MMIQ-0218LXPC [MARKIMICROWAVE]

Low LO Drive Passive GaAs MMIC IQ Mixer;
MMIQ-0218LXPC
型号: MMIQ-0218LXPC
厂家: Marki    Marki
描述:

Low LO Drive Passive GaAs MMIC IQ Mixer

文件: 总25页 (文件大小:1984K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low LO Drive Passive GaAs MMIC IQ Mixer  
1. Device Overview  
MMIQ-0218L  
1.1  
General Description  
MMIQ-0218L is a low LO drive, passive GaAs MMIC IQ mixer that  
operates across a 9:1 bandwidth. This is an ultra-broadband mixer  
spanning 2 to 18GHz on the RF and LO ports with an IF from DC to 3  
GHz. Up to 40 dB of image rejection is available due to the excellent  
phase and amplitude balance of its on-chip LO quadrature hybrid. Both  
wire bondable die and connectorized modules are available. For a list of  
recommended LO driver amps for all mixers and IQ mixers, see here.  
Die  
Module  
1.2 Electrical Summary  
1.3 Applications  
Single Side Band & Image Rejection  
Mixing  
Parameter  
Typical  
Unit  
RF/LO Frequency Range  
IF Frequency Range  
I+Q Conversion Loss  
Image Rejection  
2 18  
DC 3  
8
27  
58  
GHz  
GHz  
dB  
dB  
dB  
IQ Modulation/Demodulation  
Vector Signal Modulation and  
Demodulation  
Band Shifting  
LO-RF Isolation  
1.4 Functional Block Diagram  
LO  
RF  
I
Q
1.5 Part Ordering Options1  
Part  
Green  
Status  
Product  
Lifecycle  
Export  
Classification  
Description  
Number  
Package  
Wire bondable die  
CH-2  
XPC  
RoHS  
Active  
EAR99  
MMIQ-0218LCH-2  
MMIQ-0218LXPC  
Connectorized module,  
die wire bonded onto  
PCB  
RoHS  
Active  
EAR99  
1
Refer to our website for a list of definitions for terminology presented in this table.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 1 | R e v . A  
 
 
 
 
 
 
www.markimicrowave.com  
MMIQ-0218L  
4. Application Information .................... 18  
4.1 Detailed Description ..................... 18  
4.2 Down-Converter........................... 19  
4.3 Up-Converter............................... 20  
4.4 Band Shifter ................................ 21  
4.5 Vector Modulator......................... 22  
5. Die Mounting Recommendations ....... 23  
Table of Contents  
1. Device Overview ............................... 1  
1.1  
General Description...................... 1  
1.2 Electrical Summary......................... 1  
1.3 Applications................................... 1  
1.4 Functional Block Diagram ................ 1  
1.5 Part Ordering Options..................... 1  
2. Port Configurations and Functions ...... 3  
2.1 Port Diagram................................. 3  
2.2 Port Functions............................... 3  
3. Specifications ................................... 4  
3.1 Absolute Maximum Ratings.............. 4  
3.2 Package Information ....................... 4  
3.3 Recommended Operating Conditions . 4  
3.4 Sequencing Requirements ............... 4  
3.5 Electrical Specifications .................. 5  
3.6 Typical Performance Plots ............... 6  
5.1 Mounting and Bonding  
Recommendations .............................. 23  
5.2 Handling Precautions .................... 23  
5.3 Bonding Diagram.......................... 24  
6. Mechanical Data............................. 25  
6.1 CH Package Outline Drawing ......... 25  
6.2 XPC Package Outline Drawing........ 25  
Revision History  
Revision Code  
Comment  
Datasheet Initial Release  
Updated Max Power Handling  
Revision Date  
September 2019  
October 2019  
-
A
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 2 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
2. Port Configurations and Functions  
2.1 Port Diagram  
A top-down view of the MMIQ-0218L’s CH-2 package outline drawing is shown below. The mixer  
may be operated as either a downconverter or an upconverter. Use of the RF or IF as the input or  
output port will depend on the application. See Application Information for input and output port  
configuration for common applications.  
LO  
RF  
I
Q
2.2 Port Functions  
Port  
Function  
Description  
Equivalent Circuit  
RF port is DC short and AC matched to  
50Ω over the specified RF frequency  
range.  
RF  
RF Input/Output  
LO Input  
LO port is DC short and AC matched to  
50Ω over the specified LO frequency  
range.  
LO  
I
I port is diode coupled and AC matched to  
50Ω over the specified I port frequency  
range.  
I Input / Output  
Q Input / Output  
Ground  
Q port is diode coupled and AC matched  
to 50Ω over the specified Q port  
frequency range.  
Q
CH package ground path is taken through  
the substrate. XPC package ground taken  
through metal housing.  
GND  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 3 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
3. Specifications  
3.1 Absolute Maximum Ratings  
The Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. If  
these limits are exceeded, the device may be inoperable or have a reduced lifetime.  
Parameter  
Maximum Rating  
Units  
Port 3 DC Current  
Port 4 DC Current  
30  
30  
mA  
mA  
dBm  
°C  
Power Handling, at any Port  
Operating Temperature  
Storage Temperature  
+26  
-55 to +100  
-65 to +125  
ºC  
3.2 Package Information  
Parameter  
Details  
Rating  
Human Body Model (HBM), per MIL-STD-750, Method  
1020  
ESD  
Class 1A  
tbd g  
Weight  
XPC Package  
3.3 Recommended Operating Conditions  
The Recommended Operating Conditions indicate the limits, inside which the device should be  
operated, to guarantee the performance given in Electrical Specifications. Operating outside these  
limits may not necessarily cause damage to the device, but the performance may degrade outside  
the limits of the electrical specifications. For limits, above which damage may occur, see Absolute  
Maximum Ratings.  
Min Nominal Max  
Units  
TA, Ambient Temperature  
LO drive power  
-55  
+25  
+15  
+100  
+20  
+5  
°C  
+13  
dBm  
dBm  
RF/IF input power  
3.4 Sequencing Requirements  
There is no requirement to apply power to the ports in a specific order. However, it is  
recommended to provide a 50Ω termination to each port before applying power. This is a passive  
diode mixer that requires no DC bias.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 4 | R e v . A  
 
www.markimicrowave.com  
MMIQ-0218L  
3.5 Electrical Specifications  
The electrical specifications apply at TA=+25°C in a 50system. Typical data shown is for a down  
conversion application with a +17 dBm sine wave LO input.  
Min and Max limits apply only to our connectorized units and are guaranteed at TA=+25°C. All bare die are 100% DC tested and visually  
inspected.  
Parameter  
Test Conditions  
Min  
Typical  
Max Units  
RF Port Frequency Range  
2
18  
LO Port Frequency Range  
I Port Frequency Range  
Q Port Frequency Range  
2
0
0
18  
GHz  
3
3
RF/LO = 2 - 18 GHz  
I/Q = DC - 0.2 GHz  
RF/LO = 2 - 18 GHz  
I/Q = 0.2 - 3 GHz  
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
11  
11.5  
8
13  
Single Sided Conversion Loss (CL)  
15  
11  
dB  
Image Reject/Single Sideband  
Conversion Loss (CL)  
RF/LO = 2 - 18 GHz  
I/Q = DC 0.2 GHz  
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
RF/LO = 2 - 18 GHz  
I/Q = 0.091 GHz  
Noise Figure (NF)2  
Image Rejection (IR)3  
Amplitude Balance  
12  
27  
0.5  
5
dB  
dBc  
dB  
°
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
Phase Balance  
LO to RF  
RF/LO = 2 - 18 GHz  
IF/LO = 2 - 18 GHz  
RF/IF = 2 - 18 GHz  
58  
28  
36  
Isolation  
LO to IF  
RF to IF  
dB  
Image Reject  
Downconversion  
I/Q  
Downconversion  
Single Sideband  
Upconversion  
I/Q Upconversion  
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
RF/LO = 2 - 18 GHz  
I = 0.091 GHz  
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
RF/LO = 2 - 18 GHz  
I/Q = 0.091 GHz  
RF/LO = 2 - 18 GHz  
I/Q = 0.091 GHz  
RF/LO = 2 - 18 GHz  
IF = 0.091 GHz  
17  
16  
18  
16  
2
Input IP3  
(IIP3)  
dBm  
I/Q Upconversion  
Input 1 dB  
Gain  
Compression  
Combined  
Upconversion  
5
dBm  
Point (P1dB)  
RF/LO = 2 - 18 GHz  
I/Q/IF = 0.091 GHz  
Downconversion  
5
2
Mixer Noise Figure given for single sided I/Q conversion typically measures within 0.5 dB of  
conversion loss for IF frequencies greater than 5 MHz. Image reject downconversion will show  
noise figure improvements in the presence of image noise.  
3
Image Rejection and Single sideband performance plots are defined by the upper sideband (USB)  
or lower sideband (LSB) with respect to the LO signal. Plots are defined by which sideband is  
selected by the external IF quadrature hybrid.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 5 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
3.6 Typical Performance Plots4  
The test conditions and frequency plan below applies to all following sections, unless otherwise  
specified.  
Parameter  
RF Input Frequency  
Port  
Start  
Nominal  
Stop  
Units  
0
20  
GHz  
dBm  
GHz  
dBm  
RF  
RF Input Power  
LO Input Frequency  
LO Input Power  
-10  
0.091  
20.091  
LO  
+17  
91  
I
IF Output Frequency  
Q
MHz  
I+Q5  
TA, Ambient Temperature  
Z0, System Impedance  
+25  
50  
°C  
4
I output means that the IF output signal is measured at the I port of the mixer and the Q port is  
loaded. Q output means the IF output signal is measured at the Q port of the mixer while the I  
port is loaded. SSB in phase input means that a low frequency quad hybrid is used to split the  
input, and the in-phase component is applied to the I port and the 90-degree component is applied  
to the Q port. SSB out of phase input means that a low frequency quad hybrid is used to split the  
input, and the in-phase component is applied to the Q port and the 90-degree component is applied  
to the I port.  
5
I+Q measurements taken with an external quadrature hybrid attached to the I and Q ports of the  
mixer. Orientation depends on up conversion or down conversion measurement.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 6 | R e v . A  
 
www.markimicrowave.com  
MMIQ-0218L  
I/Q Conversion Loss (dB)  
LO to RF Isolation (dB)  
-6  
-8  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-10  
-12  
-14  
-16  
-18  
-20  
I Output  
Q Output  
0
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
4
0
0
0
0
2
2
2
2
4
4
4
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
20  
LO Frequency (GHz)  
RF Frequency (GHz)  
LO to IF Isolation (dB)  
RF to IF Isolation (dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
I Output  
Q Output  
I Output  
Q Output  
2
4
6
8
10  
12  
14  
16  
18  
6
8
10  
12  
14  
16  
18  
LO Frequency (GHz)  
RF Frequency (GHz)  
I/Q Amplitude Balance vs. LO Power (dB)  
Relative IF Response (dB)  
0
-1  
3
2
+20 dBm  
+17 dBm  
+14 dBm  
-2  
-3  
1
-4  
-5  
0
-6  
-1  
-2  
-3  
-7  
-8  
5 GHz RF - I Output  
5 GHz RF - Q Output  
-9  
-10  
0.5  
1
1.5  
2
2.5  
3
3.5  
6
8
10  
12  
14  
16  
18  
IF Frequency (GHz)  
RF Frequency (GHz)  
LO Return Loss (dB)  
I/Q Quadrature Phase Balance vs. LO Power(°)  
-60  
-70  
0
-5  
+20 dBm  
+17 dBm  
+14 dBm  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-80  
-90  
-100  
-110  
-120  
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
20  
LO Frequency (GHz)  
RF Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 7 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
RF Return Loss (dB)  
IF Return Loss (dB)  
0
-5  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
IF RL-HSLO 5 GHz - I Output  
IF RL-HSLO 5 GHz - Q Output  
0
1
2
3
4
5
6
7
8
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
IF Frequency (GHz)  
RF Frequency (GHz)  
LSB I+Q Upconversion Loss vs. LO Power (dB)  
LSB I+Q Downconversion Loss vs. LO Power (dB)  
-4  
-6  
-4  
-6  
-8  
-8  
-10  
-12  
-14  
-16  
-18  
-10  
-12  
-14  
-16  
-18  
+20 dBm  
+17 dBm  
+14 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
2
4
6
8
10  
12  
14  
16  
18  
RF Frequency (GHz)  
RF Frequency (GHz)  
LSB I+Q Downconversion Image Rejection vs. LO Power (dBc)  
0
-5  
LSB I+Q Upconversion Sideband Suppression vs. LO Power (dBc)  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
+20 dBm  
+17 dBm  
+14 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
2
4
6
8
10  
12  
14  
16  
18  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RF Frequency (GHz)  
RF Frequency (GHz)  
USB I+Q Downconversion Image Rejection vs. LO Power (dBc)  
USB I+Q Upconversion Sideband Suppression vs. LO Power (dBc)  
0
-5  
0
-5  
+20 dBm  
+17 dBm  
+14 dBm  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
+20 dBm  
+17 dBm  
+14 dBm  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RF Frequency (GHz)  
RF Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 8 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
Image Reject Downconversion Input IP3 vs LO Power (dBm)  
Image Reject Downconversion Output IP3 vs LO Power (dBm)  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
+20 dBm  
+17 dBm  
+14 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
0
0
-5  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
0
0
0
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
RF Frequency (GHz)  
RF Frequency (GHz)  
I/Q Downconversion Input IP3 (dBm)  
I/Q Downconversion Output IP3 (dBm)  
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
I Port  
Q Port  
I Port  
Q Port  
-5  
0
-10  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
RF Frequency (GHz)  
RF Frequency (GHz)  
Single Sideband Upconversion Input IP3 vs LO Power (dBm)  
Single Sideband Upconversion Output IP3 vs LO Power (dBm)  
35  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
+20 dBm  
+17 dBm  
+14 dBm  
+20 dBm  
+17 dBm  
+14 dBm  
0
0
-5  
2
4
6
8
10  
12  
14  
16  
18  
2
4
6
8
10  
12  
14  
16  
18  
RF Frequency (GHz)  
RF Frequency (GHz)  
I/Q Upconversion Output IP3 (dBm)  
I/Q Upconversion Input IP3 (dBm)  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
I Port  
Q Port  
0
I Port  
Q Port  
-5  
0
-10  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
RF Frequency (GHz)  
RF Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 9 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
Downconversion Conversion Loss Compression (dB)  
Combined Conversion Loss Compression (dB)  
17 dBm LO Power, 5 dBm Input Power  
17 dBm LO Power  
0
-0.5  
-1  
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-1.5  
-2  
Small Signal Conversion Loss  
Conversion Loss, +5 dBm RF  
Upconversion  
Downconversion  
-2.5  
-3  
0
0
0
0
2
2
2
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
20  
20  
0
0
0
0
2
2
2
2
4
6
8
10  
12  
14  
16  
18  
18  
18  
18  
20  
20  
20  
20  
RF Frequency (GHz)  
RF Frequency (GHz)  
Downconversion Conversion Loss Compression (dB)  
17 dBm LO Power, 5 dBm RF Power  
Upconversion Conversion Loss Compression (dB)  
17 dBm LO Power, 2 dBm IF Power  
0
-0.5  
-1  
0
-0.5  
-1  
-1.5  
-2  
-1.5  
-2  
I Port  
Q Port  
16  
I Port  
Q Port  
16  
-2.5  
-3  
-2.5  
-3  
4
4
4
6
8
10  
12  
14  
18  
18  
18  
4
4
4
6
8
10  
12  
14  
RF Frequency (GHz)  
RF Frequency (GHz)  
Vector Modulator Insertion Loss (dB)  
Amplitude Balance Variation (dB)  
20 units  
-4  
-6  
5
4
3
2
1
-8  
-10  
-12  
-14  
-16  
-18  
-20  
-22  
0
-1  
-2  
-3  
-4  
-5  
6
8
10  
12  
14  
16  
6
8
10  
12  
14  
16  
Frequency (GHz)  
RF Frequency (GHz)  
Phase Balance Variation (dB)  
20 Units  
L-R Isolation Variation (dB)  
20 Units  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
-105  
-110  
-115  
-120  
6
8
10  
12  
14  
16  
6
8
10  
12  
14  
16  
RF Frequency (GHz)  
RF Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 10 | R e v . A  
www.markimicrowave.com  
3.6.6 Typical Harmonic Performance  
MMIQ-0218L  
LO harmonics are measured at IF/RF ports with non-operational port terminated with a 50 Ω load.  
RF/IF harmonics are measured with a fixed LO of 6.337 GHz at 17 dBm. Note that LO/IF/RF  
Harmonics are measured across more than the operating band of the mixer.  
Even LO Harmonic to RF Isolation (dB)  
Even LO Harmonic to IF Isolation (dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2xLO  
4xLO  
2xLO I  
2xLO Q  
4xLO I  
4xLO Q  
0
0
0
4
8
12  
16  
20  
20  
18  
0
0
0
4
8
12  
16  
20  
20  
18  
LO Output Frequency (GHz)  
LO Output Frequency (GHz)  
Odd LO Harmonic to RF Isolation (dB)  
3xLO 5xLO  
Odd LO Harmonic to IF Isolation (dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
3xLO I  
5xLO I  
3xLO Q  
5xLO Q  
4
8
12  
LO Output Frequency (GHz)  
Even R-I Harmonic Isolation (dB)  
16  
4
8
12  
16  
LO Output Frequency (GHz)  
Odd R-I Harmonics Isolation (dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
2xI -10 dBm Input  
2xQ -10 dBm Input  
4xI 0 dBm Input  
4xQ 0 dBm Input  
3xI -5 dBm Input  
3xQ -5 dBm Input  
5xI 0 dBm Input  
5xQ 0 dBm Input  
3
6
9
12  
15  
3
6
9
12  
15  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 11 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
Even I-R Harmonic Isolation (dB)  
Odd I-R Harmonics Isolation (dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
2xR to I -10 dBm Input  
2xR to Q -10 dBm Input  
4xR to I 0 dBm Input  
4xR to Q 0 dBm Input  
3xR to I -5 dBm Input  
3xR to Q -5 dBm Input  
5xR to I 0 dBm Input  
5xR to Q 0 dBm Input  
0
3
6
9
12  
15  
18  
0
3
6
9
12  
15  
18  
IF Output Frequency (GHz)  
IF Output Frequency (GHz)  
3.6.7 Typical Spurious Performance: Downconversion  
Typical downconversion spurious data is provided by selecting RF and LO frequencies (± m*LO ±  
n*RF) within the RF/LO bands, to create a spurious output at an IF of 91 MHz. The value of this  
spur is plotted against the RF input frequency below. Spurious suppression is scaled for different  
RF power levels by (n-1), where “n” is the RF spur order. For example, the 2RF x 2LO spur is 66  
dBc for a -10 dBm input, so a -20 dBm RF input creates a spur that is (2-1) x (-10 dB) lower, or  
76 dBc.  
2LOx2RF LO>RF (dBc)  
2LOx2RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
2LOx1RF LO>RF (dBc)  
2LOx1RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
IR In Phase Output  
IR Out of Phase Output  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 12 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
1LOx2RF LO<RF (dBc)  
1LOx2RF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
-70  
-80  
-90  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
3LOx3RF LO>RF (dBc)  
3LOx3RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
3LOx2RF LO>RF (dBc)  
3LOx2RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
2LOx3RF LO<RF (dBc)  
2LOx3RF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
2
6
10  
RF Input Frequency (GHz)  
14  
18  
2
6
10  
RF Input Frequency (GHz)  
14  
18  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 13 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4LOx4RF LO>RF (dBc)  
4LOx4RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
0
-10  
-20  
-30  
-40  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
2
2
2
6
6
6
10  
14  
18  
18  
18  
2
2
2
6
6
6
10  
14  
18  
18  
18  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
4LOx3RF LO>RF (dBc)  
4LOx3RF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Output  
Q Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
IR In Phase Output  
IR Out of Phase Output  
10  
14  
10  
14  
RF Input Frequency (GHz)  
RF Input Frequency (GHz)  
3LOx4RF LO<RF (dBc)  
3LOx4RF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
I Output  
Q Output  
IR In Phase Output  
IR Out of Phase Output  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
10  
RF Input Frequency (GHz)  
14  
10  
RF Input Frequency (GHz)  
14  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 14 | R e v . A  
www.markimicrowave.com  
3.6.8 Typical Spurious Performance: Up-Conversion  
MMIQ-0218L  
Typical spurious data is taken by mixing an input IF at 91 MHz, with LO frequencies  
(± m*LO ± n*IF), to create a spurious output within the RF output band. The value of this spur is  
plotted against the RF Output Frequency. Spurious suppression is scaled for different IF input  
power levels by (n-1), where “n” is the IF spur order. For example, the 2IFx1LO spur is typically  
32 dBc for a -10 dBm input with a sine-wave LO, so a -20 dBm IF input creates a spur that is (2-  
1) x (-10 dB) lower, or 42 dBc.  
2LOx2IF LO>RF (dBc)  
2LOx2IF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
2
2
2
6
10  
14  
18  
18  
18  
2
2
2
6
10  
14  
18  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
2LOx1IF LO>RF (dBc)  
2LOx1IF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
6
10  
14  
6
10  
14  
18  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
1LOx2IF LO<RF (dBc)  
1LOx2IF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
IR Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
6
10  
RF Output Frequency (GHz)  
14  
6
10  
RF Output Frequency (GHz)  
14  
18  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 15 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
3LOx3IF LO<RF (dBc)  
3LOx3IF LO>RF (dBc)  
0
-10  
-20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2
2
2
2
6
10  
14  
18  
18  
18  
18  
2
2
2
2
6
10  
14  
18  
18  
18  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
3LOx2IF LO>RF (dBc)  
3LOx2IF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
6
6
6
10  
14  
6
6
6
10  
14  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
2LOx3IF LO<RF (dBc)  
2LOx3IF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
I Input  
Q Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
SSB In Phase Input  
SSB Out of Phase Input  
10  
14  
10  
14  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
4LOx4IF LO>RF (dBc)  
4LOx4IF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
10  
14  
10  
14  
18  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 16 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4LOxIF LO>RF (dBc)  
4LOx3IF LO<RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
2
6
10  
14  
18  
2
6
10  
14  
18  
RF Output Frequency (GHz)  
RF Output Frequency (GHz)  
3LOx4IF LO<RF (dBc)  
3LOx4IF LO>RF (dBc)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
I Input  
Q Input  
SSB In Phase Input  
SSB Out of Phase Input  
2
6
10  
RF Output Frequency (GHz)  
14  
18  
2
6
10  
RF Output Frequency (GHz)  
14  
18  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 17 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4. Application Information  
4.1 Detailed Description  
MMIQ-0218 belongs to Marki Microwave’s MMIQ family of mixers. The MMIQ product line  
consists of passive GaAs MMIC mixers designed and fabricated with GaAs Schottky diodes.  
MMIQ mixers offer excellent amplitude and phase balance due to its on-chip LO quadrature hybrid.  
Up to 40 dB of image rejection (i.e., single sideband suppression) can be obtained by using the  
MMIQ-0218 as an image rejection or single sideband mixer. The MMIQ-0218H is the sister mixer  
of the MMIQ-0218L. The MMIQ-0218H requires a higher LO drive to operate the mixer. In  
exchange, the MMIQ-0218H displays higher linearity (i.e., higher IIP3, P1dB, Spurious  
Suppression) than the MMIQ-0218L. Marki H and L diodes correspond to different diode forward  
turn on voltages.  
Support for the S, C, X, and Ku bands are offered by the ultra-broadband performance of the  
mixer’s RF and LO ports. Traditional use of this mixer to do image reject or single sideband mixing  
is available with an external IF quadrature hybrid. The MMIQ-0218 is also suitable for use as a  
Vector Modulator through DC bias of the I and Q ports.  
The RF port and the LO port supports a 2-18 GHz signal. The I and Q ports support a DC-3 GHz  
signal. A signal may be input into any port of the mixer which supports that signal’s frequency. This  
is the basis of using the mixer as a band shifter.  
For a given LO power within the recommended operating range, the RF (in the case of a down  
conversion) or IF (in the case of an up conversion) input power should be below the input 1 dB  
compression point to avoid signal distortion. The input 1 dB compression point will vary across the  
mixer’s operating bandwidth and with LO input power. Careful characterization is required for  
optimal performance for each application. There is no minimum small signal input power required  
for operation. Excessive RF/IF input power increases non-desired spurious output power and  
degrades the fundamental conversion loss. Excessive LO input power can also cause this effect.  
The table below describes how to use an IQ mixer and quad hybrid to select a single sideband.  
Up Conversion  
Hybrid Port  
Mixer Port  
Sideband Selected  
Lower Sideband  
0
I
Q
I
Q
90  
90  
0
Upper Sideband  
Down Conversion  
Hybrid Port  
Mixer Port  
Sideband Selected  
Upper Sideband  
0
I
Q
I
90  
90  
0
Lower Sideband  
Q
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 18 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4.2 Down-Converter  
A down converter is a mixer application which takes a high frequency small signal RF input, and a  
high frequency large signal LO input and mixes the signals together to produce a low frequency IF  
output. The fundamental 1RFx1LO outputs present at the IF port are the fLO-RF and fLO+RF tones.  
The desired output in a down conversion is typically the fLO-RF term. An image frequency at  
fImage=f2LO-RF will also down convert to the fLO-RF frequency. The above illustration shows the relative  
location of the image frequency for a highside LO, or the frequency plan for which fLO > fRF.  
To use the IQ mixer as a down converter, input a high frequency small signal RF, a high frequency  
large signal LO input, and pull the low frequency IF output from the I and Q ports. I and Q IF  
outputs will be at the same frequency but 90° out of phase (i.e., I and Q are in quadrature). If only  
a single IF output is desired, terminate either the I or Q ports with a wideband 50Ω load.  
This is the input scheme was used to take I/Q down-conversion data found in the Typical  
Performance Plots section.  
4.2.1 Image Reject Down-Converter  
An image reject mixer is a mixer which rejects the down converted image frequency from the IF  
output. Image reject mixers are constructed using an external quadrature hybrid attached to the I  
and Q (i.e., IF) output ports. Using the external IF quadrature hybrid, one can select the whether  
the upper sideband or lower sideband signal is suppressed with respect to the LO signal.  
To use the IQ mixer as an image reject mixer, input the high frequency small signal RF and a high  
frequency large signal LO input. Take the combined I+Q down converted signal through the IF  
quadrature hybrid. Select the upper sideband (i.e., suppress the lower sideband) by connecting the  
I port to the 0° port of the IF quadrature hybrid and attach the Q port to the 90° port of the IF  
quadrature hybrid. Select the lower sideband (i.e., suppress the upper sideband) by attaching the I  
port to the 90° port of the IF quadrature hybrid and attach the Q port to the 0° port of the IF  
quadrature hybrid.  
This is the input scheme was used to take image rejection down-conversion data found in the  
Typical Performance Plots section.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 19 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4.3 Up-Converter  
An up converter is a mixer application which takes a low frequency small signal IF input, and a high  
frequency large signal LO input and mixes the signal together to produce a high frequency RF  
output. The fundamental 1IFx1LO outputs present at the RF port are the fLO-IF and fLO+RF tones.  
An up conversion can select either the fLO-IF or the fLO+IF tones. The above illustration shows both  
up converted sidebands with either an I or Q port input signal.  
To use the IQ mixer as an up converter, input a low frequency small signal IF input into the I or Q  
port, a high frequency large signal LO input into the LO port, and pull the high frequency RF output  
from the RF port. Input into the Q port will result in a up converted signal that is 90° out of phase  
with the up converted I port input signal. If only a single IF input is desired, terminate either the I  
or Q ports with a wideband 50Ω load.  
This is the input scheme used to take I/Q up-conversion data found in section 3.6 Typical  
Performance.  
4.3.1 Single Sideband Up-Converter  
A single sideband mixer is a mixer which suppress the up converted image frequency from the RF  
output. Single sideband mixers are constructed using an external quadrature hybrid attached to  
the I and Q (i.e., IF) input ports. Using an external IF quadrature hybrid, one can select whether  
the upper sideband of the lower sideband signal is suppressed with respect to the LO signal.  
To use the IQ mixer as a single sideband mixer, input the low frequency small signal I+Q IF signal  
into the IF quadrature hybrid. The IF quadrature hybrid is attached to the I and Q ports of the IQ  
mixer. Input the high frequency large signal LO input into the LO port and take the up converted  
high frequency RF signal from the RF port. Select the upper sideband (i.e., suppress the lower  
sideband) by attaching the I port to the 90° port of the IF quadrature hybrid and attach the Q port  
to the 0° port of the IF quadrature hybrid. Select the lower sideband (i.e., suppress the upper  
sideband) by attaching the I port to the 0° port of the IF quadrature hybrid and attach the Q port  
to the 90° port of the IF quadrature hybrid.  
This is the input scheme used to take single sideband up-conversion data found in section 3.6  
Typical Performance.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 20 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4.4 Band Shifter  
A band shifter is an unusual application for a mixer. Band shifters take an IF signal and shift it to a  
different band, generally to either avoid interference or for rebroadcast at a different frequency.  
For cases in which the desired band shift cannot be employed by using a standard up or down  
conversion scheme, an exotic input scheme is required.  
A passive diode mixer is reciprocal on all ports. The LO and RF ports support a 2-18 GHz signal.  
The I and Q ports support a DC-3 GHz signal. 2 signals input into any combination of the 3 ports,  
RF, LO, or IF, will result in an output signal at the 3rd port. In addition, an output signal will be  
present at both input ports. By using the IF port, as a large signal input port, low frequency LO  
applications can be supported.  
The diagram above shows an IQ mixer being used as a band shifter. Using an IQ mixer as a band  
shifter allows for sideband suppression. This is identical to using the IQ mixer as a single sideband  
up converter. However, the large signal input port is now into the I and Q ports instead of the LO  
port. Selection of the output tone is done through the orientation of the LO quadrature hybrid.  
To use the mixer as a single sideband band shifter, input a low frequency large signal LO into the  
external LO quadrature hybrid. Input the high frequency small signal IF signal into the LO port and  
take the high frequency RF output from the RF port. Select the upper sideband (i.e., suppress the  
lower sideband) by connecting the I port to the 90° port of the IF quadrature hybrid and connect  
the Q port to the 0° port of the LO quadrature hybrid. Select the lower sideband (i.e., suppress  
the upper sideband) by connecting the I port to the 0° port of the LO quadrature hybrid and  
connect the Q port to the 90° port of the LO quadrature hybrid.  
This is the input scheme used to take band shifter data found in the Typical Performance Plots:  
Band Shifter section.  
Using this input scheme requires careful accounting of which input signal is injected which port.  
Injecting a signal into any port which does not support the correct band will lead to a degraded or  
no output response. Abide by the maximum DC current input into the I and Q ports of the mixer or  
otherwise irreversible damage to the mixer will occur.  
The limiting factor in use of the mixer as an image reject band shifter is in the bandwidth of the  
external LO quadrature hybrid and bandwidth of the I and Q ports.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 21 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
4.5 Vector Modulator  
A vector modulator is a device that can modulate an input signal’s amplitude and phase. Similar to  
using a double balanced mixer as a phase modulator or phase shifter, an IQ mixer can be used as a  
vector modulator. An IQ mixer can be used as a vector modulator by inputting DC current into  
both the I and Q ports.  
Injecting DC current into both the I and Q ports forward biases both mixer cores and causes them  
to be shorted. This connects the RF and LO baluns allowing the input signal to pass from balun to  
balun without a frequency conversion. Modulating the DC current into either or both I and Q  
mixers causes both the phase and amplitude to modulate based on the polarity of the input current  
and the magnitude of the input current. Modulating only the I or Q mixers causes the device to  
behave as a biphase modulator (i.e., the device can only swing the phase from +90° to -90°).  
To use the IQ mixer as a vector modulator, supply a DC current sufficient to turn on the mixer  
through both the I and Q ports. An example bias condition is given in section Error! Reference s  
ource not found. for the MMIQ-0218L with the phase set to 0°, 90°, 180°, and 270° for a  
10GHz input. Current limiting the DC source to the maximum DC current value found in section  
3.1 Absolute Maximum Ratings is recommended to prevent irreversible damage to the vector  
modulator. The typical DC current required to turn on the vector modulator is <30mA.  
This is the measurement scheme used to take vector modulator data found in the Typical  
Performance Plots: Vector Modulator section.  
It is recommended to sequence the vector modulator by slowly increasing the DC bias until the  
vector modulator is operating at the user desired condition.  
Near the band edges of the vector modulator, more current than is typical for mid-band operation  
may be necessary to achieve the same amplitude and phase shift. This is due to the on chip LO  
quadrature hybrid operating near it’s band edge.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 22 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
5. Die Mounting Recommendations  
5.1 Mounting and Bonding Recommendations  
Marki MMICs should be attached directly to a ground plane with conductive epoxy. The ground  
plane electrical impedance should be as low as practically possible. This will prevent resonances  
and permit the best possible electrical performance. Datasheet performance is only guaranteed in  
an environment with a low electrical impedance ground.  
Mounting  
To epoxy the chip, apply a minimum amount of conductive epoxy to the mounting surface so that a  
thin epoxy fillet is observed around the perimeter of the chip. Cure epoxy according to  
manufacturer instructions.  
Wire Bonding  
Ball or wedge bond with 0.025 mm (1 mil) diameter pure gold wire. Thermosonic wirebonding with  
a nominal stage temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge  
bonding force of 18 to 22 grams is recommended. Use the minimum level of ultrasonic energy to  
achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on the  
package or substrate. All bonds should be as short as possible <0.31 mm (12 mils).  
Circuit Considerations  
50 Ω transmission lines should be used for all high frequency connections in and out of the chip.  
Wirebonds should be kept as short as possible, with multiple wirebonds recommended for higher  
frequency connections to reduce parasitic inductance. In circumstances where the chip is more  
than .001” thinner than the substrate, a heat spreading spacer tab is optional to further reduce  
bondwire length and parasitic inductance.  
5.2 Handling Precautions  
General Handling  
Chips should be handled with care using tweezers or a vacuum collet. Users should take  
precautions to protect chips from direct human contact that can deposit contaminants, like  
perspiration and skin oils on any of the chip's surfaces.  
Static Sensitivity  
GaAs MMIC devices are sensitive to ESD and should be handled, assembled, tested, and  
transported only in static protected environments.  
Cleaning and Storage  
Do not attempt to clean the chip with a liquid cleaning system or expose the bare chips to liquid.  
Once the ESD sensitive bags the chips are stored in are opened, chips should be stored in a dry  
nitrogen atmosphere.  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 23 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
5.3 Bonding Diagram  
LO  
Orientation  
Marker  
RF  
XXXX  
Q and I Ports  
(phase matched)  
Copyright © [2019, 2020] Marki Microwave, Inc. All Rights Reserved.  
P a g e 24 | R e v . A  
www.markimicrowave.com  
MMIQ-0218L  
6. Mechanical Data  
6.1 CH-2 Package Outline Drawing  
PROJECTION  
INCH  
.004  
[.09]  
[MM]  
.163  
[4.13]  
.059  
[1.49]  
.004  
[.09]  
.004[.10] x .004[.10]  
Gnd Pad,  
8 PL  
.045  
[1.14]  
.090  
[2.28]  
.004  
[.09]  
.059  
[1.51]  
[.20]  
[.10]  
x .004  
.008  
Bonding Pad,  
4 PL  
.093  
[2.36]  
1. CH Substrate material is 0.004 in thick GaAs.  
2. I/O trace finish is 4.2 microns Au. Ground plane finish is 5 microns Au.  
3. XXXX denotes circuit number  
6.2 XPC Package Outline Drawing  
PROJECTION  
INCH  
Port Connector Type  
[MM]  
LO  
RF  
I/Q  
SMA Female  
SMA Female  
SMA Female  
.800  
[20.32]  
.075  
[1.91]  
Note: XPC-Package Connectors  
are not removeable.  
.375  
[9.53]  
.075  
[1.91]  
RF  
.800  
[20.32]  
microwave  
Q
LO  
MMIQ0218LXPC  
D/C  
I
Ø.100  
[Ø2.54]  
4 PL  
.400  
[10.16]  
.369  
[9.36]  
.185  
[4.69]  
Marki Microwave reserves the right to make changes to the product(s) or information contained herein without notice.  
Marki Microwave makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does Marki Microwave assume any liability whatsoever arising out of the use or application of any  
product.  
© Marki Microwave, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY