LTM8050IY#PBF [Linear]

LTM8050 - 58V, 2A Step-Down µModule (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -40°C to 85°C;
LTM8050IY#PBF
型号: LTM8050IY#PBF
厂家: Linear    Linear
描述:

LTM8050 - 58V, 2A Step-Down µModule (Power Module) Regulator; Package: BGA; Pins: 70; Temperature Range: -40°C to 85°C

开关 输出元件
文件: 总24页 (文件大小:421K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM8050  
58V, 2A Step-Down  
µModule Regulator  
FEATURES  
DESCRIPTION  
The LTM®8050 is a 58V , 2A step down µModule® (mi-  
n
Wide Input Voltage Range: 3.6V to 58V  
IN  
(60V Absolute Maximum)  
cromodule) converter. Included in the package are the  
switching controller, power switches, inductor and all  
support components. Operating over an input voltage  
range of 3.6V to 58V, the LTM8050 supports an output  
voltage range of 0.8V to 24V and a switching frequency  
range of 100kHz to 2.4MHz, each set by a single resistor.  
Only the bulk input and output filter capacitors are needed  
to finish the design.  
n
Up to 2A Output Current  
n
Parallelable for Increased Output Current  
0.8V to 24V Output Voltage  
n
n
Adjustable Switching Frequency: 100kHz to 2.4MHz  
n
Configurable as an Inverter  
n
Current Mode Control  
n
Programmable Soft-Start  
n
9mm × 15mm × 4.92mm BGA Package  
The LTM8050 is packaged in a 9mm × 15mm × 4.92mm  
ball grid array (BGA) package suitable for automated  
assembly by standard surface mount equipment. The  
LTM8050 is available with SnPb (BGA) or RoHS compli-  
ant terminal finish.  
APPLICATIONS  
n
Automotive Battery Regulation  
n
Power for Portable Products  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule and Burst Mode are registered  
trademarks of Linear Technology Corporation. All other trademarks are the property of their  
respective owners.  
n
Distributed Supply Regulation  
n
Industrial Supplies  
Click to view associated TechClip Videos.  
n
Wall Transformer Regulation  
TYPICAL APPLICATION  
Efficiency vs Output Current, 12VOUT  
92  
12VOUT, 2A µModule Regulator  
V
= 24V  
IN  
V
*
V
90  
88  
86  
84  
82  
80  
IN  
OUT  
V
V
OUT  
IN  
17V TO 58V  
12V AT 2A  
V
= 36V  
IN  
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
4.7µF  
V
= 48V  
IN  
SHARE  
RT  
22µF  
FB  
SYNC GND  
57.6k  
f = 600kHz  
34.8k  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8050 TA01a  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
8050 TA01b  
8050fc  
1
For more information www.linear.com/LTM8050  
LTM8050  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 3)  
TOP VIEW  
V , RUN/SS Voltage.................................................60V  
1
2
3
4
5
6
7
IN  
V
OUT  
GND  
FB, RT, SHARE Voltage ...............................................5V  
A
B
C
D
E
F
V
, AUX.................................................................25V  
OUT  
PGOOD, SYNC, BIAS.................................................25V  
IN  
BANK 1  
BANK 2  
V + BIAS.................................................................72V  
Maximum Junction Temperature (Note 2) ............ 125°C  
Solder Temperature............................................... 245°C  
Storage Temperature............................................. 125°C  
RT  
G
H
J
SHARE  
PGOOD  
FB  
AUX  
BIAS  
K
L
BANK 3  
V
RUN/SS SYNC  
BGA PACKAGE  
IN  
70-PIN (15mm × 9mm × 4.92mm)  
T
= 125°C, θ = 24.4°C/W, θ = 11.5°C/W,  
JMAX  
JA  
JC(BOTTOM)  
θ
= 42.7°C/W, θ = 18.7°C/W  
JC(TOP)  
JB  
θ VALUES DETERMINED PER JESD51-9, MAX OUTPUT POWER  
WEIGHT = 1.8 GRAMS  
ORDER INFORMATION http://www.linear.com/product/LTM8050#orderinfo  
PART MARKING*  
PACKAGE  
MSL  
TEMPERATURE RANGE  
(SEE NOTE 2)  
PART NUMBER  
LTM8050EY#PBF  
LTM8050IY#PBF  
LTM8050IY  
PAD OR BALL FINISH  
SAC305 (RoHS)  
SAC305 (RoHS)  
SnPb (63/37)  
DEVICE  
FINISH CODE  
TYPE  
BGA  
BGA  
BGA  
BGA  
BGA  
RATING  
LTM8050Y  
LTM8050Y  
LTM8050Y  
LTM8050Y  
LTM8050Y  
e1  
e1  
e0  
e1  
e0  
3
3
3
3
3
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–55°C to 125°C  
LTM8050MPY#PBF  
LTM8050MPY  
SAC305 (RoHS)  
SnPb (63/37)  
Consult Marketing for parts specified with wider operating temperature  
ranges. *Device temperature grade is indicated by a label on the shipping  
container. Pad or ball finish code is per IPC/JEDEC J-STD-609.  
• Recommended LGA and BGA PCB Assembly and Manufacturing  
Procedures:  
www.linear.com/umodule/pcbassembly  
• LGA and BGA Package and Tray Drawings:  
www.linear.com/packaging  
• Terminal Finish Part Marking:  
www.linear.com/leadfree  
8050fc  
2
For more information www.linear.com/LTM8050  
LTM8050  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN/SS = 12V, BIAS = 3V unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
Output DC Voltage  
3.6  
V
0 < I  
0 < I  
≤ 2A; R Open  
0.8  
24  
V
V
OUT  
OUT  
FB  
≤ 2A; R = 16.9k; V = 32V  
FB  
IN  
Output DC Current  
0
2
A
Quiescent Current into V  
RUN/SS = 0V  
Not Switching  
BIAS = 0V, Not Switching  
0.01  
35  
120  
1
µA  
µA  
µA  
IN  
60  
160  
Quiescent Current into BIAS  
RUN/SS = 0V  
0.01  
82  
1
0.5  
120  
5
µA  
µA  
µA  
Not Switching  
BIAS = 0V, Not Switching  
Line Regulation  
5.5V < V < 58V, I  
= 1A  
0.3  
0.3  
10  
%
%
IN  
OUT  
Load Regulation  
0A < I  
0A < I  
< 2A  
< 2A  
OUT  
OUT  
Output Voltage Ripple (RMS)  
Switching Frequency  
Voltage (at FB Pin)  
mV  
kHz  
R = 45.3k  
T
750  
790  
775  
770  
805  
810  
mV  
mV  
l
Internal Feedback Resistor  
Minimum BIAS Voltage for Proper Operation  
RUN/SS Pin Current  
499  
6
kΩ  
V
2.8  
10  
RUN/SS = 2.5V  
µA  
V
RUN Input High Voltage  
RUN Input Low Voltage  
2.5  
0.2  
1
V
PGOOD Threshold (at FB Pin)  
PGOOD Leakage Current  
PGOOD Sink Current  
V
OUT  
Rising  
730  
0.1  
mV  
µA  
µA  
V
PGOOD = 30V  
PGOOD = 0.4V  
200  
0.7  
600  
SYNC Input Low Threshold  
SYNC Input High Threshold  
SYNC Bias Current  
f
f
= 550kHz  
= 550kHz  
0.5  
SYNC  
SYNC  
V
SYNC = 0V  
0.1  
µA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTM8050E is guaranteed to meet performance specifications  
from 0°C to 125°C internal. Specifications over the full –40°C to  
125°C internal operating temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTM8050I is guaranteed to meet specifications over the full –40°C  
to 125°C internal operating temperature range. The LTM8050MP is  
guaranteed to meet specifications over the full –55°C to 125°C internal  
operating temperature range. Note that the maximum internal temperature  
is determined by specific operating conditions in conjunction with board  
layout, the rated package thermal resistance and other environmental  
factors.  
Note 3: Unless otherwise noted, the absolute minimum voltage is zero.  
8050fc  
3
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Efficiency vs Output Current,  
2.5VOUT  
Efficiency vs Output Current,  
3.3VOUT  
Efficiency vs Output Current,  
5VOUT  
90  
85  
80  
75  
70  
65  
60  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
5V  
IN  
12V  
IN  
12V  
24V  
36V  
48V  
12V  
24V  
36V  
48V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
70  
24V  
IN  
36V  
IN  
48V  
IN  
65  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G01  
8050 G02  
8050 G03  
Efficiency vs Output Current,  
8VOUT  
Efficiency vs Output Current,  
12VOUT  
Efficiency vs Output Current,  
18VOUT  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
92  
90  
88  
86  
84  
82  
80  
94  
92  
90  
88  
86  
84  
82  
12V  
IN  
IN  
IN  
IN  
24V  
36V  
48V  
24V  
36V  
48V  
IN  
IN  
IN  
36V  
48V  
IN  
IN  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G04  
8050 G05  
8050 G06  
Efficiency vs Output Current,  
24VOUT  
Efficiency, VOUT ≤ 2V, 2A Load,  
BIAS = 5V  
Input Current vs Output Current  
2.5VOUT  
80  
75  
70  
65  
60  
55  
50  
45  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
5V  
99  
97  
95  
93  
91  
89  
87  
85  
IN  
12V  
24V  
36V  
48V  
IN  
IN  
IN  
IN  
5V  
IN  
12V  
IN  
IN  
IN  
IN  
24V  
36V  
48V  
36V  
IN  
IN  
48V  
0
0.5  
1.0  
1.5  
1.00  
1.25  
1.50  
(V)  
1.75  
2.00  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
V
OUTPUT CURRENT (A)  
OUT  
8050 G07  
8050 G08  
8050 G09  
8050fc  
4
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Input Current vs Output Current  
3.3VOUT  
Input Current vs Output Current  
5VOUT  
Input Current vs Output Current  
8VOUT  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
12V  
IN  
12V  
IN  
12V  
IN  
24V  
IN  
24V  
IN  
24V  
IN  
36V  
IN  
36V  
IN  
36V  
IN  
48V  
IN  
48V  
IN  
48V  
IN  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G10  
8050 G11  
8050 G12  
Input Current vs Output Current  
12VOUT  
Input Current vs Output Current  
18VOUT  
Input Current vs Output Current  
24VOUT  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
24V  
36V  
48V  
36V  
48V  
36V  
48V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G13  
8050 G14  
8050 G15  
Input Current vs VIN Output  
Shorted  
Output Current vs VIN Output  
Shorted  
BIAS Current vs Output Current  
2.5VOUT BIAS = 5V  
400  
300  
200  
100  
0
5
4
3
2
1
0
16  
12  
8
12V  
IN  
RT = 215k (200kHz)  
24V  
IN  
RT = 93.1k (400kHz)  
RT = 57.6k (600kHz)  
RT = 33.2k (900kHz)  
36V  
IN  
48V  
IN  
4
RT = 215k (200kHz)  
RT = 93.1k (400kHz)  
RT = 57.6k (600kHz)  
RT = 33.2k (900kHz)  
0
0
20  
40  
60  
80  
0
20  
40  
60  
80  
0
0.5  
1.0  
1.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
8050 G18  
8050 G16  
8050 G16  
8050fc  
5
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
BIAS Current vs Output Current  
3.3VOUT BIAS = 5V  
BIAS Current vs Output Current  
5VOUT BIAS = 5V  
BIAS Current vs Output Current  
8VOUT BIAS = 5V  
20  
15  
10  
5
30  
20  
10  
0
50  
12V  
24V  
36V  
48V  
12V  
24V  
36V  
48V  
12V  
24V  
36V  
48V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
40  
30  
20  
10  
0
0
0
0.5  
1.0  
1.5  
2.0  
2.0  
25  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G19  
8050 G20  
8050 G21  
BIAS Current vs Output Current  
12VOUT BIAS = 5V  
BIAS Current vs Output Current  
18VOUT BIAS = 5V  
BIAS Current vs Output Current  
24VOUT BIAS = 5V  
40  
30  
20  
10  
0
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
24V  
36V  
48V  
36V  
48V  
36V  
48V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G22  
8050 G23  
8050 G24  
Minimum VIN vs VOUT Maximum  
Load, BIAS = 5V  
Minimum VIN vs Output Current  
1.8VOUT and Below, BIAS = 5V  
Minimum VIN vs Output Current  
2.5VOUT, BIAS = 5V  
40  
35  
30  
25  
20  
15  
10  
5
4.00  
3.75  
3.50  
3.25  
3.00  
4.2  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
3.5  
0
0
5
10  
V
15  
(V)  
20  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUT  
8050 G25  
8050 G26  
8050 G27  
8050fc  
6
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Minimum VIN vs Output Current  
3.3VOUT, BIAS = VOUT  
Minimum VIN vs Output Current  
5VOUT, BIAS = VOUT  
Minimum VIN vs Output Current  
8VOUT, BIAS = VOUT  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
7.55  
7.50  
7.45  
7.40  
7.35  
7.30  
7.25  
7.20  
7.15  
7.10  
7.05  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
RUNNING  
TO START, RUN CONTROL  
TO START, RUN = V  
IN  
9.0  
8.5  
RUNNING  
RUNNING  
TO START, RUN CONTROL  
TO START, RUN CONTROL  
8.0  
TO START, RUN = V  
TO START, RUN = V  
IN  
IN  
7.5  
0
0.5  
1.0  
1.5  
2.0  
2.0  
2.0  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G28  
8050 G29  
8050 G30  
Minimum VIN vs Output Current  
12VOUT, BIAS = VOUT  
Minimum VIN vs Output Current  
18VOUT, BIAS = VOUT  
Minimum VIN vs Output Current  
24VOUT, BIAS = 5V  
17  
16  
15  
14  
13  
12  
11  
26  
25  
24  
23  
22  
21  
20  
19  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
RUNNING  
TO START, RUN CONTROL  
TO START, RUN = V  
IN  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G31  
8050 G32  
8050 G33  
Minimum VIN vs Output Current  
–3.3VOUT, BIAS = GND  
Minimum VIN vs Output Current  
–5VOUT, BIAS = GND  
Minimum VIN vs Output Current  
–8VOUT, BIAS = GND  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
25  
20  
15  
10  
5
RUNNING  
RUNNING  
RUNNING  
TO START, RUN CONTROL  
TO START, RUN CONTROL  
TO START, RUN CONTROL  
TO START, RUN = V  
TO START, RUN = V  
TO START, RUN = V  
IN  
IN  
IN  
0
0
0
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G34  
8050 G35  
8050 G36  
8050fc  
7
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Minimum VIN vs Output Current  
–12VOUT, BIAS = GND  
Minimum VIN vs Output Current  
–18VOUT, BIAS = GND  
25  
20  
15  
10  
5
25  
RUNNING  
RUNNING  
TO START, RUN CONTROL  
TO START, RUN CONTROL  
TO START, RUN = V  
TO START, RUN = V  
IN  
IN  
20  
15  
10  
5
0
0
0
0.5  
1.0  
1.5  
0
0.25  
0.50  
0.75  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G37  
8050 G38  
Minimum VIN vs Output Current  
–24VOUT, BIAS = GND  
Internal Temperature Rise vs  
Output Current, 2.5VOUT  
25  
20  
15  
10  
5
30  
20  
10  
0
RUNNING  
TO START, RUN CONTROL  
TO START, RUN = V  
IN  
5V  
IN  
12V  
IN  
IN  
IN  
IN  
24V  
36V  
48V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G39  
8050 G40  
Internal Temperature Rise vs  
Output Current, 3.3VOUT  
Internal Temperature Rise vs  
Output Current, 5VOUT  
30  
20  
10  
0
30  
20  
10  
0
12V  
12V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
24V  
36V  
48V  
24V  
36V  
48V  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G41  
8050 G42  
8050fc  
8
For more information www.linear.com/LTM8050  
LTM8050  
Operating conditions are per Table 1 and  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
Internal Temperature Rise vs  
Output Current, 8VOUT  
Internal Temperature Rise vs  
Output Current, 12VOUT  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
12V  
24V  
36V  
48V  
IN  
IN  
IN  
IN  
24V  
36V  
48V  
IN  
IN  
IN  
0
0.5  
1.0  
1.5  
2.0  
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G43  
8050 G44  
Internal Temperature Rise vs  
Output Current, 18VOUT  
Internal Temperature Rise vs  
Output Current, 24VOUT  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
36V  
48V  
58V  
24V  
36V  
48V  
IN  
IN  
IN  
IN  
IN  
IN  
0
0.5  
1.0  
1.5  
0
0.5  
1.0  
1.5  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
8050 G46  
8050 G45  
Soft-Start Waveform for Various  
CSS Values 1A Resistive Load,  
DC1723A Demo Board  
Output Ripple at 2A Load,  
Standard DC1723A Demo Board  
C
= 0µF  
SS  
FREE RUNNING  
(400kHz)  
C
= 0.1µF  
SS  
1V/DIV  
600kHz SYNC  
800kHz SYNC  
10mV/DIV  
C
= 0.47µF  
SS  
8050 G47  
8050 G48  
200µs/DIV  
1µs/DIV  
R
= 100k  
SS  
REFER TO DC1723A DEMO MANUAL FOR  
PROPER RIPPLE MEASUREMENT TECHNIQUE  
8050fc  
9
For more information www.linear.com/LTM8050  
LTM8050  
PIN FUNCTIONS  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
RUN/SS (Pin L5): Pull the RUN/SS pin below 0.2V to  
shut down the LTM8050. Tie to 2.5V or more for normal  
operation. If the shutdown feature is not used, tie this pin  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
to the V pin. RUN/SS also provides a soft-start function;  
V
(Bank 1): Power Output Pins. Apply the output filter  
IN  
OUT  
see the Applications Information section.  
capacitor and the output load between these pins and  
GND pins.  
SYNC (Pin L6): This is the external clock synchronization  
input. Ground this pin for low ripple Burst Mode operation  
at low output loads. Tie to a stable voltage source greater  
than 0.7V to disable Burst Mode operation. Do not leave  
this pin floating. Tie to a clock source for synchroniza-  
tion. Clock edges should have rise and fall times faster  
than 1μs. See the Synchronization section in Applications  
Information.  
GND (Bank 2): Tie these GND pins to a local ground plane  
below the LTM8050 and the circuit components. In most  
applications, the bulk of the heat flow out of the LTM8050  
is through these pads, so the printed circuit design has a  
large impact on the thermal performance of the part. See  
the PCB Layout and Thermal Considerations sections for  
moredetails.Returnthefeedbackdivider(R )tothisnet.  
FB  
RT (Pin G7): The RT pin is used to program the switching  
frequency of the LTM8050 by connecting a resistor from  
this pin to ground. Table 2 gives the resistor values that  
correspondtotheresultantswitchingfrequency.Minimize  
the capacitance at this pin.  
V (Bank3):TheV pinsuppliescurrenttotheLTM8050’s  
IN  
IN  
internal regulator and to the internal power switch. This  
pin must be locally bypassed with an external, low ESR  
capacitor; see Table 1 for recommended values.  
AUX (Pin G5): Low Current Voltage Source for BIAS. In  
SHARE (Pin H7): Tie this to the SHARE pin of another  
LTM8050 when paralleling the outputs. Otherwise, do  
not connect.  
many designs, the BIAS pin is simply connected to V  
.
OUT  
and is placed  
The AUX pin is internally connected to V  
OUT  
adjacent to the BIAS pin to ease printed circuit board rout-  
ing. Although this pin is internally connected to V , it  
OUT  
PGOOD (Pin J7): The PGOOD pin is the open-collector  
outputofaninternalcomparator.PGOODremainslowuntil  
the FB pin is within 10% of the final regulation voltage.  
is not intended to deliver a high current, so do not draw  
current from this pin to the load. If this pin is not tied to  
BIAS, leave it floating.  
PGOODoutputisvalidwhenV isabove3.6VandRUN/SS  
IN  
is high. If this function is not used, leave this pin floating.  
BIAS(PinH5):TheBIASpinconnectstotheinternalpower  
bus. Connect to a power source greater than 2.8V and less  
than 25V. If the output is greater than 2.8V, connect this  
pin there. If the output voltage is less, connect this to a  
voltage source between 2.8V and 25V. Also, make sure  
FB (Pin K7): The LTM8050 regulates its FB pin to 0.79V.  
Connect the adjust resistor from this pin to ground. The  
value of R is given by the equation R = 394.21/(V  
FB  
FB  
OUT  
– 0.79), where R is in kΩ.  
FB  
that BIAS + V is less than 72V.  
IN  
8050fc  
10  
For more information www.linear.com/LTM8050  
LTM8050  
BLOCK DIAGRAM  
V
V
OUT  
8.2µH  
15pF  
IN  
499k  
1%  
AUX  
0.2µF  
4.4µF  
BIAS  
RUN/SS  
SHARE  
SYNC  
CURRENT  
MODE  
CONTROLLER  
GND  
RT  
PGOOD  
FB  
8050 BD  
OPERATION  
The LTM8050 is a standalone nonisolated step-down  
switching DC/DC power supply that can deliver up to 2A of  
outputcurrent.Thismoduleprovidesapreciselyregulated  
output voltage programmable via one external resistor  
from 0.8V to 24V. The input voltage range is 3.6V to 58V.  
Given that the LTM8050 is a step-down converter, make  
sure that the input voltage is high enough to support the  
desired output voltage and load current.  
To further optimize efficiency, the LTM8050 automatically  
switchestoBurstMode® operationinlightloadsituations.  
Between bursts, all circuitry associated with controlling  
the output switch is shut down reducing the input supply  
current to 50μA in a typical application.  
TheoscillatorreducestheLTM8050’soperatingfrequency  
when the voltage at the FB pin is low. This frequency fold-  
back helps to control the output current during start-up  
and overload.  
As shown in the Block Diagram, the LTM8050 contains a  
current mode controller, power switching element, power  
inductor, power Schottky diode and a modest amount of  
input and output capacitance. The LTM8050 is a fixed  
frequency PWM regulator. The switching frequency is set  
by simply connecting the appropriate resistor value from  
the RT pin to GND.  
