DS1876_V01 [MAXIM]

SFP Controller with Dual LDD Interface;
DS1876_V01
型号: DS1876_V01
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

SFP Controller with Dual LDD Interface

文件: 总69页 (文件大小:2165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS1876  
SFP Controller with Dual LDD Interface  
General Description  
Features  
S Meets All SFF-8472 Transmitter Control and  
The DS1876 controls and monitors all functions for  
dual transmitter modules. The memory map is based  
on SFF-8472. The DS1876 supports APC and modula-  
tion control and eye safety functionality for two laser  
drivers. It continually monitors for high output current,  
high bias current, and low and high transmit power to  
ensure that laser shutdown for eye safety requirements  
are met without adding external components. Six ADC  
Monitoring Requirements  
S Six Analog Monitor Channels: Temperature, V  
PMON1, BMON1, PMON2, BMON2  
PMON_ and BMON_ Support Internal and  
External Calibration  
,
CC  
Scalable Dynamic Range  
Internal Direct-to-Digital Temperature Sensor  
Alarm and Warning Flags for All Monitored  
Channels  
channels monitor V , temperature, and four external  
monitor inputs that can be used to meet all monitoring  
requirements.  
CC  
S Six Quick Trips for Fast Monitoring of Critical  
Functions for Laser Safety  
Applications  
S Four 10-Bit Delta-Sigma Outputs  
Each Controlled by 72-Entry Temperature  
Lookup Table (LUT)  
Dual Tx Video SFP Modules  
S Digital I/O Pins: Six Inputs, Five Outputs  
Ordering Information  
S Comprehensive Fault Measurement System with  
PART  
DS1876T+  
TEMP RANGE  
-40NC to +95NC  
-40NC to +95NC  
PIN-PACKAGE  
28 TQFN-EP*  
28 TQFN-EP*  
Maskable Laser Shutdown Capability  
S Flexible, Two-Level Password Scheme Provides  
DS1876T+T&R  
Three Levels of Security  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T&R = Tape and reel.  
*EP = Exposed pad.  
S 256 Additional Bytes Located at A0h Slave  
Address  
S Transmitter 1 is Accessed at A2h Slave Address  
S Transmitter 2 is Accessed at B2h Slave Address  
S I2C-Compatible Interface  
S +2.85V to +3.9V Operating Voltage Range  
S -40NC to +95NC Operating Temperature Range  
S 28-Pin TQFN (5mm x 5mm x 0.8mm) Package  
For pricing, delivery, and ordering information, please contact Maxim Direct at  
1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
19-5153; Rev 0; 2/10  
DS1876  
SFP Controller with Dual LDD Interface  
TABLE OF CONTENTS  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Recommended Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
MOD_, APC_ Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Analog Quick-Trip Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Analog Voltage Monitoring Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Digital Thermometer Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Quick-Trip Timing Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
I C AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Nonvolatile Memory Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Operating Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DACs During Power-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DACs as a Function of Transmit Disable (TXD1, TXD2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Quick-Trip Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Monitors and Fault Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Six Quick-Trip Monitors and Alarms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Six ADC Monitors and Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ADC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Right-Shifting ADC Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Low-Voltage Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Delta-Sigma Outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Digital I/O Pins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
IN1, RSEL, OUT1, RSELOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
TXF1, TXF2, TXFOUT, TXD1, TXD2, TXDOUT1, TXDOUT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Transmit Fault (TXFOUT) Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Die Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
I C Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
I C Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
I C Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
2
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
TABLE OF CONTENTS (continued)  
Memory Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Shadowed EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory Map Access Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Memory Addresses A0h, A2h, and B2h . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Lower Memory Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 01h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 02h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 04h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Table 05h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Table 06h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Auxiliary Memory A0h Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Lower Memory Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Table 01h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Table 02h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Table 04h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Table 06h Register Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Auxiliary Memory A0h Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Power-Supply Decoupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
SDA and SCL Pullup Resistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Maxim Integrated  
3
DS1876  
SFP Controller with Dual LDD Interface  
LIST OF FIGURES  
Figure 1. Power-Up Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 2. TXD1, TXD2 Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Figure 3. Quick-Trip Sample Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 4. ADC Round-Robin Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 5. Low-Voltage Hysteresis Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 6. Recommended RC Filter for DAC Outputs in Voltage Mode and Current Sink Mode . . . . . . . . . . . . . . . . . 16  
Figure 7. 3-Bit (8-Position) Delta-Sigma Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 8. DAC OFFSET LUTs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 9. Logic Diagram 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 10. Logic Diagram 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 11a. TXFOUT Nonlatched Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 11b. TXFOUT Latched Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
2
Figure 12. I C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
2
Figure 13. Example I C Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LIST OF TABLES  
Table 1. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 2. ADC Default Monitor Full-Scale Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on PMON_, BMON_, RSEL,  
IN1, TXF_, and TXD_ Pins  
Continuous Power Dissipation  
28-Pin TQFN (derate 34.5mW/°C) above +70°C....2758.6mW  
Operating Temperature Range.......................... -40NC to +95NC  
Programming Temperature Range ....................... 0NC to +95NC  
Storage Temperature Range............................ -55NC to +125NC  
Soldering Temperature .........................Refer to the IPC/JEDEC  
J-STD-020 Specification.  
Relative to Ground...............................-0.5V to (V  
+ 0.5V)*  
CC  
Voltage Range on V , SDA, SCL,  
CC  
OUT1, RSELOUT, and TXFOUT Pins  
Relative to Ground...............................................-0.5V to +6V  
*Subject to not exceeding +6V.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
RECOMMENDED OPERATING CONDITIONS  
(T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
+2.85  
0.7 x  
TYP  
MAX  
UNITS  
Main Supply Voltage  
V
CC  
(Note 1)  
+3.9  
V
High-Level Input Voltage  
(SDA, SCL)  
V
CC  
0.3  
+
V
IH:1  
V
V
V
V
V
CC  
Low-Level Input Voltage  
(SDA, SCL)  
0.3 x  
V
IL:1  
-0.3  
2.0  
V
CC  
High-Level Input Voltage  
(TXD_, TXF_, RSEL, IN1)  
V
CC  
0.3  
+
V
IH:2  
Low-Level Input Voltage  
(TXD_, TXF_, RSEL, IN1)  
V
IL:2  
-0.3  
+0.8  
DC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
Supply Current  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
(Notes 1, 2)  
2.5  
10  
mA  
CC  
Output Leakage (SDA, OUT1,  
RSELOUT, TXFOUT)  
I
1
FA  
V
LO  
Low-Level Output Voltage  
(SDA, OUT1, RSELOUT,  
TXDOUT_, MOD_, APC_,  
TXFOUT)  
I
I
= 4mA  
= 6mA  
0.4  
0.6  
OL  
V
OL  
OL  
High-Level Output Voltage  
(MOD_, APC_, TXDOUT_)  
V
CC  
0.4  
-
V
OH  
I
= 4mA  
V
OH  
TXDOUT_ Before EEPROM  
Recall  
10  
10  
100  
100  
1
nA  
nA  
FA  
MOD_, APC_ Before Recall  
Figure 1  
Input Leakage Current  
(SCL, TXD_, RSEL, IN1, TXF_)  
I
LI  
Digital Power-On Reset  
Analog Power-On Reset  
POD  
POA  
1.0  
2.0  
2.2  
V
V
2.75  
Maxim Integrated  
5
DS1876  
SFP Controller with Dual LDD Interface  
MOD_, APC_ ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Main Oscillator Frequency  
f
5
MHz  
OSC  
Delta-Sigma Input-Clock  
Frequency  
f
f
/2  
OSC  
MHz  
DS  
Reference Voltage Input (REFIN)  
Output Range  
V
Minimum 0.1FF to GND  
2
0
V
V
V
REFIN  
CC  
V
REFIN  
See the Delta-Sigma Outputs section for  
details  
Output Resolution  
Output Impedance  
10  
Bits  
R
DS  
35  
100  
I
ANALOG QUICK-TRIP CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
TXP HI, TXP LO Full-Scale  
Voltage  
2.507  
V
V
HBIAS Full-Scale Voltage  
PMON_ Input Resistance  
Resolution  
1.25  
50  
8
35  
65  
kW  
Bits  
%FS  
LSB  
LSB  
%FS  
mV  
Error  
T
A
= +25°C  
±2  
Integral Nonlinearity  
Differential Nonlinearity  
Temperature Drift  
Offset  
-1  
-1  
+1  
+1  
-2.5  
-5  
+2.5  
+10  
ANALOG VOLTAGE MONITORING CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADC Resolution  
13  
Bits  
Input/Supply Accuracy  
ACC  
At factory setting  
0.25  
64  
0
0.5  
78  
5
%FS  
ms  
LSB  
V
(BMON_, PMON_, V  
)
CC  
Update Rate for Temperature,  
t
RR  
BMON_, PMON_, V  
CC  
Input/Supply Offset  
V
(Note 3)  
OS  
(BMON_, PMON_, V  
)
CC  
BMON_, PMON_  
2.5  
Factory Setting (Note 4)  
V
CC  
6.5536  
6
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
DIGITAL THERMOMETER CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
Thermometer Error  
SYMBOL  
CONDITIONS  
-40NC to +95NC  
MIN  
TYP  
MAX  
UNITS  
T
ERR  
-3  
+3  
NC  
AC ELECTRICAL CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
TXD_ Enable  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
5
Fs  
OFF  
From TXD_  
From TXD_  
From TXD_  
Recovery from TXD_ Disable  
(Figure 2)  
t
1
ms  
ON  
t
t
t
131  
161  
INITR1  
INITR2  
FAULT  
Fault Reset Time (to TXFOUT = 0)  
Fault Assert Time (to TXFOUT = 1)  
ms  
On power-up or TXD_, when VCC LO  
alarm is detected (Note 5)  
After HTXP_, LTXP_, HBATH_  
1.6  
10.5  
Fs  
QUICK-TRIP TIMING CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, unless otherwise noted.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output-Enable Time Following POA  
t
20  
ms  
INIT  
Sample Time per Quick-Trip  
Comparison  
t
1.6  
Fs  
REP  
2
I C AC ELECTRICAL CHARACTERISTICS  
2
(V  
CC  
= +2.85V to +3.9V, T = -40NC to +95NC, timing referenced to V  
and V  
, unless otherwise noted. See the I C  
A
IL(MAX)  
IH(MIN)  
Communication section.)  
PARAMETER  
SCL Clock Frequency  
Clock Pulse-Width Low  
Clock Pulse-Width High  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
kHz  
Fs  
f
(Note 6)  
400  
SCL  
t
1.3  
0.6  
LOW  
t
Fs  
HIGH  
Bus Free Time Between STOP and  
START Condition  
t
1.3  
Fs  
BUF  
START Hold Time  
START Setup Time  
Data Out Hold Time  
Data In Setup Time  
t
0.6  
0.6  
0
Fs  
Fs  
Fs  
ns  
HD:STA  
t
SU:STA  
t
0.9  
HD:DAT  
t
100  
SU:DAT  
Rise Time of Both SDA and SCL  
Signals  
20 +  
t
(Note 7)  
(Note 7)  
300  
300  
ns  
ns  
R
0.1C  
B
Fall Time of Both SDA and SCL  
Signals  
20 +  
t
F
0.1C  
B
STOP Setup Time  
t
0.6  
Fs  
pF  
ms  
SU:STO  
Capacitive Load for Each Bus Line  
EEPROM Write Time  
C
400  
20  
B
t
(Note 8)  
WR  
Maxim Integrated  
7
DS1876  
SFP Controller with Dual LDD Interface  
NONVOLATILE MEMORY CHARACTERISTICS  
(V  
CC  
= +2.85V to +3.9V, unless otherwise noted.)  
PARAMETER  
EEPROM Write Cycles  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
At +25NC  
At +85NC  
200,000  
50,000  
Note 1: All voltages are referenced to ground. Current into the IC is positive, and current out of the IC is negative.  
Note 2: Inputs are at supply rail. Outputs are not loaded.  
Note 3: This parameter is guaranteed by design.  
Note 4: Full scale is user programmable.  
Note 5: A temperature conversion is completed and MOD1 DAC, MOD2 DAC, APC1 DAC, and APC2 DAC values are recalled  
from the LUT and V  
has been measured to be above VCC LO alarm, if the VCC LO alarm is enabled.  
CC  
2
2
Note 6: I C interface timing shown is for fast-mode (400kHz) operation. This device is also backward compatible with I C stan-  
dard mode.  
Note 7: C —Total capacitance of one bus line in pF.  
B
Note 8: EEPROM write begins after a STOP condition occurs.  
8
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Typical Operating Characteristics  
(V  
CC  
= 3.3V, T = +25°C, unless otherwise noted.)  
A
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
DAC POSITIONS = 1FFh  
SDA = SCL = V  
DACs AT 1FFh  
CC  
SDA = SCL = V  
CC  
+95°C  
V
= 3.9V  
CC  
V
= 3.3V  
CC  
+25°C  
-40°C  
V
= 2.85V  
-15  
CC  
-40  
10  
35  
60  
85  
2.850  
3.150  
3.450  
(V)  
3.750  
TEMPERATURE (°C)  
V
CC  
APC1/2 AND MOD1/2 DAC DNL  
APC1/2 AND MOD1/2 DAC INL  
1.0  
0.8  
3
2
0.6  
0.4  
1
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
0
500  
1000  
0
500  
1000  
DAC POSITION (DEC)  
DAC POSITION (DEC)  
PMON1/2 AND BMON1/2 DNL  
PMON1/2 AND BMON1/2 INL  
1.0  
0.8  
1.0  
0.8  
USING FACTORY-PROGRAMMED FULL-SCALE  
VALUE OF 2.5V  
USING FACTORY-PROGRAMMED FULL-SCALE  
VALUE OF 2.5V  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
PMON1/2 AND BMON1/2 INPUT VOLTAGE (V)  
PMON1/2 AND BMON1/2 INPUT VOLTAGE (V)  
Maxim Integrated  
9
DS1876  
SFP Controller with Dual LDD Interface  
Pin Configuration  
TOP VIEW  
21 20 19 18 17 16 15  
14  
13  
REFIN 22  
TXD2 23  
BMON1  
PMON1  
12 BMON2  
24  
25  
26  
27  
28  
APC2  
APC1  
DS1876  
PMON2  
TXDOUT1  
RSEL  
11  
10  
9
V
CC  
TXF2  
OUT1  
*EP  
+
8
GND  
1
2
3
4
5
6
7
THIN QFN  
(5mm × 5mm × 0.8mm)  
*EXPOSED PAD.  
Pin Description  
PIN  
1
NAME  
FUNCTION  
PIN  
NAME  
BMON1  
N.C.  
FUNCTION  
RSELOUT Rate-Select Output  
2
External Monitor Input BMON1  
and HBATH1 Quick Trip  
14  
2
SCL  
SDA  
I C Serial-Clock Input  
2
3
I C Serial-Data Input/Output  
15  
16, 26  
17  
No Connection  
V
CC  
Power-Supply Input  
Transmit Fault Output, Open  
Drain  
4
5
TXFOUT  
TXF1  
TXDOUT2 Transmit Disable Output 2  
Transmit Fault Input 1  
19  
MOD2  
MOD1  
MOD2 DAC, Delta-Sigma Output  
MOD1 DAC, Delta-Sigma Output  
20  
Digital Input. General-purpose  
input, AS1 in SFF-8079, or RS1  
in SFF-8431.  
6
IN1  
Reference Input for DAC1 and  
DAC2  
22  
REFIN  
7
TXD1  
GND  
RSEL  
Transmit Disable Input 1  
Ground Connection  
Rate-Select Input  
23  
24  
25  
27  
TXD2  
APC2  
APC1  
TXF2  
Transmit Disable Input 2  
8, 18, 21  
APC2 DAC, Delta-Sigma Output  
APC1 DAC, Delta-Sigma Output  
Transmit Fault Input 2  
9
10  
TXDOUT1 Transmit Disable Output 1  
External Monitor Input PMON2  
PMON2  
Digital Output. General-purpose  
output, AS1 output in SFF-8079,  
or RS1 output in SFF-8431.  
11  
12  
13  
and HTXP2/LTXP2 Quick Trip  
28  
OUT1  
EP  
External Monitor Input BMON2  
BMON2  
and HBATH2 Quick Trip  
Exposed Pad (Connect to GND)  
External Monitor Input PMON1  
PMON1  
and HTXP1/LTXP1 Quick Trip  
10  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Block Diagram  
REFIN  
V
CC  
MOD2 DAC  
10 BITS  
V
CC  
MOD2  
APC2  
MOD1  
APC1  
MAIN MEMORY  
EEPROM/SRAM  
2
SDA  
SCL  
I C  
INTERFACE  
A/D CONFIGURATION/RESULTS,  
SYSTEM STATUS/CONTROL BITS,  
ALARMS/WARNINGS,  
APC2 DAC  
10 BITS  
EEPROM  
256 BYTES  
AT A0h  
LOOKUP TABLES,  
USER MEMORY  
MOD1 DAC  
10 BITS  
V
CC  
APC1 DAC  
10 BITS  
13-BIT  
ADC  
BMON1  
PMON1  
BMON2  
PMON2  
8-BIT  
QTs  
TXFOUT  
POWER-ON  
ANALOG  
INTERRUPT  
TEMPERATURE  
SENSOR  
V
CC  
TXD1  
TXD2  
TXF1  
TXF2  
TXDOUT1  
LOGIC  
CONTROL  
V
CC  
TXDOUT2  
RSELOUT  
RSEL  
IN1  
LOGIC  
CONTROL  
OUT1  
GND  
DS1876  
Maxim Integrated  
11  
DS1876  
SFP Controller with Dual LDD Interface  
Typical Operating Circuit  
TOSA2  
LDD2  
BMON  
APCIN  
FAULT  
APCSET  
MODSET  
DISABLE  
TOSA1  
LDD1  
BMON  
APCIN  
FAULT  
APCSET  
MODSET  
DISABLE  
RC FILTERS  
(FIGURE 6)  
MOD1  
DAC  
DS1876  
APC1  
DAC  
TXF1  
TXF2  
TXFOUT  
TXDOUT1  
TXDOUT2  
TXD1  
EEPROM  
MOD2  
DAC  
TX_FAULT  
APC2  
DAC  
TX_DISABLE1  
TX_DISABLE2  
TXD2  
BMON1  
PMON1  
BMON2  
PMON2  
QUICK  
TRIP  
SDA  
SCL  
MODE_DEF2 (SDA)  
MODE_DEF1 (SCL)  
2
I C  
R
R
R
R
B1  
P1  
B1  
P2  
ADC  
set in EEPROM. After a temperature conversion is com-  
pleted and if the VCC LO alarm is enabled, an additional  
Detailed Description  
The DS1876 integrates the control and monitoring func-  
tionality required in a dual transmitter system. Key com-  
ponents of the DS1876 are shown in the Block Diagram  
and described in subsequent sections.  
V
CC  
conversion above the customer-defined VCC LO  
alarm level is required before the DACs are updated with  
the value determined by the temperature conversion and  
the DAC LUT.  
DACs During Power-Up  
If a fault is detected, and TXD1 and TXD2 are toggled  
to re-enable the outputs, the DS1876 powers up fol-  
lowing a similar sequence to an initial power-up. The  
On power-up, the DS1876 sets the DACs to high imped-  
ance. After time t  
, the DACs are set to an initial condition  
INIT  
12  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
only difference is that the DS1876 already has deter-  
Table 1. Acronyms  
ACRONYM  
mined the present temperature, so the t  
time is not  
INIT  
DESCRIPTION  
required for the DS1876 to recall the APC and MOD  
set points from EEPROM. See Figure 1.  
ADC  
AGC  
APC  
APD  
ATB  
DAC  
LOS  
LUT  
NV  
Analog-to-Digital Converter  
Automatic Gain Control  
Automatic Power Control  
Avalanche Photodiode  
Alarm Trap Bytes  
DACs as a Function of Transmit Disable  
(TXD1, TXD2)  
If TXD1 or TXD2 are asserted (logic 1) during normal  
operation, the associated outputs are disabled within  
Digital-to-Analog Converter  
Loss of Signal  
t
. When TXD1 or TXD2 are deasserted (logic 0), the  
OFF  
DS1876 sets the DACs with the value associated with  
the present temperature. When asserted, soft TXD1 or  
soft TXD2 (TXDC) (Lower Memory, Register 6Eh) would  
allow a software control identical to the TXD1 or TXD2 pin  
(Figure 2). The POLARITY register (Table 02h, Register  
C6h) determines if the off-state value of the DACs is  
Lookup Table  
Nonvolatile  
QT  
Quick Trip  
TE  
Tracking Error  
TIA  
Transimpedance Amplifier  
Receiver Optical Subassembly  
Shadowed EEPROM  
Small Form Factor  
V
or 0V.  
REFIN  
ROSA  
SEE  
SFF  
Quick-Trip Timing  
As shown in Figure 3, the DS1876’s input compara-  
tor is shared among the six quick-trip alarms (TXP1  
HI, TXP1 LO, TXP2 HI, TXP2 LO, BIAS1 HI, and BIAS2  
HI). The comparator polls the alarms in a multiplexed  
sequence. The updates are used to compare the HTXP1,  
LTXP1, HTXP2, and LTXP2 (monitor diode voltages) and  
the HBATH1 and HBATH2 (BMON1, BMON2) signals  
against the internal APC and BIAS reference, respec-  
tively. Depending on the results of the comparison, the  
Document Defining Register Map of SFPs  
and SFFs  
SFF-8472  
SFP  
SFP+  
TOSA  
TXP  
Small Form Factor Pluggable  
Enhanced SFP  
Transmit Optical Subassembly  
Transmit Power  
V
POA  
V
CC  
t
500µs  
INIT  
DAC  
SETTINGS  
HIGH IMPEDANCE  
OFF STATE  
LUT VALUE  
Figure 1. Power-Up Timing  
TXD_  
DAC  
t
t
ON  
OFF  
LUT VALUE  
OFF STATE  
LUT VALUE  
SETTINGS  
Figure 2. TXD1, TXD2 Timing  
Maxim Integrated  
13  
DS1876  
SFP Controller with Dual LDD Interface  
QT CYCLE  
LTXP2  
SAMPLE  
HBIAS1  
SAMPLE  
HBIAS2  
SAMPLE  
HTXP1  
SAMPLE  
HTXP2  
SAMPLE  
LTXP1  
SAMPLE  
LTXP2  
SAMPLE  
HBIAS1  
SAMPLE  
QUICK-TRIP SAMPLE TIMES  
t
REP  
Figure 3. Quick-Trip Sample Timing  
Table 2. ADC Default Monitor Full-Scale Ranges  
SIGNAL (UNITS)  
Temperature (NC)  
(V)  
+FS SIGNAL  
127.996  
6.5528  
+FS HEX  
-FS SIGNAL  
-FS HEX  
8000  
7FFF  
FFF8  
FFF8  
-128  
V
CC  
0
0
0000  
PMON1, PMON2 and BMON1, BMON2 (V)  
2.4997  
0000  
corresponding alarms and warnings (TXP HI1, TXP LO1,  
TXP HI2, TXP LO2, BIAS HI1, and BIAS HI2) are asserted  
or deasserted.  
The high and low transmit power quick-trip registers  
(HTXP1, HTXP2, LTXP1, and LTXP2) set the thresholds  
used to compare against the PMON1 and PMON2 volt-  
ages to determine if the transmit power is within speci-  
fication. The HBATH1 and HBATH2 QTs compare the  
BMON1 and BMON2 inputs (generally from the laser  
driver’s bias monitor output) against their threshold set-  
tings to determine if the present bias current is above  
specification. The bias and power QTs are routed to  
FETG through interrupt masks to allow combinations  
of these alarms to be used to trigger FETG. The bias  
and power QTs are directly connected to TXFOUT (see  
Figure 9). The user can program up to eight different  
temperature-indexed threshold levels for HBATH1 and  
HBATH2 (Table 06h, Registers E0h-E7h).  
After resetting, the device completes one QT cycle  
before making comparisons. The TXP LO quick-trip  
alarm updates its alarm bit, but does not create FETG  
until after TXD  
. TXP HI and BIAS HI can also be con-  
EXT  
figured to wait for TXD  
; however, this can be disabled  
EXT  
using QTHEXT_ (Table 02h, Register 88h).  
Monitors and Fault Detection  
Monitors  
Monitoring functions on the DS1876 include six quick-  
trip comparators and six ADC channels. This monitoring  
combined with the alarm enables (Table 01h/05h) deter-  
mines when/if the DS1876 turns off DACs and triggers  
the TXFOUT and TXDOUT1, TXDOUT2 outputs. All the  
monitoring levels and interrupt masks are user program-  
mable.  
Six ADC Monitors and Alarms  
The ADC monitors six channels that measure tem-  
perature (internal temp sensor), V , PMON1, PMON2,  
CC  
BMON1, and BMON2 using an analog multiplexer to  
measure them round-robin with a single ADC (see the  
ADC Timing section). The channels have a customer-  
programmable full-scale range, and all channels have a  
customer-programmable offset value that is factory pro-  
grammed to a default value (see Table 2). Additionally,  
PMON1, PMON2 and BMON1, BMON2 can right-shift  
results by up to 7 bits before the results are compared  
Six Quick-Trip Monitors and Alarms  
Six quick-trip monitors are provided to detect potential  
laser safety issues and LOS status. These monitor the  
following:  
1) High Bias Current 1 (HBATH1), causing QT BIAS1 HI  
2) Low Transmit Power 1 (LTXP1), causing QT TXP1 LO  
3) High Transmit Power 1 (HTXP1), causing QT TXP1 HI  
4) High Bias Current 2 (HBATH2), causing QT BIAS2 HI  
5) Low Transmit Power 2 (LTXP2), causing QT TXP2 LO  
6) High Transmit Power 2 (HTXP2), causing QT TXP2 HI  
2
to alarm thresholds or read over the I C bus. This allows  
customers with specified ADC ranges to calibrate the  
n
ADC full scale to a factor of 1/2 of their specified range  
to measure small signals. The DS1876 can then right-  
shift the results by n bits to maintain the bit weight of their  
specification.  
14  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
The ADC results (after right-shifting, if used) are com-  
shifts. Up to seven right-shift operations are allowed and  
are executed as a part of every conversion before the  
results are compared to the high and low alarm levels, or  
loaded into their corresponding measurement registers  
(Lower Memory, Registers 64h–6Bh). This is true during  
the setup of internal calibration as well as during subse-  
quent data conversions.  
pared to the alarm and warning thresholds after each  
conversion, and the corresponding alarms are set that  
can be used to trigger the TXFOUT output. These ADC  
thresholds are user programmable, as are the masking  
registers that can be used to prevent the alarms from trig-  
gering the TXFOUT output.  
ADC Timing  
There are six analog channels that are digitized in a  
round-robin fashion in the order as shown in Figure 4.  
Low-Voltage Operation  
The DS1876 contains two power-on reset (POR) levels.  
The lower level is a digital POR (POD) and the higher  
level is an analog POR (POA). At startup, before the sup-  
ply voltage rises above POA, the outputs are disabled,  
all SRAM locations are set to their defaults, shadowed  
EEPROM (SEE) locations are zero, and all analog cir-  
The total time required to convert all six channels is t  
RR  
(see the Analog Voltage Monitoring Characteristics table  
for details).  
Right-Shifting ADC Result  
If the weighting of the ADC digital reading must conform  
to a predetermined full-scale (PFS) value defined by  
a standard’s specification (e.g., SFF-8472), then right-  
shifting can be used to adjust the PFS analog measure-  
ment range while maintaining the weighting of the ADC  
results. The DS1876’s range is wide enough to cover all  
requirements; when the maximum input value is P 1/2  
the FS value, right-shifting can be used to obtain greater  
accuracy. For instance, the maximum voltage might be  
1/8 the specified PFS value, so only 1/8 of the converter’s  
range is effective over this range. An alternative is to cali-  
brate the ADC’s full-scale range to 1/8 the readable PFS  
value and use a right-shift value of 3. With this implemen-  
tation, the resolution of the measurement is increased by  
a factor of 8, and because the result is digitally divided  
by 8 by right-shifting, the bit weight of the measurement  
still meets the standard’s specification (i.e., SFF-8472).  
cuitry is disabled. When V  
reaches POA, the SEE is  
CC  
recalled, and the analog circuitry is enabled. While V  
CC  
remains above POA, the device is in its normal operating  
state, and it responds based on its nonvolatile configu-  
ration. If during operation V  
falls below POA, but is  
CC  
still above POD, the SRAM retains the SEE settings from  
the first SEE recall, but the device analog is shut down  
and the outputs disabled. If the supply voltage recovers  
back above POA, the device immediately resumes nor-  
mal operation. If the supply voltage falls below POD, the  
device SRAM is placed in its default state and another  
SEE recall is required to reload the nonvolatile settings.  
The EEPROM recall occurs the next time V  
next  
CC  
exceeds POA. Figure 5 shows the sequence of events  
as the voltage varies.  
2
Any time V  
is above POD, the I C interface can be  
CC  
used to determine if V  
is below the POA level. This  
CC  
is accomplished by checking the RDYB bit in the status  
byte (Lower Memory, Register 6Eh). RDYB is set when  
The right-shift operation on the ADC result is carried  
out based on the contents of right-shift control registers  
(Table 02h, Registers 8Eh-8Fh) in EEPROM. Four analog  
channels—PMON1, PMON2, BMON1, and BMON2—  
each have 3 bits allocated to set the number of right-  
V
is below POA; when V  
rises above POA, RDYB  
CC  
CC  
is timed (within 500Fs) to go to 0, at which point the part  
is fully functional.  
ONE ROUND-ROBIN ADC CYCLE  
TEMP  
V
BMON1  
BMON2  
PMON1  
PMON2  
TEMP  
CC  
t
RR  
NOTE: IF THE VCC LO ALARM IS ENABLED AT POWER-UP, THE ADC ROUND-ROBIN TIMING CYCLES BETWEEN TEMPERATURE AND V ONLY UNTIL V IS ABOVE THE VCC LO  
CC  
CC  
ALARM THRESHOLD. THIS ALSO OCCURS IF THERE ARE BOTH A TXD1 EVENT AND A TXD2 EVENT UNDER THE SAME CONDITIONS AS PREVIOUSLY MENTIONED.  
Figure 4. ADC Round-Robin Timing  
Maxim Integrated  
15  
DS1876  
SFP Controller with Dual LDD Interface  
SEE RECALL  
SEE RECALL  
V
POA  
V
CC  
V
POD  
PRECHARGED  
TO 0  
PRECHARGED  
TO 0  
SEE  
RECALLED VALUE  
PRECHARGED TO 0  
RECALLED VALUE  
Figure 5. Low-Voltage Hysteresis Example  
A delta-sigma DAC has a digital output using pulse-  
density modulation. It provides much lower output ripple  
than a standard digital PWM output given the same clock  
3.24k  
3.24kΩ  
DAC  
DAC  
VOLTAGE OUTPUT  
0.01µF  
rate and filter components. Before t  
, the DAC outputs  
INIT  
0.01µF  
are high impedance. The external RC filter components  
are chosen based on ripple requirements, output load,  
delta-sigma frequency, and desired response time.  
Figure 6 shows a recommended filter.  
DS1876  
DS1876  
1kΩ  
1kΩ  
CURRENT SINK  
For illustrative purposes, a 3-bit example is provided in  
Figure 7.  
0.1µF  
0.1µF  
2k  
In LUT mode the DACs are each controlled by an LUT  
with high-temperature resolution and an OFFSET LUT  
with lower temperature resolution. The high-resolution  
LUTs each have 2NC resolutions. The OFFSET LUTs  
are located in the upper eight registers (F8h-FFh) of  
the table containing each high-resolution LUT. The DAC  
values are determined as follows:  
Figure 6. Recommended RC Filter for DAC Outputs in Voltage  
Mode and Current Sink Mode  
For all device addresses sourced from EEPROM (Table  
02h, Register 8Bh), the default device addresses are  
DAC value = LUT + 4 x (OFFSET LUT)  
An example calculation for MOD1 DAC is as follows:  
Assumptions:  
A2h and B2h until V  
exceeds POA allowing the device  
CC  
address to be recalled from the EEPROM.  
1) Temperature is +43NC  
Delta-Sigma Outputs  
2) Table 04h (MOD1 OFFSET LUT), Register FCh = 2Ah  
3) Table 04h (MOD1 LUT), Register AAh = 7Bh  
Four delta-sigma outputs are provided: MOD1, MOD2,  
APC1, and APC2. With the addition of an external RC  
filter, these outputs provide 10-bit resolution analog  
outputs with the full-scale range set by the input REFIN.  
Each output is either manually controlled or controlled  
using a temperature-indexed LUT.  
Because the temperature is +43NC, the MOD1 LUT index  
is AAh and the MOD1 OFFSET LUT index is FCh.  
MOD1 DAC = 7Bh + 4 x 2Ah = 123h = 291  
16  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
O
1
2
3
4
5
6
7
Figure 7. 3-Bit (8-Position) Delta-Sigma Example  
DAC OFFSET LUTs (04h/06h)[A2h/B2h]  
EIGHT REGISTERS PER DAC  
DAC OFFSET LUTs (04h/06h)[A2h/B2h]  
EIGHT REGISTERS PER DAC  
EACH OFFSET REGISTER CAN BE INDEPENDENTLY  
SET BETWEEN 0 AND 1020. 1020 = 4 x FFh. THIS  
EXAMPLE ILLUSTRATES POSITIVE TEMPCO.  
EACH OFFSET REGISTER CAN BE INDEPENDENTLY SET BETWEEN  
0 AND 1020. 1020 = 4 x FFh. THIS EXAMPLE ILLUSTRATES POSITIVE  
AND NEGATVE TEMPCO.  
FFh  
1023  
767  
511  
255  
0
1023  
767  
511  
255  
0
DAC  
LUT  
BITS  
7:0  
FEh  
DAC  
LUT  
BITS  
7:0  
FDh  
FDh  
FCh  
FEh  
DAC  
DAC  
LUT  
BITS  
7:0  
FFh  
FBh  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
FCh  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
FAh  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
FBh  
DAC  
LUT  
BITS  
7:0  
F9h  
FAh  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
F9h  
F8h  
F8h  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
DAC  
LUT  
BITS  
7:0  
-40°C -8°C +8°C +24°C +40°C +56°C +70°C +88°C +104°C  
-40°C -8°C +8°C +24°C +40°C +56°C +70°C +88°C +104°C  
Figure 8. DAC OFFSET LUTs  
When temperature controlled, the DACs are updated  
after each temperature conversion.  
REFIN and its decoupling must be able to support the  
edge rate requirements of the delta-sigma outputs. In  
a typical application, a 0.1FF capacitor should be con-  
nected between REFIN and ground.  
The reference input, REFIN, is the supply voltage for the  
output buffer of all four DACs. The voltage connected to  
Maxim Integrated  
17  
DS1876  
SFP Controller with Dual LDD Interface  
V
CC  
SET BIAS_ DAC AND  
MOD_ DAC TO HIGH  
IMPEDANCE  
TXDS_  
R
PU  
TXD_  
TXDIO_  
TXDFG_  
TXD_  
TXDC_  
R
S
C
C
D
Q
Q
TXDOUT_  
FETG_  
TXP_ HI FLAG  
TXP HI ENABLE  
HBAL_ FLAG  
TXDFLT_  
HBAL ENABLE  
TXFOUTS_  
TXFINT  
QTHEXT_  
TXFOUTS1  
TXFOUTS2  
TXP_ LO FLAG  
TXP LO ENABLE  
TXFOUT  
INVTXF_  
TXF_  
FAULT RESET TIMER  
(130ms)  
TXD (t  
EXT INITR1  
)
OUT  
IN  
TXFS_  
POWER-ON  
RESET  
NOTE:  
IN  
_ CAN BE EITHER 1 OR 2 CORRESPONDING TO TRANSMITTERS 1 OR 2.  
REFERS TO A PIN.  
OUT  
Figure 9. Logic Diagram 1  
Register 89h). The open-drain RSELOUT output is  
software controlled and/or inverted through the STATUS  
register and CNFGA register (Table 02h, Register 88h).  
External pullup resistors must be provided on OUT1 and  
RSELOUT to realize high logic levels.  
IN1S  
OUT1  
INVOUT1  
IN1C  
IN1  
INVRSOUT  
TXF1, TXF2, TXFOUT, TXD1, TXD2,  
TXDOUT1, TXDOUT2  
RSELOUT  
RSELS  
TXDOUT1 and TXDOUT2 are generated from a com-  
bination of TXF1, TXF2, TXD1, TXD2, and the internal  
signals FETG1 and FETG2 (Table 02h, Register 8Ah). A  
software control identical to TXD1 and TXD2 is also avail-  
able (TXDC1 and TXDC2, Lower Memory, Register 6Eh).  
RSELC  
RSEL  
= PINS  
Figure 10. Logic Diagram 2  
A TXD1 or TXD2 pulse is internally extended (TXD  
)
EXT  
Digital I/O Pins  
Six digital input pins and five digital output pins are pro-  
vided for monitoring and control.  
by time t  
to inhibit the latching of low alarms and  
INITR1  
warnings related to the APC loop to allow for the loop to  
stabilize. The nonlatching alarms and warnings are TXP  
LO, BMON1 LO, BMON2 LO, PMON1 LO, and PMON2  
LO. In addition, TXP LO is disabled from creating FETG.  
See the Transmit Fault (TXFOUT) Output section for a  
detailed explanation of TXFOUT. As shown in Figure 9,  
the same signals and faults can also be used to gener-  
ate the internal signal FETG. FETG is used to send a fast  
“turn-off” command to the laser driver. The intended use  
is a direct connection to the laser driver’s TXD1, TXD2  
IN1, RSEL, OUT1, RSELOUT  
Digital input pins IN1 and RSEL primarily serve to meet  
the rate-select requirements of SFP and SFP+. They  
can also serve as general-purpose inputs. OUT1 and  
RSELOUT are driven by a combination of the IN1, RSEL,  
and logic dictated by control registers in the EEPROM  
(see Figure 10). The levels of IN1 and RSEL can be  
read from the STATUS register (Lower Memory, Register  
6Eh). The open-drain output OUT1 can be controlled  
and/or inverted using the CNFGB register (Table 02h,  
input if this is desired. When V  
TXDOUT2 are high impedance.  
< POA, TXDOUT1 and  
CC  
18  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
DETECTION OF TXFOUT FAULT  
TXFOUT  
Figure 11a. TXFOUT Nonlatched Operation  
DETECTION OF TXFOUT FAULT  
TXD_ OR TXFOUT RESET  
TXFOUT  
Figure 11b. TXFOUT Latched Operation  
Transmit Fault (TXFOUT) Output  
START Condition: A START condition is generated  
by the master to initiate a new data transfer with a  
slave. Transitioning SDA from high to low while SCL  
remains high generates a START condition. See  
Figure 12 for applicable timing.  
TXFOUT can be triggered by all alarms, warnings, QTs,  
TXD1, TXD2, TXF1, and TXF2 (see Figure 9). The six  
ADC alarms and warnings are controlled by enable bits  
(Table 01h/05h, Registers F8h and FCh). See Figures  
11a and 11b for nonlatched and latched operation for  
TXFOUT. The CNFGB register (Table 02h, Register 89h)  
controls the latching of the alarms.  
STOP Condition: A STOP condition is generated  
by the master to end a data transfer with a slave.  
Transitioning SDA from low to high while SCL remains  
high generates a STOP condition. See Figure 12 for  
applicable timing.  
Die Identification  
The DS1876 has an ID hardcoded in its memory. Two  
registers (Table 02h, Registers 86h-87h) are assigned  
for this feature. Register 86h reads 76h to identify the  
part as the DS1876; Register 87h reads the present  
device version.  
Repeated START Condition: The master can use  
a repeated START condition at the end of one data  
transfer to indicate that it will immediately initiate a  
new data transfer following the current one. Repeated  
STARTs are commonly used during read operations  
to identify a specific memory address to begin a data  
transfer. A repeated START condition is issued identi-  
cally to a normal START condition. See Figure 12 for  
applicable timing.  
2
I C Communication  
2
I C Definitions  
The following terminology is commonly used to describe  
2
I C data transfers.  
Bit Write: Transitions of SDA must occur during the  
low state of SCL. The data on SDA must remain valid  
and unchanged during the entire high pulse of SCL  
plus the setup and hold time requirements (Figure 12).  
Data is shifted into the device during the rising edge  
of the SCL.  
Master Device: The master device controls the slave  
devices on the bus. The master device generates SCL  
clock pulses and START and STOP conditions.  
Slave Devices: Slave devices send and receive data  
at the master’s request.  
Bus Idle or Not Busy: Time between STOP and  
START conditions when both SDA and SCL are inac-  
tive and in their logic-high states.  
Bit Read: At the end of a write operation, the master  
must release the SDA bus line for the proper amount  
of setup time (Figure 12) before the next rising edge  
Maxim Integrated  
19  
DS1876  
SFP Controller with Dual LDD Interface  
of SCL during a bit read. The device shifts out each  
bit of data on SDA at the falling edge of the previous  
SCL pulse and the data bit is valid at the rising edge  
of the current SCL pulse. Remember that the master  
generates all SCL clock pulses, including when it is  
reading bits from the slave.  
bit read definition, and the master transmits an ACK  
using the bit write definition to receive additional data  
bytes. The master must NACK the last byte read to  
terminate communication so the slave returns control  
of SDA to the master.  
2
Slave Address Byte: Each slave on the I C bus  
Acknowledgement (ACK and NACK): An acknowl-  
edgement (ACK) or not-acknowledge (NACK) is  
always the 9th bit transmitted during a byte transfer.  
The device receiving data (the master during a read  
or the slave during a write operation) performs an ACK  
by transmitting a zero during the 9th bit. A device per-  
forms a NACK by transmitting a one during the 9th bit.  
Timing (Figure 12) for the ACK and NACK is identical  
to all other bit writes. An ACK is the acknowledgment  
that the device is properly receiving data. A NACK is  
used to terminate a read sequence or as an indication  
that the device is not receiving data.  
responds to a slave address byte sent immediately  
following a START condition. The slave address byte  
contains the slave address in the most significant 7bits  
and the R/W bit in the least significant bit.  
The DS1876 responds to three slave addresses. The  
2
auxiliary memory always responds to a fixed I C slave  
address, A0h. (If the main device’s slave address  
is programmed to be A0h, access to the auxiliary  
memory is disabled.) The Lower Memory and Tables  
2
00h–06h respond to I C slave addresses whose lower  
3 bits are configurable (A0h–AEh, B0h-BEh) using the  
DEVICE ADDRESS byte (Table 02h, Register 8Bh). The  
user also must set the ASEL bit (Table 02h, Register  
88h) for this address to be active. By writing the cor-  
rect slave address with R/W = 0, the master indicates  
it writes data to the slave. If R/W = 1, the master reads  
data from the slave. If an incorrect slave address is  
written, the DS1876 assumes the master is communi-  
Byte Write: A byte write consists of 8 bits of informa-  
tion transferred from the master to the slave (most  
significant bit first) plus a 1-bit acknowledgement from  
the slave to the master. The 8 bits transmitted by the  
master are done according to the bit write definition  
and the acknowledgement is read using the bit read  
definition.  
2
cating with another I C device and ignores the com-  
munications until the next START condition is sent.  
Byte Read: A byte read is an 8-bit information transfer  
from the slave to the master plus a 1-bit ACK or NACK  
from the master to the slave. The 8 bits of information  
that are transferred (most significant bit first) from the  
slave to the master are read by the master using the  
2
Memory Address: During an I C write operation  
to the DS1876, the master must transmit a memory  
address to identify the memory location where the  
slave is to store the data. The memory address is  
SDA  
t
BUF  
t
F
t
SP  
t
HD:STA  
t
LOW  
SCL  
t
HIGH  
t
SU:STA  
t
t
R
HD:STA  
t
SU:STO  
t
t
SU:DAT  
HD:DAT  
STOP  
START  
REPEATED  
START  
NOTE: TIMING IS REFERENCED TO V  
AND V .  
IH(MIN)  
IL(MAX)  
2
Figure 12. I C Timing  
20  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
always the second byte transmitted during a write  
operation following the slave address byte.  
For example: A 3-byte write starts at address 06h and  
writes three data bytes (11h, 22h, and 33h) to three  
“consecutive” addresses. The result is that addresses  
06h and 07h would contain 11h and 22h, respec-  
tively, and the third data byte, 33h, would be written  
to address 00h.  
2
I C Protocol  
2
See Figure 13 for an example of I C timing.  
Writing a Single Byte to a Slave: The master must  
generate a START condition, write the slave address  
byte (R/W = 0), write the memory address, write  
the byte of data, and generate a STOP condition.  
Remember that the master must read the slave’s  
acknowledgement during all byte write operations.  
To prevent address wrapping from occurring, the  
master must send a STOP condition at the end of  
the page, then wait for the bus-free or EEPROM write  
time to elapse. Then the master can generate a new  
START condition and write the slave address byte  
(R/W = 0) and the first memory address of the next  
memory row before continuing to write data.  
Writing Multiple Bytes to a Slave: To write multiple  
bytes to a slave, the master generates a START condi-  
tion, writes the slave address byte (R/W = 0), writes  
the memory address, writes up to 8 data bytes, and  
generates a STOP condition. The DS1876 writes 1 to  
8 bytes (one page or row) with a single write trans-  
action. This is internally controlled by an address  
counter that allows data to be written to consecutive  
addresses without transmitting a memory address  
before each data byte is sent. The address counter  
limits the write to one 8-byte page (one row of the  
memory map). Attempts to write to additional pages  
of memory without sending a STOP condition between  
pages result in the address counter wrapping around  
to the beginning of the present row.  
Acknowledge Polling: Any time a EEPROM page is  
written, the DS1876 requires the EEPROM write time  
(t ) after the STOP condition to write the contents of  
WR  
the page to EEPROM. During the EEPROM write time,  
the DS1876 does not acknowledge its slave address  
because it is busy. It is possible to take advantage  
of that phenomenon by repeatedly addressing the  
DS1876, which allows the next page to be written  
as soon as the DS1876 is ready to receive the data.  
The alternative to acknowledge polling is to wait for  
maximum period of t  
to elapse before attempting  
WR  
to write again to the DS1876.  
2
TYPICAL I C WRITE TRANSACTION  
MSB  
X
LSB  
R/W  
MSB  
LSB  
MSB  
LSB  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START  
X
X
X
0
0
1
b7 b6 b5 b4 b3 b2 b1 b0  
b7 b6 b5 b4 b3 b2 b1 b0  
STOP  
SLAVE  
ADDRESS*  
READ/  
WRITE  
REGISTER ADDRESS  
DATA  
*IF ASEL IS 0, THE SLAVE ADDRESS IS A0h FOR THE AUXILIARY MEMORY AND A2h/B2h FOR THE MAIN MEMORY.  
IF ASEL = 1, THE SLAVE ADDRESS IS DETERMINED BY TABLE 02h, REGISTER 8Bh FOR THE MAIN MEMORY. THE AUXILIARY MEMORY CONTINUES TO BE ADDRESSED AT A0h, EXCEPT WHEN THE PROGRAMMED  
ADDRESS FOR THE MAIN MEMORY IS A0h.  
2
EXAMPLE I C TRANSACTIONS WITH A2h AS THE SLAVE ADDRESS  
A2h  
BAh  
00h  
A) SINGLE-BYTE WRITE  
-WRITE 00h TO REGISTER BAh  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START 1 0 1 0 0 0 1 0  
1 0 1 1 1 0 1 0  
0 0 0 0 0 0 0 0  
STOP  
A2h  
BAh  
A3h  
1 0 1 0 0 0 1 1  
DATA  
B) SINGLE-BYTE READ  
-READ REGISTER BAh  
SLAVE  
ACK  
SLAVE  
ACK  
REPEATED  
START  
SLAVE  
ACK  
MASTER  
NACK  
START 1 0 1 0 0 0 1 0  
1 0 1 1 1 0 1 0  
DATA IN BAh  
STOP  
A2h  
C8h  
01h  
75h  
0 1 1 1 0 1 0 1  
C) TWO-BYTE WRITE  
-WRITE 01h AND 75h TO  
REGISTERS C8h AND C9h  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
SLAVE  
ACK  
START 1 0 1 0 0 0 1 0  
1 1 0 0 1 0 0 0  
0 0 0 0 0 0 0 1  
STOP  
A2h  
C8h  
A3h  
1 0 1 0 0 0 1 1  
DATA  
DATA IN C8h  
DATA  
DATA IN C9h  
D) TWO-BYTE READ  
-READ C8h AND C9h  
SLAVE  
ACK  
SLAVE  
ACK  
REPEATED  
START  
SLAVE  
ACK  
MASTER  
ACK  
MASTER  
NACK  
START 1 0 1 0 0 0 1 0  
1 1 0 0 1 0 0 0  
STOP  
2
Figure 13. Example I C Timing  
Maxim Integrated  
21  
DS1876  
SFP Controller with Dual LDD Interface  
EEPROM Write Cycles: When EEPROM writes occur,  
the DS1876 writes the whole EEPROM memory page,  
even if only a single byte on the page was modified.  
Writes that do not modify all 8 bytes on the page are  
allowed and do not corrupt the remaining bytes of  
memory on the same page. Because the whole page  
is written, bytes on the page that were not modi-  
fied during the transaction are still subject to a write  
cycle. This can result in a whole page being worn  
out over time by writing a single byte repeatedly.  
Writing a page 1 byte at a time wears the EEPROM  
out 8x faster than writing the entire page at once. The  
DS1876’s EEPROM write cycles are specified in the  
Nonvolatile Memory Characteristics table. The speci-  
fication shown is at the worst-case temperature. It can  
handle approximately 10x that many writes at room  
temperature. Writing to SRAM-shadowed EEPROM  
memory with SEEB = 1 does not count as a EEPROM  
write cycle when evaluating the EEPROM’s estimated  
lifetime.  
Table 01h, A2h primarily contains user EEPROM (with  
PW1 level access) as well as alarm and warning enable  
bytes.  
Table 02h, A2h/B2h is a multifunction space that con-  
tains configuration registers, scaling and offset values,  
passwords, and interrupt registers as well as other mis-  
cellaneous control bytes. All functions and status can be  
written and read from either A2h or B2h addresses.  
Table 04h, A2h contains a temperature-indexed LUT for  
control of the MOD1 voltage. The MOD1 LUT can be pro-  
grammed in 2NC increments over the -40NC to +102NC  
range. This also contains a temperature-indexed LUT for  
the MOD1 offsets.  
Table 05h, A2h is empty by default. It can be config-  
ured to contain the alarm and warning enable bytes  
from Table 01h, Registers F8h–FFh with the MASK bit  
enabled (Table 02h, Register 88h). In this case Table  
01h is empty.  
Table 06h, A2h contains a temperature-indexed LUT for  
control of the APC1 voltage. The APC1 LUT can be pro-  
grammed in 2NC increments over the -40NC to +102NC  
range. This also contains a temperature-indexed LUT for  
the APC1 offsets.  
Reading a Single Byte from a Slave: Unlike the  
write operation that uses the memory address byte  
to define where the data is to be written, the read  
operation occurs at the present value of the memory  
address counter. To read a single byte from the slave,  
the master generates a START condition, writes the  
slave address byte with R/W = 1, reads the data byte  
with a NACK to indicate the end of the transfer, and  
generates a STOP condition.  
The main device located at B2h is used for transmitter 2  
control, calibration, alarms, warnings, and monitoring.  
Lower Memory, B2h is addressed from 00h–7Fh and  
contains alarm and warning thresholds, flags, masks,  
several control registers, PWE, and the table-select byte.  
Manipulating the Address Counter for Reads: A  
dummy write cycle can be used to force the address  
pointer to a particular value. To do this, the mas-  
ter generates a START condition, writes the slave  
address byte (R/W = 0), writes the memory address  
where it desires to read, generates a repeated START  
condition, writes the slave address byte (R/W = 1),  
reads data with ACK or NACK as applicable, and  
generates a STOP condition.  
Table 01h, B2h contains alarm and warning enable  
bytes.  
Table 04h, B2h contains a temperature-indexed LUT for  
control of the MOD2 voltage. The MOD2 LUT can be pro-  
grammed in 2NC increments over the -40NC to +102NC  
range. This also contains a temperature-indexed LUT for  
the MOD2 offsets.  
Table 05h, B2h is empty by default. It can be config-  
ured to contain the alarm and warning enable bytes  
from Table 01h, Registers F8h–FFh with the MASK bit  
enabled (Table 02h, Register 88h). In this case Table  
01h is empty.  
Memory Organization  
The DS1876 features nine separate memory tables  
that are internally organized into 8-byte rows. The main  
device located at A2h is used for overall device con-  
figuration and transmitter 1 control, calibration, alarms,  
warnings, and monitoring.  
Table 06h, B2h contains a temperature-indexed LUT for  
control of the APC2 voltage. The APC2 LUT can be pro-  
grammed in 2NC increments over the -40NC to +102NC  
range. This also contains a temperature-indexed LUT for  
the APC2 offsets.  
Lower Memory, A2h is addressed from 00h–7Fh and  
contains alarm and warning thresholds, flags, masks,  
several control registers, password entry area (PWE),  
and the table-select byte.  
22  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
2
2
I C ADDRESS A0h  
00h  
I C ADDRESS A2h/B2h  
00h  
LOWER  
MEMORY  
2
2
NOTE 1: IF ASEL = 0, THEN THE MAIN DEVICE I C SLAVE ADDRESS IS A2h/B2h.  
IF ASEL = 1, THEN THE MAIN DEVICE I C SLAVE ADDRESS IS DETERMINED BY THE VALUE IN  
TABLE 02h, REGISTER 8Bh.  
NOTE 2: TABLE 00h DOES NOT EXIST.  
NOTE 3: ALARM-ENABLE ROW CAN BE CONFIGURED TO EXIST AT TABLE 01h OR TABLE 05h USING THE  
MASK BIT IN TABLE 02h, REGISTER 88h.  
PASSWORD ENTRY  
(PWE) (4 BYTES)  
TABLE-SELECT  
BYTE  
7Fh  
EEPROM  
(256 BYTES)  
80h  
80h  
80h  
80h  
TABLE 04h  
TABLE 06h  
TABLE 02h  
ALARM-ENABLE ROW  
CAN BE CONFIGURED  
TO EXIST AT TABLE 01h  
OR TABLE 05h USING  
MASK BIT IN TABLE 02h,  
REGISTER 88h.  
TABLE 01h  
(A2h ONLY)  
MOD1 (A2h)  
MOD2 (B2h)  
LOOKUP TABLE  
(72 BYTES)  
APC1 (A2h)  
APC2 (B2h)  
LOOKUP TABLE  
(72 BYTES)  
NONLOOKUP  
TABLE CONTROL  
AND  
CONFIGURATION  
REGISTERS  
EEPROM  
(120 BYTES)  
C7h  
C7h  
F7h  
FFh  
(B2h ONLY CONTAINS  
TRANSMITTER 2-  
RELATED REGISTERS)  
E0h  
F8h  
F8h  
F8h  
(APC1/2, HBATH1/2,  
TXP HI 1/2, TXP LO 1/2)  
TABLE 05h  
ALARM-  
ENABLE ROW  
(8 BYTES)  
MOD1/2  
OFFSET LUT  
ALARM-ENABLE ROW  
OFFSET LUT  
(8 BYTES)  
FFh  
FFh  
FFh  
FFh  
FFh  
Figure 14. Memory Map  
Auxiliary Memory (Device A0h) contains 256 bytes  
of EE memory accessible from address 00h–FFh. It is  
selected with the device address of A0h.  
SEEB, is not set and these locations act as ordinary  
EEPROM. By setting SEEB, these locations function  
like SRAM cells, which allow an infinite number of write  
cycles without concern of wearing out the EEPROM.  
This also eliminates the requirement for the EEPROM  
See the Register Descriptions section for a more com-  
plete detail of each byte’s function, as well as for read/  
write permissions for each byte.  
write time, t . Because changes made with SEEB  
WR  
enabled do not affect the EEPROM, these changes are  
not retained through power cycles. The power-on value  
is the last value written with SEEB disabled. This func-  
tion can be used to limit the number of EEPROM writes  
during calibration or to change the monitor thresholds  
periodically during normal operation helping to reduce  
the number of times EEPROM is written. Figure 14 shows  
the memory map and indicates which locations are  
shadowed EEPROM.  
Shadowed EEPROM  
Many nonvolatile memory locations (listed within the  
Register Descriptions section) are actually shadowed  
EEPROM and are controlled by the SEEB bit in Table  
02h, Register 80h.  
The DS1876 incorporates shadowed EEPROM memory  
locations for key memory addresses that can be writ-  
ten many times. By default the shadowed EEPROM bit,  
Maxim Integrated  
23  
DS1876  
SFP Controller with Dual LDD Interface  
Memory Map Access Codes  
Register Descriptions  
The following section provides the DS1876 register defi-  
nitions. Each register or row of registers has an access  
descriptor that determines the password level required  
to read or write the memory. Level 2 password is  
intended for the module manufacture access only. Level  
1 password allows another level of protection for items  
the end consumer wishes to protect. Many registers are  
always readable, but require password access to write.  
There are a few registers that cannot be read without  
password access. The following access codes describe  
each mode used by the DS1876 with factory settings for  
the PW_ENA and PW_ENB (Table 02h, Registers C0h–  
C1h) registers.  
The register maps show each byte/word (2 bytes) in  
terms of its row in the memory. The first byte in the row  
is located in memory at the row address (hexadecimal)  
in the leftmost column. Each subsequent byte on the row  
is one/two memory locations beyond the previous byte/  
word’s address. A total of 8 bytes are present on each  
row. For more information about each of these bytes, see  
the corresponding register description.  
ACCESS CODE  
READ ACCESS  
WRITE ACCESS  
At least 1 byte/bit in the row/byte is different than the rest of the row/byte, so look at each byte/bit  
separately for permissions.  
<0/_>  
<1/_>  
<2/_>  
Read all  
Read all  
Write PW2  
Write not applicable  
Write all, but the DS1876 hardware also writes to  
these bytes/bits  
<3/_>  
Read all  
<4/_>  
<5/_>  
<6/_>  
<7/_>  
<8/_>  
<9/_>  
<10/_>  
<11/_>  
Read PW2  
Read all  
Write PW2 + mode_bit  
Write all  
Read not applicable  
Read PW1  
Write all  
Write PW1  
Read PW2  
Write PW2  
Read not applicable  
Read PW2  
Write PW2  
Write not applicable  
Write PW1  
Read all  
using A2h. Transmitter 2 is accessed using B2h. Many  
of the registers in A2h and B2h are shared registers.  
These registers can be read and written from both A2h  
and B2h.  
Memory Addresses A0h, A2h, and B2h  
2
There are three separate I C addresses in the DS1876:  
A0h, A2h, and B2h. A2h and B2h are used to configure  
and monitor two transmitters. Transmitter 1 is accessed  
MEMORY CODE  
A2h AND B2h REGISTERS  
A common memory location is used for A2h and B2h device addresses. Reading or writing to these  
locations is identical, regardless of using A2h or B2h addresses.  
<C> or <_/C>  
<D> or <_/D>  
Different memory locations are used for A2h and B2h device addresses.  
Mixture of common and different memory locations for A2h and B2h device addresses. See the individual  
bytes within the row for clarification. If “M” is used on an individual byte, see the expanded bit descriptions  
to determine which bits are common vs. different.  
<M> or <_/M>  
24  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory Register Map  
LOWER MEMORY  
WORD 0  
WORD 1  
BYTE 2/A BYTE 3/B  
TEMP ALARM LO  
ALARM LO  
WORD 2  
BYTE 4/C BYTE 5/D  
TEMP WARN HI  
WARN HI  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
TEMP ALARM HI  
ALARM HI  
BYTE 1/9  
BYTE 6/E  
TEMP WARN LO  
WARN LO  
BYTE 7/F  
<1/C>  
00  
08  
THRESHOLD  
0
<1/C >  
<1/D>  
<1/D>  
THRESHOLD  
V
V
V
V
CC  
1
2
3
CC  
CC  
CC  
10  
THRESHOLD  
THRESHOLD  
BMON ALARM HI  
BMON ALARM LO  
BMON WARN HI  
BMON WARN LO  
18  
PMON ALARM HI  
PMON ALARM LO  
PMON WARN HI  
PMON WARN LO  
<1/C >  
20–40  
48–50  
58  
EEPROM  
EEPROM  
EEPROM  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
<1/D >  
<1/C >  
EE  
EE  
TEMP VALUE  
RESERVED  
ALARM  
EE  
EE  
VALUE  
EE  
EE  
BMON VALUE  
RESERVED  
WARN RESERVED  
3
EE  
EE  
<2/M>  
<0/M>  
<5/D>  
<0/M>  
<C>  
<C>  
<D>  
<D>  
60  
ADC VALUES  
ADC VALUES  
V
PMON VALUE  
<3/D>  
0
1
CC  
RESERVED  
RESERVED  
<0/M>  
68  
STATUS  
RESERVED  
PWE LSW  
UPDATE  
70  
ALARM/WARN  
TABLE SELECT  
ALARM  
ALARM  
RESERVED  
3
2
1
<6/C>  
<6/C>  
<5/D>  
78  
RESERVED  
RESERVED  
RESERVED  
PWE MSW  
TBL SEL  
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
Table 01h Register Map  
TABLE 01h  
WORD 1  
WORD 0  
WORD 2  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
BYTE 1/9  
EE  
BYTE 2/A  
BYTE 3/B  
BYTE 4/C  
BYTE 5/D  
EE  
BYTE 6/E  
EE  
BYTE 7/F  
EE  
<1/C>  
80–F7  
F8  
EEPROM  
EE  
EE  
EE  
EE  
<7/M>  
<M>  
<D>  
<M>  
ALARM ENABLE  
ALARM EN  
RESERVED  
ALARM EN  
RESERVED  
WARN EN  
3
RESERVED  
RESERVED  
RESERVED  
3
1
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
Note: The ALARM ENABLE bytes (Registers F8h–FFh) can be configured to exist in Table 05h instead of here at Table 01h with  
the MASK bit (Table 02h, Register 88h). If the row is configured to exist in Table 05h, these location are empty in Table 01h.  
The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h).  
These registers also allow for custom permissions.  
ACCESS  
CODE  
<0/_>  
<1/_>  
<2/_>  
<3/_>  
<4/_>  
<5/_>  
<6/_>  
<7/_>  
<8/_>  
<9/_>  
<10/_> <11/_>  
Read  
Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
N/A  
All  
See each  
bit/byte  
separately  
All and  
DS1876  
Hardware  
PW2 +  
mode  
bit  
Write  
Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
PW1  
Maxim Integrated  
25  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h Register Map  
TABLE 02h (PW2)  
WORD 1  
WORD 0  
WORD 2  
BYTE 4/C  
RESERVED  
RANGING  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
BYTE 1/9  
BYTE 2/A  
BYTE 3/B  
RESERVED  
BYTE 5/D  
BYTE 6/E  
BYTE 7/F  
<0/C>  
<8/C>  
<4/C>  
<10>  
<10>  
80  
88  
CONFIG  
CONFIG  
MODE  
TINDEX  
CNFGB  
RESERVED  
BMON2 SCALE  
RESERVED  
CNFGC  
RESERVED  
DEVICE ID  
DEVICE VER  
0
1
<8/C>  
<8/C>  
<8/C>  
<8/C>  
<8/C>  
CNFGA  
DEVICE ADDRESS  
SCALE  
CC  
RANGING  
RSHIFT  
RSHIFT  
1
2
1
2
90  
SCALE  
SCALE  
V
RESERVED  
BMON1 SCALE  
RESERVED  
RESERVED  
0
98  
PMON2 SCALE  
OFFSET  
PMON1 SCALE  
RESERVED  
1
A0  
OFFSET  
OFFSET  
INTERNAL TEMP OFFSET*  
BMON2 OFFSET  
PW1 MSW  
V
CC  
0
1
A8  
PMON2 OFFSET  
PW1 LSW  
BMON1 OFFSET  
PW2 MSW  
PMON1 OFFSET  
PW2 LSW  
<9/C>  
<8/C>  
<8/C>  
<4/C>  
B0  
PWD VALUE  
THRESHOLD  
PWD ENABLE  
DAC VALUES  
EMPTY  
B8  
RESERVED  
PW_ENA  
HBIAS2 DAC  
PW_ENB  
HTXP2 DAC  
LTXP2 DAC  
RESERVED  
RESERVED  
RESERVED  
HBIAS1 DAC  
RESERVED  
HTXP1 DAC  
POLARITY  
LTXP1 DAC  
TBLSELPON  
C0  
RESERVED  
C8  
MOD2 DAC  
APC2 DAC  
MOD1 DAC  
APC1 DAC  
D0–FF  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
*The final result must be XORed with BB40h before writing to this register.  
Table 04h Register Map  
TABLE 04h (MODULATION LUT)  
WORD 1  
WORD 0  
WORD 2  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
MOD  
BYTE 1/9  
MOD  
BYTE 2/A  
MOD  
BYTE 3/B  
MOD  
BYTE 4/C  
MOD  
BYTE 5/D  
MOD  
BYTE 6/E  
MOD  
BYTE 7/F  
MOD  
<8/D>  
LUT4  
80–C7  
C8–F7  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
MOD OFFSET  
LUT  
<8/D>  
F8  
MOD OFFSET  
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h).  
These registers also allow for custom permissions.  
ACCESS  
CODE  
<0/_>  
<1/_>  
<2/_>  
<3/_>  
<4/_>  
<5/_>  
<6/_>  
<7/_>  
<8/_>  
<9/_>  
<10/_> <11/_>  
Read  
Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
N/A  
All  
See each  
bit/byte  
separately  
All and  
DS1876  
Hardware  
PW2 +  
mode  
bit  
Write  
Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
PW1  
26  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 05h Register Map  
TABLE 05h  
WORD 0  
WORD 1  
WORD 2  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
BYTE 1/9  
EMPTY  
BYTE 2/A  
BYTE 3/B  
EMPTY  
BYTE 4/C  
BYTE 5/D  
EMPTY  
BYTE 6/E  
BYTE 7/F  
EMPTY  
80–F7  
F8  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
EMPTY  
<7/M>  
<M>  
<D>  
<M>  
ALARM ENABLE  
ALARM EN  
RESERVED  
ALARM EN  
RESERVED  
WARN EN  
3
RESERVED  
RESERVED  
RESERVED  
3
1
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
Note: Table 05h is empty by default. It can be configured to contain the alarm and warning enable bytes from Table 01h,  
Registers F8h–FFh with the MASK bit enabled (Table 02h, Register 88h). In this case Table 01h is empty.  
Table 06h Register Map  
TABLE 06h (APC LUT)  
WORD 1  
WORD 0  
WORD 2  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
APC LUT  
EMPTY  
BYTE 1/9  
APC LUT  
EMPTY  
BYTE 2/A  
BYTE 3/B  
APC LUT  
EMPTY  
BYTE 4/C  
APC LUT  
EMPTY  
BYTE 5/D  
APC LUT  
EMPTY  
BYTE 6/E  
APC LUT  
EMPTY  
BYTE 7/F  
APC LUT  
EMPTY  
<8/D>  
LUT6  
80–C7  
C8–DF  
E0  
APC LUT  
EMPTY  
EMPTY  
<8/D>  
HBATH  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
HBATH LUT  
HTXP LUT  
LTXP LUT  
<8/D>  
HTXP  
E8  
<8/D>  
LTXP  
F0  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
APC OFFSET  
LUT  
<8/D>  
F8  
APC OFFSET  
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
Auxiliary Memory A0h Register Map  
AUXILIARY MEMORY (A0h)  
WORD 1  
WORD 0  
WORD 2  
BYTE 4/C  
WORD 3  
ROW  
(HEX)  
ROW NAME  
BYTE 0/8  
BYTE 1/9  
BYTE 2/A  
BYTE 3/B  
BYTE 5/D  
BYTE 6/E  
BYTE 7/F  
<5>  
00–7F  
80–FF  
AUX EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
<5>  
AUX EE  
<C> or <_/C> = Common, <D> or <_/D> = Different, <M> or <_/M> = Mixture of common and different.  
The access codes represent the factory default values of PW_ENA and PW_ENB (Table 02h, Registers C0h–C1h).  
These registers also allow for custom permissions.  
ACCESS  
CODE  
<0/_>  
<1/_>  
<2/_>  
<3/_>  
<4/_>  
<5/_>  
<6/_>  
<7/_>  
<8/_>  
<9/_>  
<10/_> <11/_>  
Read  
Access  
All  
All  
All  
PW2  
All  
N/A  
PW1  
PW2  
N/A  
PW2  
N/A  
All  
See each  
bit/byte  
separately  
All and  
DS1876  
Hardware  
PW2 +  
mode  
bit  
Write  
Access  
PW2  
N/A  
All  
All  
PW1  
PW2  
PW2  
PW1  
Maxim Integrated  
27  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory Register Descriptions  
Lower Memory, Register 00h–01h: TEMP ALARM HI  
Lower Memory, Register 04h–05h: TEMP WARN HI  
FACTORY DEFAULT  
READ ACCESS  
7FFFh  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
6
5
4
3
2
1
0
00h, 04h  
01h, 05h  
S
2
2
2
2
2
2
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Temperature measurement updates above this two’s complement threshold set its corresponding alarm or  
warning bit. Temperature measurement updates equal to or below this threshold clear its alarm or warning bit.  
Lower Memory, Register 02h–03h: TEMP ALARM LO  
Lower Memory, Register 06h–07h: TEMP WARN LO  
FACTORY DEFAULT  
READ ACCESS  
8000h  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
6
5
4
3
2
1
0
02h, 06h  
03h, 07h  
S
2
2
2
2
2
2
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Temperature measurement updates below this two’s complement threshold set its corresponding alarm or  
warning bit. Temperature measurement updates equal to or above this threshold clear its alarm or warning bit.  
28  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 08h–09h: V  
ALARM HI  
WARN HI  
CC  
Lower Memory, Register 0Ch–0Dh: V  
CC  
FACTORY DEFAULT  
READ ACCESS  
FFFFh  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
08h, 0Ch  
09h, 0Dh  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Voltage measurement updates above this unsigned threshold set its corresponding alarm or warning bit.  
Voltage measurements equal to or below this threshold clear its alarm or warning bit.  
Lower Memory, Register 0Ah–0Bh: V  
ALARM LO  
WARN LO  
CC  
Lower Memory, Register 0Eh–0Fh: V  
CC  
FACTORY DEFAULT  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
0Ah, 0Eh  
0Bh, 0Fh  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Voltage measurement updates below this unsigned threshold set its corresponding alarm or warning bit. Voltage  
measurements equal to or above this threshold clear its alarm or warning bit.  
Maxim Integrated  
29  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 10h–11h: BMON ALARM HI  
Lower Memory, Register 14h–15h: BMON WARN HI  
Lower Memory, Register 18h–19h: PMON ALARM HI  
Lower Memory, Register 1Ch–1Dh: PMON WARN HI  
FACTORY DEFAULT  
READ ACCESS  
FFFFh  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Different A2h and B2h memory locations  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
10h, 14h,  
18h, 1Ch  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
2
2
2
2
2
2
2
2
11h, 15h,  
19h, 1Dh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Voltage measurement updates above this unsigned threshold set its corresponding alarm or warning bit.  
Voltage measurements equal to or below this threshold clear its alarm or warning bit.  
Lower Memory, Register 12h–13h: BMON ALARM LO  
Lower Memory, Register 16h–17h: BMON WARN LO  
Lower Memory, Register 1Ah–1Bh: PMON ALARM LO  
Lower Memory, Register 1Eh–1Fh: PMON WARN LO  
FACTORY DEFAULT  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Different A2h and B2h memory locations  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
12h, 16h,  
1Ah, 1Eh  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
2
2
2
2
2
2
2
2
2
13h, 17h,  
1Bh, 1Fh  
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Voltage measurement updates below this unsigned threshold set its corresponding alarm or warning bit. Voltage  
measurements equal to or above this threshold clear its alarm or warning bit.  
30  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 20h–47h: EE  
FACTORY DEFAULT  
READ ACCESS  
00h  
All  
WRITE ACCESS  
PW2 or (PW1 and WLOWER)  
Common A2h and B2h memory location  
Nonvolatile (EE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
20h–47h  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
BIT 7  
BIT 0  
PW2 level access-controlled EEPROM.  
Lower Memory, Register 48h–57h: EE  
FACTORY DEFAULT  
READ ACCESS  
00h  
All  
PW2 or (PW1 and WLOWER)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
48h–57h  
EE  
EE  
EE  
EE  
EE  
EE  
BIT 7  
BIT 0  
PW2 level access-controlled EEPROM.  
Lower Memory, Register 58h–5Fh: EE  
FACTORY DEFAULT  
READ ACCESS  
00h  
All  
PW2 or (PW1 and WLOWER)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Nonvolatile (EE)  
58h–5Fh  
EE  
EE  
EE  
EE  
EE  
EE  
BIT 7  
BIT 0  
PW2 level access-controlled EEPROM.  
Maxim Integrated  
31  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 60h–61h: TEMP VALUE  
FACTORY DEFAULT  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Volatile  
6
5
4
3
2
1
0
60h  
61h  
S
2
2
2
2
2
2
2
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Signed two’s complement direct-to-temperature measurement.  
Lower Memory, Register 62h–63h: V  
VALUE  
CC  
POWER-ON VALUE  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Volatile  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
9
8
62h  
63h  
2
2
2
2
2
2
2
2
2
1
0
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Left-justified unsigned voltage measurement.  
32  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 64h–65h: BMON VALUE  
Lower Memory, Register 66h–67h: PMON VALUE  
POWER-ON VALUE  
READ ACCESS  
0000h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Volatile  
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
64h, 66h  
65h, 67h  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Left-justified unsigned voltage measurement.  
Lower Memory, Register 68h–6Dh: RESERVED  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
68h, 6Dh  
0
0
0
0
0
0
0
0
BIT 7  
BIT 0  
These registers are reserved. The value when read is 00h.  
Maxim Integrated  
33  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 6Eh: STATUS  
POWER-ON VALUE  
READ ACCESS  
X0XX 0XXXb  
All  
WRITE ACCESS  
See below  
A2h AND B2h MEMORY Mixture of common memory locations and different memory locations (see below)  
MEMORY TYPE  
Volatile  
Write Access  
6Eh  
N/A  
All  
N/A  
<C>  
All  
All  
N/A  
N/A  
N/A  
<D>  
<D>  
<C>  
<C>  
<D>  
<D>  
<C>  
TXDS  
BIT 7  
TXDC  
IN1S  
RSELS  
RSELC  
TXFS  
RAM  
RDYB  
BIT 0  
TXDS1 [A2h]: TXD1 status bit. Reflects the logic state of the TXD1 pin (read-only).  
0 = TXD1 pin is logic-low.  
1 = TXD1 pin is logic-high.  
TXDS2 [B2h]: TXD2 status bit. Reflects the logic state of the TXD2 pin (read-only).  
0 = TXD2 pin is logic-low.  
BIT 7  
1 = TXD2 pin is logic-high.  
TXDC1 [A2h]: TXD1 software control bit. This bit allows for software control that is identical to the  
TXD1 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further infor-  
mation. Its value is wire-ORed with the logic value of the TXD1 pin (writable by all users).  
0 = (default)  
1 = Forces the device into a TXD1 state regardless of the value of the TXD1 pin.  
TXDC2 [B2h]: TXD2 software control bit. This bit allows for software control that is identical to the  
TXD2 pin. See the DACs as a Function of Transmit Disable (TXD1, TXD2) section for further infor-  
mation. Its value is wire-ORed with the logic value of the TXD2 pin (writable by all users).  
0 = (default)  
BIT 6  
1 = Forces the device into a TXD2 state regardless of the value of the TXD2 pin.  
IN1S [A2h or B2h]: IN1 status bit. Reflects the logic state of the IN1 pin (read-only).  
0 = IN1 pin is logic-low.  
1 = IN1 pin is logic-high.  
BIT 5  
BIT 4  
RSELS [A2h or B2h]: RSEL status bit. Reflects the logic state of the RSEL pin (read-only).  
0 = RSEL pin is logic-low.  
1 = RSEL pin is logic-high.  
RSELC [A2h or B2h]: RSEL software control bit. This bit allows for software control that is iden-  
tical to the RSEL pin. Its value is wire-ORed with the logic value of the RSEL pin to create the  
RSELOUT pin’s logic value (writable by all users).  
BIT 3  
BIT 2  
0 = (default)  
1 = Forces the device into a RSEL state regardless of the value of the RSEL pin.  
TXFS1 [A2h]: Reflects state of the TXF1 pin (read-only).  
0 = TXF1 pin is low.  
1 = TXF1 pin is high.  
TXFS2 [B2h]: Reflects the state of the TXF2 pin (read-only).  
0 = TXF2 pin is low.  
1 = TXF2 pin is high.  
RAM1 [A2h]: Volatile memory location.  
RAM2 [B2h]: Volatile memory location.  
BIT 1  
BIT 0  
RDYB [A2h or B2h]: Ready bar.  
0 = V  
1 = V  
is above POA.  
CC  
CC  
2
is below POA and/or too low to communicate over the I C bus.  
34  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 6Fh: UPDATE  
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
All and DS1876 hardware  
A2h AND B2h MEMORY Different A2h and B2h memory locations  
MEMORY TYPE  
Volatile  
TEMP  
RDY  
BMON  
RDY  
PMON  
RDY  
6Fh  
VCC RDY  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
BIT 0  
BIT 7  
TEMP RDY, VCC RDY, BMON RDY, PMON RDY: Update of completed conversions. At power-on,  
these bits are cleared and are set as each conversion is completed. These bits can be cleared so  
that a completion of a new conversion is verified.  
BITS 7:4  
BITS 3:0  
RESERVED  
Maxim Integrated  
35  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 70h: ALARM  
3
POWER-ON VALUE  
READ ACCESS  
10h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Volatile  
70h  
TEMP HI  
BIT 7  
TEMP LO  
VCC HI  
VCC LO  
BMON HI  
BMON LO  
PMON HI  
PMON LO  
BIT 0  
TEMP HI: High alarm status for temperature measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
BIT 7  
BIT 6  
BIT 5  
TEMP LO: Low alarm status for temperature measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
VCC HI: High alarm status for V  
measurement.  
CC  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
VCC LO: Low alarm status for V  
measurement. This bit is set when the V  
supply is below  
CC  
CC  
the POA trip point value. It clears itself when a V  
above the low threshold.  
measurement is completed and the value is  
CC  
BIT 4  
0 = Last measurement was equal to or above threshold setting.  
1 = (default) Last measurement was below threshold setting.  
BMON HI: High alarm status for BMON measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BMON LO: Low alarm status for BMON measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
PMON HI: High alarm status for PMON measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
PMON LO: Low alarm status for PMON measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
36  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 71h: ALARM  
2
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Mixed A2h and B2h memory locations  
Volatile  
71h RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
<C>TXFOUTS  
<D>FETG  
<D>TXFINT  
BIT 0  
BIT 7  
BITS 7:3  
BIT 2  
TXFOUTS: TXFOUT status. Indicates the state the open-drain output is attempting to achieve.  
0 = TXFOUT is pulling low.  
1 = TXFOUT is high impedance.  
FETG: Status of internal signal FETG. The FETG signal is part of the internal shutdown logic.  
BIT 1  
BIT 0  
0 = (default) FETG is low.  
1 = FETG is high.  
TXFINT: TXF interrupt. This bit is the wire-ORed logic of all alarms and warnings wire-ANDed with  
their corresponding enable bits, plus the wire-ORed logic of HBAL, TXP HI, and TXP LO. The enable  
bits are found in Table 01h/05h, Registers F8h–FFh.  
Lower Memory, Register 72h: ALARM  
1
POWER-ON VALUE  
READ ACCESS  
00h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Volatile  
72h RESERVED  
BIT 7  
RESERVED  
RESERVED  
RESERVED  
HBAL  
RESERVED  
TXP HI  
TXP LO  
BIT 0  
BITS 7:4, 2 RESERVED  
HBAL: High bias alarm status; fast comparison. A TXD event clears this alarm.  
0 = (default) Last comparison was below threshold setting.  
1 = Last comparison was above threshold setting.  
BIT 3  
BIT 1  
BIT 0  
TXP HI: High alarm status TXP; fast comparison. A TXD event clears this alarm.  
0 = (default) Last comparison was below threshold setting.  
1 = Last comparison was above threshold setting.  
TXP LO: Low alarm status TXP; fast comparison. A TXD event clears this alarm.  
0 = (default) Last comparison was above threshold setting.  
1 = Last comparison was below threshold setting.  
Maxim Integrated  
37  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 73h: RESERVED  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
This register is reserved.  
Lower Memory, Register 74h: WARN  
3
POWER-ON VALUE  
READ ACCESS  
10h  
All  
WRITE ACCESS  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Volatile  
74h  
TEMP HI  
BIT 7  
TEMP LO  
VCC HI  
VCC LO  
BMON HI  
BMON LO  
PMON HI  
PMON LO  
BIT 0  
TEMP HI: High warning status for temperature measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
BIT 7  
BIT 6  
BIT 5  
TEMP LO: Low warning status for temperature measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
VCC HI: High warning status for V  
measurement.  
CC  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
VCC LO: Low warning status for V  
measurement. This bit is set when the V  
supply is below  
CC  
CC  
the POA trip-point value. It clears itself when a V  
above the low threshold.  
measurement is completed and the value is  
CC  
BIT 4  
0 = Last measurement was equal to or above threshold setting.  
1 = (default) Last measurement was below threshold setting.  
BMON HI: High warning status for BMON measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BMON LO: Low warning status for BMON measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
PMON HI: High warning status for PMON measurement.  
0 = (default) Last measurement was equal to or below threshold setting.  
1 = Last measurement was above threshold setting.  
PMON LO: Low warning status for PMON measurement.  
0 = (default) Last measurement was equal to or above threshold setting.  
1 = Last measurement was below threshold setting.  
38  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Registers 75h–7Ah: RESERVED MEMORY  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers are reserved. The value when read is 00h.  
Lower Memory, Registers 7Bh–7Eh: PASSWORD ENTRY (PWE)  
POWER-ON VALUE  
READ ACCESS  
FFFF FFFFh  
N/A  
WRITE ACCESS  
All  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Volatile  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
7Bh  
7Ch  
7Dh  
7Eh  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
0
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
There are two passwords for the DS1876. Each password is 4 bytes long. The lower level password (PW1) has  
all the access of a normal user plus those made available with PW1. The higher level password (PW2) has all the  
access of PW1 plus those made available with PW2. The values of the passwords reside in EEPROM inside PW2  
memory. At power-up, all PWE bits are set to 1. All reads at this location are 0.  
Maxim Integrated  
39  
DS1876  
SFP Controller with Dual LDD Interface  
Lower Memory, Register 7Fh: TABLE SELECT (TBL SEL)  
POWER-ON VALUE  
READ ACCESS  
TBLSELPON (Table 02h, Register C7h)  
All  
WRITE ACCESS  
All  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Volatile  
7
6
5
4
3
2
1
0
7Fh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The upper memory tables of the DS1876 are accessible by writing the desired table value in this register. The  
power-on value of this register is defined by the value written to TBLSELPON (Table 02h, Register C7h).  
Table 01h Register Descriptions  
Table 01h, Register 80h–F7h: EEPROM  
POWER-ON VALUE  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL1A) or (PW1 and RTBL1A)  
PW2 or (PW1 and RWTBL1A)  
Common A2h and B2h memory location  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
80h–F7h  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
EE  
BIT 7  
BIT 0  
EEPROM for PW1 and/or PW2 level access.  
40  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 01h, Register F8h: ALARM EN  
3
POWER-ON VALUE  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)  
PW2 or (PW1 and RWTBL1C)  
WRITE ACCESS  
Mixture of common memory locations and different memory locations (see the  
descriptions below)  
A2h AND B2h MEMORY  
MEMORY TYPE  
Nonvolatile (SEE)  
<C>  
<C>  
<C>  
<C>  
<D>  
<D>  
<D>  
<D>  
F8h  
TEMP HI  
BIT 7  
TEMP LO  
VCC HI  
VCC LO  
BMON HI  
BMON LO  
PMON HI  
PMON LO  
BIT 0  
Layout is identical to ALARM in Lower Memory, Register 70h. Enables alarms to create TXFINT (Lower Memory,  
3
Register 71h) logic. The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.  
TEMP HI [A2h or B2h]:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
0 = Disables interrupt from TEMP HI alarm.  
1 = Enables interrupt from TEMP HI alarm.  
TEMP LO [A2h or B2h]:  
0 = Disables interrupt from TEMP LO alarm.  
1 = Enables interrupt from TEMP LO alarm.  
VCC HI [A2h or B2h]:  
0 = Disables interrupt from VCC HI alarm.  
1 = Enables interrupt from VCC HI alarm.  
VCC LO [A2h or B2h]:  
0 = Disables interrupt from VCC LO alarm.  
1 = Enables interrupt from VCC LO alarm.  
BMON1 HI [A2h]:  
0 = Disables interrupt from BMON1 HI alarm.  
1 = Enables interrupt from BMON1 HI alarm.  
BMON2 HI [B2h]:  
0 = Disables interrupt from BMON2 HI alarm.  
1 = Enables interrupt from BMON2 HI alarm.  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BMON1 LO [A2h]:  
0 = Disables interrupt from BMON1 LO alarm.  
1 = Enables interrupt from BMON1 LO alarm.  
BMON2 LO [B2h]:  
0 = Disables interrupt from BMON2 LO alarm.  
1 = Enables interrupt from BMON2 LO alarm.  
PMON1 HI [A2h]:  
0 = Disables interrupt from PMON1 HI alarm.  
1 = Enables interrupt from PMON1 HI alarm.  
PMON2 HI [B2h]:  
0 = Disables interrupt from PMON2 HI alarm.  
1 = Enables interrupt from PMON2 HI alarm.  
PMON1 LO [A2h]:  
0 = Disables interrupt from PMON1 LO alarm.  
1 = Enables interrupt from PMON1 LO alarm.  
PMON2 LO [B2h]:  
0 = Disables interrupt from PMON2 LO alarm.  
1 = Enables interrupt from PMON2 LO alarm.  
Maxim Integrated  
41  
DS1876  
SFP Controller with Dual LDD Interface  
Table 01h, Register F9h: RESERVED  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
This register is reserved.  
Table 01h, Register FAh: ALARM EN  
1
POWER-ON VALUE  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)  
PW2 or (PW1 and RWTBL1C)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Different A2h and B2h memory locations  
Nonvolatile (SEE)  
FAh  
RESERVED  
BIT 7  
RESERVED  
RESERVED  
RESERVED  
HBAL  
RESERVED  
TXP HI  
TXP LO  
BIT 0  
Layout is identical to ALARM in Lower Memory, Register 72h. Enables alarms to create internal signal FETG (see  
1
Figure 9). The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.  
BITS 7:4, 2  
BIT 3  
RESERVED  
HBAL: Enables alarm to create internal signal FETG.  
0 = Disables interrupt from HBAL alarm.  
1 = Enables interrupt from HBAL alarm.  
TXP HI: Enables alarm to create internal signal FETG.  
0 = Disables interrupt from TXP HI alarm.  
1 = Enables interrupt from TXP HI alarm.  
BIT 1  
BIT 0  
TXP LO: Enables alarm to create internal signal FETG.  
0 = Disables interrupt from TXP LO alarm.  
1 = Enables interrupt from TXP LO alarm.  
Table 01h, Register FBh: RESERVED  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
This register is reserved.  
42  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 01h, Register FCh: WARN EN  
3
POWER-ON VALUE  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL1C) or (PW1 and RTBL1C)  
PW2 or (PW1 and RWTBL1C)  
WRITE ACCESS  
Mixture of common memory locations and different memory locations (see the bit  
descriptions)  
A2h AND B2h MEMORY  
MEMORY TYPE  
Nonvolatile (SEE)  
<C>  
<C>  
<C>  
<C>  
<D>  
<D>  
<D>  
<D>  
FCh  
TEMP HI  
BIT 7  
TEMP LO  
VCC HI  
VCC LO  
BMON HI  
BMON LO  
PMON HI  
PMON LO  
BIT 0  
Layout is identical to WARN in Lower Memory, Register 74h. Enables warnings to create TXFINT (Lower Memory,  
3
Register 71h) logic. The MASK bit (Table 02h, Register 88h) determines whether this memory exists in Table 01h or 05h.  
TEMP HI [A2h or B2h]:  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
0 = Disables interrupt from TEMP HI warning.  
1 = Enables interrupt from TEMP HI warning.  
TEMP LO [A2h or B2h]:  
0 = Disables interrupt from TEMP LO warning.  
1 = Enables interrupt from TEMP LO warning.  
VCC HI [A2h or B2h]:  
0 = Disables interrupt from VCC HI warning.  
1 = Enables interrupt from VCC HI warning.  
VCC LO [A2h or B2h]:  
0 = Disables interrupt from VCC LO warning.  
1 = Enables interrupt from VCC LO warning.  
BMON1 HI [A2h]:  
0 = Disables interrupt from BMON1 HI warning.  
1 = Enables interrupt from BMON1 HI warning.  
BMON1 HI [B2h]:  
0 = Disables interrupt from BMON2 HI warning.  
1 = Enables interrupt from BMON2 HI warning.  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
BMON1 LO [A2h]:  
0 = Disables interrupt from BMON1 LO warning.  
1 = Enables interrupt from BMON1 LO warning.  
BMON2 LO [B2h]:  
0 = Disables interrupt from BMON2 LO warning.  
1 = Enables interrupt from BMON2 LO warning.  
PMON1 HI [A2h]:  
0 = Disables interrupt from PMON1 HI warning.  
1 = Enables interrupt from PMON1 HI warning.  
PMON2 HI [B2h]:  
0 = Disables interrupt from PMON2 HI warning.  
1 = Enables interrupt from PMON2 HI warning.  
PMON1 LO [A2h]:  
0 = Disables interrupt from PMON1 LO warning.  
1 = Enables interrupt from PMON1 LO warning.  
PMON2 LO [B2h]:  
0 = Disables interrupt from PMON2 LO warning.  
1 = Enables interrupt from PMON2 LO warning.  
Maxim Integrated  
43  
DS1876  
SFP Controller with Dual LDD Interface  
Table 01h, Register FDh–FFh: RESERVED  
POWER-ON VALUE  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers are reserved.  
Table 02h Register Descriptions  
Table 02h, Register 80h: MODE  
POWER-ON VALUE  
READ ACCESS  
7Fh  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Volatile  
80h  
SEEB  
BIT 7  
MOD2EN  
QT2EN  
APC2EN  
AEN  
MOD1EN  
QT1EN  
APC1EN  
BIT 0  
SEEB:  
0 = (default) Enables EEPROM writes to SEE bytes.  
BIT 7  
BIT 6  
1 = Disables EEPROM writes to SEE bytes during configuration, so that the configuration of the  
part is not delayed by the EE cycle time. Once the values are known, write this bit to a 0 and write  
the SEE locations again for data to be written to the EEPROM.  
MOD2EN:  
0 = MOD2 DAC is writable by the user and the LUT recalls are disabled. This allows the user to  
interactively test their modules by writing the values for MOD2. The output is updated with the new  
2
value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
1 = (default) Enables automatic control of the LUT for MOD2 DAC.  
QT2EN:  
0 = QTs (HBIAS, TXP HI, TXP LO) for transmitter 2 are writable by the user and the LUT recalls are  
disabled. This allows the user to interactively test their modules by writing to the QT thresholds.  
The thresholds are updated with the new values at the end of the write cycle. The I C STOP  
condition is the end of the write cycle.  
1 = (default) Enables automatic control of the LUT QTs for transmitter 2.  
BIT 5  
BIT 4  
BIT 3  
2
APC2EN:  
0 = APC2 DAC is writable by the user and the LUT recalls are disabled. This allows the user to  
interactively test their modules by writing the values for APC2. The output is updated with the new  
2
value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
1 = (default) Enables automatic control of the LUT for APC2 DAC.  
AEN:  
0 = The temperature-calculated index value TINDEX is writable by the user and the updates  
of calculated indexes are disabled. This allows the user to interactively test their modules by  
controlling the indexing for the LUTs. The recalled values from the LUTs appear in the DAC  
registers after the next completion of a temperature conversion.  
1 = (default) The temperature-calculated index value TINDEX is used to control the LUTs.  
44  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 80h: MODE (continued)  
MOD1EN:  
0 = MOD1 DAC is writable by the user and the LUT recalls are disabled. This allows the user to  
interactively test their modules by writing the values for MOD1. The output is updated with the new  
value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
BIT 2  
BIT 1  
BIT 0  
2
1 = (default) Enables automatic control of the LUT for MOD1 DAC.  
QT1EN:  
0 = QTs (HBIAS, TXP HI, TXP LO) for transmitter 1 are writable by the user and the LUT recalls are  
disabled. This allows the user to interactively test their modules by writing to the QT thresholds.  
2
The thresholds are updated with the new values at the end of the write cycle. The I C STOP  
condition is the end of the write cycle.  
1 = (default) Enables automatic control of the LUT QTs for transmitter 1.  
APC1EN:  
0 = APC1 DAC is writable by the user and the LUT recalls are disabled. This allows the user to  
interactively test their modules by writing the values for APC1. The output is updated with the new  
2
value at the end of the write cycle. The I C STOP condition is the end of the write cycle.  
1 = (default) Enables automatic control of the LUT for APC1 DAC.  
Table 02h, Register 81h: TEMPERATURE INDEX (TINDEX)  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and AEN = 0) or (PW1 and RWTBL2 and AEN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
81h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Holds the calculated index based on the temperature measurement. This index is used for the address during lookup  
of Tables 04h and 06h. Temperature measurements below -40NC or above +102NC are clamped to 80h and C7h,  
respectively. The calculation of TINDEX is as follows:  
Temp_Value + 40°C  
TINDEX =  
+ 80h  
2°C  
For the temperature-indexed LUTs (2NC), the index used during the lookup function for each table is as follows:  
Table 04h (MOD)  
Table 06h (APC)  
1
1
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
TINDEX  
6
6
5
4
3
2
1
0
5
4
3
2
1
0
For the 8-position LUT tables, the following table shows the lookup function:  
TINDEX  
BYTE  
1000_0xxx 1001_0xxx 1001_1xxx 1010_0xxx 1010_1xxx 1011_0xxx 1011_1xxx 11xx_xxxx  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
TEMP (NC)  
< -8  
-8 to +8  
+8 to +24 +24 to +40 +40 to +56 +56 to +72 +72 to +88  
R 88  
Maxim Integrated  
45  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 82h–85h: RESERVED  
FACTORY DEFAULT  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers are reserved.  
Table 02h, Register 86h: DEVICE ID  
FACTORY DEFAULT  
READ ACCESS  
76h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
WRITE ACCESS  
MEMORY TYPE  
N/A  
ROM  
86h  
0
1
1
1
0
1
1
0
BIT 7  
BIT 0  
Hardwired connections to show the device ID.  
Table 02h, Register 87h: DEVICE VER  
FACTORY DEFAULT  
READ ACCESS  
DEVICE VERSION  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
WRITE ACCESS  
MEMORY TYPE  
N/A  
ROM  
87h  
DEVICE VERSION  
BIT 7  
BIT 0  
Hardwired connections to show the device version.  
46  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 88h: CNFGA  
FACTORY DEFAULT  
READ ACCESS  
C0h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
WRITE ACCESS  
A2h AND B2h MEMORY Common A2h and B2h memory location  
MEMORY TYPE  
Nonvolatile (SEE)  
88h  
QTHEXT2  
BIT 7  
QTHEXT1  
RESERVED  
ASEL  
MASK  
INVRSOUT  
INVTXFOUT2  
INVTXFOUT1  
BIT 0  
QTHEXT2: QT high extension for transmitter 2.  
0 = Disabled. TXP HI and HBIAS QT alarms of transmitter 2 immediately create FETG.  
1 = (default) Enabled. TXP HI and HBIAS QT alarms of transmitter 2 do not create FETG until the  
timeout of the TXD time interval.  
BIT 7  
EXT  
QTHEXT1: QT high extension for transmitter 1.  
0 = Disabled. TXP HI and HBIAS QT alarms of transmitter 1 immediately create FETG.  
1 = (default) Enabled. TXP HI and HBIAS QT alarms of transmitter 1 do not create FETG until the  
BIT 6  
BIT 5  
BIT 4  
timeout of the TXD  
time interval.  
EXT  
RESERVED  
ASEL: Address select.  
0 = (default) Device address is A2h for transmitter 1 and B2h for transmitter 2.  
1 = The DEVICE ADDRESS register (Table 02h, Register 8Bh) is used to determine the main device  
address.  
MASK:  
0 = (default) Alarm-enable row exists at Table 01h, Registers F8h–FFh. Table 05h, Registers F8h–  
BIT 3  
FFh are empty.  
1 = Alarm-enable row exists at Table 05h, Registers F8h–FFh. Table 01h, Registers F8h–FFh are  
empty.  
INVRSOUT: Allow for inversion of the RSELOUT pin (see Figure 10).  
0 = (default) RSELOUT is not inverted.  
1 = RSELOUT is inverted.  
BIT 2  
BIT 1  
BIT 0  
INVTXFOUT2: Allow for inversion of signal driven by the TXF2 input pin.  
0 = (default) TXF2 signal is not inverted.  
1 = TXF2 signal is inverted.  
INVTXFOUT1: Allow for inversion of signal driven by the TXF1 input pin.  
0 = (default) TXF1 signal is not inverted.  
1 = TXF1 signal is inverted.  
Maxim Integrated  
47  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 89h: CNFGB  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
WRITE ACCESS  
A2h AND B2h MEMORY Common A2h and B2h memory location  
MEMORY TYPE Nonvolatile (SEE)  
89h  
IN1C  
BIT 7  
INVOUT1  
ALATCH2  
QTLATCH2  
WLATCH2  
ALATCH1  
QTLATCH1  
WLATCH1  
BIT 0  
IN1C: IN1 software control bit (see Figure 10).  
0 = IN1 pin’s logic controls OUT1 pin.  
1 = OUT1 is active (bit 6 defines the polarity).  
BIT 7  
BIT 6  
INVOUT1: Inverts the active state for OUT1 (see Figure 10).  
0 = Noninverted.  
1 = Inverted.  
ALATCH2: ADC alarm’s comparison latch for transmitter 2. Latches alarms in Lower Memory,  
Registers 70h–71h.  
0 = ADC alarm and flags reflect the status of the last comparison.  
1 = ADC alarm flags remain set.  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
QTLATCH2: QT’s comparison latch for transmitter 2. Latches QT alarms in Lower Memory,  
Registers 72h–73h and 76h.  
0 = QT alarm and warning flags reflect the status of the last comparison.  
1 = QT alarm and warning flags remain set.  
WLATCH2: ADC warning’s comparison latch for transmitter 2. Latches warnings in Lower Memory,  
Registers 74h–75h.  
0 = ADC warning flags reflect the status of the last comparison.  
1 = ADC warning flags remain set.  
ALATCH1: ADC alarm’s comparison latch for transmitter 1. Latches alarms in Lower Memory,  
Registers 70h–71h.  
0 = ADC alarm and flags reflect the status of the last comparison.  
1 = ADC alarm flags remain set.  
QTLATCH1: QT’s comparison latch for transmitter 1. Latches QT alarms in Lower Memory,  
Registers 72h–73h and 76h.  
0 = QT alarm and warning flags reflect the status of the last comparison.  
1 = QT alarm and warning flags remain set.  
WLATCH1: ADC warning’s comparison latch for transmitter 1. Latches warnings in Lower Memory,  
Registers 74h–75h.  
0 = ADC warning flags reflect the status of the last comparison.  
1 = ADC warning flags remain set.  
48  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 8Ah: CNFGC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
8Ah  
TXDFG2  
BIT 7  
TXDFLT2  
TXDIO2  
TXDFG1  
TXDFLT1  
TXDIO1  
RESERVED  
RESERVED  
BIT 0  
TXDFG2: See Figure 9.  
0 = FETG2, an internal signal, has no effect on TXDOUT2.  
1 = FETG2 is enabled and ORed with other possible signals to create TXDOUT2.  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
TXDFLT2: See Figure 9.  
0 = TXF2 pin has no effect on TXDOUT2.  
1 = TXF2 pin is enabled and ORed with other possible signals to create TXDOUT2.  
TXDIO2: See Figure 9.  
0 = (default) TXD2 input signal is enabled and ORed with other possible signals to create TXDOUT2.  
1 = TXD2 input signal has no effect on TXDOUT2.  
TXDFG1: See Figure 9.  
0 = FETG1, an internal signal, has no effect on TXDOUT1.  
1 = FETG1 is enabled and ORed with other possible signals to create TXDOUT1.  
TXDFLT1: See Figure 9.  
0 = TXF1 pin has no effect on TXDOUT1.  
1 = TXF1 pin is enabled and ORed with other possible signals to create TXDOUT1.  
TXDIO1: See Figure 9.  
BIT 2  
0 = (default) TXD1 input signal is enabled and ORed with other possible signals to create TXDOUT1.  
1 = TXD1 input signal has no effect on TXDOUT1.  
BITS 1:0  
RESERVED  
Table 02h, Register 8Bh: DEVICE ADDRESS  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
3
2
1
8Bh  
SEE  
SEE  
SEE  
SEE  
2
2
2
SEE  
BIT 7  
BIT 0  
2
This value becomes the I C slave address for the main memory when the ASEL bit (Table 02h, Register 88h)  
is set. If A0h is programmed to this register, the auxiliary memory is disabled. For example, writing xxxx_010x  
makes the main device addresses A4h and B4h.  
Maxim Integrated  
49  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 8Ch: RANGING  
2
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
8Ch  
RESERVED  
BIT 7  
HBIAS2  
HBIAS2  
HBIAS2  
RESERVED  
TXP2  
TXP2  
TXP2  
0
2
1
0
2
1
BIT 0  
The upper nibble of this byte controls the full-scale range of the QT monitoring for BMON2. The lower nibble of  
this byte controls the full-scale range for the QT monitoring for PMON2.  
BITS 7, 3  
RESERVED (default = 0)  
HBIAS2 : HBIAS2 full-scale ranging: 3-bit value to select the full-scale comparison voltage for  
[2:0]  
BMON2. Default is 000b and creates a full scale of 1.25V.  
HBIAS2  
% OF 1.25V  
100.00  
80.03  
FS VOLTAGE (V)  
1.250  
[2:0]  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1.000  
BITS 6:4  
66.71  
0.834  
50.07  
0.626  
40.08  
0.501  
33.41  
0.418  
28.65  
0.358  
25.08  
0.314  
TXP2  
: TXP2 full-scale ranging: 3-bit value to select the full-scale comparison voltage for  
[2:0]  
PMON2. Default is 000b and creates a full scale of 2.5V.  
TXP2  
% OF 2.5V  
100.00  
80.03  
FS VOLTAGE (V)  
2.507  
[2:0]  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
2.006  
BITS 2:0  
66.71  
1.672  
50.07  
1.255  
40.08  
1.005  
33.41  
0.838  
28.65  
0.718  
25.08  
0.629  
50  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 8Dh: RANGING  
1
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
8Dh  
RESERVED  
BIT 7  
HBIAS1  
HBIAS1  
HBIAS1  
RESERVED  
TXP1  
TXP1  
TXP1  
0
2
1
0
2
1
BIT 0  
The upper nibble of this byte controls the full-scale range of the QT monitoring for BMON1. The lower nibble of  
this byte controls the full-scale range for the QT monitoring for PMON1.  
BITS 7, 3  
RESERVED (default = 0)  
HBIAS1 : HBIAS1 full-scale ranging: 3-bit value to select the full-scale comparison voltage for  
[2:0]  
BMON1. Default is 000b and creates a full scale of 1.25V.  
HBIAS1  
% OF 1.25V  
100.00  
80.03  
FS VOLTAGE (V)  
1.250  
[2:0]  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
1.000  
BITS 6:4  
66.71  
0.834  
50.07  
0.626  
40.08  
0.501  
33.41  
0.418  
28.65  
0.358  
25.08  
0.314  
TXP1  
: TXP1 full-scale ranging: 3-bit value to select the full-scale comparison voltage for  
[2:0]  
PMON1. Default is 000b and creates a full scale of 2.5V.  
TXP1  
% OF 2.5V  
100.00  
80.03  
FS VOLTAGE (V)  
2.507  
[2:0]  
000b  
001b  
010b  
011b  
100b  
101b  
110b  
111b  
2.006  
BITS 2:0  
66.71  
1.672  
50.07  
1.255  
40.08  
1.005  
33.41  
0.838  
28.65  
0.718  
25.08  
0.629  
Maxim Integrated  
51  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 8Eh: RIGHT-SHIFT (RSHIFT )  
2
2
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
8Eh  
RESERVED  
BIT 7  
BMON2  
BMON2  
BMON2  
RESERVED  
PMON2  
PMON2  
PMON2  
BIT 0  
2
1
0
2
1
0
Allows for right-shifting the final answer of BMON2 and PMON2 voltage measurements. This allows for scaling the  
measurement to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to the  
correct LSB.  
Table 02h, Register 8Fh: RIGHT-SHIFT (RSHIFT )  
1
1
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
8Fh  
RESERVED  
BIT 7  
BMON1  
BMON1  
BMON1  
RESERVED  
PMON1  
PMON1  
PMON1  
2
1
0
2
1
0
BIT 0  
Allows for right-shifting the final answer of BMON1 and PMON1 voltage measurements. This allows for scaling the  
measurements to the smallest full-scale voltage and then right-shifting the final result so the reading is weighted to  
the correct LSB.  
Table 02h, Register 90h–91h: RESERVED  
FACTORY DEFAULT  
READ ACCESS  
N/A  
WRITE ACCESS  
N/A  
N/A  
N/A  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers are reserved.  
52  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register 92h–93h: V  
SCALE  
CC  
Table 02h, Register 94h–97h: RESERVED  
Table 02h, RegisteR 98h–99h: BMON2 SCALE  
Table 02h, Register 9Ah–9Bh: PMON2 SCALE  
Table 02h, Register 9Ch–9Dh: BMON1 SCALE  
Table 02h, Register 9Eh–9Fh: PMON1 SCALE  
FACTORY CALIBRATED  
READ ACCESS  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
WRITE ACCESS  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
92h, 94h,  
96h, 98h,  
9Ah, 9Ch,  
9Eh  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
2
2
2
2
2
2
2
2
93h, 95h,  
97h, 99h,  
9Bh, 9Dh,  
9Fh  
7
6
5
4
3
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Controls the scaling or gain of the full-scale voltage measurements. The factory-calibrated value produces an FS  
voltage of 6.5536V for V and 2.5V for BMON2, PMON2, BMON1, and PMON1.  
CC  
Table 02h, Register A0h–A1h: INTERNAL TEMP OFFSET  
FACTORY CALIBRATED  
READ ACCESS  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
WRITE ACCESS  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
A2h AND B2h MEMORY  
MEMORY TYPE  
8
7
6
5
4
3
2
A0h  
A1h  
S
2
2
2
2
2
2
2
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Allows for offset control of temperature measurement if desired. The final result must be XORed with BB40h  
before writing to this register. Factory calibration contains the desired value for a reading in degrees Celsius.  
Maxim Integrated  
53  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register A2h–A3h: V  
OFFSET  
CC  
Table 02h, Register A4h–A7h: RESERVED  
Table 02h, Register A8h–A9h: BMON2 OFFSET  
Table 02h, Register AAh–ABh: PMON2 OFFSET  
Table 02h, Register ACh–ADh: BMON1 OFFSET  
Table 02h, Register AEh–AFh: PMON1 OFFSET  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
A2h, A4h,  
A6h, A8h,  
AAh, ACh,  
AEh  
15  
14  
13  
12  
4
11  
3
10  
2
S
S
2
2
2
2
2
2
A3h, A5h,  
A7h, A9h,  
ABh, ADh,  
AFh  
9
2
8
7
6
5
2
2
2
2
2
2
2
BIT 7  
Allows for offset control of these voltage measurements if desired. This number is two’s complement.  
BIT 0  
Table 02h, Register B0h–B3h: PW1  
FACTORY DEFAULT  
READ ACCESS  
FFFF FFFFh  
N/A  
WRITE ACCESS  
MEMORY TYPE  
PW2 or (PW1 and WPW1)  
Nonvolatile (SEE)  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
2
B0h  
B1h  
B2h  
B3h  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
16  
2
8
2
2
1
0
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The PWE value is compared against the value written to this location to enable PW1 access. At power-on, the  
PWE value is set to all ones. Thus, writing these bytes to all ones grants PW1 access on power-on without writing  
the password entry. All reads of this register are 00h.  
54  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register B4h–B7h: PW2  
FACTORY DEFAULT  
READ ACCESS  
FFFF FFFFh  
N/A  
WRITE ACCESS  
MEMORY TYPE  
PW2  
Nonvolatile (SEE)  
31  
23  
15  
7
30  
29  
2
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
B4h  
B5h  
B6h  
B7h  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
22  
14  
6
21  
2
13  
2
2
2
5
1
0
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The PWE value is compared against the value written to this location to enable PW2 access. At power-on, the  
PWE value is set to all ones. Thus, writing these bytes to all ones grants PW2 access on power-on without writing  
the password entry. All reads of this register are 00h.  
Table 02h, Register B8h: RESERVED  
FACTORY DEFAULT  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
This register is reserved.  
Table 02h, Register B9h: HBIAS2 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT2EN = 0) or (PW1 and RWTBL2 and QT2EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
B9h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the HBIAS2 reference and recalled from Table 06h (Registers E0h–E7h) (transmitter 2) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons greater than V  
compared against V  
create an HBAL alarm.  
HBIAS2  
BMON2  
Full Scale  
256  
V
=
×HBIAS2 DAC  
HBIAS2  
Maxim Integrated  
55  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register BAh: HTXP2 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT2EN = 0) or (PW1 and RWTBL2 and QT2EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
BAh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the HTXP2 reference and recalled from Table 06h (Registers E8h–EFh) (transmitter 2) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons greater than V  
compared against V  
create a TXP HI alarm.  
HTXP2  
PMON2  
Full Scale  
256  
V
=
×HTXP2 DAC  
HTXP2  
Table 02h, Register BBh: LTXP2 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT2EN = 0) or (PW1 and RWTBL2 and QT2EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
BBh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the LTXP2 reference and recalled from Table 06h (Registers F0h–F7h) (transmitter 2) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons less than V  
compared against V  
create a TXP LO alarm.  
LTXP2  
PMON2  
Full Scale  
256  
V
=
×LTXP2 DAC  
LTXP2  
Table 02h, Register BCh: RESERVED  
FACTORY DEFAULT  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
This register is reserved.  
56  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register BDh: HBIAS1 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT1EN = 0) or (PW1 and RWTBL2 and QT1EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
BDh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the HBIAS1 reference and recalled from Table 06h (Registers E0h–E7h) (transmitter 1) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons greater than V  
compared against V  
create an HBAL alarm.  
HBIAS1  
BMON1  
Full Scale  
256  
V
=
×HBIAS1DAC  
HBIAS1  
Table 02h, Register BEh: HTXP1 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT1EN = 0) or (PW1 and RWTBL2 and QT1EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
BEh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the HTXP1 reference and recalled from Table 06h (Registers E8h–EFh) (transmitter 1) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons great than V  
compared against V  
create a TXP HI alarm.  
HTXP1  
PMON1  
Full Scale  
256  
V
=
×HTXP1DAC  
HTXP1  
Table 02h, Register BFh: LTXP1 DAC  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and QT1EN = 0) or (PW1 and RWTBL2 and QT1EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
BFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for the LTXP1 reference and recalled from Table 06h (Registers F0h–F7h) (transmitter 1) at  
the adjusted memory address found in TINDEX. This register is updated at the end of the temperature conversion.  
Comparisons less than V  
compared against V  
create a TXP LO alarm.  
LTXP1  
PMON1  
Full Scale  
256  
V
=
×LTXP1DAC  
LTXP1  
Maxim Integrated  
57  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register C0h: PW_ENA  
FACTORY DEFAULT  
READ ACCESS  
10h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
C0h  
RESERVED  
BIT 7  
RWTBL1C  
RWTBL2  
RWTBL1A  
RWTBL1B  
WLOWER  
WAUXA  
WAUXB  
BIT 0  
BIT 7  
BIT 6  
RESERVED  
RWTBL1C: Table 01h or 05h bytes F8–FFh. Table address is dependent on MASK bit (Table 02h,  
Register 88h).  
0 = (default) Read and write access for PW2 only.  
1 = Read and write access for both PW1 and PW2.  
RWTBL2: Table 02h. Writing a nonvolatile value to this bit requires PW2 access.  
0 = (default) Read and write access for PW2 only.  
1 = Read and write access for both PW1 and PW2.  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
RWTBL1A: Table 01h, Registers 80h–BFh.  
0 = Read and write access for PW2 only.  
1 = (default) Read and write access for both PW1 and PW2.  
RWTBL1B: Table 01h, Registers C0h–F7h.  
0 = (default) Read and write access for PW2 only.  
1 = Read and write access for both PW1 and PW2.  
WLOWER: Bytes 00h–5Fh in main memory. All users can read this area.  
0 = (default) Write access for PW2 only.  
1 = Write access for both PW1 and PW2.  
WAUXA: Auxiliary memory, Registers 00h–7Fh. All users can read this area.  
0 = (default) Write access for PW2 only.  
1 = Write access for both PW1 and PW2.  
WAUXB: Auxiliary memory, Registers 80h–FFh. All users can read this area.  
0 = (default) Write access for PW2 only.  
1 = Write access for both PW1 and PW2.  
58  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register C1h: PW_ENB  
FACTORY DEFAULT  
READ ACCESS  
03h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
C1h  
RWTBL46  
BIT 7  
RTBL1C  
RTBL2  
RTBL1A  
RTBL1B  
WPW1  
WAUXAU  
WAUXBU  
BIT 0  
RWTBL46: Tables 04h and 06h.  
BIT 7  
BIT 6  
0 = (default) Read and write access for PW2 only.  
1 = Read and write access for PW1 and PW2.  
RTBL1C: Table 01h or Table 05h, Registers F8h–FFh. Table address is dependent on MASK bit  
(Table 02h, Register 88h).  
0 = (default) Read and write access for PW2 only.  
1 = Read access for PW1 and PW2.  
RTBL2: Table 02h.  
BIT 5  
BIT 4  
BIT 3  
0 = (default) Read and write access for PW2 only.  
1 = Read access for PW1 and PW2.  
RTBL1A: Table 01h, Registers 80h–BFh.  
0 = (default) Read and write access for PW2 only.  
1 = Read access for PW1 and PW2.  
RTBL1B: Table 01h, Registers C0h–F7h.  
0 = (default) Read and write access for PW2 only.  
1 = Read access for PW1 and PW2.  
WPW1: Register PW1 (Table 02h, Registers B0h–B3h). For security purposes these registers are  
not readable.  
0 = (default) Write access for PW2 only.  
1 = Write access for PW1 and PW2.  
BIT 2  
WAUXAU: Auxiliary memory, Registers 00h–7Fh. All users can read this area.  
0 = Write access for PW2 only.  
1 = (default) Write access for user, PW1, and PW2.  
BIT 1  
BIT 0  
WAUXBU: Auxiliary memory, Registers 80h–FFh. All users can read this area.  
0 = Write access for PW2 only.  
1 = (default) Write access for user, PW1, and PW2.  
Table 02h, Register C2h–C5h: RESERVED  
FACTORY DEFAULT  
READ ACCESS  
N/A  
N/A  
N/A  
N/A  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers are reserved.  
Maxim Integrated  
59  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register C6h: POLARITY  
FACTORY DEFAULT  
READ ACCESS  
0Fh  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
C6h  
RESERVED  
BIT 7  
RESERVED  
RESERVED  
RESERVED  
MOD2P  
APC2P  
MOD1P  
APC1P  
BIT 0  
BITS 7:4  
RESERVED  
MOD2P: MOD2 DAC polarity. The MOD2 DAC (Table 02h, Registers C8h–C9h) range is  
000h–3FFh. A setting of 000h creates a pulse-density of zero and 3FFh creates a pulse-density of  
1023/1024. This polarity bit allows the user to use GND or V as the reference. The power-on  
REFIN  
of MOD2 DAC is 000h; thus an application that needs V  
inverted polarity.  
to be the off state should use the  
REFIN  
BIT 3  
0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a  
setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V  
.
REFIN  
1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V  
a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at GND.  
and  
REFIN,  
APC2P: APC2 DAC polarity. The APC2 DAC (Table 02h, Registers CAh–CBh) range is 000h–3FFh.  
A setting of 000h creates a pulse-density of zero, and 3FFh creates a pulse-density of 1023/1024.  
This polarity bit allows the user to use GND or V  
as the reference. The power-on of APC DAC  
REFIN  
is 000h; thus an application that needs V  
0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a  
setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V  
to be the off state should use the inverted polarity.  
REFIN  
BIT 2  
.
REFIN  
1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V  
a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at GND.  
and  
REFIN,  
MOD1P: MOD1 DAC polarity. The MOD1 DAC (Table 02h, Registers CCh–CDh) range is  
000h–3FFh. A setting of 000h creates a pulse-density of zero and 3FFh creates a pulse-density of  
1023/1024. This polarity bit allows the user to use GND or V as the reference. The power-on  
REFIN  
of MOD1 DAC is 000h; thus an application that needs V  
inverted polarity.  
to be the off state should use the  
REFIN  
BIT 1  
0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a  
setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V  
.
REFIN  
1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V  
a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at GND.  
and  
REFIN,  
APC1P: APC1 DAC polarity. The APC1 DAC (Table 02h, Registers CEh–CFh) range is 000h–3FFh.  
A setting of 000h creates a pulse-density of zero, and 3FFh creates a pulse-density of 1023/1024.  
This polarity bit allows the user to use GND or V  
as the reference. The power-on of APC1  
REFIN  
DAC is 000h; thus an application that needs V  
polarity.  
to be the off state should use the inverted  
REFIN  
BIT 0  
0 = Normal polarity. A setting of 000h results in a pulse-density output of zero held at GND, and a  
setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at V  
.
REFIN  
1 = Inverted polarity. A setting of 000h results in a pulse-density output of zero held at V  
a setting of 3FFh results in a pulsed-density output of 1023/1024 held mostly at GND.  
and  
REFIN,  
60  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register C7h: TBLSELPON  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
PW2 or (PW1 and RWTBL2)  
Common A2h and B2h memory location  
Nonvolatile (SEE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
C7h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Chooses the initial value for the TBL SEL byte (Lower Memory, Register 7Fh) at power-on.  
Table 02h, Register C8h–C9h: MOD2 DAC  
FACTORY DEFAULT  
READ ACCESS  
0000h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
WRITE ACCESS  
(PW2 and MOD2EN = 0) or (PW1 and RWTBL2 and MOD2EN = 0)  
Common A2h and B2h memory location  
Volatile  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
C8h  
C9h  
0
0
0
0
0
0
2
2
2
7
6
5
4
3
2
1
0
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for MOD2 DAC. It is the result of LUT4 plus MOD2 OFFSET times 4 recalled from Table  
04h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end of  
the temperature conversion.  
MOD2 DAC = LUT4 + MOD2 OFFSET x 4  
V
REFIN  
V
=
× MOD2 DAC  
MOD2  
1024  
Maxim Integrated  
61  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register CAh–CBh: APC2 DAC  
FACTORY DEFAULT  
READ ACCESS  
0000h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and APC2EN = 0) or (PW1 and RWTBL2 and APC2EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
0
CAh  
CBh  
0
0
0
0
0
0
2
2
2
2
7
6
5
4
3
2
1
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for APC2 DAC. It is the result of LUT6 plus APC2 OFFSET times 4 recalled from Table  
06h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end  
of the temperature conversion.  
APC2 DAC = LUT6 + APC2 OFFSET x 4  
V
REFIN  
V
=
×APC2 DAC  
APC2  
1024  
Table 02h, Register CCh–CDh: MOD1 DAC  
FACTORY DEFAULT  
READ ACCESS  
0000h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and MOD1EN = 0) or (PW1 and RWTBL2 and MOD1EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
0
CCh  
CDh  
0
0
0
0
0
0
2
2
2
2
7
6
5
4
3
2
1
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for MOD1 DAC. It is the result of LUT4 plus MOD1 OFFSET times 4 recalled from Table  
04h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end  
of the temperature conversion.  
MOD1 DAC = LUT4 + MOD1 OFFSET x 4  
V
REFIN  
V
=
× MOD1 DAC  
MOD1  
1024  
62  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 02h, Register CEh–CFh: APC1 DAC  
FACTORY DEFAULT  
READ ACCESS  
0000h  
PW2 or (PW1 and RWTBL2) or (PW1 and RTBL2)  
(PW2 and APC1EN = 0) or (PW1 and RWTBL2 and APC1EN = 0)  
Common A2h and B2h memory location  
Volatile  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
0
CEh  
CFh  
0
0
0
0
0
0
2
2
2
2
7
6
5
4
3
2
1
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value used for APC1 DAC. It is the result of LUT6 plus APC1 OFFSET times 4 recalled from Table  
06h (Registers F8h–FFh) at the adjusted memory address found in TINDEX. This register is updated at the end  
of the temperature conversion.  
APC1 DAC = LUT6 + APC1 OFFSET x 4  
V
REFIN  
V
=
×APC1 DAC  
APC1  
1024  
Table 02h, Register D0h–FFh: EMPTY  
FACTORY DEFAULT  
READ ACCESS  
00h  
N/A  
N/A  
N/A  
None  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers do not exist.  
Maxim Integrated  
63  
DS1876  
SFP Controller with Dual LDD Interface  
Table 04h Register Descriptions  
Table 04h, Register 80h–C7h: MODULATION LUT (MOD)  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
80h–C7h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Digital value for the MOD1 DAC (A2h address) and MOD2 DAC (B2h address) outputs. The MODULATION LUT  
is a set of registers assigned to hold the temperature profile for the MOD1 and MOD2 DACs. The temperature  
measurement is used to index the LUT (TINDEX, Table 02h, Register 81h) in 2NC increments from -40NC to  
+102NC, starting at 80h in Table 04h. Register 80h defines the -40NC to -38NC MOD output, Register 81h defines  
-38NC to -36NC MOD output, and so on. Values recalled from this EEPROM memory table are written into the  
MOD1 and MOD2 DACs (Table 02h, Registers C8h–C9h, CCh–CDh) locations that hold the values until the next  
temperature conversion. The part can be placed into a manual mode (MOD1EN and MOD2EN bits, Table 02h,  
Register 80h), where MOD1 and MOD2 DACs are directly controlled for calibration. If the temperature compen-  
sation functionality is not required, program the entire Table 04h to the desired modulation setting.  
Table 02h, Register C8h–F7h: EMPTY  
FACTORY DEFAULT  
READ ACCESS  
00h  
N/A  
N/A  
N/A  
None  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers do not exist.  
64  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 04h, Register F8h–FFh: MOD OFFSET LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
7
6
5
4
3
2
F8h–FFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value for the temperature offset of the MOD1 and MOD2 DAC outputs.  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
Less than or equal to -8NC  
Greater than -8NC up to +8NC  
Greater than +8NC up to +24NC  
Greater than +24NC up to +40NC  
Greater than +40NC up to +56NC  
Greater than +56NC up to +72NC  
Greater than +72NC up to +88NC  
Greater than +88NC  
The MOD DAC is a 10-bit value. The MODULATION LUT is an 8-bit LUT. The MOD OFFSET LUT times 4 plus  
the MODULATION LUT makes use of the entire 10-bit range.  
Table 06h Register Descriptions  
Table 06h, Register 80h–C7h: APC LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
80h–C7h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value for the APC1 DAC (A2h address) and APC2 DAC (B2h address) outputs. The APC LUT is a  
set of registers assigned to hold the temperature profile for the APC1 and APC2 DACs. The temperature mea-  
surement is used to index the LUT (TINDEX, Table 02h, Register 81h) in 2NC increments from -40NC to +102NC,  
starting at 80h. Register 80h defines the -40NC to -38NC APC output, Register 81h defines -38NC to -36NC APC  
output, and so on. Values recalled from this EEPROM memory table are written into the APC1 and APC2 DACs  
(Table 02h, Registers CAh–CBh, CEh–CFh) locations that hold the values until the next temperature conver-  
sion. The part can be placed into a manual mode (APC1EN and APC2EN bits, Table 02h, Register 80h), where  
APC1 and APC2 DACs are directly controlled for calibration. If the temperature compensation functionality is not  
required, program the entire Table 06h to the desired APC setting.  
Maxim Integrated  
65  
DS1876  
SFP Controller with Dual LDD Interface  
Table 06h, Register C8h–DFh: EMPTY  
FACTORY DEFAULT  
READ ACCESS  
00h  
N/A  
N/A  
N/A  
None  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
These registers do not exist.  
Table 06h, Register E0h–E7h: HBATH LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
E0h–E7h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The high bias alarm threshold (HBATH) LUT is used to temperature compensate the bias QT threshold (HBIAS).  
The table below shows the range of temperature for each byte’s location. The table shows a rising temperature;  
for a falling temperature there is 1NC of hysteresis.  
E0h  
E1h  
E2h  
E3h  
E4h  
E5h  
E6h  
E7h  
Less than or equal to -8NC  
Greater than -8NC up to +8NC  
Greater than +8NC up to +24NC  
Greater than +24NC up to +40NC  
Greater than +40NC up to +56NC  
Greater than +56NC up to +72NC  
Greater than +72NC up to +88NC  
Greater than +88NC  
66  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Table 06h, Register E8h–EFh: HTXP LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
E8h–EFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The HTXP LUT is used to temperature compensate the transmit power-high QT threshold (TXP HI). The table  
below shows the range of temperature for each byte’s location. The table shows a rising temperature; for a fall-  
ing temperature there is 1NC of hysteresis.  
E8h  
E9h  
EAh  
EBh  
ECh  
EDh  
EEh  
EFh  
Less than or equal to -8NC  
Greater than -8NC up to +8NC  
Greater than +8NC up to +24NC  
Greater than +24NC up to +40NC  
Greater than +40NC up to +56NC  
Greater than +56NC up to +72NC  
Greater than +72NC up to +88NC  
Greater than +88NC  
Table 06h, Register F0h–F7h: LTXP LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
7
6
5
4
3
2
1
0
F0h–F7h  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The LTXP LUT is used to temperature compensate the transmit power-low QT threshold (TXP LO). The table  
below shows the range of temperature for each byte’s location. The table shows a rising temperature; for a fall-  
ing temperature there is 1NC of hysteresis.  
F0h  
F1h  
F2h  
F3h  
F4h  
F5h  
F6h  
F7h  
Less than or equal to -8NC  
Greater than -8NC up to +8NC  
Greater than +8NC up to +24NC  
Greater than +24NC up to +40NC  
Greater than +40NC up to +56NC  
Greater than +56NC up to +72NC  
Greater than +72NC up to +88NC  
Greater than +88NC  
Maxim Integrated  
67  
DS1876  
SFP Controller with Dual LDD Interface  
Table 06h, Register F8h–FFh: APC OFFSET LUT  
FACTORY DEFAULT  
READ ACCESS  
00h  
PW2 or (PW1 and RWTBL46)  
PW2 or (PW1 and RWTBL46)  
Different A2h and B2h memory locations  
Nonvolatile (EE)  
WRITE ACCESS  
A2h AND B2h MEMORY  
MEMORY TYPE  
9
8
7
6
5
4
3
2
F8h–FFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
The digital value for the temperature offset of the APC1 and APC2 DAC outputs.  
F8h  
F9h  
FAh  
FBh  
FCh  
FDh  
FEh  
FFh  
Less than or equal to -8NC  
Greater than -8NC up to +8NC  
Greater than +8NC up to +24NC  
Greater than +24NC up to +40NC  
Greater than +40NC up to +56NC  
Greater than +56NC up to +72NC  
Greater than +72NC up to +88NC  
Greater than +88NC  
The APC DAC is a 10-bit value. The APC LUT is an 8-bit LUT. The APC OFFSET LUT times 4 plus  
the APC LUT makes use of the entire 10-bit range.  
Auxiliary Memory A0h Register Descriptions  
Auxiliary Memory A0h, Register 00h–7Fh: EEPROM  
FACTORY DEFAULT  
READ ACCESS  
00h  
All  
WRITE ACCESS  
MEMORY TYPE  
PW2 or (PW1 and WAUXA) or (WAUXAU)  
Nonvolatile (EE)  
7
6
5
4
3
2
1
0
00h–7Fh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Accessible with the slave address A0h.  
68  
Maxim Integrated  
DS1876  
SFP Controller with Dual LDD Interface  
Auxiliary Memory A0h, Register 80h–FFh: EEPROM  
FACTORY DEFAULT  
READ ACCESS  
00h  
All  
WRITE ACCESS  
MEMORY TYPE  
PW2 or (PW1 and WAUXB) or (WAUXBU)  
Nonvolatile (EE)  
7
6
5
4
3
2
1
0
80h–FFh  
2
2
2
2
2
2
2
2
BIT 7  
BIT 0  
Accessible with the slave address A0h.  
Applications Information  
Package Information  
For the latest package outline information and land patterns, go  
to www.maximintegrated.com/packages. Note that a “+”, “#”,  
or “-” in the package code indicates RoHS status only. Package  
drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Power-Supply Decoupling  
To achieve best results, it is recommended that the power  
supply is decoupled with a 0.01FF or a 0.1FF capacitor.  
Use high-quality, ceramic, surface-mount capacitors,  
and mount the capacitors as close as possible to the  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
V
CC  
and GND pins to minimize lead inductance.  
28 TQFN-EP  
T2855+6  
21-0140  
SDA and SCL Pullup Resistors  
SDA is an open-collector output on the DS1876 that  
requires a pullup resistor to realize high logic levels. A  
master using either an open-collector output with a pul-  
lup resistor or a push-pull output driver can be used for  
SCL. Pullup resistor values should be chosen to ensure  
2
that the rise and fall times listed in the I C AC Electrical  
Characteristics table are within specification.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000  
69  
©
2010 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY