LTM8045MPY [Linear]

LTM8045 - Inverting or SEPIC µModule (Power Module) DC/DC Converter with Up to 700mA Output Current; Package: BGA; Pins: 40; Temperature Range: -55°C to 125°C;
LTM8045MPY
型号: LTM8045MPY
厂家: Linear    Linear
描述:

LTM8045 - Inverting or SEPIC µModule (Power Module) DC/DC Converter with Up to 700mA Output Current; Package: BGA; Pins: 40; Temperature Range: -55°C to 125°C

开关
文件: 总22页 (文件大小:342K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8045  
Inverting or SEPIC µModule  
DC/DC Converter with Up  
to 700mA Output Current  
DescripTion  
FeaTures  
n
SEPIC or Inverting Topology  
The LTM®8045 is a µModule® (micromodule) DC/DC  
converter that can be configured as a SEPIC or inverting  
converterbysimplygroundingtheappropriateoutputrail.  
In a SEPIC configuration the regulated output voltage can  
beabove,beloworequaltotheinputvoltage.TheLTM8045  
includes power devices, inductors, control circuitry and  
passive components. All that is needed to complete the  
design are input and output capacitors, and small resis-  
tors to set the output voltage and switching frequency.  
Other components may be used to control the soft-start  
and undervoltage lockout.  
n
n
Wide Input Voltage Range: 2.8V to 18V  
Up to 700mA Output Current at V = 12V,  
IN  
V
OUT  
= 2.5V or –2.5V  
n
Up to 375mA Output Current at V = 12V,  
IN  
V
OUT  
=15V or –15V  
n
n
n
n
n
2.5V to 15V or –2.5V to –15V Output Voltage  
Selectable Switching Frequency: 200kHz to 2MHz  
Programmable Soft-Start  
User Configurable Undervoltage Lockout  
6.25mm × 11.25mm × 4.92mm BGA Package  
The LTM8045 is packaged in a compact (6.25mm ×  
11.25mm)overmoldedballgridarray(BGA)packagesuit-  
able for automated assembly by standard surface mount  
equipment. The LTM8045 is available with SnPb (BGA)  
or RoHS compliant terminal finish.  
applicaTions  
n
Battery Powered Regulator  
n
Local Negative Voltage Regulator  
n
Low Noise Amplifier Power  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and PolyPhase are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
Typical applicaTion  
Use Two LTM8045s to Generate 5V  
LTM8045  
Maximum Output Current  
vs Input Voltage  
OUT  
V
V
IN  
V
V
OUT  
–5V  
IN  
2.8VDC TO 18VDC  
800  
700  
600  
500  
400  
300  
200  
100  
RUN  
SS  
4.7µF  
60.4k  
22µF  
RT  
FB  
+
SYNC  
V
OUT  
130k  
GND  
2ꢀ5V  
3ꢀ3V  
5V  
OUT  
OUT  
OUT  
LTM8045  
8V  
OUT  
V
V
V
12V  
15V  
IN  
OUT  
OUT  
OUT  
RUN  
SS  
2
4
6
8
10 12 14 16 18  
100µF  
INPUT VOLTAGE (V)  
FB  
+
8045 TA01b  
RT  
45.3k  
SYNC  
OUT  
115k  
V
OUT  
5V  
GND  
8045 TA01b  
8045fc  
1
For more information www.linear.com/LTM8045  
LTM8045  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
V , RUN ...................................................................20V  
IN  
5
4
3
2
1
RT, SYNC ....................................................................5V  
SS, FB......................................................................2.5V  
V
V
IN  
BANK 4  
OUT  
BANK 1  
GND  
+
+
V
V
(V  
(V  
= 0V)...................................................16V  
= 0V).................................................16V  
OUT  
OUT  
OUT  
FB  
BANK 3  
RUN  
OUT  
+
V
BANK 2  
OUT  
SYNC  
Maximum Internal Temperature ............................ 125°C  
Maximum Solder Temperature..............................250°C  
Storage Temperature.............................. –55°C to 125°C  
A
B
C
D
E
F
G
H
SS RT  
BGA PACKAGE  
40-LEAD (11.25mm × 6.25mm × 4.92mm)  
T
= 125°C, θ = 28.7°C/W, θ = 7.6°C/W,  
JMAX  
θ
JA  
JB  
= 40.3°C/W, θ  
= 10.5°C/W  
JCtop  
JCbottom  
θ VALUES DETERMINED PER JEDEC 51-9, 51-12  
WEIGHT = 0.9g  
orDer inForMaTion  
http://www.linear.com/product/LTM8045#orderinfo  
PART MARKING*  
PACKAGE  
MSL  
RATING  
TEMPERATURE RANGE  
(Note 2)  
PART NUMBER  
LTM8045EY#PBF  
LTM8045IY#PBF  
LTM8045IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
BGA  
BGA  
BGA  
BGA  
BGA  
LTM8045Y  
LTM8045Y  
LTM8045Y  
LTM8045Y  
LTM8045Y  
e1  
e1  
e0  
e1  
e0  
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LTM8045MPY#PBF  
LTM8045MPY  
SAC305 (RoHS)  
SnPb (63/37)  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
Terminal Finish Part Marking:  
www.linear.com/leadfree  
8045fc  
2
For more information www.linear.com/LTM8045  
LTM8045  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. RUN = 12V unless otherwise specified. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Input DC Voltage  
2.8  
18  
V
Positive Output DC Voltage  
I
I
= 0.7A, R = 15.4kΩ, V  
Grounded  
2.5  
15  
V
V
OUT  
OUT  
FB  
OUT  
= 0.375A, R =165kΩ, V  
Grounded  
FB  
OUT  
+
Negative Output DC Voltage  
I
I
= 0.7A, R = 30.0kΩ, V  
Grounded  
–2.5  
–15  
V
V
OUT  
OUT  
FB  
OUT  
+
= 0.375A, R =178kΩ, V  
Grounded  
FB  
OUT  
Continuous Output DC Current  
V
V
= 12V, V  
= 12V, V  
= 2.5V or –2.5V  
= 15V or –15V  
0.7  
0.375  
A
A
IN  
IN  
OUT  
OUT  
V
Quiescent Current  
V
= 0V  
0
10  
1
µA  
mA  
IN  
RUN  
Not Switching  
Line Regulation  
4V ≤ V ≤ 18V, I  
= 0.2A  
0.6  
0.2  
4
%
%
IN  
OUT  
Load Regulation  
0.01A ≤ I  
≤ 0.58A  
OUT  
Output RMS Voltage Ripple  
Input Short-Circuit Current  
Switching Frequency  
V
V
= 12V, V  
= 5V, I = 580mA, 100kHz to 4MHz  
OUT  
mV  
mA  
IN  
OUT  
+
= V  
= 0V, V = 12V  
200  
OUT  
OUT  
IN  
l
l
R = 45.3k  
1800  
180  
2000  
200  
2200  
220  
kHz  
kHz  
T
R = 464k  
T
l
l
Voltage at FB Pin (Positive Output)  
Voltage at FB Pin (Negative Output)  
1.195  
0
1.215  
5
1.235  
12  
V
mV  
l
l
Current into FB Pin (Positive Output)  
Current into FB Pin (Negative Output)  
81  
81  
83.3  
83.3  
86  
86.5  
µA  
µA  
RUN Pin Threshold Voltage  
RUN Pin Rising  
RUN Pin Falling  
1.32  
1.29  
1.385  
V
V
1.235  
9.7  
RUN Pin Current  
V
RUN  
V
RUN  
V
RUN  
= 3V  
= 1.3V  
= 0V  
40  
11.6  
0
60  
13.4  
0.1  
µA  
µA  
µA  
SS Sourcing Current  
SS = 0V  
5
8
13  
2000  
65  
µA  
kHz  
%
Synchronization Frequency Range  
Synchronization Duty Cycle  
SYNC Input Low Threshold  
SYNC Input High Threshold  
200  
35  
0.4  
V
1.3  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
full –55°C to 125°C internal operating temperature range. Note that  
the maximum internal temperature is determined by specific operating  
conditions in conjunction with board layout, the rated package thermal  
resistance and other environmental factors.  
Note 2: The LTM8045E is guaranteed to meet performance specifications  
from 0°C to 125°C. Specifications over the –40°C to 125°C internal  
temperature range are assured by design, characterization and correlation  
with statistical process controls. LTM8045I is guaranteed to meet  
specifications over the full –40°C to 125°C internal operating temperature  
range. The LTM8045MP is guaranteed to meet specifications over the  
Note 3: This μModule converter includes overtemperature protection that  
is intended to protect the device during momentary overload conditions.  
Internal temperature will exceed 125°C when overtemperature protection  
is active. Continuous operation above the specified maximum internal  
operating junction temperature may impair device reliability.  
8045fc  
3
For more information www.linear.com/LTM8045  
LTM8045  
Typical perForMance characTerisTics  
Efficiency  
2.5VOUT SEPIC  
Efficiency  
3.3VOUT SEPIC  
Efficiency  
5VOUT SEPIC  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V  
IN  
3.3V  
IN  
3.3V  
IN  
IN  
IN  
5V  
5V  
5V  
IN  
12V  
18V  
12V  
18V  
12V  
18V  
IN  
IN  
IN  
IN  
IN  
IN  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G01  
8045 G02  
8045 G03  
Efficiency  
8VOUT SEPIC  
Efficiency  
12VOUT SEPIC  
Efficiency  
15VOUT SEPIC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V  
IN  
3.3V  
IN  
IN  
IN  
5V  
5V  
5V  
12V  
18V  
IN  
IN  
IN  
12V  
18V  
12V  
18V  
IN  
IN  
IN  
IN  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G05  
8045 G04  
8045 G06  
Efficiency  
–2.5VOUT Inverting Converter  
Efficiency  
–3.3VOUT Inverting Converter  
Efficiency  
–5VOUT Inverting Converter  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V  
IN  
3.3V  
5V  
12V  
18V  
3.3V  
IN  
5V  
12V  
18V  
IN  
IN  
IN  
IN  
IN  
5V  
IN  
IN  
IN  
12V  
18V  
IN  
IN  
0
100 200 300 400 500 600 700  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G09  
8045 G07  
8045 G08  
8045fc  
4
For more information www.linear.com/LTM8045  
LTM8045  
Typical perForMance characTerisTics  
Efficiency  
–8VOUT Inverting Converter  
Efficiency  
–12VOUT Inverting Converter  
Efficiency  
–15VOUT Inverting Converter  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.3V  
IN  
3.3V  
IN  
IN  
IN  
5V  
5V  
5V  
12V  
18V  
IN  
IN  
IN  
12V  
18V  
12V  
IN  
IN  
IN  
18V  
IN  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G10  
8045 G11  
8045 G12  
Input Current vs Output Current,  
2.5VOUT SEPIC  
Input Current vs Output Current,  
3.3VOUT SEPIC  
Input Current vs Output Current,  
5VOUT SEPIC  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
3.3V  
IN  
3.3V  
IN  
3.3V  
IN  
IN  
IN  
5V  
5V  
5V  
12V  
18V  
IN  
IN  
IN  
12V  
18V  
12V  
18V  
IN  
IN  
IN  
IN  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G13  
8045 G14  
8045 G15  
Input Current vs Output Current,  
8VOUT SEPIC  
Input Current vs Output Current,  
12VOUT SEPIC  
Input Current vs Output Current,  
15VOUT SEPIC  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
5V  
IN  
3.3V  
IN  
3.3V  
IN  
12V  
18V  
5V  
IN  
5V  
IN  
IN  
IN  
IN  
IN  
12V  
IN  
12V  
18V  
IN  
18V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G18  
8045 G16  
8045 G17  
8045fc  
5
For more information www.linear.com/LTM8045  
LTM8045  
Typical perForMance characTerisTics  
Input Current vs Output Current,  
–2.5VOUT Inverting Converter  
Input Current vs Output Current,  
–3.3VOUT Inverting Converter  
Input Current vs Output Current,  
–5VOUT Inverting Converter  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
800  
700  
600  
500  
400  
300  
200  
100  
0
3.3V  
IN  
3.3V  
IN  
3.3V  
IN  
IN  
IN  
5V  
5V  
5V  
12V  
18V  
IN  
IN  
IN  
12V  
18V  
12V  
18V  
IN  
IN  
IN  
IN  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700 800  
0
100 200 300 400 500 600 700  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G19  
8045 G20  
8045 G21  
Input Current vs Output Current,  
–8VOUT Inverting Converter  
Input Current vs Output Current,  
–12VOUT Inverting Converter  
Input Current vs Output Current,  
–15VOUT Inverting Converter  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3.3V  
IN  
3.3V  
IN  
5V  
IN  
IN  
5V  
IN  
5V  
12V  
IN  
12V  
IN  
12V  
18V  
18V  
IN  
IN  
IN  
18V  
IN  
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G22  
8045 G23  
8045 G23  
Input Current vs Input Voltage,  
5mA Load  
Input Current vs Input Voltage,  
Output Shorted  
Output Current vs Input Voltage,  
Output Shorted  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
550  
500  
450  
400  
350  
300  
250  
200  
150  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
15V  
12V  
OUT  
OUT  
8V  
5V  
OUT  
OUT  
3ꢀ3V  
2ꢀ5V  
OUT  
OUT  
2
4
6
8
10 12 14 16 18  
2
4
6
8
10 12 14 16 18  
2
4
6
8
10 12 14 16 18  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
8045 G25  
8045 G26  
8045 G27  
8045fc  
6
For more information www.linear.com/LTM8045  
LTM8045  
Typical perForMance characTerisTics  
Minimum Required Input Voltage  
vs Output Current  
Maximum Output Current  
vs Input Voltage  
Internal Temperature Rise vs Output  
Current, 2.5VOUT SEPIC  
18  
16  
14  
12  
10  
8
800  
700  
600  
500  
400  
300  
200  
100  
30  
25  
20  
15  
10  
5
±15V  
OUT  
18V  
IN  
±12V  
OUT  
12V  
IN  
±8V  
OUT  
5V  
IN  
±5V  
±±3±V  
±235V  
3.3V  
IN  
OUT  
OUT  
OUT  
2ꢀ5V  
3ꢀ3V  
OUT  
OUT  
6
5V  
8V  
12V  
15V  
OUT  
OUT  
4
OUT  
OUT  
2
0
0
200  
400  
600  
800  
2
4
6
8
10 12 14 16 18  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
8045 G28  
8045 G29  
8045 G30  
Internal Temperature Rise vs Output  
Current, 3.3VOUT SEPIC  
Internal Temperature Rise vs Output  
Current, 5VOUT SEPIC  
Internal Temperature Rise vs Output  
Current, 8VOUT SEPIC  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
18V  
IN  
18V  
IN  
18V  
IN  
12V  
IN  
12V  
IN  
12V  
IN  
5V  
IN  
5V  
IN  
5V  
IN  
3.3V  
IN  
3.3V  
IN  
3.3V  
IN  
0
0
0
0
100 200 300 400 500 600 700  
0
100 200 300 400 500 600 700 800  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G32  
8045 G31  
8045 G33  
Internal Temperature Rise  
vs Output Current, –2.5VOUT  
Inverting Converter  
Internal Temperature Rise vs Output  
Current, 12VOUT SEPIC  
Internal Temperature Rise vs Output  
Current, 15VOUT SEPIC  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
18V  
12V  
IN  
3.3V  
18V  
12V  
IN  
IN  
IN  
IN  
5V  
5V  
IN  
IN  
18V  
IN  
IN  
12V  
5V  
IN  
3.3V  
IN  
0
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G34  
8045 G35  
8045 G36  
8045fc  
7
For more information www.linear.com/LTM8045  
LTM8045  
Typical perForMance characTerisTics  
Internal Temperature Rise  
vs Output Current, –3.3VOUT  
Inverting Converter  
Internal Temperature Rise  
vs Output Current, –5VOUT  
Inverting Converter  
Internal Temperature Rise  
vs Output Current, –8VOUT Inverting  
Converter  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
18V  
12V  
5V  
18V  
12V  
5V  
18V  
IN  
IN  
IN  
IN  
IN  
12V  
IN  
5V  
IN  
3.3V  
IN  
IN  
IN  
3.3V  
3.3V  
IN  
IN  
0
0
0
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G37  
8045 G38  
8045 G39  
Internal Temperature Rise  
vs Output Current, –12VOUT  
Inverting Converter  
Internal Temperature Rise  
vs Output Current, –15VOUT  
Inverting Converter  
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
18V  
12V  
IN  
3.3V  
IN  
IN  
18V  
IN  
12V  
IN  
5V  
5V  
IN  
IN  
0
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
8045 G40  
8045 G41  
8045fc  
8
For more information www.linear.com/LTM8045  
LTM8045  
pin FuncTions  
V
(Bank 1): V  
is the negative output of the  
SYNC (Pin E1): To synchronize the switching frequency  
to an outside clock, simply drive this pin with a clock. The  
high voltage level of the clock needs to exceed 1.3V, and  
the low level should be less than 0.4V. Drive this pin to  
less than 0.4V to revert to the internal free running clock.  
Ground this pin if the SYNC function is not used. See the  
Applications Information section for more information.  
OUT  
OUT  
+
LTM8045. Apply an external capacitor between V  
and  
OUT  
V
. Tie this net to GND to configure the LTM8045 as  
OUT  
a positive output SEPIC regulator.  
+
+
V
OUT  
(Bank 2): V  
is the positive output of the  
OUT  
+
LTM8045. Apply an external capacitor between V  
and  
OUT  
V
. Tie this net to GND to configure the LTM8045 as  
OUT  
a negative output inverting regulator.  
SS(PinF1):Placeasoft-startcapacitorhere.Uponstart-up,  
the SS pin will be charged by a (nominally) 275k resistor  
to about 2.2V.  
GND (Bank 3): Tie these GND pins to a local ground plane  
below the LTM8045 and the circuit components. GND  
+
MUST BE CONNECTED EITHER TO V  
OR V  
FOR  
RT (Pin G1): The RT pin is used to program the switching  
frequency of the LTM8045 by connecting a resistor from  
this pin to ground. The necessary resistor value for the  
OUT  
OUT  
PROPER OPERATION. In most applications, the bulk of  
the heat flow out of the LTM8045 is through these pads,  
so the printed circuit design has a large impact on the  
thermal performance of the part. See the PCB Layout and  
Thermal Considerations sections for more details. Return  
LTM8045isdeterminedbytheequationR =(91.9/f )1,  
T
OSC  
where f  
T
is the typical switching frequency in MHz and  
R is in kΩ. Do not leave this pin open.  
OSC  
the feedback divider (R ) to this net.  
FB  
RUN (Pin G3): This pin is used to enable/disable the chip  
and restart the soft-start sequence. Drive below 1.235V  
to disable the chip. Drive above 1.385V to activate chip  
and restart the soft-start sequence. Do not float this pin.  
V (Bank4):TheV pinsuppliescurrenttotheLTM8045’s  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor.  
FB (Pin A3): If configured as a SEPIC, the LTM8045  
regulates its FB pin to 1.215V. Apply a resistor between  
+
FB and V  
. Its value should be R = [(V  
– 1.215)/  
OUT  
FB  
OUT  
0.0833]kΩ. If the LTM8045 is configured as an inverting  
converter,theLTM8045regulatestheFBpinto5mV.Apply  
a resistor between FB and V  
+ 0.005)/0.0833]kΩ.  
of value R = [(|V  
|
OUT  
FB  
OUT  
8045fc  
9
For more information www.linear.com/LTM8045  
LTM8045  
block DiagraM  
+
V
IN  
V
OUT  
OUT  
10µH  
10µH  
2µF  
1µF  
0.1µF  
V
RUN  
SS  
FB  
CURRENT  
MODE  
CONTROLLER  
SYNC  
RT  
GND  
8045 BD  
8045fc  
10  
For more information www.linear.com/LTM8045  
LTM8045  
operaTion  
The LTM8045 is a stand-alone switching DC/DC converter  
that may be configured either as a SEPIC (single-ended  
primary inductance converter) or inverting power supply  
to an external source, drive a valid signal source into the  
SYNC pin. An R resistor is required whether or not a  
T
SYNC signal is applied. See the Applications Information  
section for more details.  
+
simply by tying V  
or V  
to GND, respectively.  
OUT  
OUT  
It accepts an input voltage up to 18VDC. The output is  
adjustable between 2.5V and 15V for the SEPIC, and  
between –2.5V and –15V for the inverting configuration.  
The LTM8045 also features RUN and SS pins to control  
the start-up behavior of the device. The RUN pin may also  
be used to implement an accurate undervoltage lockout  
function by applying just one or two resistors.  
The LTM8045 can provide 700mA at V = 12V when V  
IN  
OUT  
= 2.5V or –2.5V.  
The LTM8045 is equipped with a thermal shutdown to  
protectthedeviceduringmomentaryoverloadconditions.  
It is set above the 125°C absolute maximum internal tem-  
perature rating to avoid interfering with normal specified  
operation, so internal device temperatures will exceed  
the absolute maximum rating when the overtemperature  
protection is active. Therefore, continuous or repeated  
activation of the thermal shutdown may impair device  
reliability.  
As shown in the Block Diagram, the LTM8045 contains a  
current mode controller, power switching element, power  
coupled inductor, power Schottky diode and a modest  
amount of input and output capacitance. The LTM8045  
is a fixed frequency PWM converter.  
The LTM8045 switching can free run by applying a resis-  
tor to the RT pin or synchronize to an external source at  
a frequency between 200kHz and 2MHz. To synchronize  
8045fc  
11  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
For most applications, the design process is straight  
forward, summarized as follows:  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitudes, polarity and other factors. Please refer to the  
graphs in the Typical Performance Characteristics section  
for guidance.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. Apply the recommended C , C , R and R values.  
IN OUT FB  
T
Themaximumfrequency(andattendantR value)atwhich  
T
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
the LTM8045 should be allowed to switch is given in  
Table 1 in the f  
column, while the recommended fre-  
MAX  
quency(andR value)foroptimalefficiencyoverthegiven  
T
input condition is given in the f  
column.  
OPTIMAL  
Table 1. Recommended Component Values and Configuration  
(TA = 25°C. See the Typical Performance Characteristics for Load Conditions)  
SEPIC Topology  
V
(V)  
V
(V)  
C
C
R
FB  
(k)  
f
R
(k)  
f
(MHz)  
R
T(MIN)  
(k)  
IN  
OUT  
IN  
OUT  
OPTIMAL  
T(OPTIMAL)  
MAX  
2.8 to 18  
2.8 to 18  
2.8 to 18  
2.8 to 18  
2.8 to 18  
4.5 to 18  
2.5  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
100µF, 6.3V, 1210  
100µF, 6.3V, 1210  
100µF, 6.3V, 1210  
47µF, 10V, 1210  
22µF, 16V, 1210  
22µF, 25V, 1210  
15.4  
24.9  
45.3  
80.6  
130  
600kHz  
700kHz  
800kHz  
1MHz  
154  
1.3  
69.8  
3.3  
5
130  
115  
1.5  
2
60.4  
45.3  
45.3  
45.3  
45.3  
8
90.9  
75.0  
60.4  
2
12  
15  
1.2MHz  
1.5MHz  
2
165  
2
Inverting Topology  
(V)  
V
V
(V)  
C
C
R
FB  
(k)  
f
R
(k)  
f
(MHz)  
R
T(MIN)  
(k)  
IN  
OUT  
IN  
OUT  
OPTIMAL  
T(OPTIMAL)  
MAX  
2.8 to 18  
2.8 to 18  
2.8 to 18  
2.8 to 18  
2.8 to 18  
4.5 to 18  
–2.5  
–3.3  
–5  
4.7µF, 25V, 0805  
4.7µF, 25V, 0805  
4.7µF, 25V, 0805  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
4.7µF, 25V, 1206  
47µF, 6.3V, 1206  
47µF, 6.3V, 1206  
22µF, 6.3V, 1206  
22µF, 10V, 1206  
10µF, 16V, 1206  
4.7µF, 25V, 1206  
30.1  
600kHz  
154  
1.3  
1.5  
2
69.8  
39.2  
60.4  
95.3  
143  
650kHz  
700kHz  
1MHz  
140  
130  
60.4  
45.3  
45.3  
45.3  
45.3  
–8  
90.9  
75.0  
60.4  
2
–12  
–15  
1.2MHz  
1.5MHz  
2
178  
2
8045fc  
12  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
Setting Output Voltage  
When the SYNC pin is driven low (< 0.4V), the frequency  
of operation is set by the resistor from RT to ground. The  
T
The output voltage is set by connecting a resistor (R )  
FB  
to  
R value is calculated by the following equation:  
+
from V  
to the FB pin for a SEPIC and from V  
OUT  
OUT  
91.9  
fOSC  
the FB pin for an inverting converter. R is determined  
FB  
RT =  
1  
from the equation R = [(V  
– 1.215)/0.0833]kΩ for  
FB  
OUT  
a SEPIC and from R = [(|V | + 0.005)/0.0833]kΩ for  
FB  
OUT  
an inverting converter.  
where f  
is the typical switching frequency in MHz and  
OSC  
R is in kΩ.  
T
Capacitor Selection Considerations  
The C and C capacitor values in Table 1 are the  
Switching Frequency Trade-Offs  
IN  
OUT  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
ItisrecommendedthattheuserapplytheoptimalR value  
T
given in Table 1 for the corresponding input and output  
operatingcondition. Systemlevelorotherconsiderations,  
however, may necessitate another operating frequency.  
While the LTM8045 is flexible enough to accommodate a  
widerangeofoperatingfrequencies,ahaphazardlychosen  
one may result in undesirable operation under certain op-  
eratingorfaultconditions. Afrequencythatistoohighcan  
reduceefficiency,generateexcessiveheatorevendamage  
the LTM8045 in some fault conditions. A frequency that  
is too low can result in a final design that has too much  
output ripple or too large of an output capacitor.  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
Switching Frequency Synchronization  
Theswitchingfrequencycanbesynchronizedtoanexternal  
clocksource.To synchronizetotheexternalsource,simply  
provide a digital clock signal at the SYNC pin. Switching  
will occur at the SYNC clock frequency. Drive SYNC low  
and the switching frequency will revert to the internal  
free-running oscillator after a few clock periods.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8045. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8045 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
Switching will stop if SYNC is driven high.  
The duty cycle of SYNC must be between 35% and 65%  
for proper operation. Also, the frequency of the SYNC  
signal must meet the following two criteria:  
1. SYNC may not toggle outside the frequency range of  
200kHz to 2MHz unless it is stopped low to enable the  
free-running oscillator.  
Programming Switching Frequency  
TheLTM8045hasanoperationalswitchingfrequencyrange  
between 200kHz and 2MHz. The free running frequency is  
programmed with an external resistor from the RT pin to  
ground.Donotleavethispinopenunderanycircumstance.  
2. The SYNC frequency can always be higher than the  
free-running oscillator frequency, f , but should not  
OSC  
be less than 25% below f  
(f  
is set by R ).  
OSC OSC T  
8045fc  
13  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
Soft-Start  
The RUN pin has a voltage hysteresis with typical thresh-  
olds of 1.32V (rising) and 1.29V (falling) and an internal  
circuit that draws typically 11.6µA at the RUN threshold.  
The LTM8045 soft-start function controls the slew rate  
of the power supply output voltage during start-up. A  
controlled output voltage ramp minimizes output voltage  
This makes R  
optional, allowing UVLO implemen-  
UVLO2  
tation with a single resistor. Resistor R  
is optional.  
UVLO2  
overshoot, reduces inrush current from the V supply,  
IN  
R
canbeincludedtoreducetheoverallUVLOvoltage  
UVLO2  
and facilitates supply sequencing. A capacitor connected  
from the SS pin to GND programs the slew rate. In the  
event of a commanded shutdown or lockout (RUN pin),  
internal undervoltage lockout or a thermal shutdown, the  
soft-start capacitor is automatically discharged before  
chargingresumes,thusassuringthatthesoft-startoccurs  
when the LTM8045 restarts. The soft-start time is given  
by the equation:  
variation caused by variations in the RUN pin current (see  
the Electrical Characteristics section). A good choice for  
R
UVLO2  
R
UVLO1  
is ≤10k 1%. After choosing a value for R  
can be determined from either of the following:  
,
UVLO2  
V
IN(RISING) 1.32V  
RUVLO1  
=
1.32V  
+11.6µA  
RUVLO2  
t
= C /5.45,  
SS  
SS  
or  
where C is in µF and t is in seconds.  
V
IN(FALLING) 1.29V  
SS  
SS  
RUVLO1  
=
1.29V  
Configurable Undervoltage Lockout  
+11.6µA  
RUVLO2  
Figure 1 shows how to configure an undervoltage lock-  
out (UVLO) for the LTM8045. Typically, UVLO is used in  
situations where the input supply is current-limited, has  
a relatively high source resistance, or ramps up/down  
slowly. A switching regulator draws constant power from  
the source, so source current increases as source voltage  
drops. This looks like a negative resistance load to the  
source and can cause the source to current-limit or latch  
low under low source voltage conditions. UVLO prevents  
the regulator from operating at source voltages where  
these problems might occur.  
where V  
and V  
are the V threshold  
IN(FALLING) IN  
IN(RISING)  
voltages when rising or falling, respectively.  
For example, to disable the LTM8045 for V voltages  
below3.5Vusingthesingleresistorconfiguration,choose:  
IN  
3.5V 1.29V  
RUVLO1  
=
= 191k  
1.29V  
+11.6µA  
To activate the LTM8045 for V voltage greater than 4.5V  
using the two resistor configuration, choose R  
10k and:  
IN  
=
UVLO2  
V
IN  
V
IN  
4.5V 1.32V  
LTM8045  
RUVLO1  
=
= 22.1k  
1.32V  
R
R
UVLO1  
UVLO2  
+11.6µA  
10k  
RUN  
Internal Undervoltage Lockout  
The LTM8045 monitors the V supply voltage in case V  
IN  
IN  
GND  
drops below a minimum operating level (typically about  
2.3V). When V is detected low, the power switch is  
8045 F01  
IN  
deactivated, and while sufficient V voltage persists, the  
IN  
soft-startcapacitorisdischarged.AfterV isdetectedhigh,  
IN  
Figure 1. The RUN Pin May Be Used  
to Implement an Accurate UVLO  
the LTM8045 will reactivate and the soft-start capacitor  
will begin charging.  
8045fc  
14  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
Thermal Shutdown  
6. Use vias to connect the GND copper area to the board’s  
internal ground planes. Liberally distribute these GND  
vias to provide both a good ground connection and  
thermal path to the internal planes of the printed circuit  
board. Pay attention to the location and density of the  
thermal vias in Figures 2 and 3. The LTM8045 can  
benefit from the heat sinking afforded by vias that con-  
nect to internal GND planes at these locations, due to  
theirproximitytointernalpowerhandlingcomponents.  
The optimum number of thermal vias depends upon  
the printed circuit board design. For example, a board  
might use very small via holes. It should employ more  
thermal vias than a board that uses larger holes.  
If the part is too hot, the LTM8045 engages its thermal  
shutdown, terminates switching and discharges the soft-  
startcapacitor.Whentheparthascooled,thepartautomati-  
cally restarts. This thermal shutdown is set to engage at  
temperaturesabovethe125°Cabsolutemaximuminternal  
operating rating to ensure that it does not interfere with  
functionality in the specified operating range. This means  
that internal temperatures will exceed the 125°C absolute  
maximum rating when the overtemperature protection is  
active, possibly impairing the device’s reliability.  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8045. The LTM8045 is neverthe-  
less a switching power supply, and care must be taken to  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 2  
for the suggested layout of the inverting topology applica-  
tion and Figure 3 for the suggested layout of the SEPIC  
topology application. Ensure that the grounding and heat  
sinking are acceptable.  
V
GND  
V
IN  
OUT  
C
IN  
R
FB  
RUN  
FB  
C
OUT  
RT  
GND  
GND  
R
T
8045 F02  
GROUND, THERMAL VIAS  
A few rules to keep in mind are:  
Figure 2. Layout Showing Suggested External  
Components, GND Plane and Thermal Vias for  
the Inverting Topology Application  
1. Place the R and R resistors as close as possible to  
FB  
T
their respective pins.  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
GND  
V
IN  
and GND connection of the LTM8045.  
C
IN  
3. Place the Cout capacitor as close as possible to the  
+
V
and V  
connections of the LTM8045.  
OUT  
OUT  
FB  
RUN  
4. Place the C and C  
capacitors such that their  
OUT  
IN  
C
OUT  
ground currents flow directly adjacent or underneath  
R
FB  
the LTM8045.  
RT  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8045.  
GND  
R
+
T
V
OUT  
8045 F03  
GROUND, THERMAL VIAS  
Figure 3. Layout Showing Suggested External  
Components, GND Plane and Thermal Vias  
for the SEPIC Topology Application  
8045fc  
15  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
Hot-Plugging Safely  
ThethermalresistancenumberslistedinthePinConfigura-  
tion section of the data sheet are based on modeling the  
µModule package mounted on a test board specified per  
JESD 51-9 (“Test Boards for Area Array Surface Mount  
PackageThermalMeasurements”).Thethermalcoefficients  
provided in this page are based on JESD 51-12 (“Guide-  
lines for Reporting and Using Electronic Package Thermal  
Information”).  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of the LTM8045. However, these capaci-  
tors can cause problems if the LTM8045 is plugged into a  
live input supply (see Application Note 88 for a complete  
discussion).Thelowlossceramiccapacitorcombinedwith  
stray inductance in series with the power source forms an  
underdamped tank circuit, and the voltage at the V pin  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, the Pin Configuration section of the data sheet  
typically gives four thermal coefficients:  
IN  
of the LTM8045 can ring to more than twice the nominal  
input voltage, possibly exceeding the LTM8045’s rating  
and damaging the part. If the input supply is poorly con-  
trolled or the user will be plugging the LTM8045 into an  
energized supply, the input network should be designed  
to prevent this overshoot. This can be accomplished by  
θ – Thermal resistance from junction to ambient  
JA  
θ  
– Thermal resistance from junction to the  
JCbottom  
bottom of the product case  
installing a small resistor in series with V , but the most  
IN  
popular method of controlling input voltage overshoot is  
θ – Thermal resistance from junction to top of the  
JCtop  
to add an electrolytic bulk capacitor to the V net. This  
IN  
product case  
capacitor’s relatively high equivalent series resistance  
damps the circuit and eliminates the voltage overshoot.  
The extra capacitor improves low frequency ripple filter-  
ing and can slightly improve the efficiency of the circuit,  
though it is physically large.  
θ – Thermal resistance from junction to the printed  
JB  
circuit board.  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
Thermal Considerations  
The LTM8045 output current may need to be derated if  
it is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Character-  
istics section can be used as a guide. These curves were  
θ is the natural convection junction-to-ambient air  
JA  
thermal resistance measured in a one cubic foot sealed  
enclosure.Thisenvironmentissometimesreferredtoas  
“still air” although natural convection causes the air to  
move.Thisvalueisdeterminedwiththepartmountedto  
a JESD 51-9 defined test board, which does not reflect  
an actual application or viable operating condition.  
2
generated by a LTM8045 mounted to a 25.8cm 4-layer  
θ  
isthethermalresistancebetweenthejunction  
JCbottom  
FR4 printed circuit board with a copper thickness of 2oz  
for the top and bottom layer and 1oz for the inner layers.  
Boards of other sizes and layer count can exhibit differ-  
ent thermal behavior, so it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental operating conditions.  
and bottom of the package with all of the component  
power dissipation flowing through the bottom of the  
package. In the typical µModule converter, the bulk of  
the heat flows out the bottom of the package, but there  
is always heat flow out into the ambient environment.  
As a result, this thermal resistance value may be useful  
for comparing packages but the test conditions don’t  
generally match the user’s application.  
8045fc  
16  
For more information www.linear.com/LTM8045  
LTM8045  
applicaTions inForMaTion  
θ  
is determined with nearly all of the component  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
JCtop  
power dissipation flowing through the top of the pack-  
age.AstheelectricalconnectionsofthetypicalµModule  
converter are on the bottom of the package, it is rare  
for an application to operate such that most of the heat  
flows from the junction to the top of the part. As in the  
caseofθ  
,thisvaluemaybeusefulforcomparing  
JCbottom  
packages but the test conditions don’t generally match  
A graphical representation of these thermal resistances  
is given in Figure 4.  
the user’s application.  
θ is the junction-to-board thermal resistance where  
JB  
The blue resistances are contained within the µModule  
converter, and the green are outside.  
almost all of the heat flows through the bottom of the  
µModule converter and into the board, and is really  
The die temperature of the LTM8045 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8045. The bulk of the heat flow out of the LTM8045  
is through the bottom of the μModule converter and the  
BGA pads into the printed circuit board. Consequently a  
poor printed circuit board design can cause excessive  
heating, resulting in impaired performance or reliability.  
Please refer to the PCB Layout section for printed circuit  
board design suggestions.  
the sum of the θ  
and the thermal resistance  
JCbottom  
of the bottom of the part through the solder joints and  
throughaportionoftheboard.Theboardtemperatureis  
measured a specified distance from the package, using  
a two-sided, two layer board. This board is described  
in JESD 51-9.  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule converter. Thus, none  
of them can be individually used to accurately predict the  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
AMBIENT  
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
BOARD-TO-AMBIENT  
RESISTANCE  
RESISTANCE  
8045 F04  
µMODULE DEVICE  
Figure 4.  
8045fc  
17  
For more information www.linear.com/LTM8045  
LTM8045  
Typical applicaTions  
–5V Inverting Converter  
Maximum Output Current vs Input Voltage  
–5VOUT Inverting Converter  
650  
LTM8045  
600  
550  
500  
450  
400  
350  
300  
V
V
V
IN  
OUT  
V
V
OUT  
IN  
2.8VDC TO  
18VDC  
–5V  
RUN  
SS  
4.7µF  
130k  
60.4k  
22µF  
RT  
FB  
+
SYNC  
OUT  
GND  
8045 TA02  
2
4
6
8
10 12 14 16 18  
INPUT VOLTAGE (V)  
8045 TA02b  
–5V Inverting Converter with Added Output Filter  
Output Ripple and Noise  
LTM8045  
MPZ1608S601A  
FERRITE BEAD  
V
V
IN  
OUT  
V
V
OUT  
IN  
12VDC  
–5V  
580mA  
RUN  
SS  
4.7µF  
60.4k  
200µV/DIV  
22µF  
10µF  
RT  
FB  
+
SYNC  
V
OUT  
130k  
GND  
8045 TA03  
8045 TA03b  
500ns/DIV  
MEASURED PER AN70,  
USING HP461A AMPLIFIER,  
150MHz BW  
–12V Inverting Converter  
LTM8045  
V
V
V
IN  
OUT  
V
V
OUT  
IN  
2.8VDC TO  
18VDC  
–12V  
RUN  
SS  
4.7µF  
75.0k  
143k  
10µF  
RT  
FB  
+
SYNC  
OUT  
GND  
8045 TA04  
8045fc  
18  
For more information www.linear.com/LTM8045  
LTM8045  
package DescripTion  
Table 2. Pin Assignment Table (Arranged by Pin Number)  
PIN NUMBER  
FUNCTION  
PIN NUMBER  
FUNCTION  
PIN NUMBER  
FUNCTION  
GND  
PIN NUMBER  
FUNCTION  
GND  
+
+
A1  
A2  
A3  
A4  
A5  
V
V
B1  
B2  
B3  
B4  
B5  
V
OUT  
V
OUT  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
OUT  
+
+
GND  
GND  
OUT  
FB  
GND  
GND  
GND  
V
V
V
GND  
GND  
OUT  
OUT  
OUT  
OUT  
V
GND  
GND  
E1  
E2  
E3  
E4  
E5  
SYNC  
GND  
GND  
GND  
GND  
F1  
F2  
F3  
F4  
F5  
SS  
G1  
G2  
G3  
G4  
G5  
RT  
H1  
H2  
H3  
H4  
H5  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RUN  
V
IN  
V
IN  
V
V
IN  
IN  
package phoTo  
8045fc  
19  
For more information www.linear.com/LTM8045  
LTM8045  
package DescripTion  
Please refer to http://www.linear.com/product/LTM8045#packaging for the most recent package drawings.  
/ / b b b  
Z
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7
0 . 0 0 0  
1 . 2 7 0  
2 . 5 4 0  
8045fc  
20  
For more information www.linear.com/LTM8045  
LTM8045  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
02/13 Output voltage maximum: changed from 16V and –16V to 15V and –15V, respectively  
02/14 Add SnPb BGA package option  
1
B
1, 2  
12  
C
10/16 Table 1: changed from R to R  
ADJ FB  
8045fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
21  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM8045  
Typical applicaTion  
12V SEPIC Converter  
Maximum Output Current vs Input  
Voltage 12VOUT SEPIC  
500  
450  
400  
350  
300  
250  
200  
150  
LTM8045  
V
V
V
IN  
OUT  
V
IN  
2.8VDC TO 18VDC  
RUN  
SS  
4.7µF  
75.0k  
22µF  
FB  
+
RT  
130k  
SYNC  
OUT  
V
OUT  
12V  
GND  
8045 TA05  
2
4
6
8
10 12 14 16 18  
INPUT VOLTAGE (V)  
8045 TA05b  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTM8047  
LTM8048  
LTM8025  
LTM8033  
LTM8026  
LTM8027  
LTM4613  
LTM8061  
1.5W, 725VDC Isolated μModule Regulator  
1.5W Output Power, 3.1V ≤ V ≤ 32V, 2.5V ≤ V  
≤ 12V,  
≤ 12V,  
IN  
OUT  
9mm × 11.25mm × 4.92mm BGA Package  
1.5W, 725VDC Isolated μModule Regulator with  
Integrated Low Noise Post Regulator  
1.5W Output Power, 3.1V ≤ V ≤ 32V, 1.2V ≤ V  
IN  
OUT  
1mV Output Ripple, 9mm × 11.25mm × 4.92mm BGA Package  
P-P  
36V , 3A Step-Down μModule Regulator  
3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 24V, Synchronizable,  
IN  
IN  
OUT  
9mm × 15mm × 4.32mm LGA Package  
36V, 3A EN55022 Class B Certified DC/DC Step-Down  
μModule Regulator  
3.6V ≤ V ≤ 36V, 0.8V ≤ V ≤ 24V, Synchronizable,  
IN  
OUT  
11.25mm × 15mm × 4.3mm LGA  
36V , 5A Step-Down μModule Regulator with  
6V ≤ V ≤ 36V, 1.2V ≤ V ≤ 24V, Adjustable Current Limit,  
IN  
IN  
OUT  
Adjustable Current Limit  
Synchronizable, 11.25mm × 15mm × 2.82mm LGA  
60V , 4A DC/DC Step-Down μModule Regulator  
4.5V ≤ V ≤ 60V, 2.5V ≤ V ≤ 24V, Synchronizable,  
IN  
IN  
OUT  
15mm × 15mm × 4.3mm LGA  
≤ 15V, 5V ≤ V ≤ 36V, PLL Input, V Tracking and Margining,  
OUT  
36V , 8A EN55022 Class B Certified DC/DC Step-Down 3.3V ≤ V  
IN  
OUT  
IN  
μModule Regulator  
15mm × 15mm × 4.3mm LGA  
32V, 2A Step-Down μModule Battery Charger with  
Programmable Input Current Limit  
Suitable for CC-CV Charging Single and Dual Cell Li-Ion or Li-Poly Batteries,  
4.95V ≤ V ≤ 32V, C/10 or Adjustable Timer Charge Termination, NTC  
IN  
Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA  
LTM8062A  
32V, 2A Step-Down μModule Battery Charger with  
Integrated Maximum Peak Power Tracking (MPPT) for  
Solar Applications  
Suitable for CC-CV Charging Method Battery Chemistries (Li-Ion, Li-Poly,  
Lead-Acid, LiFePO ), User adjustable MPPT servo voltage, 4.95V ≤ V  
4
IN  
32V, 3.3V ≤ V  
≤ 18.8V Adjustable, C/10 or Adjustable Timer Charge  
BATT  
Termination, NTC Resistor Monitor Input, 9mm × 15mm × 4.32mm LGA  
2
LTC2978  
LTC2974  
LTC3880  
Octal Digital Power Supply Manager with EEPROM  
Quad Digital Power Supply Manager with EEPROM  
I C/PMBus Interface, Configuration EEPROM, Fault Logging, 16-Bit ADC with  
0.25% TUE, 3.3V to 15V Operation  
2
I C/PMBus Interface, Configuration EEPROM, Fault Logging, Per Channel  
Voltage, Current and Temperature Measurements  
Dual Output PolyPhase® Step-Down DC/DC Controller  
with Digital Power System Management  
I C/PMBus Interface, Configuration EEPROM, Fault Logging, 0.5% Output  
Voltage, Accuracy, MOSFET Gate Drivers  
2
8045fc  
LT 1116 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
LINEAR TECHNOLOGY CORPORATION 2013  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM8045  

相关型号:

LTM8045MPY#PBF

LTM8045 - Inverting or SEPIC &#181;Module (Power Module) DC/DC Converter with Up to 700mA Output Current; Package: BGA; Pins: 40; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8046

Dual SEPIC or Inverting Module DC DC Converter
Linear System

LTM8046

Dual SEPIC or Inverting μModule DC/DC Converter
Linear

LTM8046EY#PBF

LTM8046 - 3.1VIN to 31VIN, 2kVAC Isolated DC/DC &#181;Module (Power Module) Converter; Package: BGA; Pins: 51; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8046IY

LTM8046 - 3.1VIN to 31VIN, 2kVAC Isolated DC/DC &#181;Module (Power Module) Converter; Package: BGA; Pins: 51; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8046IY#PBF

LTM8046 - 3.1VIN to 31VIN, 2kVAC Isolated DC/DC &#181;Module (Power Module) Converter; Package: BGA; Pins: 51; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8046_15

Isolated DC/DC Module Converter
Linear

LTM8047

3.1VIN to 32VIN Isolated μModule DC/DC Converter
Linear

LTM8047IY

LTM8047 - 3.1VIN to 32VIN Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 45; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM8047MPY

LTM8047 - 3.1VIN to 32VIN Isolated &#181;Module (Power Module) DC/DC Converter; Package: BGA; Pins: 45; Temperature Range: -55&deg;C to 125&deg;C
Linear

LTM8048

36VIN, 600mA Step-Down μModule Converter
Linear

LTM8048

Dual 8A per Channel Low VIN DC/DC μModule Regulator
LINEAR_DIMENS