
CAPACITOR  
V
OUT  
C
IN  
GND  
8032 F04  
Figure 4. Layout Showing Suggested External Components,  
GND Plane and Thermal Vias  
6. Use vias to connect the GND copper area to the board’s  
internalgroundplane.LiberallydistributetheseGNDvias  
to provide both a good ground connection and thermal  
path to the internal planes of the printed circuit board.  
V terminals, but placing the electrolytic capacitor at the  
IN  
FIN terminals can improve the LTM8032’s EMI filtering as  
well as guard against overshoots caused by the Q of the  
integrated filter.  
Hot-Plugging Safely  
Thermal Considerations  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8032. However, these capacitors  
can cause problems if the LTM8032 is plugged into a live  
or fast rising or falling supply (see Linear Technology  
Application Note 88 for a complete discussion). The low  
loss ceramic capacitor combined with stray inductance in  
serieswiththepowersourceformsanunder-dampedtank  
The LTM8032 output current may need to be derated if it  
is required to operate in a high ambient temperature or  
deliveralargeamountofcontinuouspower.Theamountof  
current derating is dependent upon the input voltage, out-  
put power and ambient temperature. The derating curves  
given in the Typical Performance Characteristics section  
can be used as a guide. These curves were generated by a  
2
LTM8032 mounted to a 36cm 4-layer FR4 printed circuit  
circuit, and the voltage at the V pin of the LTM8032 can  
IN  
board. Boards of other sizes and layer count can exhibit  
differentthermalbehavior,soitisincumbentupontheuser  
to verify proper operation over the intended system’s line,  
load and environmental operating conditions.  
ring to twice the nominal input voltage, possibly exceed-  
ing the LTM8032’s rating and damaging the part. A similar  
phenomenoncanoccurinsidetheLTM8032module,atthe  
output of the integrated EMI filter, with the same potential  
of damaging the part.  
8032fa  
13  
LTM8032  
APPLICATIONS INFORMATION  
CLOSING SWITCH  
DANGER  
SIMULATES HOT PLUG  
V
IN  
I
IN  
20V/DIV  
LTM8032  
IN  
RINGING V MAY EXCEED  
ABSOLUTE MAXIMUM RATING  
V
IN  
+
4.7μF  
I
IN  
LOW  
STRAY  
10A/DIV  
IMPEDANCE  
ENERGIZED  
24V SUPPLY  
INDUCTANCE  
DUE TO 6 FEET  
(2 METERS) OF  
TWISTED PAIR  
20μs/DIV  
(5a)  
LTM8032  
0.7Ω  
V
IN  
20V/DIV  
V
IN  
+
0.1μF  
4.7μF  
I
IN  
10A/DIV  
20μs/DIV  
(5b)  
FIN  
LTM8032  
V
IN  
20V/DIV  
V
IN  
+
+
22μF  
35V  
AI.EI.  
4.7μF  
I
IN  
10A/DIV  
8032 F05  
20μs/DIV  
(5c)  
Figure 5. A Well Chosen Input Network Prevents Input Voltage Overshoot and Ensures  
Reliable Operation When the LTM8032 is Hot-Plugged to a Live Supply  
The die temperature of the LTM8032 must be lower than  
thermal resistance of the LTM8032 to the printed circuit  
board depends upon the layout of the circuit board, but  
the thermal resistance given in the Pin Configuration,  
as well as the internal temperature rise curves given in  
the Typical Performance Characteristics section, can be  
used a guide. Both the thermal resistance and internal  
the maximum rating of 125°C, so care should be taken  
in the layout of the circuit to ensure good heat sinking  
of the LTM8032. To estimate the junction temperature,  
approximate the power dissipation within the LTM8032 by  
applying the typical efficiency stated in this data sheet to  
the desired output power, or, if you have an actual module,  
by taking a power measurement. Then calculate the tem-  
perature rise of the LTM8032 junction above the surface  
of the printed circuit board by multiplying the module’s  
power dissipation by the thermal resistance. The actual  
2
temperature rise curves are based upon a 36cm 4-layer  
FR4 PC board.  
Finally, be aware that at high ambient temperatures the  
internalSchottkydiodewillhavesignificantleakagecurrent,  
increasing the input quiescent current of the LTM8032.  
8032fa  
14  
LTM8032  
TYPICAL APPLICATIONS  
0.82V Step-Down Converter  
V
OUT  
V
*
IN  
0.82V  
2A  
OUT  
AUX  
V
IN  
3.6VDC TO 24VDC  
200μF  
2.2μF  
FIN LTM8032  
RUN/SS  
BIAS  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
150k  
5.62M  
8032 TA02  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
1.8V Step-Down Converter  
V
1.8V  
2A  
OUT  
V
*
IN  
OUT  
AUX  
V
IN  
3.6VDC TO 24VDC  
100μF  
2.2μF  
FIN LTM8032  
RUN/SS  
BIAS  
SHARE  
PGOOD  
SYNC GND ADJ  
RT  
78.7k  
196k  
8032 TA03  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
8032fa  
15  
LTM8032  
TYPICAL APPLICATIONS  
2.5V Step-Down Converter  
V
2.5V  
2A  
OUT  
V
*
IN  
OUT  
AUX  
V
IN  
4.3VDC TO 36VDC  
47μF  
2.2μF  
FIN LTM8032  
RUN/SS  
3.3V  
BIAS  
SHARE  
PGOOD  
RT SYNC GND ADJ  
61.9k  
115k  
8032 TA04  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
3.3V Step-Down Converter  
V
3.3V  
2A  
OUT  
V
*
IN  
OUT  
V
IN  
5.5VDC TO 36VDC  
22μF  
FIN  
AUX  
RUN/SS  
2.2μF  
LTM8032  
BIAS  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
54.9k  
78.7k  
8032 TA08  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
5V Step-Down Converter  
V
5V  
2A  
OUT  
V
*
IN  
OUT  
V
IN  
7VDC TO 36VDC  
10μF  
FIN  
AUX  
RUN/SS  
2.2μF  
LTM8032  
BIAS  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
44.2k  
47.5k  
8032 TA05  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
8032fa  
16  
LTM8032  
TYPICAL APPLICATIONS  
8V Step-Down Converter  
V
8V  
2A  
OUT  
V
*
IN  
OUT  
V
IN  
10.5VDC TO 36VDC  
10μF  
FIN  
AUX  
RUN/SS  
2.2μF  
LTM8032  
BIAS  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
39.2k  
27.4k  
8032 TA06  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
Two LTM8032s Operating in Parallel  
V
3.3V  
3.5A  
OUT  
V
*
IN  
OUT  
V
IN  
5.5VDC TO 36VDC  
FIN  
AUX  
RUN/SS  
LTM8032  
BIAS  
2.2μF  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
54.9k  
40k  
OPTIONAL SYNC TIE TO  
GND IF NOT USED  
OUT  
V
IN  
47μF  
FIN  
AUX  
RUN/SS  
LTM8032  
BIAS  
2.2μF  
SHARE  
PGOOD  
RT  
SYNC GND ADJ  
8032 TA07  
54.9k  
*RUNNING VOLTAGE RANGE.  
SEE APPLICATIONS FOR START-UP DETAILS  
8032fa  
17  
LTM8032  
PACKAGE DESCRIPTION  
LGA Package  
71-Lead (15mm × 9mm × 2.82mm)  
(Reference LTC DWG # 05-08-1823 Rev Ø)  
2.670 – 2.970  
7
6
5
4
3
2
1
PAD 1  
Ø (0.635)  
aaa  
Z
A
B
C
D
E
F
PAD 1  
CORNER  
4
15.00  
BSC  
12.700  
BSC  
G
H
J
MOLD  
SUBSTRATE  
CAP  
0.27 – 0.37  
2.40 – 2.60  
K
L
1.270  
BSC  
DETAIL A  
PADS  
X
Y
1.27  
BSC  
SEE NOTES  
9.00  
BSC  
DETAIL A  
7.620  
BSC  
3
DETAIL A  
PACKAGE SIDE VIEW  
PACKAGE TOP VIEW  
PACKAGE BOTTOM VIEW  
0.635 0.025 SQ. 71x  
eee  
S X Y  
6.350  
DETAIL A  
5.080  
3.810  
2.540  
1.270  
0.000  
1.270  
2.540  
3.810  
NOTES:  
LTMXXXXXX  
μModule  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994  
COMPONENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
PIN 1  
3
4
LAND DESIGNATION PER JESD MO-222, SPP-010 AND SPP-020  
TRAY PIN 1  
BEVEL  
DETAILS OF PAD #1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.  
THE PAD #1 IDENTIFIER MAY BE EITHER A MOLD OR  
MARKED FEATURE  
PACKAGE IN TRAY LOADING ORIENTATION  
LGA 71 0108 REV  
Ø
5. PRIMARY DATUM -Z- IS SEATING PLANE  
6. THE TOTAL NUMBER OF PADS: 71  
SYMBOL TOLERANCE  
aaa  
bbb  
eee  
0.15  
0.10  
0.05  
5.080  
6.350  
SUGGESTED PCB LAYOUT  
TOP VIEW  
8032fa  
18  
LTM8032  
PACKAGE DESCRIPTION  
Table 2. LTM8032 Pinout (Sorted by Pin Number)  
PIN  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
C1  
C2  
C3  
C4  
C5  
C6  
C7  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
SIGNAL DESCRIPTION  
PIN  
F1  
SIGNAL DESCRIPTION  
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RT  
OUT  
OUT  
OUT  
OUT  
F2  
F3  
F4  
GND  
GND  
GND  
F5  
F6  
F7  
V
V
V
V
G1  
G2  
G3  
G4  
G5  
G6  
G7  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
J5  
OUT  
OUT  
OUT  
OUT  
GND  
GND  
GND  
V
V
V
V
GND  
GND  
GND  
BIAS  
AUX  
GND  
SHARE  
GND  
GND  
ADJ  
OUT  
OUT  
OUT  
OUT  
GND  
GND  
GND  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
J6  
J7  
K1  
K2  
K3  
K5  
K6  
K7  
L1  
L2  
L3  
L5  
L6  
L7  
V
V
IN  
IN  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
FIN  
GND  
GND  
PGOOD  
V
V
IN  
IN  
FIN  
RUN/SS  
SYNC  
GND  
8032fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTM8032  
PACKAGE PHOTOGRAPH  
RELATED PARTS  
PART NUMBER  
LTM4606  
DESCRIPTION  
COMMENTS  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
Ultralow Noise 6A DC/DC μModule  
≤ 5V, 15mm × 15mm × 2.8mm Package  
≤ 15V, 15mm × 15mm × 2.8mm Package  
OUT  
IN  
OUT  
LTM4612  
Ultralow Noise High V  
DC/DC μModule  
OUT  
5A, 5V ≤ V ≤ 36V, 3.3V ≤ V  
IN  
LTM8023  
36V, 2A DC/DC μModule  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 9mm × 11.75mm × 2.8mm Package  
IN  
OUT  
8032fa  
LT 0409 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTM8032MPVPBF

Ultralow Noise EMC Compliant 36V, 2A DC/DC μModule
Linear

LTM8033

Ultralow EMI 28VIN, 6A DC/DC μModule Regulator
Linear

LTM8033EV#PBF

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 76; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8033EV-PBF

Ultralow Noise EMC 36VIN, 3A DC/DC μModule Regulator
Linear

LTM8033EY#PBF

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 76; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8033IV#PBF

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 76; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8033IV-PBF

Ultralow Noise EMC 36VIN, 3A DC/DC μModule Regulator
Linear

LTM8033IY

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 76; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8033MPV#PBF

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: LGA; Pins: 76; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8033MPV-PBF

Ultralow Noise EMC 36VIN, 3A DC/DC μModule Regulator
Linear

LTM8033MPY

LTM8033 - Ultralow Noise EMC 36VIN, 3A DC/DC &#181;Module (Power Module) Regulator; Package: BGA; Pins: 76; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8040

36V, 1A μModule LED Driver
Linear