LTM9013CY-AA#PBF [Linear]

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: 0°C to 70°C;
LTM9013CY-AA#PBF
型号: LTM9013CY-AA#PBF
厂家: Linear    Linear
描述:

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: 0°C to 70°C

电信 电信集成电路
文件: 总38页 (文件大小:949K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM9013  
300MHz  
Wideband Receiver  
FeaTures  
DescripTion  
The LTM®9013 is a 300MHz wideband, low IF receiver.  
Utilizing an integrated system in a package (SiP) technol-  
ogy, itisaμModule® (micromodule)receiverthatincludes  
a dual high speed 14-bit A/D converter, lowpass filter,  
differential gain stages and a quadrature demodulator.  
n
Integrated I/Q Demodulator, IF Amplifier, and Dual  
14-Bit, 310Msps High Speed ADC  
n
External Highpass Filter Allows Bandwidth  
Adjustment  
n
300MHz Lowpass Filter for Each Channel  
n
RF Input Frequency Range: 0.7GHz to 4GHz  
The LTM9013 is perfect for wideband I/Q receiver applica-  
tions, with AC performance that includes 59dB SNR and  
1.3dB frequency flatness from DC to 300MHz. A highpass  
filter or simple AC coupling are used external to the device  
for design flexiblity. The integrated on-chip broadband  
transformers provide a 50Ω single-ended interface at  
the RF input.  
n
50Ω Single-Ended RF Port  
50Ω Differential LO Port  
n
n
Frequency Flatness: 1.3dB Typical  
n
66dBc IM3 Level at –7dBFS  
n
59dB SNR at –1dBFS  
n
Parallel DDR LVDS Outputs  
n
Clock Duty Cycle Stabilizer  
n
A 5V supply powers the demodulator and a 3.3V supply  
powers the IF amplifiers for minimal distortion. A 1.8V  
supplyallowslowpowerADCoperation.Aseparateoutput  
supply allows the DDR LVDS outputs to drive 1.8V logic.  
An optional multiplexer allows both channels to share a  
digital output bus. An optional clock duty cycle stabilizer  
allows high performance at full speed for a wide range of  
clock duty cycles.  
Low Power: 2.6W  
n
Shutdown and Nap Modes  
n
15mm × 15mm BGA Package  
applicaTions  
n
Telecommunications  
n
Wideband, Low IF Receivers  
n
Digital Predistortion Receivers  
Cellular Base Stations  
L, LT, LTC, LTM, µModule, Linear Technology and the Linear logo are registered trademarks of  
Linear Technology Corporation.  
n
Typical applicaTion  
15nH  
100Ω  
5V  
0.01µF  
64k Point FFT  
6.8pF  
15nH  
0.01µF  
fIN = 1950MHz, –1dBFS  
100Ω  
V
CC1  
5V  
V
CC2  
3.3V  
V
DD  
1.8V  
0
–10  
LTM9013  
GAIN_Q GAIN_I  
OV  
DD  
1.8V  
–20  
–30  
–40  
ADC  
–50  
CLKOUT  
–60  
0°  
ADC CLK  
OF  
LNA  
–70  
90°  
–80  
–90  
ADC  
GND  
–100  
–110  
–120  
PAR/SER  
GND  
SCK CS SDI SDO  
9013 TA01  
LO IN  
0
16 32 48  
96 112 128 144 160  
FREQUENCY (MHz)  
64 80  
15nH  
100Ω  
0.01µF  
9013 TA01b  
6.8pF  
5V  
0.01µF  
15nH  
100Ω  
9013fa  
1
For more information www.linear.com/LTM9013  
LTM9013  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, 2)  
Supply Voltage  
TOP VIEW  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
V
V
...................................................... –0.3V to 5.5V  
...................................................... –0.3V to 3.8V  
CC1  
CC2  
A
B
C
D
E
V , OV ............................................. –0.3V to 2.0V  
DD  
DD  
Analog Input Voltage  
EN, EIP2, REF, IP2I, IP2Q...........–0.3V to V  
+ 0.3V  
CC1  
DD  
PAR/SER, SENSE..................... –0.3V to (V + 0.2V)  
F
Digital Input Voltage (Note 3)  
+
G
H
J
CLK , CLK ............................. –0.3V to (V + 0.3V)  
DD  
Digital Input Voltage (Note 4)  
CS, SDI, SCK......................................... –0.3V to 3.9V  
RF Input DC Voltage............................................... 0.1V  
K
L
+
LO , LO Input DC Voltage.............–0.3V to V  
Analog Input Current  
+ 0.3V  
CC1  
M
N
P
+IN_I, –IN_I, +IN_Q, –IN_Q............................ 20mA  
GAIN_I, GAIN_Q, EN_I, EN_Q, SHDN_I,  
BGA PACKAGE  
196-LEAD (15mm × 15mm × 2.82mm)  
SHDN_Q........................................................... 10mA  
+
LO , LO Input Power ........................................ +10dBm  
RF Input Power ..................................................+20dBm  
Analog Input Power, Continuous  
T
= 125°C, θ = 20°C/W, θ  
= 6°C/W, θ  
=19°C/W, θ =9°C/W  
JCtop JB  
JMAX  
JA  
JCbottom  
θ VALUES DEFINED PER JESD 51-12  
WEIGHT = 1.35g  
+IN_I, –IN_I, +IN_Q, –IN_Q........................... +15dBm  
Analog Input Power, 100μs Pulse  
+IN_I, –IN_I, +IN_Q, –IN_Q...........................+20dBm  
Analog Output Voltage  
+OUT_I, –OUT_I,  
+OUT_Q, –OUT_Q .........................2.5V to V  
Digital Output Voltage  
+ 0.3V  
CC1  
SDO ..................................................... –0.3V to 3.9V  
Except SDO............................ –0.3V to (OV + 0.3V)  
DD  
Operating Temperature Range  
LTM9013C ............................................... 0°C to 70°C  
LTM9013I.............................................–40°C to 85°C  
Storage Temperature Range .................. –55°C to 125°C  
CAUTION: This part is sensitive to electrostatic discharge  
(ESD). It is very important that proper ESD precautions  
be observed when handling the RF and LO inputs of the  
LTM9013.  
9013fa  
2
For more information www.linear.com/LTM9013  
LTM9013  
orDer inForMaTion  
LEAD FREE FINISH  
LTM9013CY-AA#PBF  
LTM9013IY-AA#PBF  
TRAY  
PART MARKING*  
LTM9013Y-AA  
LTM9013Y-AA  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
0°C to 70°C  
LTM9013CY-AA#PBF  
LTM9013IY-AA#PBF  
196-Lead (15mm × 15mm × 2.8mm) BGA  
196-Lead (15mm × 15mm × 2.8mm) BGA  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. PRF = –5dBm, PLO = 0dBm (Notes 5, 7) unless otherwise noted.  
SYMBOL PARAMETER  
RF Input Frequency Range  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
No External Matching (Mid Band)  
with External Matching (Low Band, High Band)  
1.5 to 2.7  
0.7 to 4.0  
GHz  
GHz  
LO Input Frequency Range  
No External Matching (Mid Band)  
With External Matching (Low Band, High Band)  
1.5 to 2.7  
0.7 to 4.0  
GHz  
GHz  
IF Frequency Range  
0.5 to 300  
>10  
MHz  
dB  
RF Input Return Loss  
LO Input Return Loss  
RF Input Power for –1dBFS  
LO Input Power  
Z = 50Ω, 1.5GHz to 2.7GHz, Internally Matched  
O
Z = 50Ω, 1.5GHz to 2.7GHz, Internally Matched  
O
>10  
dB  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
–5  
dBm  
dBm  
dB  
–6 to +6  
0.15  
1
I/Q Gain Mismatch  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
LO = 1990MHz  
I/Q Phase Mismatch  
Deg  
dBm  
dBm  
dB  
LO to RF Leakage  
–55  
RF to LO Isolation  
RF = 2140MHz  
58  
Gain Flatness (Notes 5, 6)  
Lowpass Filter Cutoff Frequency  
Resolution (No Missing Codes)  
Integral Linearity Error (Note 8)  
Differential Linearity Error  
Offset Error (Note 9)  
f
= 500kHz to 300MHz (Figure 14)  
0.5  
IF  
0.5dB Point  
300  
MHz  
Bits  
LSB  
LSB  
LSB  
l
14  
Differential Analog Input  
Differential Analog Input  
4.5  
0.35  
62  
–1  
1
–186  
186  
9013fa  
3
For more information www.linear.com/LTM9013  
LTM9013  
DynaMic accuracy The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. PRF = –5dBm, PLO = 0dBm (Notes 5, 7) unless otherwise noted.  
SYMBOL  
IIP3  
PARAMETER  
CONDITIONS  
MIN  
TYP  
30  
MAX  
UNITS  
dBm  
Input 3rd Order Intercept, 1 Tone  
Input 2nd Order Intercept, 1 Tone  
Signal-to-Noise Ratio at –1dBFS  
RF = 2140MHz, LO = 1990MHz  
RF = 2140MHz, LO = 1990MHz  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
IIP2  
56  
dBm  
SNR  
59  
62  
dBFS  
dBFS  
l
l
f
IF  
= 150MHz (Note 6)  
59  
60  
SFDR  
Spurious Free Dynamic Range  
2nd or 3rd Harmonic  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
= 150MHz (Note 6)  
65  
70  
dB  
dB  
f
IF  
Spurious Free Dynamic Range  
4th or Higher  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
= 150MHz (Note 6)  
75  
80  
dB  
dB  
f
IF  
S/(N+D)  
IMD3  
Signal-to-Noise Plus Distortion Ratio  
RF = 2140MHz, LO = 1990MHz (Figure 14)  
= 150MHz (Note 6)  
58  
61  
dBFS  
dBFS  
l
f
58  
IF  
Intermodulation Distortion at –7dBFS per  
Tone  
RF = 2140MHz and 2141MHz, LO = 1990MHz  
(Figure 14)  
66  
dB  
analog inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Demodulator Adjust Inputs (IP2I, IP2Q)  
Input Voltage  
0
1.3  
V
kΩ||pF  
μs  
Input Impedance  
2||1  
2
Settling Time  
For Step Input; Output with 90% of Final Value  
Demodulator Adjust Input (REF)  
Input Voltage  
0.4  
49  
0.5  
0.7  
65  
V
Input Impedance  
8||1  
MΩ||pF  
Amplifier Analog Inputs (+IN_I, –IN_I, +IN_Q, –IN_Q)  
Differential Input Resistance  
Input Common Mode Voltage  
Minimum Input Frequency (3dB Corner)  
Amplifier Gain Control Analog Inputs (GAIN_I, GAIN_Q)  
V
= 100mV  
57  
Ω
mV  
kHz  
IN(DIFF)  
640  
500  
R
Input Resistance  
Input Low Current  
Gain Control Range  
GAIN_I, GAIN_Q = 1.0V, R = 1V/∆I  
7.8  
7.2  
9.2  
–5  
10.6  
12.8  
kΩ  
kΩ  
IN  
IN  
IL  
l
I
IL  
GAIN_I, GAIN_Q = 0V  
–9  
–10  
–1  
–1  
µA  
µA  
l
l
V
GAIN  
= 0.2V to 1.2V  
27.5  
29  
30.5  
dB  
Temperature Coefficient of Gain at Fixed  
Gain Control Voltage  
–0.007  
dB/°C  
l
Gain Control Slope  
Gain Control Voltage = 0.2V to 1V, Slope of the  
Least-Square Fit Line  
30.6  
32.6  
0.12  
0.2  
34.7  
dB/V  
dB  
Average Conformance Error to Gain  
Slope Line  
Gain Control Voltage = 0.2V to 1V, Standard  
Error to the Least-Square Fit Line  
Maximum Conformance Error to Gain  
Slope Line  
Gain Control Voltage = 0.2V to 1V, Maximum  
Error to the Least-Square Fit Line  
dB  
9013fa  
4
For more information www.linear.com/LTM9013  
LTM9013  
analog inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
ADC Analog Inputs (SENSE)  
Input Leakage Current  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
1.1V < SENSE < 1.2V  
–1  
1
μA  
Demodulator Analog Outputs (+OUT_I, –OUT_I, +OUT_Q, –OUT_Q)  
Common Mode Voltage  
V
CC1  
– 1.5V  
V
Differential Output Impedance  
50||6  
Ω||pF  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Demodulator Logic Inputs (EN, EIP2)  
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Input Pull-Up Resistance  
EIP2 Input Current  
Turn-On Time  
V
V
V
= 5V  
= 5V  
2
V
V
IH  
CC  
CC  
CC  
0.3  
IL  
= 5V, V = 4.4V to 2.6V  
100  
40  
kΩ  
μA  
µs  
µs  
EN  
EIP2 = 5V  
0.2  
0.8  
Turn-Off Time  
I and Q Channel Logic Inputs (EN_I, EN_Q, SHDN_I, SHDN_Q)  
l
l
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
Input Pull-Up Resistance  
Input High Current  
V
V
V
= 3.3V  
2.2  
V
V
CC  
CC  
CC  
= 3.3V  
0.8  
= 3.3V, V  
= 0V to 0.5V  
100  
–15  
–30  
kΩ  
µA  
µA  
EN_I,EN_Q  
EN_I, EN_Q = 2.2V, SHDN_I, SHDN_Q = 2.2V  
EN_I, EN_Q = 0.8V, SHDN_I, SHDN_Q = 0.8V  
–30  
–60  
–1  
–1  
Input Low Current  
+
ADC Encode Clock Inputs (CLK , CLK )  
Differential Input Voltage  
l
l
V
= 1.8V  
0.2  
1.1  
V
DD  
Common Mode Input Voltage  
Internally Set  
Externally Set  
1.2  
V
V
1.5  
Input Resistance  
Input Capacitance  
10  
2
kΩ  
pF  
(Note 10)  
ADC Logic Inputs (SDI, SCK, CS)  
l
l
l
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
V
V
V
= 1.8V  
1.3  
V
V
DD  
DD  
IN  
= 1.8V  
0.6  
10  
= 0V to 3.6V  
–10  
μA  
pF  
Input Capacitance  
(Note 10)  
3
ADC Logic Inputs (PAR/SER)  
Input Leakage Current  
ADC Logic Output (SDO)  
Logic Low Output Resistance to GND  
0 < PAR/SER < V  
–1  
1
μA  
DD  
V
DD  
= 1.8V, SDO = 0V  
200  
4
Ω
µA  
pF  
l
Logic High Output Leakage Current  
Output Capacitance  
SDO = 0V to 3.6V  
(Note 10)  
–10  
10  
9013fa  
5
For more information www.linear.com/LTM9013  
LTM9013  
DigiTal inpuTs anD ouTpuTs The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Data Outputs (OV = 1.8V)  
DD  
l
l
Differential Output Voltage  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
247  
125  
350  
175  
454  
250  
mV  
mV  
l
l
Common Mode Output Voltage  
On-Chip Termination Resistance  
100Ω Differential Load, 3.5mA Mode  
100Ω Differential Load, 1.75mA Mode  
1.125  
1.125  
1.250  
1.250  
1.375  
1.375  
V
V
Termination Enabled, OV = 1.8V  
100  
Ω
DD  
power requireMenTs The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
4.75  
2.7  
TYP  
MAX  
5.25  
3.6  
UNITS  
l
l
l
l
l
l
V
V
V
Demodulator and Amplifier Supply Voltage  
Amplifier Analog Supply Voltage  
ADC Analog Supply Voltage  
V
V
CC1  
CC2  
DD  
3.3  
1.8  
1.8  
285  
16  
1.74  
1.74  
1.9  
V
OV  
ADC Digital Output Supply Voltage  
Demodulator and Amplifier Supply Current  
1.9  
V
DD  
I
I
330  
20  
mA  
mA  
CC1  
Demodulator and Amplifier Shutdown  
Current  
EN = 0V, EN_I, EN_Q = 3.3V, SHDN_I,  
SHDN_Q = 0V  
CC1(SHDN)  
l
l
I
I
I
Amplifier Supply Current  
ADC Supply Current  
Digital Supply Current  
ADC Sleep Power  
132  
335  
80  
160  
385  
90  
mA  
mA  
mA  
mW  
W
CC2  
DD  
3.5mA Mode  
OVDD  
ADC Programmed for Sleep Mode, No CLK  
5
Total Power Dissipation  
2.6  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
f
t
Sampling Frequency  
CLK Low Time  
1
310  
MHz  
S
L
l
l
Duty Cycle Stabilizer Off (Note 10)  
Duty Cycle Stabilizer On (Note 10)  
1.5  
1.2  
1.6  
1.6  
50  
50  
ns  
ns  
l
l
t
t
t
CLK High Time  
Duty Cycle Stabilizer Off (Note 10)  
Duty Cycle Stabilizer On (Note 10)  
1.5  
1.2  
1.6  
1.6  
50  
50  
ns  
ns  
H
Sample-and-Hold Acquisition Delay Time  
Jitter  
0.15  
ps  
RMS  
JITTER  
Sample-and-Hold Acquisition Delay Time  
1
ns  
AP  
DATA Outputs (Note 10)  
l
l
l
t
t
t
CLK to DATA Delay  
C = 5pF  
1.7  
1.3  
0.3  
2
2.3  
2
ns  
ns  
ns  
D
L
CLK to CLKOUT Delay  
DATA to CLKOUT Skew  
C = 5pF  
L
1.6  
0.4  
C
t – t  
D C  
0.55  
SKEW  
9013fa  
6
For more information www.linear.com/LTM9013  
LTM9013  
TiMing characTerisTics The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Notes 5, 7)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SPI Port Timing (Note 10)  
l
l
t
SCK Period  
Write Mode  
40  
ns  
ns  
SCK  
Readback Mode C  
= 20pF, R  
= 20pF, R  
= 2kΩ  
= 2kΩ  
250  
SDO  
SDO  
PULLUP  
t
t
t
t
t
CS to SCK Set-up Time  
SCK to CS Hold Time  
SDI Set-Up Time  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
S
H
DS  
DH  
DO  
SDI Hold Time  
SCK Falling to SDO Valid  
Readback Mode C  
125  
PULLUP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: Using test circuit 1 (see Figure 14 Design Example in Applications  
Information section).  
Note 6: Signal applied to the INn pins and measures only the amplifier  
and ADC.  
Note 2: All voltage values are with respect to ground with GND and OGND  
wired together (unless otherwise noted).  
Note 7: V  
= 5V, V  
= 3.3V, V = 1.8V, EN = 5V, EN_I, EN_Q = 0V,  
CC1  
CC2 DD  
GAIN_I, GAIN_Q = 1.2V, SHDN_I, SHDN_Q = 3.3V, SENSE = 1.15V,  
Note 3: When these pin voltages are taken below GND or above V , they  
f = 310MHz, unless otherwise noted.  
S
DD  
will be clamped by internal diodes. This product can handle input currents  
Note 8: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
of greater than 100mA below GND or above V without latchup.  
DD  
Note 4: When these pin voltages are taken below GND they will be  
clamped by internal diodes. When these pin voltages are taken above V  
they will not be clamped by internal diodes. This product can handle input  
currents of greater than 100mA below GND without latchup.  
,
DD  
Note 9: DC offset is the ADC output code with no RF or LO input signal  
applied the module.  
Note 10: Guaranteed by design, not subject to test  
9013fa  
7
For more information www.linear.com/LTM9013  
LTM9013  
Typical perForMance characTerisTics  
64k Point FFT, fIN = 1950MHz,  
–1dBFS  
64K Point FFT, fIN = 1925MHz,  
1975MHz, –7dBFS per Tone  
Baseband Frequency Response  
0
0
–10  
0
–10  
–1  
–20  
–20  
–30  
–30  
–40  
–40  
–2  
–3  
–50  
–50  
–60  
–60  
–70  
–70  
–4  
–5  
–6  
–80  
–80  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
50 100 150 200 250 300 350 400 450 500  
BASEBAND FREQUENCY (MHz)  
0
16 32 48 64 80 96 112 128 144 160  
FREQUENCY (MHz)  
0
16 32 48 64 80 96 112 128 144 160  
FREQUENCY (MHz)  
9013 G01  
9013 G02  
9013 G03  
SNR at 150MHz IF vs RF Drive  
HD2 at 150MHz IF vs LO Power  
HD2 at 150MHz IF vs RF Drive  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–40  
–45  
61.0  
60.5  
–50  
–55  
60.0  
59.5  
HD2, Q CHANNEL  
HD2, I CHANNEL  
HD2, Q CHANNEL  
–60  
–65  
–70  
59.0  
58.5  
58.0  
HD2, I CHANNEL  
–5  
0
5
10  
15  
–5  
0
5
10  
15  
–22 –18 –14 –10 –6 –2  
LO POWER (dBm)  
2
6
10  
RF DRIVE (dBm)  
RF DRIVE (dBm)  
9013 G06  
9013 G04  
9013 G05  
HD3 at 150MHz IF vs RF Drive  
IM3 at 150MHz vs RF Drive  
LO to RF Isolation  
–40  
–45  
–50  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–55  
–60  
–65  
–70  
–75  
0
5
15  
–5  
10  
–4 –2  
0
–12 –10 –8 –6  
2
4
6
8
10  
1.9 2.0  
1.5 1.6 1.7 1.8  
2.1 2.2 2.3 2.4 2.5  
RF DRIVE (dBm)  
RF DRIVE PER TONE (dBm)  
LO FREQUENCY (GHz)  
9013 G07  
9013 G08  
9013 G09  
9013fa  
8
For more information www.linear.com/LTM9013  
LTM9013  
pin FuncTions  
Supply Pins  
+IN_Q, –IN_Q (Pins E4, E5): Channel Q Signal Input. This  
is a differential input that drives the Amplifier. It has an  
internally generated DC bias. Series blocking capacitors  
are required between these pins and +OUT_Q, –OUT_Q.  
V
(Pin B7): Analog 5V Supply for Demodulator and  
CC1  
Amplifiers.Thespecifiedoperatingrangeis4.75Vto5.25V.  
Thevoltageonthispinprovidespowerforthedemodulator  
andamplifierstagesonlyandisinternallybypassedtoGND.  
GAIN_I (Pin C12): I Channel Gain Control Input. This is  
an input that controls the gain of the amplifier. This pin is  
internally pulled low with 10kΩ to GND. The gain control  
slope is approximately 32dB/V with a gain control range  
of 0.1V to 1.1V.  
V
(Pins A2, A3, A12, A13, D1, D12): Analog 3.3V Sup-  
CC2  
ply for Amplifiers. The specified operating range is 2.7V to  
3.6V. V is internally bypassed to GND.  
CC2  
V
(Pins J6, J9): Analog 1.8V Supply for ADC. The  
DD  
GAIN_Q (Pin C1): Q Channel Gain Control Input. This is  
an input that controls the gain of the amplifier. This pin is  
internally pulled low with 10kΩ to GND. The gain control  
slope is approximately 32dB/V with a gain control range  
of 0.1V to 1.1V.  
specifiedoperatingrangeis1.74Vto1.9V.V isinternally  
DD  
bypassed to GND.  
OV (Pins N5, N10): Positive 1.8V Supply for the Digital  
DD  
Output Drivers. The specified operating range is 1.74V to  
1.9V. OV is internally bypassed to GND.  
DD  
+
CLK , CLK (Pins J5, K5): ADC Clock Input. Conversion  
+
GND: Analog Ground. See Pin Configuration table for pin  
locations.  
starts on the rising edge of CLK .  
IP2_I (Pin C10): IP2 Adjustment Pin for I Channel.  
IP2_Q (Pin D10): IP2 Adjustment Pin for Q Channel.  
Analog Inputs  
RF (Pin A10): RF Input Pin. This is a single-ended 50Ω  
terminatedinput.Noexternalmatchingnetworkisrequired  
forthe1.5GHzto2.7GHzband. Anexternalseriesinductor  
(and/or shunt capacitor) may be required for impedance  
transformationto50Ωinthebandfrom700MHzto1.5GHz,  
or for the band from 2.7GHz to 4GHz (see Figure 2). If the  
RF source is not DC blocked, a series blocking capacitor  
should be used. Otherwise, damage to the IC may result.  
REF (Pin D8): Voltage Reference Input for Analog Control  
Voltage Pins.  
SENSE (Pin J8): ADC Reference Programming Pin. Con-  
necting SENSE to V selects the internal reference and  
DD  
a 1.32V input range.  
Analog Outputs  
+OUT_I,OUT_I(PinsF10,F11):ChannelISignalOutput.  
This is a differential output from the demodulator. The DC  
+
LO ,LO (PinsA6,A5):LocalOscillatorInputPins.Thisisa  
differential50Ωterminatedinput.Anexternalseriesinduc-  
tor(and/orshuntcapacitor)mayberequiredforimpedance  
transformationto50Ωinthebandfrom700MHzto1.5GHz,  
or for the band from 2.7GHz to 4GHz (see Figure 4). If the  
LO source is not DC blocked, a series blocking capacitor  
must be used. Otherwise, damage to the IC may result.  
bias point is V  
– 1.5V for each pin. These pins must  
CC1  
have an external 100Ω or inductor pull-up to V . Series  
CC1  
blocking capacitors are required between these pins and  
+IN_I, –IN_I.  
+OUT_Q,OUT_Q(PinsF4,F5):ChannelQSignalOutput.  
This is a differential output from the demodulator. The DC  
+IN_I, –IN_I (Pins E10, E11): Channel I Signal Input. This  
is a differential input that drives the amplifier. It has an  
internally generated DC bias. Series blocking capacitors  
are required between these pins and +OUT_I, –OUT_I.  
bias point is V  
– 1.5V for each pin. These pins must  
CC1  
have an external 100Ω or inductor pull-up to V . Series  
CC1  
blocking capacitors are required between these pins and  
+IN_Q, –IN_Q.  
9013fa  
9
For more information www.linear.com/LTM9013  
LTM9013  
pin FuncTions  
Control Pins  
SCK (Pin J11): Serial Interface Clock Input. In serial  
programming mode (PAR/SER = GND), SCK is the serial  
interface clock input. In the parallel programming mode  
EN (Pin B8): Demodulator Enable Pin. If EN = high (the  
input voltage is higher than 2.0V), the demodulator is en-  
abled. If EN = low (the input voltage is less than 1.0V), it  
is disabled. If the enable function is not needed, then this  
(PAR/SER = V ), SCK can be used to place the part in the  
DD  
low power sleep mode (see Table 4). SCK can be driven  
with 1.8V to 3.3V logic.  
pin should be tied to V  
.
CC1  
CS (Pin K10): Serial Interface Chip Select Input. In serial  
programming mode (PAR/SER = GND), CS is the serial  
interface chipselect input. WhenCSislow, SCK is enabled  
for shifting data on SDI into the mode control registers.  
EIP2 (Pin D6): Demodulator IP2 Adjust Enable Pin. Pin is  
internally pulled low with 200kΩ to GND. If EIP2 = high  
(the input voltage is higher than 2.0V), the IP2 adjust  
circuit is enabled. If EIP2 = low (the input voltage is less  
than 1.0V), it is disabled.  
In the parallel programming mode (PAR/SER = V ), CS  
DD  
controls the clock duty stabilizer (see Table 4). CS can be  
NC1, NC2, NC3 (Pins C6, C9, D9): Do Not Connect.  
EN_I (Pin C14): First Amplifier I Channel Enable Pin. Pin  
driven with 1.8V to 3.3V logic.  
PAR/SER (Pin J10): Programming Mode Selection Pin.  
Connect to GND to enable the serial programming mode  
where CS, SCK, SDI, SDO become a serial interface that  
is internally pulled high with 100kΩ to V . Assert pin to  
CC2  
a low voltage to enable the amplifier. Connect pin to GND  
if enable function is not used.  
controlstheADCoperatingmodes.ConnecttoV toenable  
DD  
the parallel programming mode where CS, SCK, SDI, SDO  
become parallel logic inputs that control a reduced set of  
the ADC operating modes. PAR/SER should be connected  
EN_Q (Pin C3): First Amplifier Q Channel Enable Pin. Pin  
is internally pulled high with 100kΩ to V . Assert pin to  
CC2  
a low voltage to enable the amplifier. Connect pin to GND  
if enable function is not used.  
directly to GND or V and not be driven by a logic signal.  
DD  
SHDN_I (Pin D14): Amplifier I Channel Shutdown Pin.  
Digital Outputs  
Pin is internally pulled high with 100kΩ to V . Assert  
CC2  
SDO (Pin L11): Serial Interface Data Output. In serial pro-  
gramming mode (PAR/SER = GND), SDO is the optional  
serialinter-facedataoutput.DataonSDOisreadbackfrom  
themodecontrolregistersandcanbelatchedonthefalling  
edge of SCK. SDO is an open-drain N-channel MOSFET  
output that requires an external 2kΩ pull-up resistor from  
1.8V to 3.3V. If readback from the mode control registers  
is not needed, the pull-up resistor is not necessary and  
SDO can be left unconnected.  
pin to a low voltage to shut down the amplifier. Proper  
sequencing of the EN_I and SHDN_I pins is required to  
avoid non-monotonic output signal behavior. Connect pin  
to V  
if shutdown function is not used.  
CC2  
SHDN_Q (Pin D3): Amplifier Q Channel Shutdown Pin.  
Pin is internally pulled high with 100kΩ to V . Assert  
CC2  
pin to a low voltage to shut down the amplifier. Proper  
sequencing of the EN_Q and SHDN_Q pins is required to  
avoid non-monotonic output signal behavior. Connect pin  
to V if shutdown function is not used.  
LVDS Digital Outputs  
CC2  
SDI (Pin K11): Serial Interface Data Input. In serial pro-  
gramming mode, (PAR/SER = GND), SDI is the serial  
interface data input. Data on SDI is clocked into the mode  
control registers on the rising edge of SCK. In the parallel  
ThefollowingpinsaredifferentialLVDSoutputs.Theoutput  
currentlevelisprogrammable.Thereisanoptionalinternal  
100Ω termination resistor between the pins of each LVDS  
output pair.  
programming mode (PAR/SER = V ), SDI selects 3.5mA  
DD  
or a 7.5mA LVDS output current (see Table 4). SDI can be  
driven with 1.8V to 3.3V logic.  
9013fa  
10  
For more information www.linear.com/LTM9013  
LTM9013  
pin FuncTions  
CLKOUT ,CLKOUT (PinsP8,P7):ADCDataOutputClock.  
+
+
+
DA0_1 /DA0_1 to DA12_13 /DA12_13 (See Pin Con-  
figurationtableforpinlocations):QChannelADCDouble  
Data Rate Digital Outputs. Two data bits are multiplexed  
onto each differential output pair. The even data bits (DA0,  
+
+
DB0_1 /DB0_1 to DB12_13 /DB12_13 (See Pin Con-  
figurationtableforpinlocations):QChannelADCDouble  
Data Rate Digital Outputs. Two data bits are multiplexed  
onto each differential output pair. The even data bits (DB0,  
+
DA2,DA4,DA6,DA8,DA10,DA12)appearwhenCLKOUT  
islow.Theodddatabits(DA1,DA3,DA5,DA7,DA9,DA11,  
+
DB2,DB4,DB6,DB8,DB10,DB12)appearwhenCLKOUT  
+
DA13) appear when CLKOUT is high.  
islow.Theodddatabits(DB1,DB3,DB5,DB7,DB9,DB11,  
+
+
+
DB13) appear when CLKOUT is high.  
OF ,OF (PinsK2,K1):Overflow/UnderflowOutputs.OF  
is high when an overflow/underflow has occurred.  
Pin Configuration  
1
2
3
4
5
6
7
8
9
10  
RF  
11  
GND  
GND  
GND  
GND  
–IN_I  
–OUT_I  
GND  
GND  
SCK  
12  
13  
14  
GND  
GND  
EN_I  
SHDN_I  
GND  
GND  
GND  
GND  
GND  
GND  
+
A
B
C
D
E
GND  
V
V
GND  
GND  
GND  
GND  
+IN_Q  
LO  
LO  
GND  
GND  
EN  
GND  
GND  
NC2  
NC3  
GND  
GND  
GND  
GND  
V
CC2  
V
CC2  
CC2  
CC2  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
EN_Q  
SHDN_Q  
GND  
GND  
GND  
GND  
NC1  
EIP2  
GND  
GND  
GND  
GND  
V
GND  
GND  
GND  
CC1  
GAIN_Q  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
REF  
IP2_I  
IP2_Q  
+IN_I  
+OUT_I  
GND  
GAIN_I  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
GND  
V
CC2  
CC2  
GND  
GND  
GND  
GND  
GND  
–IN_Q  
GND  
GND  
GND  
GND  
SENSE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
F
GND  
+OUT_Q –OUT_Q  
G
H
J
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
+
GND  
CLK  
V
V
DD  
PAR/SER  
CS  
DD  
+
K
L
OF  
OF  
GND  
CLK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
SDI  
+
DB01  
DB23  
DB67  
DB01+  
GND  
GND  
GND  
GND  
SDO  
DA1213 DA1213  
+
+
+
+
M
N
P
DB23  
DB45  
DB45  
DB89  
GND  
DA89  
DA89  
DA45  
DA01  
DA1011 DA1011  
+
+
+
+
+
DB67  
DB89  
OV  
DD  
OV  
DD  
DA45  
DA67  
DA01  
DA67  
GND  
+
+
+
+
GND  
DB1213 DB1213 DB1011 DB1011  
CLKOUT CLKOUT  
DA23  
DA23  
Top View of BGA Package (Looking Through Component)  
9013fa  
11  
For more information www.linear.com/LTM9013  
LTM9013  
blocK DiagraM  
DA12_13  
DA0_1  
RF  
+
CLKOUT  
CLKOUT  
+
OF  
0°  
IP2  
CONTROL  
ADC  
CONTROL  
RANGE  
SELECT  
CLOCK DUTY  
CYCLE CONTROL  
OF  
90°  
DB12_13  
DB0_1  
9013 F01  
Figure 1. Functional Block Diagram  
9013fa  
12  
For more information www.linear.com/LTM9013  
LTM9013  
TiMing DiagraMs  
Double-Data Rate Output Timing, All Data Are Differential LVDS  
N
t
AP  
N + 3  
N + 2  
N + 1  
t
t
L
H
+
CLK  
CLK  
+
CLKOUT  
CLKOUT  
t
C
+
DA0_1  
DA0_1  
DA0  
DA1  
DA0  
DA1  
DA0  
DA1  
N-3  
N-5  
N-5  
N-4  
N-4  
N-3  
t
D
+
DA12_13  
DA12_13  
DA12  
DA13  
DA12  
DA13  
DA12  
DA13  
N-5  
N-5  
N-5  
N-4  
N-4  
N-4  
N-3  
N-3  
+
DB0_1  
DB0_1  
DB0  
DB1  
DB0  
DB1  
DB0  
DB1  
N-5  
N-4  
N-3  
N-3  
+
DB12_13  
DB12_13  
DB12  
DB13  
DB12  
DB13  
DB12  
DB13  
N-5  
N-5  
N-5  
N-4  
N-4  
N-4  
N-4  
N-3  
N-3  
N-3  
N-3  
+
OF  
OF_A  
OF_B  
t
OF_A  
OF_B  
OF_A  
OF_B  
N-5  
OF  
9013 TD01  
SKEW  
9013fa  
13  
For more information www.linear.com/LTM9013  
LTM9013  
TiMing DiagraMs  
SPI Port Timing (Readback Mode)  
t
S
t
DS  
t
DH  
t
t
H
SCK  
CS  
SCK  
t
DO  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
XX  
XX  
D6  
XX  
D5  
XX  
D4  
XX  
D3  
XX  
D2  
XX  
D1  
XX  
R/W  
SDO  
D7  
D0  
HIGH IMPEDANCE  
SPI Port Timing (Write Mode)  
CS  
SCK  
SDI  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
R/W  
SDO  
9013 TD02  
HIGH IMPEDANCE  
9013fa  
14  
For more information www.linear.com/LTM9013  
LTM9013  
operaTion  
Description  
The LTM9013 variable gain amplifier employs an interpo-  
lated, tapped attenuator circuit architecture to generate  
the variable-gain characteristic. The tapped attenuator  
is fed to a buffer and output amplifier to complete the  
differential signal path. This circuit architecture provides  
good RF input power handling capability along with a  
constant output noise and output IP3 characteristic that  
are desirable for most IF signal chain applications. The  
internal control circuitry takes the gain control signal from  
the GAIN terminals and converts this to an appropriate set  
of control signals to the attenuator ladder. The attenuator  
control circuit ensures that the linear-in-dB gain response  
is continuous and monotonic over the gain range for both  
slow and fast moving input control signals while exhibit-  
ing very little input impedance variation over gain. These  
The LTM9013 is a low IF receiver targeting wideband I/Q  
receiveranddigitalpredistortionapplications,suchaswire-  
less infrastructure with RF input frequencies up to 4GHz.  
It is an integrated μModule receiver utilizing system in a  
package (SiP) technology to combine a dual, high speed  
14-bit A/D converter, 300MHz lowpass filters, one low  
noise, differential amplifier per channel with adjustable  
gain and an I/Q demodulator with IP2 adjustment.  
Thefollowingsectionsdescribeinfurtherdetailtheopera-  
tion of each section.  
Demodulator Operation  
The RF signal is applied to the inputs of the RF trans-  
conductance amplifiers and is then demodulated into I/Q  
baseband signals using quadrature LO signals which are  
internally generated from an external LO source by preci-  
sion 90° phase shifters.  
designconsiderationsresultinagain-vs-V characteristic  
G
with a 0.1dB ripple and a 0.5µs gain response time that  
is slower than a similar digital step attenuator design.  
Anoftenoverlookedcharacteristicofananalog-controlled  
VGA is upconverted amplitude modulation (AM) noise  
from the gain control terminals. The VGA behaves as a  
2-quadrant multiplier, so some minimal care is required  
to avoid excessive AM sideband noise generation. The  
following table demonstrates the effect of the baseline  
20nV/√HzequivalentinputcontrolnoisefromtheLTM9013  
circuit along with the effect of a higher combined input  
noise due to a noisy external control circuit.  
Broadband transformers are integrated at the RF input to  
enable a single-ended RF interface. In the mid frequency  
band (1.5GHz to 2.7GHz), both RF and LO ports are inter-  
nally matched to 50Ω. No external matching components  
are needed. For the low (700MHz to 1.5GHz), and high  
(2.7GHz to 4GHz) frequency bands a simple network with  
series inductors and/or shunt capacitors can be used as  
the impedance matching network.  
Amplifier Operation  
CONTROL INPUT TOTAL NOISE  
PEAK AM NOISE AT 10kHz OFFSET  
NEAR MAXIMUM GAIN (dBc/Hz)  
VOLTAGE (nV/√Hz)  
Each channel of the LTM9013 consists of a single stage of  
AC-coupled,lownoiseandlowdistortionfullydifferentialop  
amp/ADCdriver.Eachstageisfollowedbya4-polelowpass  
filter using a high speed, high performance operational  
amplifier and precision passive components. The stage  
is designed to provide maximum gain and phase flatness.  
20  
40  
–142  
–136  
–131  
–128  
–122  
70  
100  
200  
9013fa  
15  
For more information www.linear.com/LTM9013  
LTM9013  
operaTion  
The baseline equivalent 20nV/√Hz input noise is seen to  
produceworst-caseAMsidebandsof142dBc/Hzwhichis  
near the –147dBm/Hz output noise floor at maximum gain  
for a nominal 0dBm output signal. An input control noise  
voltage less than 80nV/√Hz is generally recommended to  
avoidmeasurableAMsidebandnoise.Whileopampcontrol  
circuit output noise voltage is usually below 80nV/√Hz,  
some low power DAC outputs exceed 150nV/√Hz. DACs  
withoutputnoiseintherangeof100nV/√Hzto150nV/√Hz  
can usually be accommodated with a suitable 2:1 or 3:1  
resistordividernetworkontheDACoutputtosuppressthe  
noise amplitude by the same ratio. Noisy DACs in excess  
of 150nV/√Hz should be avoided if minimal AM noise is  
important in the application.  
ADC Input Network  
The passive network between the amplifier output and  
the ADC input stages provides a 0.1dB ripple, 4th order  
Chebyshev lowpass filter response.  
Converter Operation  
The LTM9013 includes a 2-channel, 14-bit 310Msps A/D  
converter powered by a single 1.8V supply. A sampled  
input will result in a digitized value six cycles later. The  
analog inputs are driven differentially by the VGA. The  
encode inputs should be driven differentially for optimal  
performance.ThedigitaloutputsaredoubledatarateLVDS.  
Additional features can be chosen by programming the  
mode control registers through a serial SPI port.  
9013fa  
16  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
RF Input  
0
–5  
Figure 2 shows the mixer’s RF input which consists of an  
integrated transformer and high linearity transconduc-  
tance amplifiers. The primary side of the transformer is  
connected to the RF input pin. The secondary side of the  
transformer is connected to the differential inputs of the  
transconductance amplifiers. Under no circumstances  
should an external DC voltage be applied to the RF input  
pin. DC current flowing into the primary side of the trans-  
former may cause damage to the integrated transformer.  
A series blocking capacitor should be used to AC-couple  
the RF input port to the RF signal source.  
–10  
–15  
–20  
–25  
–30  
NO MATCHING  
ELEMENTS  
1.95GHz MATCH  
(3.3nH + 1.5pF)  
100  
1000  
10000  
FREQUENCY (MHz)  
9013 F03  
Figure 3. RF Input Return Loss with External Matching  
Table 1. RF Input Impedance  
EXTERNAL  
MATCHING  
LTM9013  
NETWORK FOR  
LOW BAND AND  
MID BAND  
FREQUENCY MAGNITUDE  
PHASE  
R
X
RF  
INPUT  
TO I-MIXER  
C19  
500MHz  
600MHz  
0.96  
0.93  
0.90  
0.81  
0.70  
0.74  
0.78  
0.82  
0.81  
0.83  
0.83  
0.83  
0.84  
0.83  
0.84  
0.81  
0.81  
0.78  
0.75  
0.73  
0.68  
0.66  
0.63  
0.62  
0.61  
0.59  
41.2  
92.3Ω  
85.3Ω  
76.0Ω  
66.9Ω  
49.4Ω  
34.8Ω  
25.9Ω  
20.4Ω  
16.8Ω  
13.2Ω  
11.0Ω  
7.9Ω  
–95.4Ω  
–62.0Ω  
–36.0Ω  
–17.6Ω  
0.4Ω  
L5  
RF  
50.6  
C20  
C21  
700MHz  
61.3  
TO Q-MIXER  
800MHz  
71.3  
900MHz  
90.7  
1000MHz  
1100MHz  
1200MHz  
1300MHz  
1400MHz  
1500MHz  
1600MHz  
1700MHz  
1800MHz  
1900MHz  
2000MHz  
2100MHz  
2200MHz  
2300MHz  
2400MHz  
2500MHz  
2600MHz  
2700MHz  
2800MHz  
2900MHz  
3000MHz  
109.6  
122.1  
130.2  
136.9  
143.6  
149.0  
157.2  
165.3  
175.9  
–173.1  
–161.6  
–150.2  
–141.5  
–132.7  
–129.9  
–126.8  
–128.6  
–129.1  
–126.9  
–124.9  
–117.7  
8.5Ω  
9013 F02  
11.2Ω  
12.1Ω  
11.6Ω  
10.9Ω  
9.7Ω  
Figure 2. RF Input Interface  
The RF input port is internally matched over a wide fre-  
quency range from 1.5GHz to 2.7GHz with input return  
loss typically better than 10dB. No external matching  
network is needed for this frequency range. When the  
part is operated at lower frequencies, however, the input  
return loss can be improved with the matching network  
shown in Figure 2. Shunt capacitors C20, C21 and series  
inductor L5 can be selected for optimum input impedance  
matchingatthedesiredfrequencyasillustratedinFigure3.  
C19 serves as a series DC blocking capacitor.  
7.7Ω  
5.8Ω  
5.2Ω  
4.7Ω  
1.5Ω  
4.8Ω  
–2.5Ω  
–6.2Ω  
–9.2Ω  
–10.5Ω  
–10.9Ω  
–10.6Ω  
–9.7Ω  
–9.4Ω  
–8.8Ω  
–8.6Ω  
–8.5Ω  
–7.6Ω  
7.3Ω  
10.9Ω  
15.2Ω  
20.2Ω  
22.2Ω  
24.9Ω  
24.3Ω  
24.8Ω  
26.0Ω  
27.2Ω  
31.5Ω  
The RF input impedance and S11 parameters (without  
external matching components) are listed in Table 1.  
9013fa  
17  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
LO Input Port  
0
–5  
The mixer’s LO input interface is shown in Figure 4. The  
input consists of a precision quadrature phase shifter  
which generates 0° and 90° phase-shifted LO signals for  
the LO buffer amplifiers driving the I/Q mixers. Under no  
circumstances should an external DC voltage be applied  
to the input pin. DC current flowing into the primary side  
of the transformer may damage the transformer.  
–10  
–15  
–20  
–25  
–30  
NO MATCHING  
ELEMENTS  
1.8GHz MATCH  
(0.5pF + 6.8nH)  
LTM9013  
LO  
INPUT  
100  
1000  
FREQUENCY (MHz)  
10000  
T1  
C22  
LO–  
LO+  
9013 F05  
LO QUADRATURE  
GENERATOR AND  
BUFFER AMPLIFIERS  
C24  
Figure 5. LO Input Return Loss with External Matching  
Table 2. LO Input Impedance  
FREQUENCY MAGNITUDE  
PHASE  
–70.3  
–83.9  
–97.1  
–119.8  
–144.9  
–177.8  
146.5  
115.0  
87.9  
R
X
9013 F04  
500MHz  
600MHz  
0.71  
0.66  
0.66  
0.62  
0.55  
0.51  
0.48  
0.52  
0.57  
0.62  
0.66  
0.67  
0.69  
0.67  
0.66  
0.61  
0.55  
0.46  
0.34  
0.30  
0.33  
0.42  
0.51  
0.53  
0.52  
0.33  
67.7Ω  
55.0Ω  
44.5Ω  
29.8Ω  
20.2Ω  
16.1Ω  
22.2Ω  
34.3Ω  
51.6Ω  
66.9Ω  
84.7Ω  
101.4Ω  
123.7Ω  
154.8Ω  
193.5Ω  
206.9Ω  
163.1Ω  
101.7Ω  
65.5Ω  
40.0Ω  
25.8Ω  
21.4Ω  
23.1Ω  
31.4Ω  
42.2Ω  
45.9Ω  
15.5Ω  
3.6Ω  
Figure 4. LO Input Interface  
700MHz  
–3.3Ω  
–8.3Ω  
–6.5Ω  
–0.4Ω  
5.3Ω  
The LO input port is internally matched over a wide fre-  
quency range from 1.5GHz to 2.7GHz with input return  
loss typically better than 10dB. No external matching  
network is needed for this frequency range. The LO input  
impedanceandS11parameters(withoutexternalmatching  
components) are listed in Table 2. Outside this frequency  
range, theimpedancematchcanbeimprovedusingseries  
capacitor C22 and shunt capacitor C24.  
800MHz  
900MHz  
1000MHz  
1100MHz  
1200MHz  
1300MHz  
1400MHz  
1500MHz  
1600MHz  
1700MHz  
1800MHz  
1900MHz  
2000MHz  
2100MHz  
2200MHz  
2300MHz  
2400MHz  
2500MHz  
2600MHz  
2700MHz  
2800MHz  
2900MHz  
3000MHz  
6.1Ω  
–0.9Ω  
–12.4Ω  
–30.5Ω  
–46.6Ω  
–67.4Ω  
–75.6Ω  
–70.8Ω  
–10.8Ω  
24.2Ω  
21.3Ω  
5.5Ω  
70.5  
55.0  
44.0  
34.1  
24.3  
15.5  
2.5  
–10.2  
–34.3  
–63.8  
–113.3  
–164.3  
164.8  
140.5  
120.3  
101.7  
98.1  
–2.5Ω  
–1.6Ω  
2.2Ω  
6.3Ω  
6.7Ω  
3.6Ω  
1.3Ω  
9013fa  
18  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
IM2 Adjustment Circuitry  
IF Input Port Characteristics  
The LTM9013 also contains circuitry for the independent  
adjustment of IM2 levels on the I and Q channels. When  
the EIP2 pin is a logic high, this circuitry is enabled and  
the IP2I and IP2Q analog control voltage inputs are able  
to adjust the IM2 level. The IM2 level can be effectively  
minimized over a large range of the baseband bandwidth.  
The circuitry has an effective baseband frequency upper  
limit of about 200MHz. Any IM2 component that falls in  
this frequency range can be minimized.  
The amplifier inputs provide a nominal 50Ω differential  
input impedance over the operating frequency range.  
The input impedance characteristic derives from the dif-  
ferential attenuator ladder. The internal circuit controls the  
IF connections to this attenuator ladder and generates the  
appropriate common mode DC voltage.  
Enable/Shutdown  
BoththeENandSHDNpinsareself-biasedtoV through  
CC2  
their respective 100k pull-up resistors, so the default  
open-pin state is powered on with the output amplifier  
signal path disabled. Pulling the EN pin low completes the  
signal path from the attenuator ladder through the output  
amplifier. The EN pin essentially provides a fast muting  
function while the SHDN pin provides slower power on/  
off function.  
Variable Gain Amplifier  
The LTM9013 includes a high linearity, fully-differential  
analog-controlled variable-gain amplifier (VGA) opti-  
mized for application frequencies in the range of 1MHz to  
500MHz. The VGA architecture provides a constant OIP3  
and constant output noise level (NF + Gain) over the 31dB  
gain-control range and thus exhibits a uniform spurious-  
free dynamic range (SFDR) over gain. This constant SFDR  
characteristic is ideal for use in receiver IF chains.  
For applications requiring the SHDN function, it is recom-  
mended that the output amplifier signal path be disabled  
with a high EN voltage before transitioning the SHDN  
signal. When enabling the amplifier, allow at least 5ms  
dwell time between the rising SHDN transition and the  
falling EN transition to avoid non-monotonic output signal  
behavior though the VGA. The opposite delay sequence  
is recommended for the falling SHDN transition, but this  
is less critical as the output signal amplitude will drop  
abruptly regardless of the EN pin.  
Gain Characteristics  
The LTM9013 provides a continuously adjustable gain of  
31dB that is linear-in-dB with respect to the control volt-  
ages appliedto GAIN_IandGAIN_Q. Inthisway, apositive  
gain-control slope is easily achieved:  
Apply gain control voltage to the GAIN_I/GAIN_Q pins.  
Gain increases with increasing GAIN_I/GAIN_Q voltage.  
SHDN  
Whenconnectedinthistypicalsingle-endedconfiguration,  
the active control input range extends from 0.1V to 1.1V.  
This control input range can be extended using a resistor  
divider with a suitably low output resistance. For example,  
two series resistors of 1k each would extend the control  
input range from 0.2V to 2.2V while providing an effective  
500Ω Thevinin equivalent source resistance, a relatively  
small loading effect compared to the 10k input resistance  
of the GAIN_I/GAIN_Q terminals.  
t
t
DWELL  
DWELL  
9013 F06  
EN  
Figure 6  
9013fa  
19  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
ESD  
Encode Input  
The signal quality of the encode inputs strongly affects  
the A/D noise performance. The encode inputs should  
be treated as analog signals—do not route them next to  
digital traces on the circuit board.  
The amplifier inputs are protected with reverse-biased  
ESD diodes on all pins. If any pin is forced one diode drop  
above the positive supply or one diode drop below the  
negative supply, then large currents may flow through the  
diodes. No damage to the devices will occur if the current  
is kept below 10mA.  
The encode inputs are internally biased to 1.2V through  
10k equivalent resistance (Figure 8). If the common mode  
of the driver is within 1.1V to 1.5V, it is possible to drive  
the encode inputs directly. Otherwise a transformer or  
coupling capacitors are needed (Figures 9 and 10). The  
maximum (peak) voltage of the input signal should never  
Reference  
The LTM9013 has an internal 1.25V voltage reference for  
the ADC. For a 1.32V input range with internal reference,  
connect SENSE to V . For a 1.32V input range with an  
exceed V + 0.1V or go below –0.1V.  
DD  
DD  
external reference, apply a 1.25V reference voltage to  
SENSE (Figure 7). Apply a 1.15V reference voltage to  
SENSE to achieve specified performance.  
LTM9013  
5Ω  
V
REF  
1.25V  
0.1µF  
SCALER/  
BUFFER  
ADC  
REFERENCE  
SENSE  
SENSE  
DETECTOR  
9013 F07  
Figure 7. Reference Circuit  
LTM9013  
V
DD  
1.2V  
10k  
+
CLK  
CLK  
9013 F08  
Figure 8. Equivalent Encode Input Circuit  
9013fa  
20  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
LTM9013  
V
DD  
1.2V  
10k  
0.1µF  
50Ω  
100Ω  
0.1µF  
50Ω  
T1: MACOM  
ETC1-1-13  
9013 F09  
Figure 9. Sinusoidal Encode Circuit  
DIGITAL OUTPUTS  
LTM9013  
V
DD  
The digital outputs are double data rate LVDS signals. Two  
data bits are multiplexed and output on each differential  
output pair. There are seven LVDS output pairs for chan-  
1.2V  
+
+
nel A (DA0_1 /DA0_1 through DA12_13 /DA12_13 )  
0.1µF  
0.1µF  
10k  
+
+
CLK  
and seven pairs for channel B (DB0_1 /DB0_1 through  
+
+
DB12_13 /DB12_13 ). Overflow (OF /OF ) and the data  
output clock (CLKOUT /CLKOUT ) each have an LVDS  
output pair. Note that overflow for both channels is mul-  
+
PECL OR  
LVDS INPUT  
100Ω  
CLK  
+
tiplexed onto the OF /OF output pair.  
9013 F10  
By default the outputs are standard LVDS levels: 3.5mA  
output current and a 1.25V output common mode volt-  
age. An external 100Ω differential termination resistor  
is required for each LVDS output pair. The termination  
resistors should be located as close as possible to the  
LVDS receiver.  
Figure 10. PECL or LVDS Encode Drive  
Clock Duty Cycle Stabilizer  
For good performance the encode signal should have a  
50% ( 5%) duty cycle. If the optional clock duty cycle  
stabilizer circuit is enabled, the encode duty cycle can  
vary from 30% to 70% and the duty cycle stabilizer will  
maintainaconstant50%internaldutycycle.Thedutycycle  
stabilizer is enabled via SPI Register A2 (see Table 5) or  
by CS in parallel programming mode.  
Programmable LVDS Output Current  
The default output driver current is 3.5mA. This current  
can be adjusted by serially programming mode control  
register A3 (see Table 5). Available current levels are  
1.75mA, 2.1mA, 2.5mA, 3mA, 3.5mA, 4mA and 4.5mA.  
Forapplicationswherethesamplerateneedstobechanged  
quickly, the clock duty cycle stabilizer can be disabled. In  
this cases care should be taken to make the clock a 50%  
( 5%) duty cycle.  
9013fa  
21  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
Optional LVDS Driver Internal Termination  
Phase Shifting the Output Clock  
In most cases, using just an external 100Ω termination  
resistor will give excellent LVDS signal integrity. In addi-  
tion, an optional internal 100Ω termination resistor can  
beenabledbyseriallyprogrammingmodecontrolregister  
A3. The internal termination helps absorb any reflections  
caused by imperfect termination at the receiver. When the  
internal termination is enabled, the output driver current  
is doubled to maintain the same output voltage swing.  
To allow adequate set-up and hold time when latching the  
+
output data, the CLKOUT signal may need to be phase  
shifted relative to the data output bits. Most FPGAs have  
this feature; this is generally the best place to adjust the  
timing.  
+
Alternatively, the ADC can also phase shift the CLKOUT /  
CLKOUT signals by serially programming mode control  
register A2. The output clock can be shifted by 0°, 45°,  
90°, or 135°. To use the phase shifting feature the clock  
duty cycle stabilizer must be turned on. Another con-  
Overflow Bit  
+
The overflow output bit (OF) outputs a logic high when  
the analog input is either overranged or underranged. The  
overflow bit has the same pipeline latency as the data bits.  
trol register bit can invert the polarity of CLKOUT and  
CLKOUT , independently of the phase shift. The combina-  
tion of these two features enables phase shifts of 45° up  
to 315° (Figure 11).  
+
+
The OF output is double data rate; when CLKOUT is low,  
channel A’s overflow is available; when CLKOUT is high,  
channel B’s overflow is available.  
+
CLK  
D0-D13, OF  
MODE CONTROL BITS  
PHASE  
SHIFT  
CLKINV  
0
CLKPHASE1 CLKPHASE0  
0°  
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
45°  
90°  
0
0
0
1
1
1
1
135°  
180°  
225°  
270°  
315°  
+
CLKOUT  
9013 F11  
Figure 11. Phase Shifting CLKOUT  
9013fa  
22  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
DATA FORMAT  
CLKOUT  
CLKOUT  
OF  
Table 3 shows the relationship between the analog input  
voltage, the digital data output bits and the overflow bit.  
By default the output data format is offset binary. The 2’s  
complement format can be selected by serially program-  
ming mode control register A4.  
OF  
D13  
D13/D0  
D12/D0  
D12  
Table 3. Output Codes vs Input Level  
D13-D0  
D13-D0  
RANDOMIZER  
ON  
+IN – –IN  
+Overflow  
+Full Scale  
OF  
1
(OFFSET BINARY)  
(2s COMPLEMENT)  
D1  
11 1111 1111 1111  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
00 0000 0000 0000  
01 1111 1111 1111  
01 1111 1111 1111  
01 1111 1111 1110  
00 0000 0000 0001  
00 0000 0000 0000  
11 1111 1111 1111  
11 1111 1111 1110  
10 0000 0000 0001  
10 0000 0000 0000  
10 0000 0000 0000  
D1/D0  
0
0
D0  
D0  
0
9013 F12  
Mid-Scale  
0
0
Figure 12. Functional Equivalent of Digital Output Randomizer  
0
–Full Scale  
–Overflow  
0
PC BOARD  
0
FPGA  
CLKOUT  
1
OF  
Digital Output Randomizer  
D13/D0  
Interference from the A/D digital outputs is sometimes  
unavoidable.Digitalinterferencemaybefromcapacitiveor  
inductive coupling or coupling through the ground plane.  
Even a tiny coupling factor can cause unwanted tones  
in the ADC output spectrum. By randomizing the digital  
output before it is transmitted off chip, these unwanted  
tones can be randomized which reduces the unwanted  
tone amplitude.  
LTM9013  
D13  
D12  
D12/D0  
D1/D0  
D0  
D1  
D0  
The digital output is randomized by applying an exclu-  
sive-OR logic operation between the LSB and all other  
data output bits. To decode, the reverse operation is  
applied—an exclusive-OR operation is applied between  
the LSB and all other bits. The LSB, OF and CLKOUT out-  
puts are not affected. The output randomizer is enabled  
by serially programming mode control register A4.  
9013 F13  
Figure 13. Decoding a Randomized Digital Output Signal  
9013fa  
23  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
Alternate Bit Polarity  
Output Disable  
Another feature that may reduce digital feedback on the  
circuit board is the alternate bit polarity mode. When this  
mode is enabled, all of the odd bits (D1, D3, D5, D7, D9,  
D11, D13)areinvertedbeforetheoutputbuffers. Theeven  
bits (D0, D2, D4, D6, D8, D10, D12), OF and CLKOUT are  
not affected. This can reduce digital currents in the circuit  
board ground plane and reduce digital noise, particularly  
for very small analog input signals.  
The digital outputs may be disabled by serially program-  
ming mode control register A3. All digital outputs includ-  
ing OF and CLKOUT are disabled. The high impedance  
disabled state is intended for long periods of inactivity,  
it is not designed for multiplexing the data bus between  
multiple converters.  
Sleep Mode  
The A/D may be placed in sleep mode to conserve power.  
In sleep mode the entire A/D converter is powered down,  
resulting in <5mW power consumption. If the encode  
input signal is not disabled the power consumption will be  
higher (up to 5mW at 250Msps). Sleep mode is enabled  
by mode control register A1 (serial programming mode),  
or by SCK (parallel programming mode).  
The digital output is decoded at the receiver by inverting  
the odd bits (D1, D3, D5, D7, D9, D11, D13.) The alternate  
bit polarity mode is independent of the digital output ran-  
domizer—either both or neither function can be on at the  
same time. The alternate bit polarity mode is enabled by  
serially programming mode control register A4.  
Digital Output Test Patterns  
In the serial programming mode it is also possible to dis-  
ablechannelBwhileleavingchannelAinnormaloperation.  
To allow in-circuit testing of the digital interface to the  
A/D, there are several test modes that force the A/D data  
outputs (OF, D13 to D0) to known values:  
The amount of time required to recover from sleep mode  
depends on the size of the bypass capacitor on V . With  
REF  
the 2.2µF value used internally, the A/D will stabilize after  
All 1s: All outputs are 1  
All 0s: All outputs are 0  
0.1ms + 2500 • t where t is the period of the sampling  
p
p
clock.  
Alternating: Outputs change from all 1s to all 0s on  
alternating samples  
Nap Mode  
In nap mode the A/D core is powered down while the inter-  
nal reference circuits stay active, allowing faster wakeup.  
Recovering from nap mode requires at least 100 clock  
cycles. Nap mode is enabled by power-down register A1  
in the serial programming mode.  
Checkerboard:Outputschangefrom101010101010101  
to 010101010101010 on alternating samples.  
The digital output test patterns are enabled by serially  
programming mode control register A4. When enabled,  
the test patterns override all other formatting modes:  
2’s complement, randomizer, alternate-bit polarity.  
Wake-up time from nap mode is guaranteed only if the  
clock is kept running, otherwise Power-Down Wake-up  
conditions apply.  
9013fa  
24  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
DEVICE PROGRAMMING MODES  
Serial data transfer starts when CS is taken low. The data  
on the SDI pin is latched at the first sixteen rising edges  
of SCK. Any SCK rising edges after the first sixteen are  
ignored.ThedatatransferendswhenCSistakenhighagain.  
The operating modes of the A/D can be programmed by  
either a parallel interface or a simple serial interface. The  
serial interface has more flexibility and can program all  
available modes. The parallel interface is more limited and  
canonlyprogramsomeofthemorecommonlyusedmodes.  
The first bit of the 16-bit input word is the R/W bit. The  
next seven bits are the address of the register (A6:A0).  
The final eight bits are the register data (D7:D0).  
Parallel Programming Mode  
If the R/W bit is low, the serial data (D7:D0) will be writ-  
ten to the register set by the address bits (A6:A0). If the  
R/W bit is high, data in the register set by the address bits  
(A6:A0) will be read back on the SDO pin (see the Timing  
Diagrams). During a readback command the register is  
not updated and data on SDI is ignored.  
To use the parallel programming mode, PAR/SER should  
be tied to V . The CS, SCK and SDI pins are binary logic  
DD  
inputs that set certain operating modes. These pins can  
be tied to V or ground, or driven by 1.8V, 2.5V, or 3.3V  
DD  
CMOS logic. Table 4 shows the modes set by CS, SCK  
and SDI.  
The SDO pin is an open-drain output that pulls to ground  
with a 200Ω impedance. If register data is read back  
through SDO, an external 2k pull-up resistor is required.  
If serial data is only written and readback is not needed,  
then SDO can be left floating and no pull-up resistor is  
needed.Table 5showsamapofthemodecontrolregisters.  
Table 4. Parallel Programming Mode Control Bits (PAR/SER = VDD  
)
PIN  
DESCRIPTION  
CS  
Clock Duty Cycle Stabilizer Control Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
SCK  
SDI  
Power Down Control Bit  
0 = Normal Operation  
1 = Sleep Mode (entire ADC is powered down)  
Software Reset  
LVDS Current Selection Bit  
If serial programming is used, the mode control registers  
shouldbeprogrammedassoonaspossibleafterthepower  
supplies turn on and are stable. The first serial command  
must be a software reset which will reset all register data  
bits to logic 0. To perform a software reset it is neces-  
sary to write 1 in register A0 (Bit D7). After the reset is  
complete, Bit D7 is automatically set back to zero. This  
register is write-only.  
0 = 3.5mA LVDS Current Mode  
1 = 1.75mA LVDS Current Mode  
Serial Programming Mode  
To use the serial programming mode, PAR/SER should be  
tied to ground. The CS, SCK, SDI and SDO pins become  
a serial interface that program the A/D control registers.  
Data is written to a register with a 16-bit serial word. Data  
can also be read back from a register to verify its contents.  
9013fa  
25  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
Table 5. Serial Programming Mode Register Map (PAR/SER = GND). X Indicates Unused Bit  
REGISTER A0: RESET REGISTER (ADDRESS 00h) Write Only  
D7  
D6  
X
D5  
D4  
X
D3  
X
D2  
X
D1  
X
D0  
X
RESET  
X
Bit 7  
RESET  
0 = Reset Disabled  
Software Reset Bit  
1 = Software Reset. All mode control registers are reset to 00h. This bit is automatically set back to zero after the reset is complete.  
Bits 6-0  
Unused Bits  
REGISTER A1: POWER-DOWN REGISTER (ADDRESS 01h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
0
SLEEP  
NAP  
PDB  
Bits 7-4  
Unused, this bit read back as 0  
Bit 3  
SLEEP  
0 = Normal Operation  
1 = Power Down Entire ADC  
Bit 2  
NAP  
0 = Normal Mode  
1 = Low Power Mode for Both Channels  
PDB  
Bit 1  
Bit 0  
0 = Normal Operation  
1 = Power Down Channel B. Channel A operates normally.  
Must be set to 0  
REGISTER A2: TIMING REGISTER (ADDRESS 02h)  
D7  
X
D6  
X
D5  
X
D4  
X
D3  
D2  
D1  
D0  
CLKINV  
CLKPHASE1  
CLKPHASE0  
DCS  
Bits 7-4  
Unused, This Bit Read Back as 0  
Bit 3  
CLKINV Output Clock Invert Bit  
0 = Normal CLKOUT Polarity (as shown in the Timing Diagrams)  
1 = Inverted CLKOUT Polarity  
Bits 2-1  
CLKPHASE1:CLKPHASE0 Output Clock Phase Delay Bits  
00 = No CLKOUT Delay (as shown in the Timing Diagrams)  
+
+
+
01 = CLKOUT /CLKOUT delayed by 45° (Clock Period • 1/8)  
10 = CLKOUT /CLKOUT delayed by 90° (Clock Period • 1/4)  
11 = CLKOUT /CLKOUT delayed by 135° (Clock Period • 3/8)  
Note: If the CLKOUT phase delay feature is used, the clock duty cycle stabilizer must also be turned on.  
Bit 0  
DCS Clock Duty Cycle Stabilizer Bit  
0 = Clock Duty Cycle Stabilizer Off  
1 = Clock Duty Cycle Stabilizer On  
9013fa  
26  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
REGISTER A3: OUTPUT MODE REGISTER (ADDRESS 03h)  
D7  
X
D6  
X
D5  
X
D4  
D3  
D2  
D1  
D0  
ILVDS2  
ILVDS1  
ILVDS0  
TERMON  
OUTOFF  
Bits 7-5  
Unused, This Bit Read Back as 0  
Bits 4-2  
ILVDS2:ILVDS0 LVDS Output Current Bits  
000 = 3.5mA LVDS Output Driver Current  
001 = 4.0mA LVDS Output Driver Current  
010 = 4.5mA LVDS Output Driver Current  
011 = Not Used  
100 = 3.0mA LVDS Output Driver Current  
101 = 2.5mA LVDS Output Driver Current  
110 = 2.1mA LVDS Output Driver Current  
111 = 1.75mA LVDS Output Driver Current  
Bit 1  
Bit 0  
TERMON LVDS Internal Termination Bit  
0 = Internal Termination Off  
1 = Internal Termination On. LVDS output driver current is 2× the current set by ILVDS2:ILVDS0  
OUTOFF Digital Output Mode Control Bits  
0 = Digital Outputs Are Enabled  
1 = Digital Outputs Are Disabled (High Impedance)  
REGISTER A4: DATA FORMAT REGISTER (ADDRESS 04h)  
D7  
D6  
D5  
D4  
D3  
0
D2  
D1  
D0  
OUTTEST2  
OUTTEST1  
OUTTEST0  
ABP  
DTESTON  
RAND  
TWOSCOMP  
Bits 7-5  
OUTTEST2:OUTTEST0 Digital Output Test Pattern Bits  
000 = All Digital Outputs = 0  
001 = All Digital Outputs = 1  
010 = Alternating Output Pattern. OF, D13-D0 alternate between 000 0000 0000 0000 and 111 1111 1111 1111  
100 = Checkerboard Output Pattern. OF, D13-D0 alternate between 101 0101 0101 0101 and 010 1010 1010 1010  
Note 1: Other bit combinations are not used.  
Note 2: Patterns from channel A and channel B may not be synchronous.  
Bit 4  
ABP Alternate Bit Polarity Mode Control Bit  
0 = Alternate Bit Polarity Mode Off  
1 = Alternate Bit Polarity Mode On  
Bit 3  
Bit 2  
Must Be Set to 0  
DTESTON  
0 = Normal Mode  
1 = Enable the Digital Output Test Patterns  
Enable the digital output test patterns (set by Bits 7-5)  
Bit 1  
Bit 0  
RAND Data Output Randomizer Mode Control Bit  
0 = Data Output Randomizer Mode Off  
1 = Data Output Randomizer Mode On  
TWOSCOMP Two’s Complement Mode Control Bit  
0 = Offset Binary Data Format  
1 = Two’s Complement Data Format  
9013fa  
27  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
Design Examples  
0
The LTM9013 allows the user to tailor the highpass corner  
frequencytosuittheapplication.The0.5dBlowpasscorner  
is set by the internal network at 300MHz. By cascading  
the external highpass and internal lowpass networks a  
bandpass characteristic is realized. An example of a very  
low frequency highpass corner is shown in Figure 14.  
–1  
–2  
–3  
–4  
–5  
–6  
The typical performance for the overall module is shown  
below:  
0
50 100 150 200 250 300 350 400 450 500  
BASEBAND FREQUENCY (MHz)  
IF passband (1.5dB): 1MHz to 300MHz  
RF input for –1dBFS: –5dBm at maximum gain  
SNR at –1dBFS: 59.1dB  
9013 F15  
Figure 15. Baseband Frequency Response  
HD2 at –1dBFS: 74dBc  
IMD3 at –7dBFS per tone: –72dBc  
The frequency response is shown in Figure 15:  
15nH  
100Ω  
0.01µF  
0.01µF  
5V  
6.8pF  
100Ω  
V
V
V
15nH  
CC1  
CC2  
DD  
5V  
3.3V  
1.8V  
LTM9013  
GAIN_Q GAIN_I  
OV  
DD  
1.8V  
ADC  
ADC  
CLKOUT  
0°  
ADC CLK  
OF  
LNA  
90°  
PAR/SER  
GND  
SCK CS SDI SDO  
GND  
9013 F14  
LO IN  
15nH  
100Ω  
0.01µF  
0.01µF  
6.8pF  
15nH  
5V  
100Ω  
Figure 14. Highpass Filter Set for 1MHz  
9013fa  
28  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
For those applications that require a higher frequency  
corner at the highpass point, the network can be tailored,  
for example, as shown in Figure 16.  
0
–0.5  
–1.0  
–1.5  
The typical performance for the overall module is shown  
below:  
IF passband (1.0dB): 55MHz to 315MHz  
RF input for –1dBFS: –5dBm at maximum gain  
SNR at –1dBFS: 59.1dB  
–2.0  
–2.5  
–3.0  
0
50 100 150 200 250 300 350 400 450 500  
BASEBAND FREQUENCY (MHz)  
HD2 at –1dBFS: 74dBc  
9013 F17  
IMD3 at –7dBFS per tone: –72dBc  
The frequency response is shown in Figure 17:  
Figure 17. Baseband Frequency Response  
56pF  
100Ω  
5V  
0.01µF  
180nH 150nH  
56pF  
0.01µF  
100Ω  
V
V
V
DD  
1.8V  
CC1  
CC2  
5V  
3.3V  
LTM9013  
GAIN_Q GAIN_I  
OV  
DD  
1.8V  
ADC  
CLKOUT  
0°  
ADC CLK  
OF  
LNA  
90°  
ADC  
GND  
PAR/SER  
GND  
SCK CS SDI SDO  
9013 F16  
LO IN  
100Ω  
56pF  
180nH 150nH  
56pF  
0.01µF  
0.01µF  
5V  
100Ω  
Figure 16. Highpass Filter Set for 55MHz  
9013fa  
29  
For more information www.linear.com/LTM9013  
LTM9013  
applicaTions inForMaTion  
Supply Sequencing  
Recommended Layout  
The V  
CC2  
pins supply voltage to the demodulator. The  
The high integration of the LTM9013 makes the PCB  
board layout simple. However, to optimize its electrical  
and thermal performance, some layout considerations  
are still necessary.  
CC1  
V
pins supply voltage to the amplifiers. The amplifier  
output stages are also fed by the V  
pins, so careful  
CC1  
power supply sequencing is important. Power must be  
applied to the V pins before power is applied to the  
CC2  
• Use large PCB copper areas for ground. This helps to  
dissipate heat in the package through the board and  
also helps to shield sensitive on-board analog signals.  
V
pins to avoid damage to the amplifiers. Note also that  
CC1  
the amplifiers must be enabled before voltage is applied  
to the V pins for the same reason.  
CC1  
• Use multiple ground vias. Using as many vias as pos-  
sible helps to improve the thermal performance of the  
boardandcreatesnecessarybarriersseparatinganalog  
and digital traces on the board at high frequencies.  
Grounding and Bypassing  
The LTM9013 requires a printed circuit board with a  
clean unbroken ground plane; a multilayer board with an  
internal ground plane is recommended. The pinout of the  
LTM9013 has been optimized for a flowthrough layout so  
that the interaction between inputs and digital outputs is  
minimized. A continuous row of ground pads facilitate a  
layout that ensures that digital and analog signal lines are  
separated as much as possible.  
• Separate analog and digital traces as much as possible,  
using vias to create high frequency barriers. This will  
reduce digital feedback that can reduce the signal-to-  
noise ratio (SNR) and dynamic range of the LTM9013.  
Figures 18 through 25 give a good example of the recom-  
mended layout.  
The LTM9013 is internally bypassed with the ADC (V ),  
mixer, amplifier (V ) digital (OV ) supplies returning to  
a common ground (GND). Additional bypass capacitance  
is optional and may be required if power supply noise is  
significant.  
DD  
The quality of the paste print is an important factor in  
producing high yield assemblies. It is recommended to  
useatype3or4printingno-cleansolderpaste. Thesolder  
stencildesignshouldfollowtheguidelinesoutlinedinPCB  
Assembly and Manufacturing Guidelines  
CC  
DD  
Heat Transfer  
BGA Packages: Assembly Considerations for Linear Tech-  
nology µModule BGA Packages.  
Most of the heat generated by the LTM9013 is transferred  
through the bottom-side ground pins. For good electrical  
and thermal performance, it is critical that all ground pins  
are connected to a ground plane of sufficient area with as  
many vias as possible.  
9013fa  
30  
For more information www.linear.com/LTM9013  
LTM9013  
Typical applicaTions  
3
1
3
1
O V D D  
O V D D  
N 1 0  
N 5  
G N D  
2
L 1  
G N D  
2
K 1  
G N D  
2
J 1  
G N D  
H 1 2  
G 1  
F 1 2  
E 1  
G N D  
2
V D D  
V D D  
G N D  
J 9  
J 6  
G N D  
2
G N D  
2
B 1  
G N D  
H 1 1  
G 1  
D 1 1  
C 1 1  
B 1  
G N D  
1
G N D  
G N D  
V C C 2  
G N D  
A 1 3  
D 1 2  
A 1 2  
A 3  
A 2  
D 1  
1
V C C 2  
V C C 2  
V C C 2  
V C C 2  
V C C 2  
G N D  
1
A 1  
G N D  
0 1  
M
G N D  
0
L 1  
G N D  
3
1
H 1 0  
G 1  
B 1  
G N D  
0
G N D  
0
G N D  
G N D  
P 9  
N 9  
M
G N D  
9
G N D  
9 L  
V C C 1  
S D O  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
B 7  
K 9  
H 9  
G 9  
F 9  
E 9  
B 9  
A 9  
N 8  
M
1
L 1  
S D I  
3
1
K 1 1  
J 1 1  
K 1 0  
J 1 0  
S C K  
C S #  
R # S E P A R _  
G N D  
8
G N D  
8 L  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
K 8  
H 8  
G 8  
F 8  
E 8  
C 8  
A 8  
N 7  
M
Q
N I _ +  
- I N _ Q  
E 4  
E 5  
I
I N + _  
E 1 0  
- I N _ I  
G N D  
E 1 1  
7
G N D  
7 L  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
K 7  
J 7  
H 7  
G 7  
F 7  
E 7  
D 7  
C 7  
A 7  
P 6  
N 6  
M
G N D  
6
G N D  
6 L  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
K 6  
H 6  
G 6  
F 6  
E 6  
B 6  
M
G N D  
5
N C  
N C  
N C  
G N D  
D 9  
C 9  
C 6  
5 L  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
H 5  
G 5  
D 5  
C 5  
B 5  
4 L  
- O U T _ I  
O + U T _ I  
N D G  
G N  
F 1 1  
F 1 0  
K 4  
J 4  
H 4  
G 4  
D 4  
C 4  
B 4  
D
G N D  
G N D  
G N D  
G N D  
G N D  
- O U T _ Q  
O + U T _ Q  
F 5  
F 4  
4
6
3
1
3
1
3
1
3
1
9013fa  
31  
For more information www.linear.com/LTM9013  
LTM9013  
Typical applicaTions  
G N D  
G N D  
G N D  
G N D  
V C C  
V S S  
8
4
3
1
S E T  
S E T  
4
4
4
3
1
6
9013fa  
32  
For more information www.linear.com/LTM9013  
LTM9013  
Typical applicaTions  
Figure 20. Layer 1  
Figure 21. Layer 2  
9013fa  
33  
For more information www.linear.com/LTM9013  
LTM9013  
Typical applicaTions  
Figure 22. Layer 3  
Figure 23. Layer 4  
9013fa  
34  
For more information www.linear.com/LTM9013  
LTM9013  
Typical applicaTions  
Figure 24. Layer 5  
Figure 25. Layer 6  
9013fa  
35  
For more information www.linear.com/LTM9013  
LTM9013  
pacKage DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
/ / b b b  
Z
6 . 5 0  
5 . 5 0  
4 . 5 0  
3 . 5 0  
2 . 5 0  
1 . 5 0  
0 . 5 0  
0 . 5 0  
1 . 5 0  
2 . 5 0  
3 . 5 0  
4 . 5 0  
5 . 5 0  
6 . 5 0  
0 . 0 0  
6 . 2 0  
6 . 8 0  
9013fa  
36  
For more information www.linear.com/LTM9013  
LTM9013  
revision hisTory  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
4/14  
Changed product description to wideband receiver  
Changed latency to six cycles  
1
16  
Updated demo board schematic to reflect pin out convention shown on page 11  
31, 32  
9013fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
37  
LTM9013  
Typical applicaTion  
Block Diagram for IM2 Adjustment. Only the I-Channel Is Shown  
DSP  
1-D  
MINIMIZATION  
ALGORITHM  
DAC  
ADC  
IP2I  
LTM9013  
1MHz BPF  
LNA  
RMS  
DETECTION  
f
LO  
= 1990MHz  
LOOPBACK  
LTC5588-1  
f1 = 20MHz  
f2 = 21MHz  
+
DAC  
PA  
9013 TA02  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2208  
16-Bit, 130Msps, 3.3V ADC, LVDS Outputs  
1250mW, 77.7dB SNR, 100dB SFDR, 64-Lead QFN Package  
LTC2157-14/LTC2156-14/ 14-Bit, 250Msps/210Msps/170Msps,  
LTC2155-14 1.8V Dual ADC, DDR LVDS Outputs  
605mW/565mW/511mW, 70dB SNR, 90dB SFDR, 9mm × 9mm  
64-Lead QFN Package  
LTC2152-14/LTC2151-14/ 14-Bit, 250Msps/210Msps/170Msps,  
338mW/316mW/290mW, 70dB SNR, 90dB SFDR, 6mm × 6mm  
40-Lead QFN Package  
LTC2150-14  
1.8V Single ADC, DDR LVDS Outputs  
LTC2158-14  
14-Bit, 310Msps 1.8V Dual ADC, DDR LVDS Outputs,  
Low Power  
724mW, 68.8dB SNR, 88dB SFDR, 9mm × 9mm 64-Lead  
QFN Package  
RF Mixers/Demodulators  
LT5517  
40MHz to 900MHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 21dBm at 800MHz, Integrated LO Quadrature Generator  
LT5527  
LT5575  
400MHz to 3.7GHz High Linearity Downconverting Mixer 24.5dBm IIP3 at 900MHz, 23.5dBm IIP3 at 3.5GHz, NF = 12.5dB,  
50Ω Single-Ended RF and LO Ports  
800MHz to 2.7GHz Direct Conversion Quadrature  
Demodulator  
High IIP3: 28dBm at 900MHz, Integrated LO Quadrature Generator,  
Integrated RF and LO Transformer  
Amplifiers/Filters  
LTC6409  
10GHz GBW, 1.1nV/√Hz Differential Amplifier/ADC Driver 88dB SFDR at 100MHz, Input Range Includes Ground 52mA  
Supply Current, 3mm × 2mm QFN Package  
LTC6412  
800MHz, 31dB Range, Analog-Controlled Variable  
Gain Amplifier  
Continuously Adjustable Gain Control, 35dBm OIP3 at 240MHz,  
10dB Noise Figure, 4mm × 4mm QFN-24 Package  
LTC6420-20  
1.8GHz Dual Low Noise, Low Distortion Differential ADC Fixed Gain 10V/V, 1nV/√Hz Total Input Noise, 80mA Supply  
Drivers for 300MHz IF  
Current per Amplifier, 3mm × 4mm QFN-20 Package  
Receiver Subsystems  
LTM9002  
14-Bit Dual Channel IF/Baseband Receiver Subsystem  
12-Bit Digital Pre-Distortion Receiver  
Integrated High Speed ADC, Passive Filters and Fixed Gain  
Differential Amplifiers  
LTM9003  
Integrated 12-Bit ADC Down-Converter Mixer with 0.4GHz to  
3.8GHz Input Frequency Range  
9013fa  
LT 0414 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
38  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTM9013  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

LTM9013IY-AA#PBF

LTM9013 - 300MHz Wideband Receiver; Package: BGA; Pins: 196; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTM9100CY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTM9100HY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTM9100IY#PBF

LTM9100 - Anyside&trade; High Voltage Isolated Switch Controller with I<sup>2</sup>C Command and Telemetry; Package: BGA; Pins: 42; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTMA

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LTMF

Single/Dual/Quad 400MHz Current Feedback Amplifier
Linear

LTMG3-01-L2C-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2M-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2R-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L2Y-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L5C-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC

LTMG3-01-L5M-Z

Ultra-Miniature Illuminated Pushbutton Switches
NIDEC