The LTM8050 contains a power good comparator which  
trips when the FB pin is at roughly 90% of its regulated  
value. The PGOOD output is an open-collector transistor  
that is off when the output is in regulation, allowing an  
externalresistortopullthePGOODpinhigh.Powergoodis  
valid when the LTM8050 is enabled and V is above 3.6V.  
IN  
Aninternalregulatorprovidespowertothecontrolcircuitry.  
The bias regulator normally draws power from the V  
The LTM8050 is equipped with a thermal shutdown that  
will inhibit power switching at high junction tempera-  
tures. The activation threshold of this function, however,  
is above 125°C to avoid interfering with normal operation.  
Thus, prolonged or repetitive operation under a condition  
in which the thermal shutdown activates may damage or  
impair the reliability of the device.  
IN  
pin, but if the BIAS pin is connected to an external volt-  
age higher than 2.8V, bias power will be drawn from the  
external source (typically the regulated output voltage).  
This improves efficiency. The RUN/SS pin is used to place  
the LTM8050 in shutdown, disconnecting the output and  
reducing the input current to less than 1μA.  
8050fc  
11  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
For most applications, the design process is straight  
forward, summarized as follows:  
Ceramic capacitors are small, robust and have very low  
ESR. However, not all ceramic capacitors are suitable.  
X5R and X7R types are stable over temperature and ap-  
plied voltage and give dependable service. Other types,  
including Y5V and Z5U have very large temperature and  
voltage coefficients of capacitance. In an application cir-  
cuit they may have only a small fraction of their nominal  
capacitanceresultinginmuchhigheroutputvoltageripple  
than expected.  
1. Look at Table 1 and find the row that has the desired  
input range and output voltage.  
2. Apply the recommended C , C , R and R values.  
IN OUT FB  
T
3. Connect BIAS as indicated.  
While these component combinations have been tested  
for proper operation, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions. Bear in mind that the  
maximum output current is limited by junction tempera-  
ture, therelationshipbetweentheinputandoutputvoltage  
magnitude and polarity and other factors. Please refer to  
the graphs in the Typical Performance Characteristics  
section for guidance.  
Ceramic capacitors are also piezoelectric. In Burst Mode  
operation, the LTM8050’s switching frequency depends  
on the load current, and can excite a ceramic capacitor  
at audio frequencies, generating audible noise. Since the  
LTM8050 operates at a lower current limit during Burst  
Mode operation, the noise is typically very quiet to a  
casual ear.  
If this audible noise is unacceptable, use a high perfor-  
mance electrolytic capacitor at the output. It may also be  
a parallel combination of a ceramic capacitor and a low  
cost electrolytic capacitor.  
The maximum frequency (and attendant R value) at  
T
which the LTM8050 should be allowed to switch is given  
in Table 1 in the f  
column, while the recommended  
MAX  
frequency (and R value) for optimal efficiency over the  
T
given input condition is given in the f  
column.  
A final precaution regarding ceramic capacitors concerns  
the maximum input voltage rating of the LTM8050. A  
ceramic input capacitor combined with trace or cable  
inductance forms a high Q (under damped) tank circuit.  
If the LTM8050 circuit is plugged into a live supply, the  
input voltage can ring to twice its nominal value, possi-  
bly exceeding the device’s rating. This situation is easily  
avoided; see the Hot-Plugging Safely section.  
OPTIMAL  
There are additional conditions that must be satisfied if  
the synchronization function is used. Please refer to the  
Synchronization section for details.  
Capacitor Selection Considerations  
The C and C  
capacitor values in Table 1 are the  
IN  
OUT  
minimum recommended values for the associated oper-  
ating conditions. Applying capacitor values below those  
indicated in Table 1 is not recommended, and may result  
in undesirable operation. Using larger values is generally  
acceptable, and can yield improved dynamic response, if  
it is necessary. Again, it is incumbent upon the user to  
verify proper operation over the intended system’s line,  
load and environmental conditions.  
Frequency Selection  
The LTM8050 uses a constant frequency PWM architec-  
ture that can be programmed to switch from 100kHz to  
2.4MHz by using a resistor tied from the RT pin to ground.  
Table 2 provides a list of R resistor values and their re-  
T
sultant frequencies.  
8050fc  
12  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
Table 1: Recommended Component Values and Configuration (TA = 25°C)  
V
IN  
RANGE  
V
V
C
C
R
FB  
f
R
f
R
T(MIN)  
OUT  
BIAS  
IN  
OUT  
OPTIMAL  
T(OPTIMAL)  
MAX  
3.6V to 58V  
3.6V to 58V  
3.6V to 58V  
3.6V to 58V  
3.6V to 58V  
4.1V to 58V  
5.3V to 58V  
7.5V to 58V  
10.5V to 58V  
17V to 58V  
24V to 58V  
34V to 58V  
9V to 24V  
0.8V  
1V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
AUX  
Open  
1.87M  
953k  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
22.6k  
16.5k  
Open  
1.87M  
953k  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
Open  
1.87M  
953k  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
22.6k  
Open  
1.87M  
953k  
549k  
383k  
226k  
154k  
93.1k  
54.9k  
34.8k  
154k  
93.1k  
54.9k  
34.8k  
22.6k  
16.5k  
110kHz  
110kHz  
125kHz  
150kHz  
180kHz  
230kHz  
280kHz  
400kHz  
550kHz  
600kHz  
760kHz  
900kHz  
150kHz  
180kHz  
230kHz  
280kHz  
330kHz  
345kHz  
425kHz  
500kHz  
600kHz  
760kHz  
100kHz  
120kHz  
140kHz  
180kHz  
220kHz  
300kHz  
345kHz  
425kHz  
550kHz  
760kHz  
800kHz  
100kHz  
100kHz  
100kHz  
110kHz  
125kHz  
180kHz  
280kHz  
400kHz  
550kHz  
600kHz  
300kHz  
400kHz  
550kHz  
600kHz  
760kHz  
900kHz  
392k  
125kHz  
125kHz  
150kHz  
180kHz  
215kHz  
270kHz  
330kHz  
460kHz  
690kHz  
750kHz  
850kHz  
960kHz  
300kHz  
345kHz  
400kHz  
460kHz  
500kHz  
600kHz  
650kHz  
700kHz  
750kHz  
850kHz  
200kHz  
250kHz  
270kHz  
300kHz  
350kHz  
425kHz  
550kHz  
800kHz  
1.03MHz  
1.03MHz  
1.03MHz  
125kHz  
125kHz  
150kHz  
180kHz  
215kHz  
270kHz  
330kHz  
460kHz  
690kHz  
960kHz  
330kHz  
460kHz  
690kHz  
750kHz  
850kHz  
960kHz  
340k  
340k  
280k  
232k  
191k  
150k  
118k  
80.6k  
49.9k  
44.2k  
37.4k  
30.1k  
130k  
113k  
93.1k  
80.6k  
73.2k  
57.6k  
52.3k  
48.7k  
44.2k  
36.5k  
205k  
162k  
150k  
130k  
110k  
88.7k  
64.9k  
38.3k  
25.5k  
25.5k  
25.5k  
340k  
340k  
280k  
232k  
191k  
150k  
118k  
80.6k  
49.9k  
30.1k  
118k  
80.6k  
49.9k  
44.2k  
37.4k  
30.1k  
3× 4.7µF, 2220, 100V  
3× 4.7µF, 2220, 100V  
2× 4.7µF, 2220, 100V  
2× 4.7µF, 2220, 100V  
2× 4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
4.7µF, 1206, 25V  
2.2µF, 1206, 50V  
1µF, 1206, 50V  
3× 220µF, 1206, 4V  
3× 220µF, 1206, 4V  
3× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
220µF, 1206, 4V  
220µF, 1206, 4V  
100µF, 1210, 6.3V  
47µF, 1210, 10V  
22µF, 1210, 16V  
22µF, 1812, 25V  
22µF, 1812, 25V  
2× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
220µF, 1206, 4V  
220µF, 1206, 4V  
100µF, 1210, 6.3V  
100µF, 1210, 6.3V  
47µF, 1210, 10V  
47µF, 1210, 10V  
22µF, 1210, 16V  
3× 220µF, 1206, 4V  
3× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
220µF, 1206, 4V  
100µF, 1210, 6.3V  
100µF, 1210, 6.3V  
47µF, 1210, 10V  
22µF, 1210, 16V  
22µF, 1210, 16V  
22µF, 1812, 25V  
3× 220µF, 1206, 4V  
3× 220µF, 1206, 4V  
3× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
2× 220µF, 1206, 4V  
220µF, 1206, 4V  
100µF, 1210, 6.3V  
100µF, 1210, 6.3V  
47µF, 1210, 10V  
22µF, 1210, 16V  
100µF, 1210, 6.3V  
100µF, 1210, 6.3V  
47µF, 1210, 10V  
47µF, 1210, 16V  
22µF, 1812, 25V  
22µF, 1812, 25V  
392k  
340k  
280k  
232k  
174k  
140k  
93.1k  
64.9k  
57.6k  
42.2k  
33.2k  
280k  
232k  
174k  
140k  
118k  
113k  
88.7k  
73.2k  
57.6k  
42.2k  
432k  
357k  
301k  
232k  
187k  
130k  
113k  
88.7k  
64.9k  
42.2k  
38.3k  
432k  
432k  
432k  
392k  
340k  
232k  
140k  
93.1k  
64.9k  
57.6k  
130k  
93.1k  
64.9k  
57.6k  
42.2k  
33.2k  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
AUX  
8V  
AUX  
12V  
18V  
24V  
0.8V  
1V  
AUX  
2.8V to 25V  
2.8V to 25V  
V
IN  
9V to 24V  
V
IN  
9V to 24V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
V
IN  
9V to 24V  
V
IN  
V
IN  
V
IN  
9V to 24V  
9V to 24V  
9V to 24V  
AUX  
AUX  
9V to 24V  
10.5V to 24V  
17V to 24V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
18V to 36V  
24V to 36V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
18V to 58V  
2.5V to 54.7V  
3.3V to 53V  
3.3V to 50V  
4.5V to 46V  
6V to 40V  
8V  
AUX  
12V  
0.8V  
1V  
AUX  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
AUX  
1µF, 1206, 50V  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
1µF, 1206, 50V  
1µF, 1206, 50V  
1µF, 1206, 50V  
1µF, 1206, 50V  
1µF, 1206, 50V  
AUX  
1µF, 1206, 50V  
8V  
AUX  
2.2µF, 1206, 50V  
2.2µF, 1206, 50V  
2.2µF, 1206, 50V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
1µF, 1206, 100V  
2.2µF, 1206, 100V  
2.2µF, 1206, 100V  
2× 4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
4.7µF, 2220, 100V  
12V  
18V  
0.8V  
1V  
AUX  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
2.8V to 25V  
AUX  
1.2V  
1.5V  
1.8V  
2.5V  
3.3V  
5V  
AUX  
8V  
AUX  
12V  
–3.3V  
–5V  
–8V  
–12V  
–18V  
–24V  
AUX  
AUX  
AUX  
AUX  
AUX  
2.8V to 25V  
2.8V to 25V  
10V to 34V  
Note: Do not allow V + BIAS to exceed 72V.  
IN  
8050fc  
13  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
Table 2. Switching Frequency vs RT Value  
factors, such as load current, input voltage, output voltage  
and switching frequency, but 4V to 5V works well in many  
applications.Inallcases,ensurethatthemaximumvoltage  
SWITCHING FREQUENCY (MHz)  
R VALUE (kΩ)  
T
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
432  
215  
137  
93.1  
73.2  
57.6  
51.1  
38.3  
33.2  
32.4  
24.9  
20  
at the BIAS pin is less than 25V and that the sum of V  
IN  
and BIAS is less than 72V. If BIAS power is applied from  
a remote or noisy voltage source, it may be necessary to  
apply a decoupling capacitor locally to the pin.  
Load Sharing  
Two or more LTM8050’s may be paralleled to produce  
highercurrents.To dothis,tietheV ,FB,V andSHARE  
IN  
OUT  
pins of all the paralleled LTM8050’s together. To ensure  
thatparalleledmodulesstartuptogether,theRUN/SSpins  
may be tied together, as well. If the RUN/SS pins are not  
tied together, make sure that the same valued soft-start  
capacitors are used for each module. Current sharing  
can be improved by synchronizing the LTM8050s. An  
example of two LTM8050s configured for load sharing is  
given in the Typical Applications section. When n number  
of units are connected for parallel operation and a single  
feedback resistor is used for all of them, the equation for  
the feedback resistor is:  
1.2  
1.4  
1.6  
1.8  
2
16.2  
14  
11  
2.2  
2.4  
8.06  
7.15  
Operating Frequency Trade-offs  
It is recommended that the user apply the optimal R  
T
394.21  
RFB =  
kΩ  
value given in Table 1 for the input and output operating  
condition. System level or other considerations, however,  
may necessitate another operating frequency. While the  
LTM8050isflexibleenoughtoaccommodateawiderange  
of operating frequencies, a haphazardly chosen one may  
result in undesirable operation under certain operating or  
fault conditions. A frequency that is too high can reduce  
efficiency, generate excessive heat or even damage the  
LTM8050 if the output is overloaded or short circuited. A  
frequencythatistoolowcanresultinafinaldesignthathas  
too much output ripple or too large of an output capacitor.  
N V  
(
0.79  
)
OUT  
Burst Mode Operation  
To enhance efficiency at light loads, the LTM8050 auto-  
matically switches to Burst Mode operation which keeps  
the output capacitor charged to the proper voltage while  
minimizingtheinputquiescentcurrent.DuringBurstMode  
operation, the LTM8050 delivers single cycle bursts of  
current to the output capacitor followed by sleep periods  
wheretheoutputpowerisdeliveredtotheloadbytheoutput  
capacitor. Inaddition, V andBIASquiescentcurrentsare  
IN  
BIAS Pin Considerations  
each reduced to microamps during the sleep time. As the  
load current decreases towards a no load condition, the  
percentage of time that the LTM8050 operates in sleep  
mode increases and the average input current is greatly  
reduced, resulting in higher efficiency.  
The BIAS pin is used to provide drive power for the internal  
power switching stage and operate other internal circuitry.  
Forproperoperation,itmustbepoweredbyatleast2.8V.If  
the output voltage is programmed to 2.8V or higher, BIAS  
may be simply tied to AUX. If V  
is less than 2.8V, BIAS  
OUT  
Burst Mode operation is enabled by tying SYNC to GND.  
To disable Burst Mode operation, tie SYNC to a stable  
voltage above 0.7V. Do not leave the SYNC pin floating.  
can be tied to V or some other voltage source. If the BIAS  
IN  
pin voltage is too high, the efficiency of the LTM8050 may  
suffer.TheoptimumBIASvoltageisdependentuponmany  
8050fc  
14  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
Minimum Input Voltage  
Thisinturnlimitstheamountofenergythatcanbedelivered  
totheloadunderfault. Duringthestart-uptime, frequency  
foldback is also active to limit the energy delivered to the  
potentially large output capacitance of the load.  
The LTM8050 is a step-down converter, so a minimum  
amount of headroom is required to keep the output in  
regulation. In addition, the input voltage required to turn  
on is higher than that required to run, and depends upon  
whether the RUN/SS is used. As shown in the Typical  
Performance Characteristics section, the minimum input  
voltagetoruna3.3Voutputatlightloadisonlyabout3.6V,  
Synchronization  
TheinternaloscillatoroftheLTM8050canbesynchronized  
byapplyinganexternal250kHzto2MHzclocktotheSYNC  
pin. Do not leave this pin floating. When synchronizing  
but, if RUN/SS is pulled up to V , it takes 5.5V to start.  
IN  
IN  
theLTM8050, selectanR resistorvaluethatcorresponds  
If the LTM8050 is enabled with the RUN/SS pin after V  
T
IN  
to an operating frequency 20% lower than the intended  
synchronization frequency (see the Frequency Selection  
section).  
is applied, the minimum voltage to start at light loads is  
lower, about 4.3V. Similar curves detailing this behavior  
of the LTM8050 for other outputs are also included in the  
Typical Performance Characteristics section.  
Inadditiontosynchronization,theSYNCpincontrolsBurst  
Mode behavior. If the SYNC pin is driven by an external  
clock, or pulled up above 0.7V, the LTM8050 will not  
enter Burst Mode operation, but will instead skip pulses  
to maintain regulation instead.  
Soft-Start  
The RUN/SS pin can be used to soft-start the LTM8050,  
reducing the maximum input current during start-up. The  
RUN/SS pin is driven through an external RC network to  
create a voltage ramp at this pin. (See Figure 1). By choos-  
ing an appropriate RC time constant, the peak start-up  
current can be reduced to the current that is required to  
regulate the output, with no overshoot. Choose the value  
of the resistor so that it can supply at least 20μA when  
the RUN/SS pin reaches 2.5V. Output voltage soft-start  
Shorted Input Protection  
Care needs to be taken in systems where the output will  
be held high when the input to the LTM8050 is absent.  
This may occur in battery charging applications or in  
battery backup systems where a battery or some other  
supply is diode ORed with the LTM8050’s output. If the  
waveforms for various values of R and C are given in  
SS  
SS  
V pin is allowed to float and the SHDN pin is held high  
IN  
the Typical Performance Characteristics section.  
(either by a logic signal or because it is tied to V ), then  
IN  
the LTM8050’s internal circuitry will pull its quiescent  
current through its internal power switch. This is fine if  
your system can tolerate a few milliamps in this state. If  
you ground the RUN/SS pin, the input current will drop  
RUN  
100k  
RUN/SS  
to essentially zero. However, if the V pin is grounded  
IN  
C
SS  
RUN  
while the output is held high, then parasitic diodes inside  
the LTM8050 can pull large currents from the output  
Figure 1. Apply an RC Network to RUN/SS to Control the  
Soft-Start Behavior of the LTM8050 at Power-Up  
through the V pin. Figure 2 shows a circuit that will run  
IN  
only when the input voltage is present and that protects  
against a shorted or reversed input.  
Frequency Foldback  
The LTM8050 is equipped with frequency foldback which  
actstoreducethethermalandenergystressontheinternal  
power elements during a short circuit or output overload  
condition.IftheLTM8050detectsthattheoutputhasfallen  
out of regulation, the switching frequency is reduced as a  
function of how far the output is below the target voltage.  
PCB Layout  
Most of the headaches associated with PCB layout have  
been alleviated or even eliminated by the high level of  
integration of the LTM8050. The LTM8050 is neverthe-  
less a switching power supply, and care must be taken to  
8050fc  
15  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
AUX  
PGOOD  
T
V
V
OUT  
V
V
OUT  
IN  
IN  
GND  
GND  
RUN/SS  
AUX  
R
R
FB  
BIAS  
LTM8050  
SYNC  
RUN/SS  
BIAS  
RT  
FB  
SYNC GND  
V
OUT  
V
IN  
8050 F02  
Figure 2. The Input Diode Prevents a Shorted Input from  
Discharging a Backup Battery Tied to the Output. It Also Protects  
the Circuit from a Reversed Input. The LTM8050 Runs Only  
When the Input is Present  
C
C
IN  
OUT  
GND  
minimize EMI and ensure proper operation. Even with the  
high level of integration, you may fail to achieve specified  
operation with a haphazard or poor layout. See Figure 3  
for a suggested layout. Ensure that the grounding and  
heat sinking are acceptable.  
THERMAL VIAS TO GND  
8050 F03  
Figure 3. Layout Showing Suggested External Components, GND  
Plane and Thermal Vias  
might use very small via holes. It should employ more  
thermal vias than a board that uses larger holes.  
1. Place the R and R resistors as close as possible to  
FB  
T
their respective pins.  
Hot-Plugging Safely  
2. Place the C capacitor as close as possible to the V  
IN  
IN  
The small size, robustness and low impedance of ceramic  
capacitors make them an attractive option for the input  
bypass capacitor of LTM8050. However, these capacitors  
can cause problems if the LTM8050 is plugged into a live  
supply (see Linear Technology Application Note 88 for a  
complete discussion). The low loss ceramic capacitor  
combined with stray inductance in series with the power  
source forms an underdamped tank circuit, and the volt-  
and GND connection of the LTM8050.  
3. Place the C  
capacitor as close as possible to the  
OUT  
V
and GND connection of the LTM8050.  
OUT  
4. Place the C and C  
capacitors such that their  
OUT  
IN  
ground current flow directly adjacent to or underneath  
the LTM8050.  
5. Connect all of the GND connections to as large a copper  
pour or plane area as possible on the top layer. Avoid  
breaking the ground connection between the external  
components and the LTM8050.  
age at the V pin of the LTM8050 can ring to more than  
IN  
twice the nominal input voltage, possibly exceeding the  
LTM8050’s rating and damaging the part. If the input  
supply is poorly controlled or the user will be plugging  
the LTM8050 into an energized supply, the input network  
should be designed to prevent this overshoot. This can be  
6. Forgoodheatsinking,useviastoconnecttheGNDcop-  
per area to the board’s internal ground planes. Liberally  
distributetheseGNDviastoprovidebothagoodground  
connectionandthermalpathtotheinternalplanesofthe  
printed circuit board. Pay attention to the location and  
density of the thermal vias in Figure 3. The LTM8050  
can benefit from the heat-sinking afforded by vias that  
connecttointernalGNDplanesattheselocations,dueto  
theirproximitytointernalpowerhandlingcomponents.  
The optimum number of thermal vias depends upon  
the printed circuit board design. For example, a board  
accomplishedbyinstallingasmallresistorinseriestoV ,  
IN  
but the most popular method of controlling input voltage  
overshoot is to add an electrolytic bulk capacitor to the  
V net. This capacitor’s relatively high equivalent series  
IN  
resistance damps the circuit and eliminates the voltage  
overshoot. The extra capacitor improves low frequency  
ripple filtering and can slightly improve the efficiency of  
the circuit, though it is likely to be the largest component  
in the circuit.  
8050fc  
16  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
Negative Output Considerations  
upon the user to verify proper operation over the intended  
system’sline,loadandenvironmentaloperatingconditions.  
The LTM8050 may be configured to generate a negative  
output voltage. Examples of this are shown in the Typical  
Applications section. For very fast rising input voltages,  
care must be taken to ensure that start-up does not cre-  
ate excessive surge currents that may create unwanted  
voltages or even damage the LTM8050.  
The thermal resistance numbers listed in Page 2 of the  
data sheet are based on modeling the µModule package  
mounted on a test board specified per JESD51-9 (Test  
Boards for Area Array Surface Mount Package Thermal  
Measurements). The thermal coefficients provided in this  
page are based on JESD 51-12 (Guidelines for Reporting  
and Using Electronic Package Thermal Information).  
Consider the circuit in Figure 4. If a step input is applied  
between V and system GND, the C and C capaci-  
IN  
IN  
OUT  
tors form an AC divider network that tends to create a  
Forincreasedaccuracyandfidelitytotheactualapplication,  
many designers use FEA to predict thermal performance.  
To that end, Page 2 of the data sheet typically gives four  
thermal coefficients:  
positive voltage on system V . In order to protect the  
OUT  
load from seeing an excessive inverted voltage, an anti-  
parallel Schottky diode may be used to clamp the voltage.  
Furthermore, current flowing out of the BIAS pin can have  
adverse affects. To prevent this from happening, apply a  
series resistor (about 200Ω) and Schottky diode between  
BIAS and its voltage source.  
ꢀ θ – Thermal resistance from junction to ambient  
JA  
ꢀ θ  
– Thermal resistance from junction to the  
JCbottom  
bottom of the product case  
ꢀ θ – Thermal resistance from junction to top of the  
JCtop  
product case  
Thermal Considerations  
The LTM8050 output current may need to be derated if  
it is required to operate in a high ambient temperature or  
deliver a large amount of continuous power. The amount  
of current derating is dependent upon the input voltage,  
output power and ambient temperature. The temperature  
rise curves given in the Typical Performance Character-  
istics section can be used as a guide. These curves were  
ꢀ θ – Thermal resistance from junction to the printed  
JB  
circuit board  
While the meaning of each of these coefficients may seem  
to be intuitive, JEDEC has defined each to avoid confusion  
and inconsistency. These definitions are given in JESD  
51-12, and are quoted or paraphrased below:  
2
generated by a LTM8050 mounted to a 40cm 4-layer FR4  
θ
JA  
is the natural convection junction-to-ambient air  
printedcircuitboard. Boardsofothersizesandlayercount  
can exhibit different thermal behavior, so it is incumbent  
thermal resistance measured in a one cubic foot sealed  
enclosure. This environment is sometimes referred to as  
ADD A SERIES RESISTOR AND  
DIODE TO PREVENT CURRENT  
FROM FLOWING OUT OF BIAS  
V
V
V
OUT  
IN  
IN  
RUN/SS  
AUX  
LTM8050  
INRUSH  
CURRENT  
ADD AN ANTI-PARALLEL  
CAN CAUSE  
BIAS  
PGOOD  
ADJ  
C
C
OUT  
IN  
DIODE TO CLAMP POSITIVE  
VOLTAGE SPIKE  
A POSITIVE  
TRANSIENT  
SHARE  
RT  
ON V  
OUT  
SYNC GND  
V
(NEGATIVE VOLTAGE)  
OUT  
8050 F04  
Figure 4. In Negative Output Voltage Applications, Prevent Adverse Effects from Fast Rising VIN by Adding Clamp and Rectifying Diodes  
8050fc  
17  
For more information www.linear.com/LTM8050  
LTM8050  
APPLICATIONS INFORMATION  
stillairalthoughnaturalconvectioncausestheairtomove.  
This value is determined with the part mounted to a JESD  
51-9 defined test board, which does not reflect an actual  
application or viable operating condition.  
a specified distance from the package, using a two sided,  
two layer board. This board is described in JESD 51-9.  
Giventhesedefinitions,itshouldnowbeapparentthatnone  
of these thermal coefficients reflects an actual physical  
operating condition of a µModule converter. Thus, none  
of them can be individually used to accurately predict the  
thermal performance of the product. Likewise, it would  
be inappropriate to attempt to use any one coefficient to  
correlate to the junction temperature vs load graphs given  
in the product’s data sheet. The only appropriate way to  
use the coefficients is when running a detailed thermal  
analysis, such as FEA, which considers all of the thermal  
resistances simultaneously.  
θ
is the thermal resistance between the junction  
JCbottom  
andbottomofthepackagewithallofthecomponentpower  
dissipation flowing through the bottom of the package. In  
the typical µModule converter, the bulk of the heat flows  
out the bottom of the package, but there is always heat  
flow out into the ambient environment. As a result, this  
thermal resistance value may be useful for comparing  
packages but the test conditions don’t generally match  
the user’s application.  
θ
isdeterminedwithnearlyallofthecomponentpower  
A graphical representation of these thermal resistances  
follows:  
JCtop  
dissipation flowing through the top of the package. As the  
electricalconnectionsofthetypicalµModuleconverterare  
on the bottom of the package, it is rare for an application  
to operate such that most of the heat flows from the junc-  
The blue resistances are contained within the µModule  
converter, and the green are outside.  
The die temperature of the LTM8050 must be lower than  
the maximum rating of 125°C, so care should be taken in  
the layout of the circuit to ensure good heat sinking of the  
LTM8050. The bulk of the heat flow out of the LTM8050  
is through the bottom of the μModule converter and the  
LGA pads into the printed circuit board. Consequently a  
poor printed circuit board design can cause excessive  
heating, resulting in impaired performance or reliability.  
Please refer to the PCB Layout section for printed circuit  
board design suggestions.  
tion to the top of the part. As in the case of θ , this  
JCbottom  
value may be useful for comparing packages but the test  
conditions don’t generally match the user’s application.  
θ
is the junction-to-board thermal resistance where  
JB  
almost all of the heat flows through the bottom of the  
µModule converter and into the board, and is really the  
sum of the θ  
and the thermal resistance of the  
JCbottom  
bottom of the part through the solder joints and through a  
portion of the board. The board temperature is measured  
JUNCTION-TO-AMBIENT RESISTANCE (JESD 51-9 DEFINED BOARD)  
JUNCTION-TO-CASE (TOP)  
RESISTANCE  
CASE (TOP)-TO-AMBIENT  
RESISTANCE  
JUNCTION-TO-BOARD RESISTANCE  
JUNCTION  
A
t
JUNCTION-TO-CASE  
(BOTTOM) RESISTANCE  
CASE (BOTTOM)-TO-BOARD  
RESISTANCE  
BOARD-TO-AMBIENT  
RESISTANCE  
8050 F04  
µMODULE DEVICE  
8050fc  
18  
For more information www.linear.com/LTM8050  
LTM8050  
TYPICAL APPLICATIONS  
1.8V Step-Down Converter  
V
V
OUT  
1.8V AT 2A  
IN  
V
V
OUT  
IN  
3.6V TO 58V  
RUN/SS  
AUX  
10µF  
3.3V  
440µF  
BIAS LTM8050  
SHARE  
PGOOD  
FB  
RT  
SYNC GND  
232k  
f = 180kHz  
383k  
8050 TA02  
2.5V Step-Down Converter  
8V Step-Down Converter  
V
*
V
OUT  
IN  
V
*
V
V
V
OUT  
IN  
OUT  
IN  
V
V
OUT  
4.1V TO 58V  
2.5V AT 2A  
IN  
11V TO 58V  
8V AT 2A  
RUN/SS  
AUX  
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
4.7µF  
220µF  
4.7µF  
3.3V  
BIAS LTM8050  
SHARE  
PGOOD  
FB  
SHARE  
RT  
47µF  
RT  
FB  
SYNC GND  
174k  
f = 230kHz  
SYNC GND  
64.9k  
f = 550kHz  
226k  
54.9k  
8050 TA03  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8050 TA04  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
Minimum VIN vs Output Current  
–5VOUT, BIAS = GND  
–5V Negative Output Converter  
25  
RUNNING  
TO START, RUN CONTROL  
V
IN  
V
V
OUT  
IN  
TO START, RUN = V  
IN  
20  
15  
10  
5
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
4.7µF  
SHARE  
RT  
47µF  
FB  
93.1k  
f = 400kHz  
SYNC GND  
93.1k  
V
OUT  
–5V  
8050 TA05  
0
0
0.5  
1.0  
1.5  
2.0  
OUTPUT CURRENT (A)  
8050 TA05b  
8050fc  
19  
For more information www.linear.com/LTM8050  
LTM8050  
TYPICAL APPLICATIONS  
Two LTM8050s in Parallel, 2.5V at 3.8A  
V
*
V
OUT  
2.5V AT 3.8A  
IN  
V
V
OUT  
IN  
4.1V TO 58V  
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
3V  
SHARE  
RT  
10µF  
FB  
SYNC GND  
174k  
230kHz  
113k  
OPTIONAL  
SYNC  
V
V
OUT  
IN  
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
300µF  
SHARE  
RT  
10µF  
FB  
SYNC GND  
174k  
230kHz  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO APPLICATIONS INFORMATION  
SECTION FOR START-UP DETAILS  
NOTE: SYNCHRONIZE THE TWO MODULES TO AVOID BEAT FREQUENCIES,  
IF NECESSARY. OTHERWISE, TIE EACH SYNC TO GND  
8050 TA06  
3.3V Step-Down Converter  
V
*
V
OUT  
3.3V AT 2A  
IN  
V
V
OUT  
IN  
5.3V TO 58V  
RUN/SS  
AUX  
LTM8050 BIAS  
PGOOD  
4.7µF  
SHARE  
RT  
220µF  
FB  
SYNC GND  
140k  
f = 280kHz  
154k  
8050 TA07  
*RUNNING VOLTAGE RANGE. PLEASE REFER TO  
APPLICATIONS INFORMATION SECTION FOR START-UP DETAILS  
8050fc  
20  
For more information www.linear.com/LTM8050  
LTM8050  
PACKAGE DESCRIPTION  
PACKAGE ROW AND COLUMN LABELING MAY VARY  
AMONG µModule PRODUCTS. REVIEW EACH PACKAGE  
LAYOUT CAREFULLY.  
Pin Assignment Table  
(Arranged by Pin Number)  
PIN NAME  
PIN NAME  
PIN NAME PIN NAME  
PIN NAME  
E1 GND  
E2 GND  
E3 GND  
E4 GND  
E5 GND  
E6 GND  
E7 GND  
PIN NAME  
F1 GND  
F2 GND  
F3 GND  
F4 GND  
F5 GND  
F6 GND  
F7 GND  
A1  
A2  
A3  
A4  
V
V
V
V
B1  
B2  
B3  
B4  
V
V
V
V
C1  
C2  
C3  
C4  
V
V
V
V
D1  
D2  
D3  
D4  
V
V
V
V
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A5 GND  
A6 GND  
A7 GND  
B5 GND  
B6 GND  
B7 GND  
C5 GND  
C6 GND  
C7 GND  
D5 GND  
D6 GND  
D7 GND  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
PIN NAME  
G1 GND  
G2 GND  
G3 GND  
G4 GND  
G5 AUX  
G6 GND  
G7 RT  
H1  
H2  
H3  
H4  
-
-
-
-
J1  
J2  
J3  
J4  
V
V
V
-
K1  
K2  
K3  
K4  
V
V
V
-
L1  
L2  
L3  
L4  
V
V
V
-
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
H5 BIAS  
H6 GND  
J5 GND  
J6 GND  
K5 GND  
K6 GND  
L5 RUN/SS  
L6 SYNC  
L7 GND  
H7 SHARE J7 PGOOD K7 FB  
8050fc  
21  
For more information www.linear.com/LTM8050  
LTM8050  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LTM8050#packaging for the most recent package drawings.  
Z
/ / b b b  
Z
3 . 8 1 0  
2 . 5 4 0  
1 . 2 7 0  
0 . 3 1 7 5  
0 . 3 1 7 5  
1 . 2 7 0  
0 . 0 0 0  
2 . 5 4 0  
3 . 8 1 0  
8050fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
22  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTM8050  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
02/14 Add SnPb BGA package option  
1, 2  
B
05/14 Add TechClip Video icons  
1
8
Correct Typical Performance Characteristics labels  
10/16 Corrected BIAS voltage from 33V to 3.3V (top of page)  
C
19  
8050fc  
23  
For more information www.linear.com/LTM8050  
LTM8050  
PACKAGE PHOTO  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Pin Compatible; Remote Sensing; PLL, Tracking and Margining, 4.5V ≤ V ≤ 28V  
LTM4601/LTM4603 12A and 6A DC/DC µModule  
IN  
LTM4604A  
LTM4606  
LTM8020  
4A, Low V DC/DC µModule  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.3mm LGA Package  
IN  
IN  
OUT  
Low EMI 6A, 28V DC/DC µModule  
200mA, 36V DC/DC µModule  
4.5V ≤ V ≤ 28V, 0.6V ≤ V  
≤ 5V, 15mm × 15mm × 2.8mm LGA Package  
IN  
OUT  
OUT  
4V ≤ V ≤ 36V, 1.25V ≤ V  
≤ 5V, 6.25mm × 6.25mm × 2.32mm LGA Package  
IN  
LTM8022/LTM8023 1A and 2A, 36V DC/DC µModule  
LTM8027 60V, 4A DC/DC µModule  
Pin Compatible 3.6V ≤ V ≤ 36V, 0.8V ≤ V  
≤ 10V, 11.25mm × 9mm × 2.82mm LGA Package  
IN  
OUT  
4.5V ≤ V ≤ 60V; 2.5V ≤ V  
≤ 24V, 15mm × 15mm × 4.32mm LGA Package  
IN  
OUT  
DESIGN RESOURCES  
SUBJECT  
DESCRIPTION  
Design:  
• Selector Guides  
µModule Design and Manufacturing Resources  
Manufacturing:  
• Quick Start Guide  
• PCB Design, Assembly and Manufacturing Guidelines  
• Package and Board Level Reliability  
• Demo Boards and Gerber Files  
• Free Simulation Tools  
µModule Regulator Products Search  
1. Sort table of products by parameters and download the result as a spread sheet.  
2. Search using the Quick Power Search parametric table.  
TechClip Videos  
Quick videos detailing how to bench test electrical and thermal performance of µModule products.  
Digital Power System Management  
Linear Technology’s family of digital power supply management ICs are highly integrated solutions that  
offer essential functions, including power supply monitoring, supervision, margining and sequencing,  
and feature EEPROM for storing user configurations and fault logging.  
8050fc  
LT 1016 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM8050  
ꢀLINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY