DS26528N [MAXIM]

暂无描述;
DS26528N
型号: DS26528N
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

暂无描述

文件: 总269页 (文件大小:1662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS26528  
Octal T1/E1/J1 Transceiver  
www.maxim-ic.com  
GENERAL DESCRIPTION  
FEATURES  
CEight Complete T1, E1, or J1 Long-Haul/Short-  
The DS26528 is a single-chip 8-port framer and line  
interface unit (LIU) combination for T1, E1, and J1  
applications. Each port is independently configurable,  
supporting both long-haul and short-haul lines.  
Haul Transceivers (LIU plus Framer)  
CIndependent T1, E1, or J1 Selections for Each  
Transceiver  
CInternal Software-Selectable Transmit- and  
Receive-Side Termination for 100T1 Twisted  
Pair, 110J1 Twisted Pair, 120E1 Twisted  
Pair, and 75E1 Coaxial Applications  
APPLICATIONS  
Routers  
Channel Service Units (CSUs)  
Data Service Units (DSUs)  
Muxes  
Switches  
Channel Banks  
T1/E1 Test Equipment  
CCrystal-Less Jitter Attenuators can be Selected  
for Transmit or Receive Path. The Jitter  
Attenuator meets ETSI CTR 12/13, ITU G.736,  
G.742, G.823, and AT&T PUB 62411.  
CExternal Master Clock can be Multiple of  
2.048MHz or 1.544MHz for T1/J1 or E1  
operation. This Clock is Internally Adapted for T1  
or E1 Usage in the Host Mode.  
CReceive Signal Level Indication from -2.5dB to  
-36dB in T1 Mode and -2.5dB to -44dB in E1  
Mode in Approximate 2.5dB Increments  
FUNCTIONAL DIAGRAM  
CTransmit Open and Short Circuit Detection  
DS26528  
T1/E1/J1  
CLIU LOS in Accordance with G.775, ETSI  
NETWORK  
300233, and T1.231  
CTransmit Synchronizer  
T1/J1/E1  
CFlexible Signaling Extraction and Insertion Using  
Either the System Interface or Microprocessor  
Port  
BACKPLANE  
x8  
Transceiver  
TDM  
CAlarm Detection and Insertion  
CT1 Framing Formats of D4, SLC-96, and ESF  
CJ1 Support  
CE1 G.704 and CRC-4 Multiframe  
CT1 to E1 Conversion  
Features continued in Section 2.  
ORDERING INFORMATION  
PART  
TEMP RANGE  
PIN-PACKAGE  
DS26528  
-40°C to +85°C  
256 TE-CSBGA  
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device  
may be simultaneously available through various sales channels. For information about device errata, click here: www.maxim-ic.com/errata.  
1 of 269  
REV: 012405  
DS26528 Octal T1/E1/J1 Transceiver  
TABLE OF CONTENTS  
DETAILED DESCRIPTION.................................................................................................8  
FEATURE HIGHLIGHTS....................................................................................................9  
1.  
2.  
2.1 GENERAL..................................................................................................................................... 9  
2.2 LINE INTERFACE ........................................................................................................................... 9  
2.3 CLOCK SYNTHESIZER ................................................................................................................... 9  
2.4 JITTER ATTENUATOR .................................................................................................................... 9  
2.5 FRAMER/FORMATTER ................................................................................................................... 9  
2.6 SYSTEM INTERFACE ................................................................................................................... 10  
2.7 HDLC CONTROLLERS ................................................................................................................ 10  
2.8 TEST AND DIAGNOSTICS ............................................................................................................. 11  
2.9 CONTROL PORT ......................................................................................................................... 11  
3.  
4.  
5.  
6.  
7.  
8.  
APPLICATIONS ...............................................................................................................11  
SPECIFICATIONS COMPLIANCE...................................................................................12  
ACRONYMS AND GLOSSARY .......................................................................................14  
MAJOR OPERATING MODES.........................................................................................15  
BLOCK DIAGRAMS.........................................................................................................15  
PIN DESCRIPTIONS ........................................................................................................17  
8.1 PIN FUNCTIONAL DESCRIPTION ................................................................................................... 17  
FUNCTIONAL DESCRIPTION .........................................................................................24  
9.  
9.1 PROCESSOR INTERFACE............................................................................................................. 24  
9.2 CLOCK STRUCTURE.................................................................................................................... 24  
9.3 RESETS AND POWER-DOWN MODES ........................................................................................... 26  
9.4 INITIALIZATION AND CONFIGURATION ........................................................................................... 27  
9.5 GLOBAL RESOURCES.................................................................................................................. 27  
9.6 PER-PORT RESOURCES.............................................................................................................. 27  
9.7 DEVICE INTERRUPTS .................................................................................................................. 28  
9.8 SYSTEM BACKPLANE INTERFACE................................................................................................. 30  
9.8.1  
9.8.2  
9.8.3  
9.8.4  
9.8.5  
9.8.6  
Elastic Stores ....................................................................................................................................... 30  
IBO Multiplexer..................................................................................................................................... 33  
H.100 (CT-Bus) Compatibility .............................................................................................................. 40  
Transmit and Receive Channel Blocking Registers............................................................................. 41  
Transmit Fractional Support (Gapped Clock Mode) ............................................................................ 41  
Receive Fractional Support (Gapped Clock Mode) ............................................................................. 41  
9.9 FRAMERS................................................................................................................................... 42  
9.9.1  
9.9.2  
9.9.3  
9.9.4  
9.9.5  
9.9.6  
9.9.7  
9.9.8  
9.9.9  
T1 Framing........................................................................................................................................... 42  
E1 Framing........................................................................................................................................... 45  
T1 Transmit Synchronizer.................................................................................................................... 47  
Signaling .............................................................................................................................................. 48  
T1 Datalink........................................................................................................................................... 53  
E1 Datalink........................................................................................................................................... 55  
Maintenance and Alarms ..................................................................................................................... 56  
E1 Automatic Alarm Generation .......................................................................................................... 59  
Error Count Registers .......................................................................................................................... 60  
9.9.10 DS0 Monitoring Function...................................................................................................................... 62  
9.9.11 Transmit Per-Channel Idle Code Insertion........................................................................................... 63  
9.9.12 Receive Per-Channel Idle Code Insertion............................................................................................ 63  
9.9.13 Per-Channel Loopback ........................................................................................................................ 63  
9.9.14 E1 G.706 Intermediate CRC-4 Updating (E1 Mode Only)................................................................... 63  
9.9.15 T1 Programmable In-Band Loop Code Generator............................................................................... 64  
2 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.16 Framer Payload Loopbacks................................................................................................................. 66  
9.10  
HDLC CONTROLLERS ............................................................................................................. 67  
9.10.1 Receive HDLC Controller..................................................................................................................... 67  
9.10.2 Transmit HDLC Controller.................................................................................................................... 70  
9.10.3 FIFO Information.................................................................................................................................. 70  
9.10.4 HDLC Transmit Example ..................................................................................................................... 70  
9.11  
LINE INTERFACE UNITS (LIU) ................................................................................................... 72  
9.11.1 LIU Operation....................................................................................................................................... 75  
9.11.2 Transmitter........................................................................................................................................... 76  
9.11.3 Receiver ............................................................................................................................................... 79  
9.11.4 Jitter Attenuator.................................................................................................................................... 81  
9.11.5 LIU Loopbacks ..................................................................................................................................... 83  
9.12  
BIT ERROR RATE TEST FUNCTION (BERT) ............................................................................... 86  
9.12.1 BERT Repetitive Pattern Set ............................................................................................................... 87  
9.12.2 BERT Error Counter............................................................................................................................. 87  
10. DEVICE REGISTERS.......................................................................................................88  
10.1  
REGISTER LISTINGS ................................................................................................................ 88  
10.1.1 Global Register List.............................................................................................................................. 90  
10.1.2 Framer Register List............................................................................................................................. 90  
10.1.3 LIU and BERT Register List................................................................................................................. 97  
10.2  
REGISTER BIT MAPS ............................................................................................................... 98  
10.2.1 Global Register Bit Map ....................................................................................................................... 98  
10.2.2 Framer Register Bit Map...................................................................................................................... 99  
10.2.3 LIU Register Bit Map.......................................................................................................................... 105  
10.2.4 BERT Register Bit Map...................................................................................................................... 106  
10.3  
10.4  
GLOBAL REGISTER DEFINITIONS ............................................................................................ 107  
FRAMER REGISTER DEFINITIONS............................................................................................ 121  
10.4.1 Receive Register Definitions.............................................................................................................. 121  
10.4.2 Transmit Register Definitions............................................................................................................. 179  
10.5  
LIU REGISTER DEFINITIONS................................................................................................... 214  
10.6  
BERT REGISTER DEFINITIONS............................................................................................... 223  
11. FUNCTIONAL TIMING ...................................................................................................231  
11.1  
11.2  
11.3  
11.4  
T1 RECEIVER FUNCTIONAL TIMING DIAGRAMS ........................................................................ 231  
T1 TRANSMITTER FUNCTIONAL TIMING DIAGRAMS .................................................................. 236  
E1 RECEIVER FUNCTIONAL TIMING DIAGRAMS........................................................................ 241  
E1 TRANSMITTER FUNCTIONAL TIMING DIAGRAMS .................................................................. 243  
12. OPERATING PARAMETERS.........................................................................................246  
12.1  
LINE INTERFACE CHARACTERISTICS ....................................................................................... 247  
13. AC TIMING CHARACTERISTICS ..................................................................................248  
13.1  
13.2  
13.3  
MICROPROCESSOR BUS AC CHARACTERISTICS...................................................................... 248  
JTAG INTERFACE TIMING ...................................................................................................... 257  
SYSTEM CLOCK AC CHARACTERISTICS .................................................................................. 258  
14. JTAG-BOUNDARY SCAN AND TEST ACCESS PORT................................................259  
14.1  
14.2  
14.3  
14.4  
14.5  
14.6  
INSTRUCTION REGISTER ........................................................................................................ 263  
JTAG ID CODES................................................................................................................... 264  
TEST REGISTERS .................................................................................................................. 264  
BOUNDARY SCAN REGISTER.................................................................................................. 264  
BYPASS REGISTER................................................................................................................ 264  
IDENTIFICATION REGISTER..................................................................................................... 264  
15. DOCUMENT REVISION HISTORY ................................................................................268  
16. PACKAGE INFORMATION............................................................................................269  
3 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
LIST OF FIGURES  
Figure 7-1. Block Diagram..................................................................................................................... 15  
Figure 7-2. Detailed Block Diagram....................................................................................................... 16  
Figure 8-1. BGA Pinout ......................................................................................................................... 23  
Figure 9-1. Backplane Clock Generation ............................................................................................... 25  
Figure 9-2. Device Interrupt Information Flow Diagram.......................................................................... 29  
Figure 9-3. IBO Multiplexer Equivalent Circuit—4.096MHz.................................................................... 34  
Figure 9-4. IBO Multiplexer Equivalent Circuit—8.192MHz.................................................................... 35  
Figure 9-5. IBO Multiplexer Equivalent Circuit—16.384MHz.................................................................. 36  
Figure 9-6. RSYNC Input In H.100 (Ct-Bus) Mode ................................................................................ 40  
Figure 9-7. TSSYNCIO(Input Mode) Input In H.100 (CT-Bus) Mode...................................................... 41  
Figure 9-8. CRC-4 Recalculate Method................................................................................................. 63  
Figure 9-9. Receive HDLC Example...................................................................................................... 69  
Figure 9-10. HDLC Message Transmit Example.................................................................................... 71  
Figure 9-11. Basic Balanced Network Connections............................................................................... 73  
Figure 9-12. Recommended Supply Decoupling.................................................................................... 75  
Figure 9-13. T1/J1 Transmit Pulse Templates ....................................................................................... 77  
Figure 9-14. E1 Transmit Pulse Templates............................................................................................ 78  
Figure 9-15. Typical Monitor Application................................................................................................ 80  
Figure 9-16. Jitter Attenuation ............................................................................................................... 83  
Figure 9-17. Analog Loopback............................................................................................................... 83  
Figure 9-18. Local Loopback ................................................................................................................. 84  
Figure 9-19. Remote Loopback ............................................................................................................. 84  
Figure 9-20. Dual Loopback .................................................................................................................. 85  
Figure 10-1. Register Memory Map for the DS26528............................................................................. 89  
Figure 11-1. T1 Receive Side D4 Timing............................................................................................. 231  
Figure 11-2. T1 Receive Side ESF Timing........................................................................................... 231  
Figure 11-3. T1 Receive Side Boundary Timing (elastic store disabled) .............................................. 232  
Figure 11-4. T1 Receive Side 1.544MHz Boundary Timing (e-store enabled)...................................... 232  
Figure 11-5. T1 Receive Side 2.048MHz Boundary Timing (e-store enabled)...................................... 233  
Figure 11-6. T1 Receive Side Interleave Bus Operation, BYTE Mode................................................. 234  
Figure 11-7. T1 Receive Side Interleave Bus Operation, FRAME Mode.............................................. 235  
Figure 11-8. T1 Transmit Side D4 Timing............................................................................................ 236  
Figure 11-9. T1 Transmit Side ESF Timing.......................................................................................... 236  
Figure 11-10. T1 Transmit Side Boundary Timing (e-store disabled)................................................... 237  
Figure 11-11. T1 Transmit Side 1.544MHz Boundary Timing (e-store enabled)................................... 237  
Figure 11-12. T1 Transmit Side 2.048MHz Boundary Timing (e-store enabled)................................... 238  
Figure 11-13. T1 Transmit Side Interleave Bus Operation, BYTE Mode .............................................. 239  
Figure 11-14. T1 Transmit Interleave Bus Operation, FRAME Mode................................................... 240  
Figure 11-15. E1 Receive Side Timing ................................................................................................ 241  
Figure 11-16. E1 Receive Side Boundary Timing (elastic store disabled)............................................ 241  
Figure 11-17. E1 Receive Side 1.544MHz Boundary Timing (e-store enabled) ................................... 242  
Figure 11-18. E1 Receive Side 2.048MHz Boundary Timing (e-store enabled) ................................... 242  
Figure 11-19. E1 Transmit Side Timing ............................................................................................... 243  
Figure 11-20. E1 Transmit Side Boundary Timing (elastic store disabled)........................................... 243  
Figure 11-21. E1 Transmit Side 1.544MHz Boundary Timing (e-store enabled) .................................. 244  
Figure 11-22. E1 Transmit Side 2.048MHz Boundary Timing (e-store enabled) .................................. 244  
Figure 11-23. E1 G.802 Timing ........................................................................................................... 245  
Figure 13-1. Intel Bus Read Timing (BTS = 0)..................................................................................... 249  
Figure 13-2. Intel Bus Write Timing (BTS = 0) ..................................................................................... 249  
Figure 13-3. Motorola Bus Read Timing (BTS = 1).............................................................................. 250  
Figure 13-4. Motorola Bus Write Timing (BTS = 1) .............................................................................. 250  
4 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-5. Receive Framer Timing—Backplane (T1 Mode).............................................................. 252  
Figure 13-6. Receive Side Timing, Elastic Store Enabled (T1 Mode)................................................... 253  
Figure 13-7. Receive Framer Timing—Line Side................................................................................. 253  
Figure 13-8. Transmit Formatter Timing—Backplane .......................................................................... 255  
Figure 13-9. Transmit Formatter Timing, Elastic Store Enabled........................................................... 256  
Figure 13-10. Transmit Formatter Timing—Line Side .......................................................................... 256  
Figure 13-11. JTAG Interface Timing Diagram .................................................................................... 257  
Figure 14-1. JTAG Functional Block Diagram...................................................................................... 259  
Figure 14-2. Tap Controller State Diagram.......................................................................................... 262  
5 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
LIST OF TABLES  
Table 4-1. T1-Related Telecommunications Specifications.................................................................... 12  
Table 4-2. E1-Related Telecommunications Specifications ................................................................... 13  
Table 8-1. Detailed Pin Descriptions...................................................................................................... 17  
Table 9-1. Reset Functions.................................................................................................................... 26  
Table 9-2. Registers Related to the Elastic Store .................................................................................. 30  
Table 9-3. Elastic Store Delay After Initialization ................................................................................... 31  
Table 9-4. Registers related to the IBO Multiplexer ............................................................................... 33  
Table 9-5. RSER Output Pin Definitions ................................................................................................ 37  
Table 9-6. RSIG Output Pin Definitions ................................................................................................. 37  
Table 9-7. TSER Input Pin Definitions ................................................................................................... 38  
Table 9-8. TSIG Input Pin Definitions..................................................................................................... 38  
Table 9-9. RSYNC Input Pin Definitions ................................................................................................ 39  
Table 9-10. D4 Framing Mode............................................................................................................... 43  
Table 9-11. ESF Framing Mode............................................................................................................. 43  
Table 9-12. SLC-96 Framing ................................................................................................................. 44  
Table 9-13. E1 FAS/NFAS Framing....................................................................................................... 45  
Table 9-14. Registers Related to Setting Up the Framer ....................................................................... 46  
Table 9-15. Registers Related to the Transmit Synchronizer................................................................. 47  
Table 9-16. Registers Related to Signaling............................................................................................ 48  
Table 9-17. Registers Related to SLC96 ............................................................................................... 51  
Table 9-18. Registers Related to T1 Transmit BOC............................................................................... 53  
Table 9-19. Registers Related to T1 Receive BOC................................................................................ 53  
Table 9-20. Registers Related to T1 Transmit FDL................................................................................ 54  
Table 9-21. Registers Related to T1 Receive FDL................................................................................. 55  
Table 9-22. Registers Related to Maintenance and Alarms................................................................... 57  
Table 9-23. T1 Alarm Criteria ................................................................................................................ 59  
Table 9-24. T1 Line Code Violation Counting Options ........................................................................... 60  
Table 9-25. E1 Line Code Violation Counting Options........................................................................... 61  
Table 9-26. T1 Path Code Violation Counting Arrangements................................................................. 61  
Table 9-27. T1 Frames Out Of Sync Counting Arrangements................................................................ 62  
Table 9-28. Registers Related to DS0 Monitoring.................................................................................. 62  
Table 9-29. Registers Related to T1 In-Band Loop Code Generator...................................................... 64  
Table 9-30. Registers Related to T1 In-Band Loop Code Detection....................................................... 65  
Table 9-31. Register Related to Framer Payload Loopbacks................................................................. 66  
Table 9-32. Registers Related to Control of DS26528 LIU..................................................................... 75  
Table 9-33. The Telecommunications Specification Compliance for DS26528 Transmitters.................. 76  
Table 9-34. Transformer Specifications ................................................................................................. 76  
Table 9-35. T1.231, G.775, and ETSI 300 233 Loss Criteria Specifications........................................... 80  
Table 9-36. Jitter Attenuator Standards Compliance.............................................................................. 82  
Table 10-1. Register Address Ranges (in Hex)...................................................................................... 88  
Table 10-2. Global Register List ............................................................................................................ 90  
Table 10-3. Framer Register List ........................................................................................................... 90  
Table 10-4. LIU Register List................................................................................................................. 97  
Table 10-5. BERT Register List............................................................................................................. 97  
Table 10-6. Global Register Bit Map...................................................................................................... 98  
Table 10-7. Framer Register Bit Map..................................................................................................... 99  
Table 10-8. LIU Register Bit Map......................................................................................................... 105  
Table 10-9. BERT Register Bit Map..................................................................................................... 106  
Table 10-10. Backplane Reference Clock Select................................................................................. 110  
Table 10-11. Master Clock Input Selection .......................................................................................... 111  
Table 10-12. Device ID Codes in this Product Family.......................................................................... 114  
6 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 10-13. LIU Register Set ............................................................................................................. 214  
Table 10-14. Transmit Load Impedance Selection............................................................................... 215  
Table 10-15. Transmit Pulse Shape Selection..................................................................................... 215  
Table 10-16. Receive Level Indication................................................................................................. 220  
Table 10-17. Receive Impedance Selection ........................................................................................ 221  
Table 10-18. Receiver Sensitivity Selection with Monitor Mode Disabled ............................................ 222  
Table 10-19. Receiver Sensitivity Selection with Monitor Mode Enabled ............................................. 222  
Table 10-20. BERT Register Set ......................................................................................................... 223  
Table 10-21. BERT Pattern Select....................................................................................................... 225  
Table 10-22. BERT Error Insertion Rate.............................................................................................. 226  
Table 10-23. BERT Repetitive Pattern Length Select .......................................................................... 226  
Table 12-1. Transmitter Characteristics............................................................................................... 247  
Table 12-2. Reciever Characteristics................................................................................................... 247  
Table 13-1. AC Characteristics –Microprocessor Bus Timing .............................................................. 248  
Table 13-2. Receiver AC Characteristics............................................................................................. 251  
Table 13-3. Transmit AC Characteristics ............................................................................................. 254  
Table 14-1. Instruction Codes for IEEE 1149.1 Architecture................................................................ 263  
Table 14-2. ID Code Structure............................................................................................................. 264  
Table 14-3. Boundary Scan Control Bits.............................................................................................. 264  
7 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
1. DETAILED DESCRIPTION  
The DS26528 is an 8-port monolithic device featuring independent transceivers that can be software configured for  
T1, E1, or J1 operation. Each transceiver is composed of a line interface unit, framer, HDLC controller, elastic  
store, and a TDM backplane interface. The DS26528 is controlled via an 8-bit parallel port. Internal impedance  
matching is provided for both transmit and receive paths, reducing external component count.  
The LIU is composed of a transmit interface, receive interface, and a jitter attenuator. The transmit interface is  
responsible for generating the necessary waveshapes for driving the network and providing the correct source  
impedance depending on the type of media used. T1 waveform generation includes DSX–1 line build-outs as well  
as CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB. E1 waveform generation includes G.703 waveshapes  
for both 75coax and 120twisted cables. The receive interface provides network termination and recovers clock  
and data from the network. The receive sensitivity adjusts automatically to the incoming signal level and can be  
programmed for 0dB to -43dB or 0dB to -12dB for E1 applications and 0dB to -15dB or 0dB to -36dB for T1  
applications. The jitter attenuator removes phase jitter from the transmitted or received signal. The crystal-less jitter  
attenuator requires only a T1 or E1 clock rate, or multiple thereof, for both E1 and T1 applications, and can be  
placed in either transmit or receive data paths.  
On the transmit side, clock, data, and frame-sync signals are provided to the framer by the backplane interface  
section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and  
inserts the CRC codes, and provides the B8ZS/HDB3 (zero code suppression) and AMI line coding. The receive-  
side framer decodes AMI, B8ZS, and HDB3 line coding, synchronizes to the data stream, reports alarm  
information, counts framing/coding/CRC errors, and provides clock, data, and frame-sync signals to the backplane  
interface section.  
Both transmit and receive paths have access to an HDLC controller. The HDLC controller transmits and receives  
data via the framer block. The HDLC controller can be assigned to any time slot, a portion of a time slot or to FDL  
(T1) or Sa bits (E1). Each controller has 64-byte FIFOs, reducing the amount of processor overhead required to  
manage the flow of data.  
The backplane interface provides a versatile method of sending and receiving data from the host system. Elastic  
stores provide a method for interfacing to asynchronous systems, converting from a T1/E1 network to a 2.048MHz,  
4.096MHz, 8.192MHz, 16.384MHz, or N x 64kHz system backplane. The elastic stores also manage slip conditions  
(asynchronous interface). An interleave bus option (IBO) is provided to allow up to eight transceivers (single  
DS26528) to share a high-speed backplane. The DS26528 also contains an internal clock adapter useful for the  
creation of a synchronous, high-frequency backplane timing source.  
The parallel port provides access for configuration and status of all the DS26528’s features. Diagnostic capabilities  
include loopbacks, PRBS pattern generation/detection, and 16-bit loop-up and loop-down code generation and  
detection.  
8 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
2. FEATURE HIGHLIGHTS  
2.1 General  
Cꢀ 17mm x 17mm, 256-pin TE-CSBGA (1.00mm pitch)  
Cꢀ 3.3V supply with 5V tolerant inputs and outputs  
Cꢀ IEEE 1149.1 JTAG boundary scan  
Cꢀ Development support will include evaluation kit, driver source code, and reference designs  
2.2 Line Interface  
Cꢀ Requires a single master clock (MCLK) for both E1 and T1 operation. Master clock can be 1.544MHz,  
2.048MHz, 3.088MHz, 4.096MHz, 6.276MHz, 8.192MHz, 12.552MHz, or 16.384MHz.  
Cꢀ Fully software configurable  
Cꢀ Short- and long-haul applications  
Cꢀ Ranges include 0dB to -43dB, 0dB to -30dB, 0dB to 20dB, and 0dB to -12dB for E1; 0dB to -36dB, 0dB to  
30dB, 0dB to 20dB, and 0dB to -15dB for T1  
Cꢀ Receiver signal level indication from -2.5dB to -36dB in T1 mode and -2.5dB to -44dB in E1 mode in 2.5dB  
increments  
Cꢀ Internal receive termination option for 75±, 100, 110, and 120lines  
Cꢀ Monitor application gain settings of 14dB, 20dB, 26dB, and 32dB  
Cꢀ G.703 receive synchronization signal mode  
Cꢀ Flexible transmit waveform generation  
Cꢀ T1 DSX-1 line build-outs  
Cꢀ T1 CSU line build-outs of 0dB, -7.5dB, -15dB, and -22.5dB  
Cꢀ E1 waveforms include G.703 waveshapes for both 75coax and 120twisted cables  
Cꢀ Analog loss of signal detection  
Cꢀ AIS generation independent of loopbacks  
Cꢀ Alternating ones and zeros generation  
Cꢀ Receiver power-down  
Cꢀ Transmitter power-down  
Cꢀ Transmitter short-circuit limiter with current limit exceeded indication  
Cꢀ Transmit open-circuit-detected indication  
2.3 Clock Synthesizer  
Cꢀ Output frequencies include 2.048MHz, 4.096MHz, 8.192MHz, and 16.384MHz  
Cꢀ Derived from user selected recovered receive clock  
2.4 Jitter Attenuator  
Cꢀ 32-bit or 128-bit crystal-less jitter attenuator  
Cꢀ Requires only a 1.544MHz or 2.048MHz master clock or multiple thereof, for both E1 and T1 operation  
Cꢀ Can be placed in either the receive or transmit path or disabled  
Cꢀ Limit trip indication  
2.5 Framer/Formatter  
Cꢀ Fully independent transmit and receive functionality  
Cꢀ Full receive and transmit path transparency  
Cꢀ T1 framing formats D4 and ESF per T1.403, and expanded SLC-96 support (TR-TSY-008).  
Cꢀ E1 FAS framing and CRC-4 multiframe per G.704/G.706, and G.732 CAS multiframe  
Cꢀ Transmit side synchronizer  
Cꢀ Transmit midpath CRC recalculate (E1)  
Cꢀ Detailed alarm and status reporting with optional interrupt support  
9 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Cꢀ Large path and line error counters  
ꢁꢂ T1:- BPV, CV, CRC6, and framing bit errors  
ꢁꢂ E1: BPV, CV, CRC4, E-bit, and frame alignment errors  
ꢁꢂ Timed or manual update modes  
Cꢀ DS1 Idle Code Generation on a per-channel basis in both transmit and receive paths  
ꢁꢂ User defined  
ꢁꢂ Digital Milliwatt  
Cꢀ ANSI T1.403-1999 Support  
Cꢀ G.965 V5.2 link detect  
Cꢀ Ability to monitor one DS0 channel in both the transmit and receive paths  
Cꢀ In-Band Repeating Pattern Generators and Detectors  
ꢁꢂ Three independent Generators and Detectors  
ꢁꢂ Patterns from 1 to 8 bits or 16 bits in Length  
Cꢀ Bit Oriented Code (BOC) support  
Cꢀ Flexible signaling support  
ꢁꢂ Software or hardware based  
ꢁꢂ Interrupt generated on change of signaling data  
ꢁꢂ Optional receive signaling freeze on loss of frame, loss of signal, or frame slip  
ꢁꢂ Hardware pins provided to indicate Loss of Frame (LOF), Loss of Signal (LOS), Loss of Transmit Clock  
(LOTC), or signaling freeze condition.  
Cꢀ Automatic RAI generation to ETS 300 011 specifications  
Cꢀ RAI-CI and AIS-CI support  
Cꢀ Expanded access to Sa and Si bits  
Cꢀ Option to extend carrier loss criteria to a 1ms period as per ETS 300 233  
Cꢀ Japanese J1 support  
Cꢀ Ability to calculate and check CRC6 according to the Japanese standard  
Cꢀ Ability to generate Yellow Alarm according to the Japanese standard  
Cꢀ T1 to E1 conversion  
2.6 System Interface  
Cꢀ Independent two-frame receive and transmit elastic stores  
Cꢀ Independent control and clocking  
Cꢀ Controlled slip capability with status  
Cꢀ Minimum delay mode supported  
Cꢀ Flexible TDM backplane supports bus rates from 1.544MHz to 16.384MHz  
Cꢀ Supports T1 to CEPT (E1) conversion  
Cꢀ Programmable output clocks for fractional T1, E1, H0, and H12 applications  
Cꢀ Interleaving PCM bus operation  
Cꢀ Hardware signaling capability  
Cꢀ Receive signaling reinsertion to a backplane multiframe sync  
Cꢀ Availability of signaling in a separate PCM data stream  
Cꢀ Signaling freezing  
Cꢀ Ability to pass the T1 F-bit position through the elastic stores in the 2.048MHz backplane mode  
Cꢀ User-selectable synthesized clock output  
2.7 HDLC Controllers  
Cꢀ One HDLC controller engine for each T1/E1 port  
Cꢀ Independent 64-byte Rx and Tx buffers with interrupt support  
Cꢀ Access FDL, Sa, or single DS0 channel  
Cꢀ Compatible with polled or interrupt driven environments  
10 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
2.8 Test and Diagnostics  
Cꢀ IEEE 1149.1 Support  
Cꢀ Per-channel programmable on-chip bit error-rate testing (BERT)  
Cꢀ Pseudorandom patterns including QRSS  
Cꢀ User-defined repetitive patterns  
Cꢀ Daly pattern  
Cꢀ Error insertion single and continuous  
Cꢀ Total-bit and errored-bit counts  
Cꢀ Payload error insertion  
Cꢀ Error insertion in the payload portion of the T1 frame in the transmit path  
Cꢀ Errors can be inserted over the entire frame or selected channels  
Cꢀ Insertion options include continuous and absolute number with selectable insertion rates  
Cꢀ F-bit corruption for line testing  
Cꢀ Loopbacks (remote, local, analog, and per-channel loopback)  
2.9 Control Port  
Cꢀ 8-bit parallel control port  
Cꢀ Intel or Motorola nonmultiplexed support  
Cꢀ Flexible status registers support polled, interrupt, or hybrid program environments  
Cꢀ Software reset supported  
Cꢀ Hardware reset pin  
Cꢀ Software access to device ID and silicon revision  
3. APPLICATIONS  
The DS26528 is useful in applications such as:  
Cꢀ Routers  
Cꢀ Channel Service Units (CSUs)  
Cꢀ Data Service Units (DSUs)  
Cꢀ Muxes  
Cꢀ Switches  
Cꢀ Channel Banks  
Cꢀ T1/E1 Test Equipment  
11 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
4. SPECIFICATIONS COMPLIANCE  
The DS26528 LIU meets all the latest relevant telecommunications specifications. Table 4-1 provides the T1 and  
E1 specifications and relevant sections that are applicable to the DS26528.  
Table 4-1. T1-Related Telecommunications Specifications  
ANSI T1.102- Digital Hierarchy Electrical Interface.  
AMI Coding.  
B8ZS Substitution Definition.  
DS1 Electrical Interface. Line rate +/- 32ppm; Pulse Amplitude between 2.4 to 3.6 V peak; Power Level between  
12.6 to 17.9dbm; The T1 pulse mask is provided that we comply. DSX-1 for cross connects the return loss is  
greater than -26dB. The DSX-1 cable is restricted up to 655 feet.  
This specification also provides cable characteristics of DSX-Cross Connect cable ---22 AVG cables of 1000 feet.  
ANSI T1.231- Digital Hierarchy- Layer 1 in Service Performance Monitoring  
BPV Error Definition; Excessive Zero Definition; LOS description; AIS definition.  
ANSI T1.403- Network and Customer Installation Interface- DS1 Electrical Interface  
Description of the Measurement of the T1 Characteristics—100. Pulse shape and template compliance  
according to T1.102; Power level 12.4 to 19.7dbm when all ones is transmitted.  
LBO for the Customer Interface (CI) is specified as 0dB, -7.5dB and -15dB. Line rate is +/-32 ppm. Pulse  
Amplitude is 2.4 to 3.6V.  
AIS generation as unframed all ones is defined.  
The total cable attenuation is defined as 22dB. The DS26528 will function with up to -36dB cable loss.  
Note that the pulse template defined by T1.403 and T1.102 are different --- specifically at Times .61, -.27, -34 and  
.77. The DS26528 is complaint to both templates.  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and Jitter Tolerance is tighter the G.823.  
(ANSI) “Digital Hierarchy – Electrical Interfaces”  
(ANSI) “Digital Hierarchy – Formats Specification”  
(ANSI) “Digital Hierarchy – Layer 1 In-Service Digital Transmission Performance Monitoring”  
(ANSI) “Network and Customer Installation Interfaces – DS1 Electrical Interface”  
(AT&T) “Requirements for Interfacing Digital Terminal Equipment to Services Employing the Extended Super  
frame Format”  
(AT&T) “High Capacity Digital Service Channel Interface Specification”  
(TTC) “Frame Structures on Primary and Secondary Hierarchical Digital Interfaces”  
(TTC) “ISDN Primary Rate User-Network Interface Layer 1 Specification”  
12 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 4-2. E1-Related Telecommunications Specifications  
ITUT G.703 Physical/Electrical Characteristics of G.703 Hierarchical Digital Interfaces  
Defines the 2048Kbit/s bit rate—2048 ±50ppm; The transmission media are 75coax or 120twisted pair; peak  
to peak space voltage is ±0.237V; Nominal pulse width is 244 ns.  
Return loss 51 to 102Hz is 6dB, 102 to 3072 Hz is 8dB, 2048 to 3072 Hz is 14dB  
Nominal peak voltage is 2.37V for coax and 3V for twisted pair.  
The pulse template for E1 is defined in G.703.  
ITUT G.736 Characteristics of Synchronous Digital Multiplex Equipment operating at 2048Kbit/s  
The peak to peak jitter at 2048Kbit/s has to be less than 0.05 UI at 20 to 100Hz.  
Jitter transfer between 2.048 synchronization signal and 2.048 transmission signal is provided.  
ITUT G.742 Second Order Digital Multiplex Equipment Operating at 8448Kbit/s  
The DS26528 jitter attenuator is complaint with Jitter transfer curve for sinusoidal jitter input.  
ITUT G.772  
This specification provides the method for using receiver for transceiver 0 as a monitor for the rest of the 7  
transmitter/receiver combinations.  
ITUT G.775  
A LOS detection criterion is defined.  
ITUT G.823 The control of jitter and wander within digital networks which are based on 2.048Kbit/s hierarchy  
G.823 provides the jitter amplitude tolerance at different frequencies, specifically 20Hz, 2.4kHz, 18kHz, and  
100kHz.  
ETSI 300 233  
This specification provides LOS and AIS signal criteria for E1 mode  
Pub 62411  
This specification has tighter jitter tolerance and transfer characteristics than other specifications.  
The jitter transfer characteristics are tighter than G.736 and Jitter Tolerance is tighter then G.823.  
(ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels”  
(ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures  
Defined in Recommendation G.704”  
(ITU) “Characteristics of primary PCM Multiplex Equipment Operating at 2048Kbit/s”  
(ITU) Characteristics of a synchronous digital multiplex equipment operating at 2048Kbit/s”  
(ITU) “Loss Of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and Clearance Criteria”  
(ITU) “The Control of Jitter and Wander Within Digital Networks Which are Based on the 2048Kbit/s Hierarchy”  
(ITU) “Primary Rate User-Network Interface – Layer 1 Specification”  
(ITU) “Error Performance Measuring Equipment Operating at the Primary Rate and Above”  
(ITU) “In-service code violation monitors for digital systems”  
(ETSI) “Integrated Services Digital Network (ISDN); Primary rate User-Network Interface (UNI); Part 1/ Layer 1  
specification”  
(ETSI) “Transmission and multiplexing; Physical/electrical characteristics of hierarchical digital interfaces for  
equipment using the 2048Kbit/s-based plesiochronous or synchronous digital hierarchies”  
(ETSI) “Integrated Services Digital Network (ISDN); Access digital section for ISDN primary rate”  
(ETSI) “Integrated Services Digital Network (ISDN); Attachment requirements for terminal equipment to connect to  
an ISDN using ISDN primary rate access”  
(ETSI) “Business Telecommunications (BT); Open Network Provision (ONP) technical requirements; 2048 Kbit/s  
digital unstructured leased lines (D2048U) attachment requirements for terminal equipment interface”  
(ETSI) “Business Telecommunications (BTC); 2048 Kbit/s digital structured leased lines (D2048S); Attachment  
requirements for terminal equipment interface”  
(ITU) “Synchronous Frame Structures used at 1544, 6312, 2048, 8488 and 44736Kbit/s Hierarchical Levels”  
(ITU) “Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to Basic Frame Structures  
Defined in Recommendation G.704”  
13 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
5. ACRONYMS AND GLOSSARY  
This data sheet assumes a particular nomenclature of the T1 and E1 operating environment. In each 125s T1  
frame, there are 24 8-bit channels plus a framing bit. It is assumed that the framing bit is sent first followed by  
channel 1. For T1 and E1 each channel is made up of 8 bits, which are numbered 1 to 8. Bit 1, the MSB, is  
transmitted first. Bit 8, the LSB, is transmitted last.  
Locked refers to two clock signals that are phase- or frequency-locked or derived from a common clock (i.e., a  
1.544MHz clock can be locked to a 2.048MHz clock if they share the same 8kHz component).  
TIME SLOT NUMBERING SCHEMES  
0
1
1
2
1
2
3
2
3
4
3
4
5
4
5
6
5
6
7
6
7
8
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
TS  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Channel  
Phone  
8
Channel  
14 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
6. MAJOR OPERATING MODES  
The DS26528 has two major modes of operation: T1 mode and E1 mode. The mode of operation for each LIU is  
configured in the LTRCR register. The mode of operation for each framer is configured in the TMMR register. J1  
operation is a special case of T1 operating mode.  
7. BLOCK DIAGRAMS  
Figure 7-1. Block Diagram  
DS26528  
LIU #8  
LIU #7  
LIU #6  
LIU #5  
LIU #4  
FRAMER #8  
FRAMER #7  
FRAMER #6  
FRAMER #5  
FRAMER #4  
FRAMER #3  
FRAMER #2  
INTERFACE #8  
INTERFACE #7  
INTERFACE #6  
INTERFACE #5  
INTERFACE #4  
INTERFACE #3  
INTERFACE #2  
RECEIVE  
BACKPLANE  
SIGNALS  
LIU #3  
LIU #2  
RTIP  
RRING  
TTIP  
TRANSMIT  
BACKPLANE  
SIGNALS  
T1/E1 FRAMER  
HDLC  
BACKPLANE  
INTERFACE  
LINE  
INTERFACE  
UNIT  
ELASTIC  
STORES  
HARDWARE  
ALARM  
BERT  
TRING  
x8  
INDICATORS  
x8  
MICRO PROCESSOR  
INTERFACE  
CLOCK  
JTAG PORT  
GENERATION  
CONTROLLER  
PORT  
TEST  
PORT  
CLOCK  
ADAPTER  
15 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 7-3. Detailed Block Diagram  
Tx  
Tx  
HDLC  
TRANSCEIVER #1 of 8:  
BERT  
Tx Signaling/  
Channel Blocking  
Tx FRAMER:  
TCLKn  
TSERn  
TRANSMIT  
LIU  
Waveform  
Shaper/Line  
Driver  
TTIPn  
B8ZS/  
ANALOG  
HDB3  
Elastic  
Store  
OUTPUTS  
TSYNCn  
Encode  
TRINGn  
TSSYNCIO  
(Input Mode)  
TSYSCLK  
RSYSCLK  
Rx FRAMER:  
RECEIVE  
LIU  
Clock/Data  
Recovery  
RTIPn  
ANALOG  
INPUTS  
RSYNCn  
B8ZS/  
HDB3  
Elastic  
Store  
Decode  
RSERn  
RCLKn  
RRINGn  
Rx Signaling/  
Channel Blocking  
Rx  
Rx  
DS26528  
BERT  
HDLC  
PRE-SCALER  
PLL  
MICROPROCESSOR  
INTERFACE  
JTAG  
PORT  
RESET  
BLOCK  
MCLK  
TSSYNCIO  
(Output Mode)  
BPCLK  
BACKPLANE  
CLOCK  
GENERATOR  
REFCLK  
16 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
8. PIN DESCRIPTIONS  
8.1 Pin Functional Description  
Table 8-1. Detailed Pin Descriptions  
NAME  
PIN  
TYPE  
DESCRIPTION  
ANALOG TRANSMIT  
TTIP1  
TTIP2  
TTIP3  
TTIP4  
TTIP5  
TTIP6  
TTIP7  
A1, A2  
H1, H2  
J1, J2  
Transmit Bipolar Tip for Transceiver 1 to 8. These pins are differential line driver tip  
outputs. These pins can be High-Z if:  
If pin TXENABLE is low the TTIP/TRING will be High-Z. Note that if TXENABLE is low, the  
register settings for control of the TTIP/TRING are ignored and output is High-Z.  
Analog  
Output  
High-Z  
T1, T2  
The differential outputs of TTIPn and TRINGn can provide internal matched impedance for  
E1 75, E1 120, T1 100, or J1 110. The user has the option of turning off internal  
termination.  
T15, T16  
J15, J16  
H15, H16  
Note: The two pins shown for each Transmit Bipolar Tip (for example, Pins A1 and A2 for  
TTIP1) should be tied together.  
TTIP8  
A15, A16  
Transmit Bipolar Ring for Transceiver 1 to 8. These pins are differential line driver ring  
TRING1  
TRING2  
TRING3  
TRING4  
TRING5  
TRING6  
TRING7  
A3, B3  
outputs. These pins can be High-Z if:  
G3, H3  
If pin TXENABLE is low the TTIP/TRING will be High-Z. Note that if TXENABLE is low, the  
J3, K3  
register settings for control of the TTIP/TRING are ignored and output is High-Z.  
Analog  
Output  
High-Z  
R3, T3  
The differential outputs of TTIPn and TRINGn can provide internal matched impedance for  
E1 75, E1 120, T1 100, or J1 110. The user has the option of turning off internal  
termination.  
R14,T14  
J14, K14  
G14, H14  
Note: The two pins shown for each Transmit Bipolar Ring (for example, Pins A3 and B3 for  
TRING8  
A14, B14  
TRING1) should be tied together.  
Transmit Enable. If this pin is pulled low, all the transmitter outputs (TTIP and TRING) are  
High-Z. The register settings for tri-state control of TTIP/TRING are ignored if TXEnable is  
low. If TXEnable is high, the particular driver can be tri-stated by the register settings.  
TXENABLE  
L13  
I
ANALOG RECEIVE  
RTIP1  
RTIP2  
C1  
F1  
RTIP3  
L1  
Receive Bipolar Tip for Transceiver 1 to 8. The differential inputs of RTIPn and RRINGn  
can provide internal matched impedance for E1 75, E1 120, T1 100, or J1 110. The  
user has the option of turning off internal termination via the LIU receive impedance and  
sensitivity monitor Register.  
RTIP4  
P1  
Analog  
Input  
RTIP5  
P16  
L16  
F16  
C16  
C2  
RTIP6  
RTIP7  
RTIP8  
RRING1  
RRING2  
RRING3  
RRING4  
RRING5  
RRING6  
RRING7  
RRING8  
F2  
L2  
Receive Bipolar Ring for Transceiver 1 to 8. The differential inputs of RTIPn and RRINGn  
can provide internal matched impedance for E1 75, E1 120, T1 100, or J1 110. The  
user has the option of turning off internal termination via the LIU receive impedance and  
sensitivity monitor register.  
P2  
Analog  
Input  
P15  
L15  
F15  
C15  
TRANSMIT FRAMER  
TSER1  
TSER2  
TSER3  
TSER4  
TSER5  
TSER6  
TSER7  
TSER8  
TCLK1  
TCLK2  
TCLK3  
TCLK4  
TCLK5  
TCLK6  
TCLK7  
F6  
E7  
Transmit NRZ Serial Data. Sampled on the falling edge of TCLK when the transmit side  
elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit side  
elastic store is enabled.  
R4  
N7  
I
I
In IBO Mode, data for multiple framers can be used in High Speed Multiplexed Scheme.  
This is described in Section 9.8.2. The table there presents the combination of framer data  
for each of the streams.  
M10  
L11  
F10  
D12  
C5  
TSYSCLK is used as a reference when IBO is invoked. See Table 9-7.  
Transmit Clock. A 1.544 MHz or a 2.048MHz primary clock. Used to clock data through the  
transmit side of the transceiver. TSER data is sampled on the falling edge of TCLK. TCLK is  
used to sample TSER when the elastic store is not enabled or IBO is not used.  
D7  
P5  
L8  
L10  
N11  
E10  
17 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
DESCRIPTION  
NAME  
PIN  
TYPE  
TCLK8  
B13  
Transmit System Clock. 1.544MHz, 2.048MHz, 4.096MHz, 8.192MHz, or 16.384MHz  
clock. Only used when the transmit-side elastic store function is enabled. Should be tied low  
in applications that do not use the transmit side elastic store. This is a common clock that is  
used for all 8 transmitters. The clock can be 4.096MHz, 8.912MHz, or 16.384MHz when IBO  
mode is used.  
TSYSCLK  
P13  
I
TSYNC1  
TSYNC2  
TSYNC3  
TSYNC4  
TSYNC5  
TSYNC6  
TSYNC7  
TSYNC8  
B4  
F7  
Transmit Synchronization. A pulse at this pin establishes either frame or multiframe  
boundaries for the transmit side. This signal can also be programmed to output either a  
frame or multiframe pulse. If this pin is set to output pulses at frame boundaries, it can also  
be set to output double-wide pulses at signaling frames in T1 mode. The operation of this  
signal is synchronous with TCLK.  
M6  
M7  
IO  
N10  
T12  
B11  
A13  
Transmit System Synchronization In. Only used when the transmit-side elastic store is  
enabled. A pulse at this pin will establish either frame or multiframe boundaries for the  
transmit side. Note that if the elastic store is enabled, frame or multiframe boundary will be  
established for all 8 transmitters. Should be tied low in applications that do not use the  
transmit side elastic store. The operation of this signal is synchronous with TSYSCLK.  
TSSYNCIO  
N13  
I/O  
Transmit System Synchronization Out. If configured as an output, an 8kHz pulse  
synchronous to the BPCLK will be generated. This pulse in combination with Bpclk can be  
used as an IBO Master. The BPCLK can be sourced to RSYSCLK and TSYSCLK and  
TSSYNCIO as a source to RSYNC and TSSYNCIO of DS26528 or RSYNC and TSSYNC of  
other Dallas Semiconductor Parts.  
TSIG1  
TSIG2  
TSIG3  
TSIG4  
TSIG5  
TSIG6  
TSIG7  
TSIG8  
D5  
A6  
Transmit Signaling. When enabled, this input samples signaling bits for insertion into  
outgoing PCM data stream. Sampled on the falling edge of TCLK when the transmit-side  
elastic store is disabled. Sampled on the falling edge of TSYSCLK when the transmit-side  
elastic store is enabled. In IBO mode, the TSIG streams can run up to 16.384MHz. See  
Table 9-8.  
T4  
R6  
I
T10  
R12  
A11  
C13  
Transmit Channel Block or Transmit Channel Block Clock. A dual function pin. TCHBLK  
is a user programmable output that can be forced high or low during any of the channels.  
Synchronous with TCLK when the transmit side elastic store is disabled. Synchronous with  
TSYSCLK when the transmit side elastic store is enabled. Useful for blocking clocks to a  
serial UART or LAPD controller in applications where not all channels are used such as  
Fractional T1, Fractional E1, 384 KBPS (H0), 768 KBPS or ISDN–PRI. Also useful for  
locating individual channels in drop-and-insert applications, for external per-channel  
loopback, and for per-channel conditioning.  
TCHBLK/CLK1  
TCHBLK/CLK2  
TCHBLK/CLK3  
TCHBLK/CLK4  
TCHBLK/CLK5  
TCHBLK/CLK6  
TCHBLK/CLK7  
A5  
C7  
L7  
P7  
O
P9  
TCHCLK. TCHCLK is a 192kHz (T1) or 256kHz (E1) clock that pulses high during the LSB  
of each channel. It can also be programmed to output a gated transmit bit clock controlled  
by TCHBLK. It is synchronous with TCLK when the transmit-side elastic store is disabled. It  
is synchronous with TSYSCLK when the transmit-side elastic store is enabled. Useful for  
parallel-to-serial conversion of channel data.  
P11  
D10  
E11  
TCHBLK/CLK8  
RECEIVE FRAMER  
RSER1  
RSER2  
RSER3  
RSER4  
RSER5  
RSER6  
RSER7  
RSER8  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
RCLK5  
RCLK6  
RCLK7  
E5  
D6  
Received Serial Data. Received NRZ serial data. Updated on rising edges of RCLK when  
the receive side elastic store is disabled. Updated on the rising edges of RSYSCLK when  
the receive side elastic store is enabled.  
N4  
N6  
O
O
M11  
M12  
B12  
F11  
F4  
When IBO mode is used, the RSER pins can output data for multiple framers. The RSER  
data is synchronous to RSYSCLK. This is described in Section 9.8.2 or see Table 9-5.  
Receive Clock. A 1.544MHz (T1) or 2.048MHz (E1) clock that is used to clock data through  
the receive-side framer. This clock is recovered from the signal at RTIP and RRING. RSER  
data is output on the rising edge of RCLK. RCLK is used to output RSER when the elastic  
store is not enabled or IBO is not used. When the elastic store is enabled or IBO is used the  
RSER is clocked by RSYSCLK.  
G4  
L4  
M4  
K13  
J13  
F13  
18 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
DESCRIPTION  
NAME  
PIN  
TYPE  
RCLK8  
E13  
Receive System Clock. 1.544MHz, 2.048MHz, 4.096MHz, or 8.192MHz or 16.384MHz  
receive backplane clock. Only used when the receive side elastic store function is enabled.  
Should be tied low in applications that do not use the receive side elastic store. Multiple of  
2.048MHz is expected when the IBO Mode is used. Note that RSYSCLK is used for all 8  
transceivers.  
RSYSCLK  
L12  
I
RSYNC1  
RSYNC2  
A4  
B6  
Receive Synchronization. If the receive side elastic store is enabled, then this signal is  
used to input a frame or multiframe boundary pulse if set to output frame boundaries then  
RSYNC can be programmed to output double-wide pulses on signaling frames in T1 mode.  
In E1 Mode RSYNC out can be used to indicate CAS and CRC4 Multiframe. The DS26528  
also has the facility to accept H.100 compatible synchronization signal. The default direction  
of this pin at power up is Input as determined by the RSIO control bit in the RIOCR.2  
register.  
RSYNC3  
N5  
RSYNC4  
T6  
I/O  
RSYNC5  
R10  
P12  
C11  
D13  
C4  
RSYNC6  
RSYNC7  
RSYNC8  
RM/RFSYNC1  
RM/RFSYNC2  
RM/RFSYNC3  
RM/RFSYNC4  
RM/RFSYNC5  
RM/RFSYNC6  
RM/RFSYNC7  
RM/RFSYNC8  
RSIG1  
Receive Multiframe or Frame Synchronization. A dual function pin to indicate Frame or  
Multiframe Synchronization. RFSYNC is an extracted 8 kHz pulse, one RCLK wide that  
identifies frame boundaries. RMSYNC is an extracted pulse, one RCLK wide (elastic store  
disabled) or one RSYSCLK wide (elastic store enabled), which identifies multiframe  
boundaries. When the receive elastic store is enabled, the RMSYNC signal indicates the  
multiframe sync on the system (backplane) side of the Elastic Store. In E1 mode, will  
indicate either the CRC4 or CAS multiframe as determined by the RSMS2 control bit in the  
RIOCR.1 register.  
C6  
P4  
P6  
O
P10  
N12  
D11  
E12  
D4  
RSIG2  
E6  
RSIG3  
M5  
Receive Signaling. Outputs signaling bits in a PCM format. Updated on rising edges of  
RCLK when the receive side elastic store is disabled. Updated on the rising edges of  
RSYSCLK when the receive side elastic store is enabled. See Table 9-6.  
RSIG4  
R5  
O
RSIG5  
R11  
R13  
A12  
F12  
RSIG6  
RSIG7  
RSIG8  
AL/RSIGF/  
FLOS1  
C3  
AL/RSIGF/  
FLOS2  
F3  
Analog Loss or Receive Signaling Freeze or Framer LOS. Analog LOS reflects the LOS  
(Loss of Signal) detected by the LIU front end and Framer LOS is LOS detection by the  
corresponding framer; the same pins can reflect Receive Signaling Freeze indications. This  
selection can be made by settings in Global Transceiver Control Register.  
AL/RSIGF/  
FLOS3  
L3  
AL/RSIGF/  
FLOS4  
P3  
O
O
AL/RSIGF/  
FLOS5  
If Framer LOS is selected, this pin can be programmed to toggle high when the framer  
detects a loss of signal condition, or when the signaling data is frozen via either automatic or  
manual intervention. The indication is used to alert downstream equipment of the condition.  
P14  
L14  
F14  
C14  
AL/RSIGF/  
FLOS6  
AL/RSIGF/  
FLOS7  
AL/RSIGF/  
FLOS8  
RLF/LTC1  
RLF/LTC2  
RLF/LTC3  
RLF/LTC4  
RLF/LTC5  
RLF/LTC6  
RLF/LTC7  
RLF/LTC8  
D3  
E3  
M3  
N3  
N14  
M14  
E14  
D14  
Receive Loss of Frame or Loss of Transmit Clock. This pin can also be programmed to  
either toggle high when the synchronizer is searching for the frame and multiframe or to  
toggle high if the TCLK pin has not been toggled for approximately three clock periods.  
19 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
DESCRIPTION  
NAME  
PIN  
TYPE  
RCHBLK/CLK1  
RCHBLK/CLK2  
RCHBLK/CLK3  
RCHBLK/CLK4  
RCHBLK/CLK5  
RCHBLK/CLK6  
RCHBLK/CLK7  
RCHBLK/CLK8  
E4  
B5  
Receive Channel Block or Receive Channel Block Clock. Pin can be configured to  
output either RCHBLK or RCHCLK. RCHBLK is a user-programmable output that can be  
forced high or low during any of the 24 T1 or 32 E1 channels. Synchronous with RCLK  
when the receive side elastic store is disabled. Synchronous with RSYSCLK when the  
receive-side elastic store is enabled. Useful for blocking clocks to a serial UART or LAPD  
controller in applications where not all channels are used such as fractional service,  
384kbps service, 768kbps, or ISDN–PRI. Also useful for locating individual channels in  
drop-and-insert applications, for external per-channel loopback, and for per-channel  
conditioning.  
RCHCLK is a 192 kHz (T1) or 256kHz (E1) clock that pulses high during the LSB of each  
channel. Synchronous with RCLK when the receive-side elastic store is disabled.  
Synchronous with RSYSCLK when the receive-side elastic store is enabled. Useful for  
parallel-to-serial conversion of channel data.  
L6  
T5  
O
T11  
T13  
C12  
G13  
Backplane Clock. Programmable clock output that can be set to 2.048MHz, 4.096MHz,  
8.192MHz, or 16.384MHz. The reference for this clock can be RCLK from any of the LIU,  
1.544MHz or 2.048MHz frequency derived from MCLK or an external reference clock. This  
allows for the IBO clock to reference from external source or T1J1E1 recovered clock or the  
MCLK oscillator.  
BPCLK  
E8  
O
MICROPROCESSOR INTERFACE  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
C8  
A8  
B8  
F8  
B9  
A9  
C9  
D9  
E9  
F9  
B10  
A10  
C10  
T9  
N9  
M9  
R8  
T8  
P8  
L9  
N8  
Address12 to Address0. This bus selects a specific register in the DS26528 during  
I
read/write access. A12 is the MSB and A0 is the LSB.  
Data7 to Data0. This 8-bit, bidirectional data bus is used for read/write access of the  
I/O  
DS26528 information and control registers. D7 is the MSB and D0 is the LSB.  
Chip Select Bar. This active-low signal is used to qualify register read/write accesses. The  
RDDSB and WRB signals are qualified with CSB.  
T7  
I
I
CSB  
Read Bar Data or Strobe Bar. This active-low signal along with CSB qualifies read access  
to one of the DS26528 registers. The DS26528 drives the data bus with the contents of the  
addressed register while RDB and CSB are both low.  
M8  
RDB/DSB  
Write Bar/Read-Write Bar. This active-low signal along with CSB qualifies write access to  
one of the DS26528 registers. Data at D[7/0] is written into the addressed register at the  
rising edge of WRB while CSB is low.  
R7  
I
WRB/RWB  
INTB  
Interrupt Bar. This active-low, open-drain output is asserted when an unmasked interrupt  
event is detected. INTB will be deasserted when all interrupts have been acknowledged and  
serviced. Extensive Mask bits are provided at the global level, framer, LIU, and BERT level.  
Bus Type Select. Set high to select Motorola bus timing, low to select Intel bus timing. This  
pin controls the function of the RDDSB, and WRB pins.  
R9  
U
I
BTS  
M13  
SYSTEM INTERFACE  
Master Clock. This is an independent free-running clock whose input can be a multiple of  
2.048MHz ±50ppm or 1.544MHz ±50ppm. The clock selection is available by bits MPS0 and  
MPS1 and FREQSEL. Multiple of 2.048MHz can be internally adapted to 1.544MHz.  
Multiple of 1.544MHz can be adapted to 2.048MHz. Note that TCLK has to be 2.048MHz for  
E1 and 1.544MHz for T1/J1 operation. See Table 10-11.  
MCLK  
B7  
I
20 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
DESCRIPTION  
NAME  
PIN  
TYPE  
Reset Bar. Active-low reset. This input forces the complete DS26528 reset. This includes  
J12  
I
RESETB  
reset of the registers, framers, and LIUs.  
Reference Clock Input/Output  
Input: A 2.048MHz or 1.544MHz clock input. This clock can be used to generate the  
backplane clock. This allows for the users to synchronize the system backplane with the  
reference clock. The other options for the backplane clock reference are LIU-received  
clocks or MCLK.  
REFCLKIO  
A7  
I/O  
Output: This signal can also be used to output a 1.544MHz or 2.048MHz reference clock.  
This allows for multiple DS26528 to share the same reference for generation of the  
backplane clock. Hence, in a system consisting of multiple DS26528s, one can be a master  
and others a slave using the same Reference Clock.  
TEST  
Digital Enable. When this pin and JTRST are pulled low all Digital I/O pins are placed in a  
high-impedance state. If this pin is High the Digital I/O pins operate normally. This pin has to  
be connected to VDD for normal operation.  
I
DIGIOEN  
JTRST  
JTMS  
D8  
L5  
Pullup  
JTAG Reset. JTRST is used to asynchronously reset the test access port controller. After  
power up, JTRST must be toggled from low to high. This action will set the device into the  
JTAG DEVICE ID mode. Pulling JTRST low restores normal device operation. JTRST is  
pulled HIGH internally via a 10kresistor operation. If boundary scan is not used, this pin  
should be held low.  
I
Pullup  
JTAG Mode Select. This pin is sampled on the rising edge of JTCLK and is used to place  
the test access port into the various defined IEEE 1149.1 states. This pin has a 10k pull up  
resistor.  
I
K4  
F5  
Pullup  
JTAG Clock. This signal is used to shift data into JTDI on the rising edge and out of JTDO  
JTCLK  
JTDI  
I
on the falling edge.  
JTAG Data In. Test instructions and data are clocked into this pin on the rising edge of  
JTCLK. This pin has a 10kpullup resistor.  
I
H4  
J4  
Pullup  
O
JTAG Data Out. Test instructions and data are clocked out of this pin on the falling edge of  
JTDO  
High-Z  
JTCLK. If not used, this pin should be left unconnected.  
POWER SUPPLIES  
ATVDD1  
ATVDD2  
ATVDD3  
ATVDD4  
ATVDD5  
ATVDD6  
ATVDD7  
ATVDD8  
ATVSS1  
ATVSS2  
ATVSS3  
ATVSS4  
ATVSS5  
ATVSS6  
ATVSS7  
ATVSS8  
ARVDD1  
ARVDD2  
ARVDD3  
ARVDD4  
ARVDD5  
ARVDD6  
ARVDD7  
ARVDD8  
ARVSS1  
ARVSS2  
ARVSS3  
ARVSS4  
ARVSS5  
ARVSS6  
B1  
G1  
K1  
R1  
3.3V Analog Transmit Power Supply. These VDD inputs are used for the transmit LIU  
sections of the DS26528.  
R16  
K16  
G16  
B16  
B2  
G2  
K2  
R2  
Analog Transmit VSS. These pins are used for transmit analog VSS  
.
R15  
K15  
G15  
B15  
D1  
E1  
M1  
N1  
3.3 V Analog Receive Power Supply. This VDD inputs are used for the Receive LIU  
sections of the DS26528.  
N16  
M16  
E16  
D16  
D2  
Analog Receive VSS. These pins are used for analog VSS for the receivers.  
E2  
M2  
N2  
N15  
M15  
21 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
DESCRIPTION  
NAME  
PIN  
TYPE  
ARVSS7  
ARVSS8  
E15  
D15  
Analog Clock Conversion VDD. This VDD inputs are used for the clock conversion unit of  
ACVDD  
H7  
the DS26528.  
ACVSS  
DVDD  
J7  
Analog Clock VSS. This pin is used for clock converter analog VSS.  
G5–G12, H8,  
H9  
3.3V Power Supply for Digital Framers  
3.3V Power Supply for I/Os  
H5, H6, H10,  
H11  
DVDDIO  
H12, H13,  
J8, J9, K5–  
K12  
J5, J6, J10,  
J11  
DVSS  
-—  
-—  
Digital Ground for the Framers  
Digital Ground for the I/Os  
DVSSIO  
22 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 8-1. BGA Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
TTIP1  
TTIP1  
TRING1  
RSYNC1 TCHBLK1  
TSIG2  
REFCLKIO  
A11  
A7  
A1  
TSIG7  
RSIG7  
TSYNC8  
TRING8  
TTIP8  
TTIP8  
A
B
C
D
E
F
ATVDD1 ATVSS1 TRING1  
TSYNC1 RCHBLK2 RSYNC2  
MCLK  
A10  
A12  
A8  
A6  
A2  
A0  
TSYNC7  
RSYNC7  
RSER7  
RCHBLK7  
TSER8  
TCLK8  
TSIG8  
TRING8  
ATVSS8 ATVDD8  
RTIP1  
RRING1 ALRSIGF1 RMRFSYNC1 TCLK1 RMRFSYNC2 TCHBLK2  
ALRSIGF8 RRING8  
RTIP8  
ARVDD1 ARVSS1 RLFLTC1  
RSIG1  
TSIG1  
RSER1  
JTCLK  
DVDD  
RSER2  
RSIG2  
TSER1  
DVDD  
TCLK2 DIGIOEN  
A5  
TCHBLK7 RMRFSYNC7  
RSYNC8  
RCLK8  
RCLK7  
RCHBLK8  
DVSS  
RLFLTC8 ARVSS8 ARVDD8  
RLFLTC7 ARVSS7 ARVDD7  
ARVDD2 ARVSS2 RLFLTC2 RCHBLK1  
TSER2  
TSYNC2  
DVDD  
BPCLK  
A9  
A4  
TCLK7  
TSER7  
DVDD  
TCHBLK8  
RSER8  
DVDD  
RMFSYC8  
RSIG8  
RTIP2  
RRING2 ALRSIGF2  
RCLK1  
RCLK2  
JTDI  
A3  
ALRSIGF7 RRING7  
RTIP7  
ATVDD2 ATVSS2 TRING2  
DVDD  
DVDD  
DVSS  
DVSS  
DVDD  
DVDD  
DVSS  
DVSS  
D1  
DVDD  
TRING7  
TRING7  
TRING6  
TRING6  
ATVSS7 ATVDD7  
G
H
J
TTIP2  
TTIP3  
TTIP2  
TTIP3  
TRING2  
TRING3  
DVDDIO  
DVSSIO  
DVSS  
DVDDIO  
DVSSIO  
DVSS  
ACVDD  
ACVSS  
DVSS  
DVDDIO  
DVSSIO  
DVSS  
DVDDIO  
DVSSIO  
DVSS  
DVSS  
TTIP7  
TTIP6  
TTIP7  
TTIP6  
JTDO  
RESETB  
DVSS  
RCLK6  
RCLK5  
ATVDD3 ATVSS3 TRING3  
JTMS  
ATVSS6 ATVDD6  
K
L
RTIP3  
RRING3 ALRSIGF3  
RCLK3  
RCLK4  
RSER3  
JTRST  
RSIG3  
RCHBLK3 TCHBLK3 TCLK4  
TCLK5  
TSER5  
TSYNC5  
TSER6  
RSER5  
TCLK6  
RSYSCLK TXENABLE ALRSIGF6 RRING6  
RTIP6  
RDB/  
DSB  
ARVDD3 ARVSS3 RLFLTC3  
ARVDD4 ARVSS4 RLFLTC4  
TSYNC3  
RSER4  
TSYNC4  
TSER4  
D5  
RSER6  
BTS  
RLFLTC6 ARVSS6 ARVDD6  
M
N
P
R
T
RSYNC3  
D0  
D6  
RMRFSYNC6 TSSYNCIO RLFLTC5 ARVSS5 ARVDD5  
RTIP4  
RRING4 ALRSIGF4 RMRFSYNC3 TCLK3 RMRFSYNC4 TCHBLK4  
D2  
D4  
D3  
TCHBLK5 RMRFSYNC5 TCHBLK6  
RSYNC6  
TSIG6  
TSYSCLK ALRSIGF5 RRING5  
RTIP5  
WRB/  
RWB  
ATVDD4 ATVSS4 TRING4  
TSER3  
TSIG3  
RSIG4  
TSIG4  
INTB  
RSYNC5  
TSIG5  
RSIG5  
RSIG6  
TRING5  
TRING5  
ATVSS5 ATVDD5  
TTIP4  
TTIP4  
TRING4  
RCHBLK4 RSYNC4  
CSB  
D7  
RCHBLK5  
TSYNC6  
RCHBLK6  
TTIP5  
TTIP5  
23 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9. FUNCTIONAL DESCRIPTION  
9.1 Processor Interface  
Microprocessor control of the DS26528 is accomplished through the 28 hardware pins of the microprocessor port.  
The 8-bit parallel data bus can be configured for Intel or Motorola modes of operation with the Bus Type Select  
(BTS) pin. When the BTS pin is a logic 0, bus timing is in Intel mode, as shown in Figure 13-1 and Figure 13-3.  
When the BTS pin is a logic 1, bus timing is in Motorola mode, as shown in Figure 13-5 and Figure 13-7. The  
address space is mapped through the use of 13 address lines, A0–A12. Multiplexed Mode is not supported on the  
processor interface.  
The Chip Select Bar (CSB) pin must be brought to a logic low level to gain read and write access to the  
microprocessor port. With Intel timing selected, the Read Bar (RDB) and Write Bar (WRB) pins are used to indicate  
read and write operations and latch data data through the interface. With Motorola timing selected, the Read-Write  
Bar (RWB) pin is used to indicate read and write operations while the Data Strobe Bar (DSB) pin is used to latch  
data through the interface.  
The interrupt output pin (INTB) is an open-drain output that will assert a logic-low level upon a number of software  
maskable interrupt conditions. This pin is normally connected to the microprocessor interrupt input.  
The device has a bulk write mode that allows a microprocessor to write all eight internal transceivers with each bus  
write cycle. By setting the BWE bit (GTCR1.2), each port write cycle will write to all eight framers, LIUs, or BERTs  
at the same time. The BWE bit must be cleared before normal write operation is resumed. This function is useful  
for device initialization.  
The register map is shown in Figure 10-1.  
9.2 Clock Structure  
The user should provide a system clock to the MCLK input of 2.048MHz, 1.544MHz, or a multiple of up to 8x the T1  
and E1 frequencies. To meet many specifications, the MCLK source should have ±50ppm accuracy.  
9.2.1.1 Backplane Clock Generation  
The DS26528 provides facility for provision of BPCLK at 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz (see Figure  
9-1). The Global Transceiver Control Register (GTCCR ) is used to control the backplane clock generation. This  
register is also used to program REFCLKIO as an input or output. REFCLKIO can be an output sourcing MCLKT1  
or MCLKE1 as shown in Figure 9-1.  
This backplane clock and frame pulse (TSSYNCIO) can be used by the DS26528 and other IBO equipped devices  
as an “IBO Bus Master.” Hence the DS26528 will provide the 8 KHZ Sync Pulse and 4,8,16MHz clock. This can be  
used by the link layer devices and frames connected to the IBO Bus.  
24 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-1. Backplane Clock Generation  
BPREFSEL3:0  
BPCLK1:0  
RCLK1  
RCLK2  
RCLK3  
RCLK4  
BFREQSEL  
RCLK5  
RCLK6  
BPCLK  
CLK  
RCLK7  
RCLK8  
GEN  
Pre  
Scaler  
PLL  
MCLK  
MCLKT1  
MCLKE1  
REFCLKIO  
TSSYNCIO  
REFCLKIO  
The reference clock for the Backplane Clock generator can be:  
Sꢂ External Master Clock. A pre-scaler can be used to generate T1 or E1 Frequency  
Sꢂ External Reference Clock REFCLKIO. This allows for multiple DS26528 to use the Backplane Clock from a  
common reference.  
Sꢂ Internal LIU recovered RCLKs 1 to 8.  
Sꢂ The Clock Generator can be used to generate BPCLK of 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz for  
the IBO.  
Sꢂ If MCLK or RCLKs are used as a reference, REFCLKIO can be used to provide a 2.048MHz or 1.544MHz  
clock for external use.  
25 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.3 Resets and Power-Down Modes  
A hardware reset is issued by forcing the RESETB pin to logic low. The RESETB input pin resets all framers, LIUs,  
and BERTs. Note that not all registers are cleared to 00h on a reset condition. The register space must be  
reinitialized to appropriate values after a hardware or software reset has occurred. This includes writing  
reserved locations to 00h.  
Table 9-1. Reset Functions  
RESET FUNCTION  
Hardware Device Reset  
Hardware JTAG Reset  
LOCATION  
RESETB Pin  
JTRST Pin  
COMMENTS  
Transition to a logic 0 level resets the  
DS26528.  
Resets the JTAG test port.  
Writing to these bits resets the  
associated Framer and BERT (transmit &  
receive).  
Global Framer and BERT  
Resets  
GFSRR.0 - .7  
Writing to these bits resets the  
associated Line Interface Unit.  
Global LIU Resets  
GLSRR.0 - .7  
RMMR.1  
TMMR.1  
Writing to this bit resets the Receive  
Framer.  
Framer Receive Reset  
Framer Transmit Reset  
HDLC Receive Reset  
HDLC Transmit Reset  
Elastic Store Receive Reset  
Elastic Store Transmit Reset  
Writing to this bit resets the Transmit  
Framer.  
Writing to this bit resets the Receive  
HDLC controller.  
RHC.6  
Writing to this bit resets the Transmit  
HDLC controller.  
THC1.5  
Writing to this bit resets the Receive  
Elastic Store.  
RESCR.2  
TESCR.2  
T1RBOCC.7  
Writing to this bit resets the Transmit  
Elastic Store.  
Bit Oriented Code Receive  
Reset  
Writing to this bit resets the Receive  
BOC controller.  
Writing to these registers resets the  
programmable in-band code integration  
period.  
T1RDNCD1,  
T1RUPCD1  
Loop Code Integration Reset  
Spare Code Integration Reset  
Writing to this register resets the  
programmable in-band code integration  
period.  
T1RSCD1  
The DS26528 has several features included to reduce power consumption. The individual LIU transmitters can be  
powered down by setting the TPDE bit in the LIU maintenance control register (LMCR). Note that powering down  
the transmit LIU results in a High-Z state for the corresponding TTIP and TRING pins, and reduced operating  
current. The RPDE in the LMCR register can be used to power down the LIU receiver.  
The TE (Transmit Enable) bit in the LMCR register can be used to disable the TTIP and TRING outputs and place  
them in a high-impedance mode, while keeping the LIU in an active state (powered up). This is useful for  
equipment protection switching applications.  
26 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.4 Initialization and Configuration  
EXAMPLE DEVICE INITIALIZATION SEQUENCE:  
STEP 1: Reset the device by pulling the RESETB pin low, applying power to the device, or by using the software  
reset bits outlined in Section 9.3. Clear all reset bits. Allow time for the reset recovery.  
STEP 2: Check the Device ID in the IDR register  
STEP 3: Write the GTCCR register to correctly configure the system clocks. If supplying a 1.544MHz MCLK  
follows this write with at least a 300ns delay in order to allow the clock system to properly adjust.  
STEP 4: Write the entire remainder of the register space for each port with 00h, including reserved register  
locations.  
STEP 5: Choose T1/J1 or E1 operation for the framers by configuring the T1/E1 bit in the TMMR and RMMR  
registers for each framer. Set the FRM_EN bit to 1 in the TMMR and RMMR registers. If using Software Transmit  
Signaling in E1 mode, program the E1TAF and E1TNAF registers as required. Configure the framer Transmit  
Control Registers (TCR1 – TCR4). Configure the framer Receive Control Registers (RCR1 – RCR3). Configure  
other framer features as appropriate.  
STEP 6: Choose T1/J1 or E1 operation for the LIUs by configuring the T1J1E1S bit in the LTRCR register.  
Configure the Line Build Out for each LIU. Configure other LIU features as appropriate. Set the TE (Transmit  
Enable) bit to turn on the TTIP and TRING outputs.  
STEP 7: Configure the Elastic Stores, HDLC Controller, and BERT as needed.  
STEP 8: Set the INIT_DONE bit in the TMMR and RMMR registers for each framer.  
9.5 Global Resources  
All eight framers share a common microprocessor port. All ports share a common MCLK, and there is a common  
software configurable BPCLK output. A set of Global registers are located at 0F0h–0FFh and include Global resets,  
global interrupt status, interrupt masking, clock configuration, and the Device ID registers. See the Global Register  
Definitions in Table 10-6. A common JTAG controller is used for all ports.  
9.6 Per-Port Resources  
Each port has an associated Framer, LIU, BERT, Jitter Attenuator, and Transmit/Receive HDLC controller. Each of  
the per-port functions has its own register space.  
27 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.7 Device Interrupts  
Figure 9-3 diagrams the flow of interrupt conditions from their source status bits through the multiple levels of  
information registers and mask bits to the interrupt pin. When an interrupt occurs, the host can read the Global  
Interrupt Information registers GFISR, GLISR, and GBISR to quickly identify which of the eight transceivers is(are)  
causing the interrupt(s). The host can then read the specific transceiver’s Interrupt Information registers (TIIR,  
RIIR) and the Latched Status Registers (LLSR, BLSR) to further identify the source of the interrupt(s). If TIIR or  
RIIR is the source, the host will then read Transmit Latched Status or the Receive Latched Status Registers for the  
source of the interrupt. All Interrupt Information Register bits are real-time bits that will clear once the appropriate  
interrupt has been serviced and cleared, as long as no additional, un-masked interrupt condition is present in the  
associated status register. All Latched Status bits must be cleared by the host writing a “1” to the bit location of the  
interrupt condition that has been serviced. Latched Status bits that have been masked via Interrupt Mask registers  
will be masked from the Interrupt Information Registers. The Interrupt Mask register bits prevent individual Latched  
Status conditions from generating an interrupt, but they do not prevent the Latched Status bits from being set.  
Therefore, when servicing interrupts, the user should XOR the Latched Status with the associated Interrupt Mask in  
order to exclude bits for which the user wished to prevent interrupt service. This architecture allows the application  
host to periodically poll the latched status bits for non-interrupt conditions, while using only one set of registers.  
28 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-3. Device Interrupt Information Flow Diagram  
Receive Remote Alarm Indication Clear  
Receive Alarm Condition Clear  
Receive Loss of Signal Clear  
Receive Loss of Frame Clear  
Receive Remote Alarm Indication  
Receive Alarm Condition  
7
6
5
4
3
2
1
0
3
2
1
0
7
6
5
4
3
2
1
0
Drawing Legend:  
0
Interrupt Status  
Register Name  
Register Name  
Receive Loss of Signal  
Registers  
Receive Loss of Frame  
Receive Signal All Ones  
Receive Signal All Zeros  
Receive CRC4 Multiframe  
Receive Align Frame  
Interrupt Mask  
Registers  
1
2
Loss of Receive Clk Clear / Loss of Receive Clk Clear  
Spare Code Detected Condition Clear / -  
Loop Down Code Clear / V52 Link Clear  
Loop Up Code Clear / Receive Distant MF Alarm Clear  
Loss of Receive Clk / Loss of Receive Clk  
Spare Code Detect / -  
Loop Down Detect / V52 Link Detect  
Loop Up Detect / Receive Distant MF Alarm Detect  
Receive Elastic Store Full  
Receive Elastic Store Empty  
Receive Elastic Store Slip  
Receive Signaling Change of State (Enable in RSCSE1-4)  
One Second Timer  
7
6
5
3
2
1
0
Timer  
3
Receive Multiframe  
Receive FIFO Overrun  
5
4
3
2
1
0
Receive HDLC Opening Byte  
Receive Packet End  
Receive Packet Start  
Receive Packet High Watermark  
Receive FIFO Not Empty  
4
5
Receive RAI-CI  
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Receive AIS-CI  
Receive SLC-96 Alignment  
Receive FDL Register Full  
Receive BOC Clear  
Receive BOC  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
Transmit Elastic Store Full  
Transmit Elastic Store Empty  
Transmit Elastic Store Slip  
Transmit SLC96 Multiframe  
Transmit Pulse Density Violation / Transmit Align Frame  
Transmit Multiframe  
Loss of Transmit Clock Clear  
Loss of Transmit Clock  
2
Transmit FDL Register Empty  
Transmit FIFO Underrun  
4
3
2
1
0
Transmit Message End  
Transmit FIFO Below Low Watermark  
Transmit FIFO Not Full Set  
-
-
-
-
1
0
Loss of Frame  
1
0
Loss of Frame Synchronization  
Jitter Attenuator Limit Trip Clear  
Open Circuit Detect Clear  
Short Circuit Detect Clear  
Loss of Signal Detect Clear  
Jitter Attenuator Limit Trip  
Open Circuit Detect  
7
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Short Circuit Detect  
Loss of Signal Detect  
BERT Bit Error Detected  
BERT Bit Counter Overflow  
BERT Error Counter Overflow  
BERT Receive All Ones  
BERT Receive All Zeros  
BERT Receive Loss of Synchronization  
BERT in Synchronization  
29 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.8 System Backplane Interface  
The DS26528 provides a versatile Backplane interface that can be configured to:  
Sꢂ Transmit and Receive 2 Frame Elastic Stores  
Sꢂ Mapping of T1 channels into a 2.048MHz backplane  
Sꢂ IBO mode for multiple framers to share the backplane signals  
Sꢂ Transmit and receive channel blocking capability  
Sꢂ Fractional T1/E1/J1 support  
Sꢂ Hardware-based (through the backplane interface) or processor-based signaling  
Sꢂ Flexible backplane clock providing frequencies of 2.048MHz, 4.096MHz, 8.192MHz, 16.384MHz  
Sꢂ Backplane clock and frame pulse (TSSYNIO) generator  
9.8.1 Elastic Stores  
The DS26528 contains dual, two-frame elastic stores for each framer; one for the receive direction, and one for the  
transmit direction. Both elastic stores are fully independent. The transmit and receive side elastic stores can be  
enabled/disabled independently of each other. Also, the transmit or receive elastic store can interface to either a  
1.544MHz or 2.048/4.096/8.192/16.384MHz backplane without regard to the backplane rate for the other elastic  
store. Since the DS26528 has a common TSYSCLK and RSYSCLK for all eight ports, the backplane signals in  
each direction must be synchronous for all ports on which the elastic stores are enabled. However, the transmit  
and receive signals are not required to be synchronous to each other. The TIOCR and RIOCR settings should be  
identical for all ports on which the elastic stores are enabled.  
The elastic stores have two main purposes. First, they can be used for rate conversion. When the DS26528 is in  
the T1 mode, the elastic stores can rate convert the T1 data stream to a 2.048MHz backplane. In E1 mode the  
elastic store can rate convert the E1 data stream to a 1.544MHz backplane. Secondly, they can be used to absorb  
the differences in frequency and phase between the T1 or E1 data stream and an asynchronous (i.e., not locked)  
backplane clock (which can be 1.544MHz or 2.048MHz). In this mode, the elastic stores will manage the rate  
difference and perform controlled slips, deleting or repeating frames of data in order to manage the difference  
between the network and the backplane.  
If the elastic store is enabled while in E1 mode, then either CAS or CRC4 multiframe boundaries will be indicated  
via the RMSYNC output as controlled by the RSMS2 control bit (RIOCR.1). If the user selects to apply a 1.544MHz  
clock to the RSYSCLK pin, then the RBCS registers will determine which channels of the received E1 data stream  
will be deleted. In this mode an F-bit location is inserted into the RSER data and set to one. Also, in 1.544MHz  
applications, the RCHBLK output will not be active in Channels 25 through 32 (or in other words, RCBR4 is not  
active). If the two-frame elastic buffer either fills or empties, a controlled slip will occur. If the buffer empties, then a  
full frame of data will be repeated at RSER and the RLS4.5 and RLS4.6 bits will be set to a one. If the buffer fills,  
then a full frame of data will be deleted and the RLS4.5 and RLS4.7 bits will be set to a one.  
The elastic stores can also be used to multiplex T1 or E1 data streams into higher backplane rates. This is the  
Interleave Bus Option (IBO), which is discussed in Section 9.8.2. The registers related to the Elastic Stores are  
shown in the following table.  
Table 9-2. Registers Related to the Elastic Store  
REGISTER  
FRAMER 1 ADDRESSES  
FUNCTION  
Receive I/O Configuration Register (RIOCR)  
Receive Elastic Store Control Register (RESCR)  
Receive Latched Status Register 4 ( RLS4)  
Receive Interrupt Mask Register 4(RIM4)  
084  
085  
093  
0A3  
Sync and Clock Selection for the Receiver  
Receive Elastic Store Control  
Receive Elastic Store Empty full status  
Receive Interrupt Mask for Elastic Store  
Transmit elastic control such as minimum  
mode  
Transmit Elastic Store Control Register (TESCR)  
185  
Transmit Latched Status Register 1 (TLS1)  
Transmit Interrupt Mask Register 1 ( TIM1)  
190  
1A0  
Transmit Elastic Store Latched Status  
Transmit Elastic Store Interrupt Mask  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer N = (Framer 1  
address + (n - 1) x 200hex), where n = 2 to 8 for Framers 2 to 8.  
30 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.8.1.1 Elastic Stores Initialization  
There are two elastic store initializations that may be used to improve performance in certain applications, Elastic  
Store Reset and Elastic Store Align. Both of these involve the manipulation of the elastic store’s read and write  
pointers and are useful primarily in synchronous applications (RSYSCLK/TSYSCLK are locked to RCLK/TCLK  
respectively). The elastic store reset is used to minimize the delay through the elastic store. The elastic store align  
bit is used to 'center' the read/write pointers to the extent possible.  
Table 9-3. Elastic Store Delay After Initialization  
REGISTER  
INITIALIZATION  
DELAY  
BIT  
Receive Elastic Store Reset  
Transmit Elastic Store Reset  
Receive Elastic Store Align  
Transmit Elastic Store Align  
RESCR.2  
TESCR.2  
RESCR.3  
TESCR.3  
N bytes < Delay < 1 Frame + N bytes  
N bytes < Delay < 1 Frame + N bytes  
½ Frame < Delay < 1 ½ Frames  
½ Frame < Delay < 1 ½ Frames  
N = 9 for RSZS = 0  
N = 2 for RSZS = 1  
9.8.1.2 Minimum Delay Mode  
Elastic store minimum delay mode may be used when the elastic store’s system clock is locked to its network clock  
(i.e., RCLK locked to RSYSCLK for the receive side and TCLK locked to TSYSCLK for the transmit side).  
RESCR.1 enable the receive elastic store minimum delay mode. When enabled the elastic stores will be forced to  
a maximum depth of 32 bits instead of the normal two-frame depth. This feature is useful primarily in applications  
that interface to a 2.048MHz bus. Certain restrictions apply when minimum delay mode is used. In addition to the  
restriction mentioned above, RSYNC must be configured as an output when the receive elastic store is in minimum  
delay mode and TSYNC must be configured as an output when transmit minimum delay mode is enabled. In this  
mode the SYNC outputs are always in frame mode (multiframe outputs are not allowed). In a typical application  
RSYSCLK and TSYSCLK are locked to RCLK, and RSYNC (frame output mode) is connected to TSSYNCIO  
(frame input mode). The slip zone select bit (RSZS at RESCR.4) must be set to ‘1’. All of the slip contention logic in  
the framer is disabled (since slips cannot occur). On power-up after the RSYSCLK and TSYSCLK signals have  
locked to their respective network clock signals, the elastic store reset bit (RESCR.2) should be toggled from a zero  
to a one to insure proper operation  
9.8.1.3 Additional Receive Elastic Store Information  
If the receive side elastic store is enabled, then the user must provide either a 1.544MHz or 2.048MHz clock at the  
RSYSCLK pin. For higher rate system clock applications, see Section 9.8.2. The user has the option of either  
providing a frame/multiframe sync at the RSYNC pin or having the RSYNC pin provide a pulse on frame/multiframe  
boundaries. If Signaling Reinsertion is enabled, the robbed-bit signaling data is realigned to the multiframe sync  
input on RSYNC. Otherwise, a multiframe sync input on RSYNC is treated as a simple frame boundary by the  
elastic store. The framer will always indicate frame boundaries on the network side of the elastic store via the  
RFSYNC output whether the elastic store is enabled or not. Multiframe boundaries will always be indicated via the  
RMSYNC output. If the elastic store is enabled, then RMSYNC will output the multiframe boundary on the  
backplane side of the elastic store. When the device is receiving T1 and the backplane is enabled for 2.048MHz  
operation, the RMSYNC signal will output the T1 multiframe boundaries as delayed through the elastic store. When  
the device is receiving E1 and the backplane is enabled for 1.544MHz operation, the RMSYNC signal will output  
the E1 multiframe boundaries as delayed through the elastic store.  
If the user selects to apply a 2.048MHz clock to the RSYSCLK pin, then they can use the backplane blank channel  
select registers (RBCS1-4) to determine which channels will have the data output at RSER forced to all ones.  
9.8.1.4 Receiving Mapped T1 Channels from a 2.048MHz Backplane  
Setting the TSCLKM bit in TIOCR.4 will enable the transmit elastic store to operate with a 2.048MHz backplane (32  
time slots / frame). In this mode the user can chose which of the backplane channels on TSER will be mapped into  
the T1 data stream by programming the Transmit Blank Channel Select registers (TBCS1-4). A logic '1' in the  
associated bit location will force the transmit elastic store to ignore backplane data for that channel. Typically the  
31 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
user will want to program eight channels to be ignored. The default (power-up) configuration will ignore channels  
25 to 32, so that the first 24 backplane channels are mapped into the T1 transmit data stream.  
For example, if the user desired to transmit data from the 2.048MHz backplane channels 2-16 and 18-26, the  
TBCS registers should be programmed as follows:  
TBCS1 = 01h :: ignore backplane channel 1 ::  
TBCS2 = 00h  
TBCS3 = 01h :: ignore backplane channel 17 ::  
TBCS4 = FCh :: ignore backplane channels 27-32 ::  
9.8.1.5 Mapping T1 Channels Onto a 2.048MHz Backplane  
Setting the RSCLKM bit in RIOCR.4 will enable the receive elastic store to operate with a 2.048MHz backplane (32  
time slots/frame). In this mode the user can chose which of the backplane channels on RSER receive the T1 data  
by programming the Receive Blank Channel Select registers  
(RBCS1-4). A logic '1' in the associated bit location will force RSER high for that backplane channel. Typically the  
user will want to program eight channels to be 'blanked.’ The default (power-up) configuration will blank channels  
25 to 32, so that the 24 T1 channels are mapped into the first 24 channels of the 2.048MHz backplane. If the user  
chooses to blank channel 1 (TS0) by setting RBCS1.0 = 1, then the F-bit will be passed into the MSB of TS0 on  
RSER.  
For example, if:  
RBCS1 = 01h  
RBCS2 = 00h  
RBCS3 = 01h  
RBCS4 = FCh  
Then on RSER:  
channel 1 (MSB) = F-bit  
channel 1 (bits 1-7) = all ones  
channels 2-16 = T1 channels 1-15  
channel 17 = all ones  
channels 18-26 = T1 channels 16-24  
channels 27-32 = all ones  
Note that when two or more sequential channels are chosen to be blanked, the receive slip zone select bit should  
be set to zero. If the blank channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29) then the RSZS bit can be  
set to one, which may provide a lower occurrence of slips in certain applications.  
If the two-frame elastic buffer either fills or empties, a controlled slip will occur. If the buffer empties, then a full  
frame of data will be repeated at RSER and the RLS4.5 and RLS4.6 bits will be set to a one. If the buffer fills, then  
a full frame of data will be deleted and the RLS4.5 and RLS4.7 bits will be set to a one  
9.8.1.6 Receiving Mapped E1 Transmit Channels from a 1.544MHz Backplane  
The user can use the TSCLKM bit in TIOCR.4 to enable the transmit elastic store to operate with a 1.544MHz  
backplane (24 channels / frame + F-bit). In this mode the user can chose which of the E1 time slots will have all  
ones data inserted by programming the Transmit Blank Channel Select registers (E1TBCS1-4). A logic '1' in the  
associated bit location will cause the elastic store to force all ones at the outgoing E1 data for that channel.  
Typically the user will want to program eight channels to be 'blanked'. The default (power-up) configuration will  
blank channels 25 to 32, so that the first 24 E1 channels are mapped from the 24 channels of the 1.544MHz  
backplane.  
9.8.1.7 Mapping E1 Channels onto a 1.544MHz Backplane  
The user can use the RSCLKM bit in RIOCR.4 to enable the receive elastic store to operate with a 1.544MHz  
backplane (24 channels / frame + F-bit). In this mode the user can chose which of the E1 time slots will be ignored  
(not transmitted onto RSER) by programming the Receive Blank Channel Select registers (RBCS1-4). A logic '1' in  
the associated bit location will cause the elastic store to ignore the incoming E1 data for that channel. Typically, the  
user will want to program eight channels to be 'ignored'. The default (power-up) configuration will ignore channels  
32 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
25 to 32, so that the first 24 E1 channels are mapped into the 24 channels of the 1.544MHz backplane. In this  
mode the F-bit location at RSER is always set to 1.  
For example, if the user wants to ignore E1 time slots 0 (channel 1) and TS 16 (channel 17), the RBCS registers  
would be programmed as follows:  
RBCS1 = 01h  
RBCS2 = 00h  
RBCS3 = 01h  
RBCS4 = FCh  
9.8.2 IBO Multiplexer  
The IBO (Interleaved Bus Operation) multiplexer is used in conjunction with the IBO function located within each  
framer/formatter block (controlled by the RIBOC and TIBOC registers). When enabled, the IBO multiplexer  
simplifies user interface by connecting bus signals internally. The IBO multiplexer eliminates the need for ganged  
external wiring and tri-state output drivers on the RSER and RSIG pins. This option provides a more controlled,  
cleaner, and lower power mode of operation.  
Note that the channel block signals TCHBLK and RCHBLK are output at the rate of the of IBO selection. Hence a  
4.096MHz IBO would have the channel blocks (if programmed active at the rate of 4.096MHz). Hence the particular  
blocking channel would be active for a duration of the channel if programmed.  
The DS26528 will also support the traditional mode of IBO operation by allowing complete access to individual  
framers, and tri-stating the RSER and RSIG pins at the appropriate times for external bus wiring. This mode of  
operation is enabled per framer in the associated RIBOC and TIBOC registers, while leaving the IBO multiplexer is  
disabled (IBOMS0 = 0 and IBOMS1 = 0).  
Figures show the equivalent internal circuit for each IBO mode. Table 9-4 describes the pin function changes for  
each mode of the IBO multiplexer.  
Table 9-4. Registers related to the IBO Multiplexer  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Global Transceiver Control  
Register 1 (GTCR1)  
This is a Global Register for all 8 Framers. It can be  
used to specify Ganged Operation for the IBO  
00F0  
Receive Interleave Bus  
Operation Control Register  
(RIBOC)  
This register can be used for control of how many  
Framers and the corresponding Speed for the IBO  
links for the Receiver.  
88H  
Transmit Interleave Bus  
Operation Control Register  
(TIBOC)  
This register can be used for control of how many  
Framers and the corresponding Speed for the IBO  
links for the Transmitter.  
188H  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 to 8 can be calculated using the following: Framer N = (Framer 1  
address + (n - 1) x 200hex), where n = 2 to 8 for Framers 2 to 8.  
33 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-5. IBO Multiplexer Equivalent Circuit—4.096MHz  
RSER1  
RSIG1  
RSER  
RSIG  
RIBO_OEB  
Port # 1  
Backplane  
Interface  
RSYNC  
RSYNC1  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER1  
TSIG1  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 2  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
RSER3  
RSIG3  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 3  
Backplane  
Interface  
RSYNC3  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER3  
TSIG3  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 4  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
RSER5  
RSIG5  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 5  
Backplane  
Interface  
RSYNC5  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER5  
TSIG5  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 6  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
RSER7  
RSIG7  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 7  
Backplane  
Interface  
RSYNC7  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER7  
TSIG7  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 8  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
34 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-7. IBO Multiplexer Equivalent Circuit—8.192MHz  
RSER1  
RSIG1  
RSER  
RSIG  
RIBO_OEB  
Port # 1  
Backplane  
Interface  
RSYNC  
RSYNC1  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER1  
TSIG1  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 2  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 3  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 4  
Backplane  
Interface  
RSYSCLK  
TSSYNC  
RSER5  
RSIG5  
TSYSCLK  
TSER  
TSIG  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 5  
Backplane  
Interface  
RSYNC5  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER5  
TSIG5  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 6  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 7  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 8  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
35 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-9. IBO Multiplexer Equivalent Circuit—16.384MHz  
RSER(1)  
RSER(2)  
RSER(3)  
RSER(4)  
RSER(5)  
RSER(6)  
RSER1  
RSIG1  
RSIG(1)  
RSIG(2)  
RSIG(3)  
RSIG(4)  
RSIG(5)  
RSIG(6)  
RSIG(7)  
RSIG(8)  
RSER(7)  
RSER(8)  
RIBO_OEB(1-8)  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
To Mux  
RIBO_OEB(1-8)  
Port # 1  
Backplane  
Interface  
RSYNC1  
RSYSCLK  
RSYSCLK  
TSER  
TSIG  
TSER1  
TSIG1  
TSSYNC  
TSYSCLK  
TSSYNCIO  
TSYSCLK  
RSER  
RSIG  
To Mux  
RIBO_OEB  
RSYNC  
Port # 2  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
To Mux  
To Mux  
To Mux  
To Mux  
To Mux  
To Mux  
RIBO_OEB  
RSYNC  
Port # 3  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 4  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 5  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 6  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 7  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
RSER  
RSIG  
RIBO_OEB  
RSYNC  
Port # 8  
Backplane  
Interface  
RSYSCLK  
TSER  
TSIG  
TSSYNC  
TSYSCLK  
36 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-5. RSER Output Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
Combined Rx Serial  
Data for Ports 1, 2,  
3, & 4  
16.384MHz IBO  
Rx Serial Data  
for Ports 1, 2, 3, 4, 5,  
6, 7, & 8  
NAME  
RSER1  
Rx Serial Data for  
Port # 1  
Combined Rx Serial  
Data for Ports 1 & 2  
Rx Serial Data for  
Port # 2  
RSER2  
RSER3  
RSER4  
RSER5  
RSER6  
RSER7  
RSER8  
Reserved  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Rx Serial Data for  
Port # 3  
Combined Rx Serial  
Data for Ports 3 & 4  
Rx Serial Data for  
Port # 4  
Unused  
Combined Rx Serial  
Data for Ports 5, 6,  
7, & 8  
Rx Serial Data for  
Port # 5  
Combined Rx Serial  
Data for Ports 5 & 6  
Rx Serial Data for  
Port # 6  
Unused  
Unused  
Unused  
Unused  
Rx Serial Data for  
Port # 7  
Combined Rx Serial  
Data for Ports 7 & 8  
Rx Serial Data for  
Port # 8  
Unused  
Table 9-6. RSIG Output Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
Combined Rx  
Signaling Data for  
Ports 1 & 2  
8.192MHz IBO  
Combined Rx  
Signaling Data for  
Ports 1, 2, 3, & 4  
16.384MHz IBO  
Rx Signaling Data  
for Ports 1, 2, 3, 4, 5,  
6, 7, & 8  
NAME  
RSIG1  
Rx Signaling Data  
for Port # 1  
Rx Signaling Data  
for Port # 2  
RSIG2  
RSIG3  
RSIG4  
RSIG5  
RSIG6  
RSIG7  
RSIG8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Rx  
Signaling Data for  
Ports 3 & 4  
Rx Signaling Data  
for Port # 3  
Rx Signaling Data  
for Port # 4  
Unused  
Combined Rx  
Signaling Data for  
Ports 5 & 6  
Combined Rx  
Signaling Data for  
Ports 5, 6, 7, & 8  
Rx Signaling Data  
for Port # 5  
Rx Signaling Data  
for Port # 6  
Unused  
Unused  
Unused  
Unused  
Combined Rx  
Signaling Data for  
Ports 7 & 8  
Rx Signaling Data  
for Port # 7  
Rx Signaling Data  
for Port # 8  
Unused  
37 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-7. TSER Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
Combined Tx Serial  
Data for Ports 1, 2,  
3, & 4  
16.384MHz IBO  
Tx Serial Data  
for Ports 1, 2, 3, 4, 5,  
6, 7, & 8  
NAME  
TSER1  
Tx Serial Data for  
Port # 1  
Combined Tx Serial  
Data for Ports 1 & 2  
Tx Serial Data for  
Port # 2  
TSER2  
TSER3  
TSER4  
TSER5  
TSER6  
TSER7  
TSER8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Tx Serial Data for  
Port # 3  
Combined Tx Serial  
Data for Ports 3 & 4  
Tx Serial Data for  
Port # 4  
Unused  
Combined Tx Serial  
Data for Ports 5, 6,  
7, & 8  
Tx Serial Data for  
Port # 5  
Combined Tx Serial  
Data for Ports 5 & 6  
Tx Serial Data for  
Port # 6  
Unused  
Unused  
Unused  
Unused  
Tx Serial Data for  
Port # 7  
Combined Tx Serial  
Data for Ports 7 & 8  
Tx Serial Data for  
Port # 8  
Unused  
Table 9-8. TSIG Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
Combined Tx  
Signaling Data for  
Ports 1 & 2  
8.192MHz IBO  
Combined Tx  
Signaling Data for  
Ports 1, 2, 3, & 4  
16.384MHz IBO  
Tx Signaling Data  
for Ports 1, 2, 3, 4, 5,  
6, 7, & 8  
NAME  
TSIG1  
Tx Signaling Data  
for Port # 1  
Tx Signaling Data  
for Port # 2  
TSIG2  
TSIG3  
TSIG4  
TSIG5  
TSIG6  
TSIG7  
TSIG8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Combined Tx  
Signaling Data for  
Ports 3 & 4  
Tx Signaling Data  
for Port # 3  
Tx Signaling Data  
for Port # 4  
Unused  
Combined Tx  
Signaling Data for  
Ports 5 & 6  
Combined Tx  
Signaling Data for  
Ports 5, 6, 7, & 8  
Tx Signaling Data  
for Port # 5  
Tx Signaling Data  
for Port # 6  
Unused  
Unused  
Unused  
Unused  
Combined Tx  
Signaling Data for  
Ports 7 & 8  
Tx Signaling Data  
for Port # 7  
Tx Signaling Data  
for Port # 8  
Unused  
38 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-9. RSYNC Input Pin Definitions  
PIN  
NORMAL USE  
4.096MHz IBO  
8.192MHz IBO  
16.384MHz IBO  
Rx Frame Pulse for  
Ports 1, 2, 3, 4, 5, 6,  
7, & 8  
NAME  
Rx Frame Pulse for  
port # 1  
Rx Frame Pulse for  
Ports 1 & 2  
Rx Frame Pulse for  
Ports 1, 2, 3, & 4  
RSYNC1  
Rx Frame Pulse for  
port # 2  
RSYNC2  
RSYNC3  
RSYNC4  
RSYNC5  
RSYNC6  
RSYNC7  
RSYNC8  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
Rx Frame Pulse for  
port # 3  
Rx Frame Pulse for  
Ports 3 & 4  
Rx Frame Pulse for  
port # 4  
Unused  
Rx Frame Pulse for  
port # 5  
Rx Frame Pulse for  
Ports 5 & 6  
Rx Frame Pulse for  
Ports 5, 6, 7, & 8  
Rx Frame Pulse for  
port # 6  
Unused  
Unused  
Unused  
Unused  
Rx Frame Pulse for  
port # 7  
Rx Frame Pulse for  
Ports 7 & 8  
Rx Frame Pulse for  
port # 8  
Unused  
39 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.8.3 H.100 (CT-Bus) Compatibility  
The registers used for controlling the H.100 Backplane are RIOCR and TIOCR.  
The H.100 (or CT Bus) is a synchronous, bit-serial, TDM transport bus operating at 8.192MHz. The H.100 standard  
also allows compatibility modes to operate at 2.048MHz, 4.096MHz, or 8.192MHz. The control bit H100EN  
(RIOCR.5), when combined with RSYNCINV and TSSYNCINV allows the DS26528 to accept a CT-Bus-compatible  
frame sync signal (/CT_FRAME) at the RSYNC and TSSYNCIO (input mode) inputs. The following rules apply to  
the H100EN control bit:  
1. The H100EN bit controls the sampling point for the RSYNC (input mode) and TSSYNCIO (input Mode)  
only (the RSYNC output and other sync signals are not affected).  
2. The H100EN bit would always be used in conjunction with the receive and transmit elastic store  
buffers.  
3. The H100EN bit would typically be used with 8.192MHz IBO mode, but could also be used with  
4.096MHz IBO mode or 2.048MHz backplane operation.  
4. The H100EN bit in RIOCR controls both RSYNC and TSSYNCIO (i.e., there is no separate control bit  
for the TSSYNCIO).  
5. The H100EN bit does NOT invert the expected signal; RSYNCINV (RIOCR) and TSSYNCINV (TIOCR)  
must be set ‘high’ to invert the inbound sync signals.  
Figure 9-11. RSYNC Input In H.100 (Ct-Bus) Mode  
1
RSYNC  
2
RSYNC  
RSYSCLK  
Bit 8  
Bit 1  
Bit 2  
RSER  
3
tbc  
NOTES:  
1) RSYNC input mode, in normal operation.  
2) RSYNC input mode, H100EN = 1 and RSYNCINV = 1.  
3) tbc (bit-cell time) = 122ns typically. tbc = 244ns or 488ns also acceptable.  
40 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-13. TSSYNCIO (Input Mode) Input In H.100 (CT-Bus) Mode  
1
TSSYNCIO  
2
TSSYNCIO  
TSYSCLK  
TSER  
Bit 8  
Bit 1  
Bit 2  
3
tbc  
NOTES:  
1) TSSYNCIO in normal operation  
2) TSSYNCIO with H100EN = 1 and TSSYNCINV = 1.  
3) tbc (bit-cell time) = 122ns typically. tbc = 244ns or 488ns also acceptable.  
9.8.4 Transmit and Receive Channel Blocking Registers  
The Receive Channel Blocking Registers (RCBR1/RCBR2/RCBR3/RCBR4) and the Transmit Channel Blocking  
Registers (TCBR1/TCBR2/TCBR3/TCBR4) control RCHBLK and TCHBLK pins respectively. The RCHBLK and  
TCHBLK pins are user programmable outputs that can be forced either high or low during individual channels.  
These outputs can be used to block clocks to a USART or LAPD controller in ISDN–PRI applications. When the  
appropriate bits are set to a one, the RCHBLK and TCHBLK pin will be held high during the entire corresponding  
channel time. When used with a T1 (1.544MHz) backplane, only TCBR1 to TCBR3 will be used. TCBR4 is included  
to support an E1 (2.048MHz) backplane when the elastic store is configured for T1 to E1 rate conversion (Elastic  
Store).  
9.8.5 Transmit Fractional Support (Gapped Clock Mode)  
The DS26528 can be programmed to output gapped clocks for selected channels in the receive and transmit paths  
to simplify connections into a USART or LAPD controller in Fractional T1/E1 or ISDN–PRI applications. When the  
gapped clock feature is enabled, a gated clock is output on the TCHCLK signal. The channel selection is controlled  
via the transmit gapped clock channel select registers (TGCCS1–TGCCS4). The transmit path is enabled for  
gapped clock mode with the TGCLKEN bit (TESCR.6). Both 56KBps and 64KBps channel formats are supported  
as determined by TESCR.7. When 56KBps mode is selected, the clock corresponding to the Data/Control bit in the  
channel is omitted (only the seven most significant bits of the channel have clocks).  
9.8.6 Receive Fractional Support (Gapped Clock Mode)  
The DS26528 can be programmed to output gapped clocks for selected channels in the receive and transmit paths  
to simplify connections into a USART or LAPD controller in Fractional T1/E1 or ISDN–PRI applications. When the  
gapped clock feature is enabled, a gated clock is output on the RCHCLK signal. The channel selection is controlled  
via the receive gapped clock channel select registers (RGCCS1-RGCCS4). The receive path is enabled for gapped  
clock mode with the RGCLKEN bit (RESCR.6). Both 56KBps and 64KBps channel formats are supported as  
determined by RESCR.7. When 56KBps mode is selected, the clock corresponding to the Data/Control bit in the  
channel is omitted (only the seven most significant bits of the channel have clocks).  
41 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9 Framers  
The DS26528 framer cores are software selectable for T1, J1, or E1. The receive framer locates the frame and  
multiframe boundaries and monitors the data stream for alarms. It is also used for extracting and inserting signaling  
data, T1 FDL data, and E1 Si, and Sa bit information. The receive side framer decodes AMI, B8ZS line coding,  
synchronizes to the data stream, reports alarm information, counts framing/coding and CRC errors, and provides  
clock/data and frame sync signals to the backplane interface section. Diagnostic capabilities include loopbacks,  
and 16-bit loop-up and loop-down code detection. The device contains a set of internal registers for host access  
and control of the device.  
On the transmit side, clock data and frame sync signals are provided to the framer by the backplane interface  
section. The framer inserts the appropriate synchronization framing patterns, alarm information, calculates and  
inserts the CRC codes, and provides the B8ZS (zero code suppression) and AMI line coding.  
Both the transmit and receive path have an HDLC controller. The HDLC controller transmits and receives data via  
the framer block. The HDLC controller may be assigned to any time slot, portion of a time slot, or to FDL (T1). The  
HDLC controller has separate 64-byte Tx and Rx FIFO to reduce the amount of processor overhead required to  
manage the flow of data.  
The backplane interface provides a versatile method of sending and receiving data from the host system. Elastic  
stores provide a method for interfacing to asynchronous systems, converting from a T1/E1 network to a 2.048MHz,  
4.096MHz, 8.192MHz or N x 64kHz system backplane. The elastic stores also manage slip conditions  
(asynchronous interface). An IBO (Interleave Bus Option) is provided to allow multiple framers in the DS26528 to  
share a high-speed backplane.  
9.9.1 T1 Framing  
DS1 trunks contain 24 bytes of serial voice/data channels bundled with an overhead bit, the F-bit. The F-bit  
contains a fixed pattern for the receiver to delineate the frame boundaries. The F-bit is inserted once per frame at  
the beginning of the transmit frame boundary. The frames are further grouped into bundles of frames 12 for D4 and  
24 for ESF.  
The D4 and ESF framing modes are outlined in Table 9-10 and Table 9-11. In the D4 Mode, framing bit for Frame  
12 is ignored if Japanese Yellow is selected.  
42 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-10. D4 Framing Mode  
FRAME  
Ft  
Fs  
SIGNALING  
NUMBER  
1
2
1
0
1
0
1
0
0
0
1
1
1
0
3
4
5
6
A
B
7
8
9
10  
11  
12  
Table 9-11. ESF Framing Mode  
FRAME  
FRAMING  
NUMBER  
FDL  
CRC  
SIGNALING  
1
2
3
CRC1  
4
5
0
0
6
CRC2  
CRC3  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CRC4  
CRC5  
CRC6  
0
1
1
43 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-12. SLC-96 Framing  
FRAME NUMBER  
Ft  
Fs  
SIGNALING  
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
0
3
4
0
5
6
1
A
B
C
D
A
B
7
8
1
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
1
0
0
0
1
1
1
C1 (concentrator bit)  
C2 (concentrator bit)  
C3 (concentrator bit)  
C4 (concentrator bit)  
C5 (concentrator bit)  
C6 (concentrator bit)  
C7 (concentrator bit)  
C8 (concentrator bit)  
C9 (concentrator bit)  
C10 (concentrator bit)  
C11 (concentrator bit)  
0 (spoiler Bit)  
1 (Spoiler Bit)  
0 (Spoiler Bit)  
M1 (Maintenance Bit)  
M2 (Maintenance Bit)  
M3 (Maintenance Bit)  
A1 (Alarm Bit)  
C
D
A
44 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAME NUMBER  
Ft  
0
Fs  
SIGNALING  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
A2 (Alarm Bit)  
S1 (Switch Bit)  
S2 (Switch Bit)  
S3 (Switch Bit)  
S4 (Switch Bit)  
1(Spoiler Bit)  
0
B
1
0
1
0
1
0
C
D
9.9.2 E1 Framing  
The E1 Framing consists of FAS, NFAS detection as shown in the following table.  
Table 9-13. E1 FAS/NFAS Framing  
CRC-4  
FRAME  
TYPE  
1
2
3
4
5
6
7
8
#
0
FAS  
NFAS  
FAS  
C1  
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
A
0
1
Sa4  
1
1
Sa5  
1
0
Sa6  
0
1
Sa7  
1
1
Sa8  
1
1
2
C2  
0
3
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
4
C3  
1
5
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
6
C4  
0
7
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
8
C1  
1
9
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
10  
11  
12  
13  
14  
15  
C2  
1
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
C3  
E1  
C4  
E2  
NFAS  
FAS  
A
0
Sa4  
1
Sa5  
1
Sa6  
0
Sa7  
1
Sa8  
1
NFAS  
A
Sa4  
Sa5  
Sa6  
Sa7  
Sa8  
C — C bits are the CRC-4 remainder.  
A — Alarm bits.  
Sa — Bits for Datalink.  
45 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Registers that are related to setting up the framing are shown in the following table.  
Table 9-14. Registers Related to Setting Up the Framer  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Transmit Master Mode Register (TMMR)  
Transmit Control Register 1 (TCR1)  
180  
T1E1 Mode  
181  
Source of the F-Bit  
Transmit Control Register 2 (TCR2)  
182  
183  
080  
081  
014  
082  
90  
F-Bit Corruption, Selection of SLC96  
ESF or D4 Mode Selection  
T1/E1 Selection for Receiver  
Resynchronization Criteria for the Framer  
T1 Remote Alarm and OOF Criteria  
E1 Receive Loss of Signal Criteria Selection  
Receive Latched Status 1  
Receive Interrupt Mask 1  
Receive Latched Status 2  
Receive Interrupt Mask 2  
Receive Latched Status 4  
Receive Interrupt Mask 4  
Framer Out of Sync Register 1  
Framer Out of Sync Register 2  
RAF Byte  
Transmit Control Register 3 (TCR3)  
Receive Master Mode Register (RMMR)  
Receive Control Register 1 (RCR1)  
T1 Receive Control Register 2 (T1RCR2)  
E1 Receive Control Register 2 (E1RCR2)  
Receive Latched Status Register 1 (RLS1)  
Receive Interrupt Mask Register 1 (RIM1)  
Receive Latched Status Register 2 (RLS2)  
Receive Interrupt Mask Register 2 (RIM2)  
Receive Latched Status Register 4 ( RLS4)  
E1 Receive Interrupt Mask Register 4 (RIM4)  
A0  
91  
A1  
93  
A3  
Frames Out Of Sync Count Register 1  
(FOSCR1)  
54  
Frames Out Of Sync Count Register 2  
(FOSCR2)  
55  
E1 Receive Align Frame Register (E1RAF)  
64  
E1 Receive Non-Align Frame Register  
(E1RNAF)  
65  
RNAF Byte  
Transmit SLC96 Control Register (T1TSLC1)  
Transmit SLC96 Control Register (T1TSLC2)  
Transmit SLC96 Control Register (T1TSLC3)  
Receive SLC96 Control Register 1 (T1RSLC1)  
Receive SLC96 Control Register 1(T1RSLC2)  
Receive SLC96 Control Register 1 (T1RSLC3)  
164  
165  
166  
064  
065  
066  
Transmit SLC96 Bits  
Transmit SLC96 Bits  
Transmit SLC96 Bits  
Receive SLC96 Bits  
Receive SLC96 Bits  
Receive SLC96 Bits  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
46 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.3 T1 Transmit Synchronizer  
The DS26528 transmitter has the ability to identify the D4 or ESF frame boundary, as well as the CRC multiframe  
boundaries within the incoming NRZ data stream at TSER. The TFM (TCR3.2) control bit determines whether the  
transmit synchronizer searches for the D4 or ESF multiframe. Additional control signals for the transmit  
synchronizer are located in the TSYNCC Register. The latched status bit TLS3.0 (LOFD) is provided to indicate  
that a Loss of Frame synchronization has occurred, and a real-time bit (LOF) which is set high when the  
synchronizer is searching for frame/multiframe alignment. The LOFD bit can be enabled to cause an interrupt  
condition on INTB.  
Note that when the transmit synchronizer is used, the TSYNC signal should be set as an output  
(TSIO = 1) and the recovered frame sync pulse will be output on this signal. The recovered CRC4 multi-frame sync  
pulse will be output if enabled with TIOCR.0 (TSM = 1).  
Other key points concerning the E1 transmit synchronizer:  
1. The Tx synchronizer is not operational when the transmit elastic store is enabled, including IBO  
modes.  
2. The Tx synchronizer does not perform CRC6 alignment verification (ESF mode) and does not  
verify CRC4 codewords.  
The Tx synchronizer does not have the ability to search for the CAS multiframe.  
The registers related to the Transmit Synchronizer are shown in the following table.  
Table 9-15. Registers Related to the Transmit Synchronizer  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Transmit Synchronizer Control Register  
(TSYNCC)  
Resynchronization Control for the Transmit  
Synchronizer  
18E  
TFM Bit Selects Between D4 and ESF for the  
Transmit Synchronizer  
Transmit Control Register 3 (TCR3)  
183  
Transmit Latched Status Register 3  
(TLS3)  
Provides Latched Status for the Transmit  
Synchronizer  
192  
1A2  
184  
Transmit Interrupt Mask Register 3  
(TIM3)  
Provides Mask Bits for the TLS3 Status  
TSYNC Should Be Set as an Output  
Transmit I/O Configuration Register  
(TIOCR)  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
47 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.4 Signaling  
The DS26528 supports both software and hardware based Signaling. Interrupts can be generated on changes of  
signaling data. The DS26528 is also equipped with receive signaling freeze on loss of synchronization (OOF),  
carrier loss or change of frame alignment. The DS26528 also has hardware pins to indicate signaling freeze.  
Cꢀ Flexible signaling support  
Cꢀ Software or hardware based  
Cꢀ Interrupt generated on change of signaling data  
Cꢀ Receive signaling freeze on loss of frame, loss of signal, or change of frame alignment.  
Cꢀ Hardware pins for carrier loss and signaling freeze indication.  
Table 9-16. Registers Related to Signaling  
REGISTER  
FRAMER 1 ADDRESSES  
FUNCTION  
Transmit Signaling Registers (TS1 to  
TS16)  
140 to 14B (T1/J1)  
Transmit ABCD Signaling  
140 to 14F (E1 CAS)  
Software Signaling Insertion Enable  
Registers (SSIE1 to SSIE4)  
When Enabled, Signaling is Inserted for  
the Channel  
118, 119, 11A, 11B  
1C8, 1C9, 1CA, 1CB  
Transmit Hardware Signaling Channel  
Select Registers  
Bits Determine which Channels will have  
Signaling Inserted in Hardware Signaling  
Mode  
(THSCS1 to THSCS4)  
Receive Signaling Control Register  
(RSIGC)  
013  
Freeze Control for Receive Signaling  
Receive Signaling All-Ones Insertion  
Registers  
Registers for All-Ones Insertion  
(T1 Mode Only)  
038 to 03A  
(T1RSAOI1 to T1RSAOI3)  
Receive Signaling Registers  
(RS1 to RS16)  
040 to 04B (T1/J1)  
040 to 04F (E1)  
Receive Signaling Bytes  
098 to 09A (T1/J1)  
98 to 9F (E1)  
RSS1 to RSS4  
Receive Signaling Change of Status Bits  
Receive Signaling Change of State  
Interrupt Enable  
Receive Signaling Change of State Bit  
RSCSE1 to RSCSE4  
RLS4  
A8, A9, AA, AB  
93  
Receive Signaling Change of State  
Interrupt Mask Bit  
RIM4  
A3  
RSI1 to RSI4  
0C8 to 0CB  
Registers for Signaling Reinsertion  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
48 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9.4.1 Transmit Signaling Operation  
There are two methods to provide transmit signaling data. These are processor based (i.e., software based) or  
hardware based. Processor-based refers to access through the transmit signaling registers, TS1 –TS16, while  
hardware based refers to using the TSIG pins. Both methods may be used simultaneously.  
9.9.4.1.1  
Processor-Based Signaling  
In processor-based mode, signaling data is loaded into the Transmit Signaling registers (TS1 –TS16) via the host  
interface. On multiframe boundaries, the contents of these registers are loaded into a shift register for placement in  
the appropriate bit position in the outgoing data stream. The user can utilize the Transmit Multiframe Interrupt in  
Latched Status Register 1 (TLS1.2) to know when to update the signaling bits. The user need not update any  
transmit signaling register for which there is no change of state for that register.  
Each Transmit Signaling Register contains the Robbed Bit signaling (TCR1.4 in T1 mode) or TS16 CAS signaling  
(TCR1.6 in E1 mode) for one time slot that will be inserted into the outgoing stream. Signaling data can be sourced  
from the TS registers on a per-channel basis by utilizing the Software Signaling Insertion Enable registers, SSIE1  
through SSIE4.  
In T1 ESF framing mode, there are four signaling bits per channel (A, B, C, and D). TS1 – TS12 contain a full  
multiframe of signaling data. In T1 D4 framing mode, there are only two signaling bits per channel (A and B). In T1  
D4 framing mode, the framer uses A and B bit positions for the next multiframe. The C and D bit positions become  
‘don’t care’ in D4 mode.  
In E1 mode, TS16 carries the signaling information. This information can be in either CCS (Common Channel  
Signaling) or CAS (Channel Associated Signaling) format. The 32 time slots are referenced by two different  
channel number schemes in E1. In “Channel” numbering, TS0 through TS31 are labeled channels 1 through 32. In  
“Phone Channel” numbering TS1 through TS15 are labeled channel 1 through channel 15 and TS17 through TS31  
are labeled channel 15 through channel 30.  
TIME SLOT NUMBERING SCHEMES  
0
1
1
2
1
2
3
2
3
4
3
4
5
4
5
6
5
6
7
6
7
8
7
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31  
TS  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30  
Channel  
Phone  
8
Channel  
9.9.4.1.2  
Hardware-Based Signaling  
In Hardware Based mode, signaling data is input via the TSIG pin. This signaling PCM stream is buffered and  
inserted to the data stream being input at the TSER pin.  
Signaling data may be input via the Transmit Hardware Signaling Channel Select (THSCS1) function, the framer  
can be set up to take the signaling data presented at the TSIG pin and insert the signaling data into the PCM data  
stream that is being input at the TSER pin. The user can control which channels are to have signaling data from the  
TSIG pin inserted into them on a per-channel basis. The signaling insertion capabilities of the framer are available  
whether the transmit side elastic store is enabled or disabled. If the elastic store is enabled, the backplane clock  
(TSYSCLK) can be either 1.544MHz or 2.048MHz.  
49 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.4.2 Receive Signaling Operation  
There are two methods to access receive signaling data and provide transmit signaling data. These are processor  
based (i.e., software based) or hardware based. Processor-based refers to access through the transmit and  
receive signaling registers, RS1-RS16. Hardware based refers to the RSIG pin. Both methods may be used  
simultaneously.  
9.9.4.2.1  
Processor-Based Signaling  
Signaling information is sampled from the receive data stream and copied into the receive signaling registers, RS1  
through RS16. The signaling information in these registers is always updated on multiframe boundaries. This  
function is always enabled.  
9.9.4.2.2  
Change Of State  
In order to avoid constantly monitoring of the receive signaling registers the DS26528 can be programmed to alert  
the host when any specific channel or channels undergo a change of their signaling state. RSCSE1 through  
RSCSE4 are used to select which channels can cause a change of state indication. The change of state is  
indicated in Latched Status Register 4 (RLS4.3). If signaling integration is enabled then the new signaling state  
must be constant for 3 multiframes before a change of state indication is indicated. The user can enable the INT  
pin to toggle low upon detection of a change in signaling by setting the Interrupt Mask bit RIM4.3. The signaling  
integration mode is global and cannot be enabled on a channel-by-channel basis.  
The user can identity which channels have undergone a signaling change of state by reading the Receive  
Signaling Status (RSS1 through RSS4) registers. The information from these registers will tell the user which RSx  
register to read for the new signaling data. All changes are indicated in the RSS1–RSS4 registers regardless of the  
RSCSE1–RSCSE4 registers.  
9.9.4.2.3  
Hardware-Based Receive Signaling  
In hardware based signaling the signaling data is can be obtained from the RSER pin or the RSIG pin. RSIG is a  
signaling PCM stream output on a channel by channel basis from the signaling buffer. The T1 robbed bit or E1  
TS16 signaling data is still present in the original data stream at RSER. The signaling buffer provides signaling data  
to the RSIG pin and also allows signaling data to be reinserted into the original data stream in a different alignment  
that is determined by a multiframe signal from the RSYNC pin. In this mode, the receive elastic store may be  
enabled or disabled. If the receive elastic store is enabled, then the backplane clock (RSYSCLK) can be either  
1.544MHz or 2.048MHz. In the ESF framing mode, the ABCD signaling bits are output on RSIG in the lower nibble  
of each channel. The RSIG data is updated once a multiframe (3ms for T1 ESF, 1.5ms for T1 D4, 2ms for E1 CAS)  
unless a signaling freeze is in effect. In the D4 framing mode, the AB signaling bits are output twice on RSIG in the  
lower nibble of each channel. Hence, bits 5 and 6 contain the same data as bits 7 and 8, respectively, in each  
channel.  
9.9.4.2.4  
Receive Signaling Reinsertion at RSER  
In this mode, the user will provide a multiframe sync at the RSYNC pin and the signaling data will be reinserted  
based on this alignment. In T1 mode, this results in two copies of the signaling data in the RSER data stream. The  
original signaling data based on the Fs/ESF frame positions and the realigned data based on the user supplied  
multiframe sync applied at RSYNC. In voice channels this extra copy of signaling data is of little consequence.  
Reinsertion can be avoided in data channels since this feature is activated on a per-channel basis. For reinsertion,  
the elastic store must be enabled and for T1, the backplane clock can be either 1.544MHz or 2.048MHz. E1  
signaling information cannot be reinserted into a 1.544MHz backplane.  
Signaling reinsertion mode is enabled, on a per-channel basis by setting the Receive Signaling Reinsertion  
Channel Select bit high in the RSI register. The channels that are to have signaling reinserted are selected by  
writing to the RSI1-RSI4 registers. In E1 mode, the user will generally select all channels or none for reinsertion.  
9.9.4.2.5  
Force Receive Signaling All Ones  
In T1 mode, the user can on a per-channel basis force the robbed bit signaling bit positions to a one. This is done  
by using the T1RSAOI registers (T1RSAOI1 to 3). The user sets the Channel Select bit in the RSAOI1–RSAOI3  
registers to select the channels that are to have the signaling forced to one.  
50 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.4.2.6  
Receive Signaling Freeze  
The signaling data in the four multiframe signaling buffers will be frozen in a known good state upon either a loss of  
synchronization (OOF event), carrier loss, or change of frame alignment. In T1 mode, this action meets the  
requirements of BellCore TR-TSY-000170 for signaling freezing. To allow this freeze action to occur, the RSFE  
control bit (RSIGC.1) should be set high. The user can force a freeze by setting the RSFF control bit (RSIGC.2)  
high. The RSIGF output pin provides a hardware indication that a freeze is in effect. The four multiframe buffer  
provides a three multiframe delay in the signaling bits provided at the RSIG pin (and at the RSER pin if Receive  
Signaling Reinsertion is enabled). When freezing is enabled (RSFE = 1), the signaling data will be held in the last  
known good state until the corrupting error condition subsides. When the error condition subsides, the signaling  
data will be held in the old state for at least an additional 9ms (4.5ms in D4 framing mode, 6ms for E1 mode) before  
being allowed to be updated with new signaling data.  
The Receive Signaling Registers are frozen and not updated during a loss of sync condition. They will contain the  
most recent signaling information before the LOF occurred.  
9.9.4.3 Transmit SLC–96 Operation (T1 Mode Only)  
In a SLC–96 based transmission scheme, the standard Fs bit pattern is robbed to make room for a set of message  
fields. The SLC–96 multiframe is made up of six D4 superframes, hence it is 72 frames long. In the 72-frame  
SLC–96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36 bits are divided into alarm,  
maintenance, spoiler, and concentrator bits as well as 12-bits of the normal Fs pattern. Additional SLC-96  
information can be found in BellCore document TR-TSY-000008. Registers related to the Transmit FDL are shown  
in the following table.  
Table 9-17. Registers Related to SLC96  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
For sending Messages in Transmit SLC–96 Ft/Fs  
Bits  
Transmit FDL (T1TFDL)  
162  
TSCL Registers (T1TSLC1)  
164, 165, 166  
182  
Registers that Control the SLC–96 Overhead Values  
Transmit Control for Data Selection Source for the  
Transmit Control Register 2 TCR2)  
Transmit Latched Status 1(TLS1)  
Receive SLC 96 Register (T1RSLC1)  
Receive Latched Status 7 (RLS7)  
Ft/Fs Bits  
Status Bit for Indicating Transmission of Data Link  
Buffer  
190  
64, 64, 66  
96  
Receive SLC–96 Alignment Event  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
The TFDL register is used to insert the SLC-96 message fields. To insert the SLC-96 message using the TFDL  
register, the user should configure the DS26528 as shown below:  
Sꢂ TCR2.6 (TSLC96) = 1  
Sꢂ TCR2.7 (TFDLS) = 0  
Sꢂ TCR3.2 (TFM) = 1  
Sꢂ TCR1.6 (TFPT) = 0  
Enable Transmit SLC-96  
Source FS bits via TFDL or SLC96 formatter  
D4 framing Mode  
Do not 'pass through' TSER F-bits.  
The DS26528 will automatically insert the 12-bit alignment pattern in the Fs bits for the SLC96 data link frame.  
Data from the TSLC1–TSLC3 will be inserted into the remaining Fs bit locations of the SLC96 multiframe. The  
status bit TSLC96 located at TLS1.4 will set to indicate that the SLC–96 data link buffer has been transmitted and  
that the user should write new message data into TSLC1–TSLC3. The host will have 9ms after the assertion of  
TLS1.4 to write the registers TSLC1–TSLC3. If no new data is provided in these registers, the previous values will  
be retransmitted.  
51 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9.4.4 Receive SLC–96 Operation (T1 Mode Only)  
In a SLC–96-based transmission scheme, the standard Fs bit pattern is robbed to make room for a set of message  
fields. The SLC–96 multiframe is made up of six D4 superframes, hence it is 72 frames long. In the 72-frame  
SLC–96 multiframe, 36 of the framing bits are the normal Ft pattern and the other 36-bits are divided into alarm,  
maintenance, spoiler, and concentrator bits as well as 12-bits of the normal Fs pattern. Additional SLC–96  
information can be found in BellCore document TR-TSY-000008.  
To enable the DS26528 to synchronize onto a SLC–96 pattern, the following configuration should be used:  
Sꢂ RCR1.5 (RFM) = 1  
Set to D4 framing mode  
Sꢂ RCR1.3 (SYNCC) = 1  
Set to cross-couple Ft and Fs bits  
Sꢂ T1RCR2.4 (RSLC96) = 1 Enable SLC-96 synchronizer  
Sꢂ RCR1.7 (SYNCT) = 0  
Set to minimum sync time  
The SLC–96 message bits can be extracted via the RSLC1–3 registers. The status bit RSLC96 located at RLS7.3  
is useful for retrieving SLC-96 message data. The RSLC96 bit will indicate when the framer has updated the data  
link registers RSLC1-RSLC3 with the latest message data from the incoming data stream. Once the RSLC96 bit is  
set, the user will have 9ms (or until the next RSLC96 interrupt) to retrieve the most recent message data from the  
RSLC1/2/3 registers. Note that RSLC96 will not set if the DS26528 is unable to detect the 12-bit SLC-96 alignment  
pattern.  
52 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9.5 T1 Datalink  
9.9.5.1 T1 Transmit Bit Oriented Code (BOC) Transmit Controller  
The DS26528 contains a BOC generator on the transmit side and a BOC detector on the receive side. The BOC  
function is available only in T1 mode. The registers related to the Transmit Bit Oriented Code are shown in the  
following table.  
Table 9-18. Registers Related to T1 Transmit BOC  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Transmit Bit Oriented Register (T1TBOC)  
Transmit HDLC Control Register 2 (THC2)  
Transmit Control Register 1(TCR1)  
163  
Transmit Bit Oriented Message Code Register  
Bit to enable Sending of Transmit BOC  
Determines the Sourcing of the F-Bit  
113  
181  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
Bits 0 through 5 in the TBOC register contain the BOC message to be transmitted. Setting SBOC = 1 (THC2.6)  
causes the transmit BOC controller to immediately begin inserting the BOC sequence into the FDL bit position. The  
transmit BOC controller automatically provides the abort sequence. BOC messages will be transmitted as long as  
SBOC is set. Note that the TFPT(TCR1.6) control bit must be set to 'zero' for the BOC message to overwrite F-bit  
information being sampled on TSER.  
To Transmit a BOC  
1. Write 6-bit code into the TBOC register.  
2. Set SBOC bit in THC2 = 1.  
9.9.5.2 Receive Bit Oriented Code (BOC) Controller  
The DS26528 Framers contains a BOC generator on the transmit side and a BOC detector on the receive side.  
The BOC function is available only in T1, ESF Mode in the Data link Bits. The following table shows the registers  
related to the Receive BOC operation.  
Table 9-19. Registers Related to T1 Receive BOC  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Receive Bit Oriented Control (T1RBOCC)  
Receive Bit Oriented Control (T1RBOC)  
Receive Latched Status 7(RLS7)  
Receive Interrupt Mask 7 (RIM7)  
015  
Controls the Receive BOC Function  
063  
096  
0A6  
Receive Bit Oriented Message  
Indicates Changes to the Receive Bit  
Oriented Messages  
Mask Bits for RBOC for Generation of  
Interrupts  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
53 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
In ESF mode, the DS26528 continuously monitors the receive message bits for a valid BOC message. The BOC  
Detect (BD) status bit at RLS7.0 will be set once a valid message has been detected for time determined by the  
Receive BOC Filter bits RBF0 and RBF1 in the RBOCC register. The 6-bit BOC message will be available in the  
RBOC register. Once the user has cleared the BD bit, it will remain clear until a new BOC is detected (or the same  
BOC is detected following a BOC Clear event). The BOC Clear (BC) bit at RLS7.1 is set when a valid BOC is no  
longer being detected for a time determined by the Receive BOC Disintegration bits RBD0 and RBD1 in the  
RBOCC register.  
The BD and BC status bits can create a hardware interrupt on the INTB signal as enabled by the associated  
interrupt mask bits in the RIM7 register.  
9.9.5.3 Legacy T1 Transmit FDL  
It is recommended that the DS26528’s built-in BOC or HDLC controllers be used for most applications requiring  
access to the FDL. The registers related to control of the Transmit FDL are presented in the following table.  
Table 9-20. Registers Related to T1 Transmit FDL  
REGISTER  
FRAMER 1 ADDRESSES  
FUNCTION  
Transmit FDL (T1TFDL)  
162  
182  
191  
1A1  
FDL Code Used to Insert Transmit FDL  
Defines the Source of the FDL  
Transmit FDL Empty Bit  
Transmit Control 2 (TCR2)  
Transmit Latched Status 2(TLS2)  
Transmit Interrupt Mask 2 (TIM2)  
Mask Bit for TFDL Empty  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
When enabled with TCR2.7, the transmit section will shift out into the T1 data stream, either the FDL (in the ESF  
framing mode) or the Fs bits (in the D4 framing mode) contained in the Transmit FDL register (TFDL). When a new  
value is written to the TFDL, it will be multiplexed serially (LSB first) into the proper position in the outgoing T1 data  
stream. After the full eight bits has been shifted out, the framer will signal the host controller that the buffer is empty  
and that more data is needed by setting the TLS2.4 bit to a one. The INT will also toggle low if enabled via TIM2.4.  
The user has 2ms to update the TFDL with a new value. If the TFDL is not updated, the old value in the TFDL will  
be transmitted once again. Note that in this mode, no zero stuffing will be applied to the FDL data. It is strongly  
suggested that the HDLC controller be used for FDL messaging applications.  
In the D4 framing mode, the framer uses the TFDL register to insert the Fs framing pattern. To accomplish this the  
TFDL register must be programmed to ‘1C’h and TCR2.7 should be set to ‘0’ ( source Fs data from the TFDL  
register)  
The Transmit FDL Register (TFDL) contains the Facility Data Link (FDL) information that is to be inserted on a byte  
basis into the outgoing T1 data stream. The LSB is transmitted first. In D4 mode, only the lower six bits are used.  
54 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.5.4 Legacy T1 Receive FDL  
It is recommended that the DS26528’s built-in BOC or HDLC controllers be used for most applications requiring  
access to the FDL. The registers related to the Receive FDL are shown in the following table.  
Table 9-21. Registers Related to T1 Receive FDL  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Receive FDL (T1RFDL)  
162  
FDL Code Used to Insert Transmit FDL  
Receive FDL Full Bit is in this Register  
Mask Bit for RFDL Full  
Receive Latched Status 7(RLS7)  
Receive Interrupt Mask 7(RIM7)  
96  
1A1  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
In the receive section, the recovered FDL bits or Fs bits are shifted bit-by-bit into the Receive FDL register (RFDL).  
Since the RFDL is 8 bits in length, it will fill up every 2ms (8 times 250s). The framer will signal an external  
controller that the buffer has filled via the RLS7.2 bit. If enabled via RIM7.2, the INTB pin will toggle low indicating  
that the buffer has filled and needs to be read. The user has 2ms to read this data before it is lost. Note that no  
zero de-stuffing is applied to the for the data provided through the RFDL register. The Receive FDL Register  
(RFDL) reports the incoming Facility Data Link (FDL) or the incoming Fs bits. The LSB is received first. In D4  
framing mode, RFDL updates on multiframe boundaries and reports only the Fs bits.  
9.9.6 E1 Datalink  
The registers related to E1 Datalink is shown in the following table:  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
E1RAF  
64  
65  
Receive Frame Alignment Register  
Receive Non-Frame Alignment Register  
Receive Si Bits of the Frame Alignment Frames  
Receive Si Bits of the Non-Frame Alignment Frames  
Receive Sa Bits  
E1RNAF  
E1RsiAF  
66  
E1RSiNAF  
E1RSa4 to RSA8  
E1TAF  
67  
69 to 6D  
164  
Transmit Align Frame Register  
E1TNAF  
E1TSiAF  
165  
Transmit Non-Align Frame Register  
Transmit Si Bits of the Frame Alignment Frames  
Transmit Si Bits of the Non-Frame Alignment Frames  
Transmit Sa4 to Sa8  
166  
E1TSiNAF  
E1TSa4 to TSA8  
E1TSACR  
167  
169 to 16D  
114  
Transmit Source3 of Sa Control  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following:  
Framer N = (Framer 1 address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
55 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9.6.1 Additional E1 Receive Sa and Si Bit Receive Operation (E1 Mode)  
The DS26528, when operated in the E1 mode, provides for access to both the Sa and the Si bits via two methods.  
The first involves using the internal E1RAF/E1RNAF and E1TAF/E1TNAF registers. The second method involves  
an expanded version of the first method.  
9.9.6.1.1  
Internal Register Scheme Based On Double-Frame (Method 1)  
On the receive side, the E1RAF and E1RNAF registers will always report the data as it received in the Sa and Si bit  
locations. The E1RAFand E1RNAF registers are updated on align frame boundaries. The setting of the Receive  
Align Frame bit in Latched Status Register 2 (RLS2.0) will indicate that the contents of the RAF and RNAF have  
been updated. The host can use the RLS2.0 bit to know when to read the E1RAF and E1RNAF registers. The host  
has 250s to retrieve the data before it is lost.  
9.9.6.1.2  
Internal Register Scheme Based On CRC4 Multiframe  
On the receive side, there is a set of eight registers (E1RsiAF, E1RSiNAF, E1RRA, E1RSa4 to E1RSa8) that report  
the Si and Sa bits as they are received. These registers are updated with the setting of the Receive CRC4  
Multiframe bit in Latched Status Register 2 (RLS2.1). The host can use the RLS2.1 bit to know when to read these  
registers. The user has 2 ms to retrieve the data before it is lost. See the following register descriptions for  
additional information.  
9.9.6.2 Internal Register Scheme Based On CRC4 Multiframe  
On the transmit side there is a set of eight registers (E1TSiAF, E1TSiNAF, E1TRA, E1TSa4 to E1TSa8) that via the  
Transmit Sa Bit Control Register (E1TSACR), can be programmed to insert both Si and Sa data. Data is sampled  
from these registers with the setting of the Transmit Multiframe bit in Status Register 1 (TLS1.3). The host can use  
the TLS1.3 bit to know when to update these registers. It has 2ms to update the data or else the old data will be  
retransmitted. See the register descriptions below.  
9.9.6.3 Sa Bit Monitoring and Reporting  
In addition to the registers outlined above, the DS26528 provides status and interrupt capability in order to detect  
changes in the state of selected Sa bits. The E1RSAIMR register can be used to select which Sa bits are monitored  
for a change of state. When a change of state is detected in one of the enabled Sa bit positions, a status bit is set  
in the RLS7 register via the SaXCD bit (bit 0). This status bit can in turn be used to generate an interrupt by  
unmasking RIM7.0 (SaXCD). If multiple Sa bits have been enabled, the user can read the SABITS resigister at  
address 06Eh to determine the current value of each Sa bit.  
For the Sa6 bits, additional support is available to detect specific codewords per ETS300233. The Sa6CODE  
register will report the received Sa6 codeword. The codeword must be stable for a period of 3 sub-multiframes and  
be different from the previous stored value in order to be updated in this register Please see the Sa6CODE register  
description for further details on the operation of this register and the values reported in it. An additional status bit is  
provided in RLS7 (Sa6CD) to indicate if the received Sa6 codeword has changed. A mask bit is provided for this  
status bit in RIM7 to allow for interrupt generation when enabled.  
9.9.7 Maintenance and Alarms  
The DS26528 provides extensive functions for alarm detection and generation. It also provides diagnostic functions  
for monitoring of performance and sending of diagnostic information:  
Sꢂ Real-time and latched status bits, interrupts and interrupt mask for transmitter and receiver  
Sꢂ LOS detection  
Sꢂ RIA detection and generation  
Sꢂ PDV Violation detection  
Sꢂ Error counters  
Sꢂ DS0 Monitoring  
Sꢂ Milliwatt generation and detection  
Sꢂ Slip Buffer Status for Transmit and Receive  
56 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Some of the Registers related to Maintenance and Alarms are as follows:  
Table 9-22. Registers Related to Maintenance and Alarms  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
Receive Real-Time Status Register 1  
0B0  
0A0  
91  
Real-Time Receive Status 1  
Real-Time Interrupt Mask 1  
(RRTS1)  
Receive Interrupt Mask 1(RIM1)  
Receive Latched Status Register 2 (RLS2)  
Real-Time Latched Status 2  
Real-Time Receive Status 2  
Real-Time Latched Status 3  
Real-Time Interrupt Mask 3  
Real-Time Interrupt Mask 3  
Real-Time Latched Status 7  
Real-Time Interrupt Mask 7  
Loss of Transmit Clock Status, TPDV, etc.  
Loss of Frame Status  
Receive Real-Time Status Register 3  
(RRTS3)  
0B2  
92  
Receive Latched Status Register 3 (RLS3)  
Receive Interrupt Mask Register 3 (RIM3)  
Receive Interrupt Mask Register 4 (RIM4)  
Rx Latched Status 7 (RLS7)  
A2  
A3  
96  
Rx Interrupt Mask Reg 7 (RIM7)  
Tx Latched Status 1 (TLS1)  
A6  
190  
192  
060  
086  
Tx Latched Status 3 (SYNC)(TLS3)  
Rx DS0 Monitor (RDS0M)  
Receive DS0 Monitor  
Rx Error Count Configuration (ERCNT)  
Configuration of the Error Counters  
Line Code Violation Count Register 1  
(LCVCR1)  
050  
051  
052  
053  
Line Code Violation Counter  
Line Code Violation Count Register 2  
(LCVCR2)  
Path Code Violation Count Register 1  
(PCVCR1)  
Path Code Violation Count Register 2  
(PCVCR2)  
Line Code Violation Counter  
Receive Path Code Violation Counter 1  
Receive Path Code Violation Counter 2  
Frames Out Of Sync Count Register 1  
(FOSCR1)  
054  
055  
056  
057  
Receive Frame Out of Sync Counter 1  
Receive Frame Out of Sync Counter 2  
E-Bit Count Register 1  
Frames Out Of Sync Count Register 2  
(FOSCR2)  
E1EBCR1  
(E1EBCR1)  
E1EBCR2  
E-Bit Count Register 2  
(E1EBCR2)  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
57 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.7.1 Status and Information Bit Operation  
When a particular event has occurred (or is occurring), the appropriate bit in one of these registers will be set to a  
one. Status bits may operate in either a latched or real-time fashion. Some latched bits may be enabled to generate  
a hardware interrupt via the INTB signal.  
Real-Time Bits  
Some status bits operate in a real-time fashion. These bits are read-only and indicate the present state of an alarm  
or a condition. Real-time bits will remain stable, and valid during the host read operation. The current value of the  
internal status signals can be read at any time from the real-time status registers without changing any the latched  
status register bits  
Latched Bits  
When an event or an alarm occurs and a latched bit is set to a one, it will remain set until cleared by the user.  
These bits typically respond on a ‘change-of-state’ for an alarm, condition, or event; and operate in a read-then-  
write fashion. The user should read the value of the desired status bit, and then write a ‘1’ to that particular bit  
location in order to clear the latched value (write a ‘0’ to locations not to be cleared). Once the bit is cleared, it will  
not be set again until the event has occurred again.  
Mask Bits  
Some of the alarms and events can be either masked or unmasked from the interrupt pin via the Interrupt Mask  
Registers (RIMx). When unmasked, the INTB signal will be forced low when the enabled event or condition occurs.  
The INTB pin will be allowed to return high (if no other unmasked interrupts are present) when the user reads then  
clears (with a write) the alarm bit that caused the interrupt to occur. Note that the latched status bit and the INTB  
pin will clear even if the alarm is still present.  
Note that some conditions may have multiple status indications. For example, Receive Loss of Frame (RLOF)  
provides the following indications:  
Real-time indication that the receiver is not synchronized  
RRTS1.0  
with incoming data stream. Read-only bit that remains high  
(RLOF)  
as long as the condition is present.  
Latched indication that the receiver has loss  
RLS1.0  
synchronization since the bit was last cleared. Bit will clear  
when written by the user, even if the condition is still  
present (rising edge detect of RRTS1.0).  
(RLOFD)  
Latched indication that the receiver has reacquired  
synchronization since the bit was last cleared. Bit will clear  
when written by the user, even if the condition is still  
present (falling edge detect of RRTS1.0).  
RLS1.4  
(RLOFC)  
58 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-23. T1 Alarm Criteria  
ALARM  
SET CRITERIA  
CLEAR CRITERIA  
AIS (Blue Alarm) (see note 1  
below)  
when over a 3 ms window, 4  
or less zeros are received  
when bit 2 of 256 consecutive  
channels is set to zero for at  
least 254 occurrences  
when over a 3 ms window, 5  
or more zeros are received  
when bit 2 of 256 consecutive  
channels is set to zero for less  
than 254 occurrences  
RAI (Yellow Alarm)  
1. D4 bit 2 mode  
(T1RCR2.0 = 0)  
2. D4 12th F–bit mode  
when the 12th framing bit is  
set to one for two consecutive  
occurrences  
when the 12th framing bit is  
set to zero for two consecutive  
occurrences  
(T1RCR2.0 = 1; this mode is  
also referred to as the  
“Japanese Yellow Alarm”)  
3. ESF mode  
when 16 consecutive patterns  
of 00FF appear in the FDL  
when 14 or less patterns of  
00FF hex out of 16 possible  
appear in the FDL  
LOS Loss of Signal (this alarm when 192 consecutive zeros  
when 14 or more ones out of  
112 possible bit positions are  
received starting with the first  
one received  
is also referred to as Receive  
Carrier Loss (RCL))  
are received  
NOTES:  
1. The definition of the Alarm Indication Signal (Blue Alarm) is an unframed all ones signal. AIS detectors  
should be able to operate properly in the presence of a 10E–3 error rate and they should not falsely trigger on a framed all ones signal.  
The AIS alarm criteria in the DS26528 has been set to achieve this performance. It is recommended that the RAIS bit be qualified with the  
RLOF bit.  
2. The following terms are equivalent:  
RAIS = Blue Alarm  
RLOS = RCL  
RLOF = Loss of Frame (conventionally RLOS for Dallas Semiconductor devices)  
RRAI = Yellow Alarm  
9.9.8 E1 Automatic Alarm Generation  
The device can be programmed to automatically transmit AIS or Remote Alarm. When automatic AIS generation is  
enabled (TCR2.6 = 1), the device monitors the receive side framer to determine if any of the following conditions  
are present/ loss of receive frame synchronization, AIS alarm (all one’s) reception, or loss of receive carrier (or  
signal). If any one (or more) of the above conditions is present, then the framer will either force an AIS.  
When automatic RAI generation is enabled (TCR2.5 = 1), the framer monitors the receive side to determine if any  
of the following conditions are present/ loss of receive frame synchronization, AIS alarm (all one’s) reception, or  
loss of receive carrier (or signal) or if CRC4 multiframe synchronization cannot be found within 128ms of FAS  
synchronization (if CRC4 is enabled). If any one (or more) of the above conditions is present, then the framer will  
transmit a RAI alarm. RAI generation conforms to ETS 300 011 and ITU G.706 specifications.  
Note: It is an illegal state to have both automatic AIS generation and automatic Remote Alarm generation enabled  
at the same time.  
9.9.8.1 Receive AIS-CI and RAI-CI Detection  
AIS-CI is a repetitive pattern of 1.26 seconds. It consists of 1.11 seconds of an unframed all ones pattern and 0.15  
seconds of all ones modified by the AIS-CI signature. The AIS-CI signature is a repetitive pattern 6176 bits in  
length in which, if the first bit is numbered bit 0, bits 3088, 3474 and 5790 are logical zeros and all other bits in the  
pattern are logical ones (T1.403). AIS-CI is an unframed pattern, so it is defined for all T1 framing formats. The  
RAIS-CI bit is set when the AIS-CI pattern has been detected and RAIS (RRTS1.2) is set. RAIS-CI is a latched bit  
that should be cleared by the host when read. RAIS-CI will continue to set approximately every 1.2 seconds that  
the condition is present. The host will need to ‘poll’ the bit, in conjunction with the normal AIS indicators to  
determine when the condition has cleared.  
59 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
RAI-CI is a repetitive pattern within the ESF data link with a period of 1.08 seconds. It consists of sequentially  
interleaving 0.99 seconds of “00000000 11111111” (right-to-left ) with 90 ms of “00111110 11111111”. The RRAI-  
CI bit is set when a bit oriented code of “00111110 11111111” is detected while RRAI (RRTS1.3) is set. The RRAI-  
CI detector uses the receive BOC filter bits (RBF0 & RBF1) located in RBOCC to determine the integration time for  
RAI-CI detection. Like RAIS-CI, the RRAI-CI bit is latched and should be cleared by the host when read. RRAI-CI  
will continue to set approximately every 1.1 seconds that the condition is present. The host will need to ‘poll’ the bit,  
in conjunction with the normal RAI indicators to determine when the condition has cleared. It may be useful to  
enable the 200ms ESF RAI integration time with the RAIIE control bit (T1RCR2.1) in networks that utilize RAI-CI.  
9.9.8.2 T1 Receive Side Digital Milliwatt Code Generation  
Receive side digital milliwatt code generation involves using the Receive Digital Milliwatt Registers (RDMR1/2/3) to  
determine which of the 24 T1 channels of the T1 line going to the backplane should be overwritten with a digital  
milliwatt pattern. The digital milliwatt code is an 8-byte repeating pattern that represents a 1kHz sine wave  
(1E/0B/0B/1E/9E/8B/8B/9E). Each bit in the RDMRx registers, represents a particular channel. If a bit is set to a  
one, then the receive data in that channel will be replaced with the digital milliwatt code. If a bit is set to zero, no  
replacement occurs.  
9.9.9 Error Count Registers  
The DS26528 contains four counters that are used to accumulate line coding errors, path errors and  
synchronization errors. Counter update options include one second boundaries, 42ms (T1 mode only), 62.5ms (E1  
mode only) or manually. See Error Counter Configuration Register (ERCNT). When updated automatically, the  
user can use the interrupt from the timer to determine when to read these registers. All four counters will saturate at  
their respective maximum counts and they will not rollover (note: only the Line Code Violation Count Register has  
the potential to over-flow but the bit error would have to exceed 10E-2 before this would occur).  
The DS26528 can share the one-second timer from port #1 across all ports. All DS26528 error/performance  
counters can be configured to update on the shared one-second source, or a separate manual update signal input.  
See the ERCNT register for more information. By allowing multiple framer cores to synchronously latch their  
counters, the host software can be streamlined to read and process performance information from multiple spans in  
a more controlled manner.  
9.9.9.1 Line Code Violation Count Register (LCVCR)  
Either bipolar violations or code violations can be counted. Bipolar violations are defined as consecutive marks of  
the same polarity. In T1 mode, if the B8ZS mode is set for the receive side, then B8ZS codewords are not counted  
as BPVs. In E1 mode, if the HDB3 mode is set for the receive side, then HDB3 codewords are not counted as  
BPVs. If ERCNT.0 is set, then the LVC counts code violations as defined in ITU O.161. Code violations are defined  
as consecutive bipolar violations of the same polarity. In most applications, the framer should be programmed to  
count BPVs when receiving AMI code and to count CVs when receiving B8ZS or HDB3 code. This counter  
increments at all times and is not disabled by loss of sync conditions. The counter saturates at 65,535 and will not  
rollover. The bit error rate on an E1 line would have to be greater than 10E-2 before the VCR would saturate. See  
the following table for details of exactly what the LCVCRs count.  
Table 9-24. T1 Line Code Violation Counting Options  
COUNT EXCESSIVE ZEROS?  
B8ZS ENABLED?  
WHAT IS COUNTED  
(ERCNT.0)  
(RCR1.6)  
no  
IN THE LCVCR1, LCVCR2  
no  
yes  
no  
BPVs  
no  
BPVs + 16 consecutive zeros  
yes  
BPVs (B8ZS/HDB3 codewords not counted)  
BPVs + 8 consecutive zeros  
yes  
yes  
60 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-25. E1 Line Code Violation Counting Options  
E1 CODE VIOLATION SELECT  
WHAT IS COUNTED IN THE LCVCRs  
(ERCNT.0)  
0
BPVs  
CVs  
1
9.9.9.2 Path Code Violation Count Register (PCVCR)  
In T1 operation, the Path Code Violation Count Register records either Ft, Fs, or CRC6 errors. When the receive  
side of a framer is set to operate in the T1 ESF framing mode, PCVCR will record errors in the CRC6 codewords.  
When set to operate in the T1 D4 framing mode, PCVCR will count errors in the Ft framing bit position. Via the  
ERCNT.2 bit, a framer can be programmed to also report errors in the Fs framing bit position. The PCVCR will be  
disabled during receive loss of synchronization (RLOF = 1) conditions. See Table 9-26 for a detailed description of  
exactly what errors the PCVCR counts in T1 operation.  
In E1 operation, the Path Code Violation Count register records CRC4 errors. Since the maximum CRC4 count in a  
one second period is 1000, this counter cannot saturate. The counter is disabled during loss of sync at either the  
FAS or CRC4 level; it will continue to count if loss of multiframe sync occurs at the CAS level.  
The Path Code Violation Count Register 1 (PCVCR1) is the most significant word and PCVCR2 is the least  
significant word of a 16-bit counter that records path violations (PVs).  
Table 9-26. T1 Path Code Violation Counting Arrangements  
WHAT IS COUNTED  
FRAMING MODE  
COUNT Fs ERRORS?  
IN THE PCVCRs?  
D4  
D4  
no  
yes  
errors in the Ft pattern  
errors in both the Ft & Fs patterns  
errors in the CRC6 codewords  
ESF  
don’t care  
9.9.9.3 Frames Out Of Sync Count Register (FOSCR)  
The FOSCR is used to count the number of multiframes that the receive synchronizer is out of sync. This number is  
useful in ESF applications needing to measure the parameters Loss Of Frame Count (LOFC) and ESF Error  
Events as described in AT&T publication TR54016. When the FOSCR is operated in this mode, it is not disabled  
during receive loss of synchronization (RLOF = 1) conditions. The FOSCR has alternate operating mode whereby it  
will count either errors in the Ft framing pattern (in the D4 mode) or errors in the FPS framing pattern (in the ESF  
mode). When the FOSCR is operated in this mode, it is disabled during receive loss of synchronization (RLOF = 1)  
conditions. See Table 9-27 for a detailed description of what the FOSCR is capable of counting.  
In E1 mode, The FOSCR counts word errors in the Frame Alignment Signal in time slot 0. This counter is disabled  
when RLOF is high. FAS errors will not be counted when the framer is searching for FAS alignment and/or  
synchronization at either the CAS or CRC4 multiframe level. Since the maximum FAS word error count in a one  
second period is 4000, this counter cannot saturate.  
The Frames Out of Sync Count Register 1 (FOSCR1) is the most significant word and FOSCR2 is the least  
significant word of a 16–bit counter that records frames out of sync.  
61 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 9-27. T1 Frames Out Of Sync Counting Arrangements  
FRAMING MODE  
(RCR1.5)  
COUNT MOS OR F–BIT ERRORS  
(ERCNT.1)  
WHAT IS COUNTED  
IN THE FOSCR1 and FOSCR2  
number of multiframes out of  
sync  
D4  
D4  
MOS  
F–Bit  
MOS  
F–Bit  
errors in the Ft pattern  
number of multiframes out of  
sync  
ESF  
ESF  
errors in the FPS pattern  
9.9.9.4 E–Bit Counter (EBCR)  
This counter is only available in E1 mode. E–bit Count Register 1 (E1EBCR1) is the most significant word and  
E1EBCR2 is the least significant word of a 16–bit counter that records Far End Block Errors (FEBE) as reported in  
the first bit of frames 13 and 15 on E1 lines running with CRC4 multiframe. These count registers will increment  
once each time the received E–bit is set to zero. Since the maximum E–bit count in a one second period is 1000,  
this counter cannot saturate. The counter is disabled during loss of sync at either the FAS or CRC4 level; it will  
continue to count if loss of multiframe sync occurs at the CAS level.  
9.9.10 DS0 Monitoring Function  
The DS26528 can monitor one DS0 (64kbps) channel in the transmit direction and one DS0 channel in the receive  
direction at the same time. The registers related to the control of transmit and receive DS0 are shown in the  
following table.  
Table 9-28. Registers Related to DS0 Monitoring  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
189  
TDS0SEL  
Transmit Channel to be Monitored  
The Monitored Data  
TDS0M  
1BB  
RDS0SEL  
RDS0M  
012H  
Receive Channel to be Monitored  
The Monitored Data  
060H  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
In the transmit direction the user will determine which channel is to be monitored by properly setting the TCM0 to  
TCM4 bits in the TDS0SEL register. In the receive direction, the RCM0 to RCM4 bits in the RDS0SEL register  
need to be properly set. The DS0 channel pointed to by the TCM0 to TCM4 bits will appear in the Transmit DS0  
Monitor (TDS0M) register and the DS0 channel pointed to by the RCM0 to RCM4 bits will appear in the Receive  
DS0 (RDS0M) register. The TCM4 to TCM0 and RCM4 to RCM0 bits should be programmed with the decimal  
decode of the appropriate T1or E1 channel. T1 channels 1 through 24 map to register values 0 through 23. E1  
channels 1 through 32 map to register values 0 through 31. For example, if DS0 channel 6 in the transmit direction  
and DS0 channel 15 in the receive direction needed to be monitored, then the following values would be  
programmed into TDS0SEL and RDS0SEL:  
TCM4 = 0  
TCM3 = 0  
TCM2 = 1  
TCM1 = 0  
TCM0 = 1  
RCM4 = 0  
RCM3 = 1  
RCM2 = 1  
RCM1 = 1  
RCM0 = 0  
62 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.11 Transmit Per-Channel Idle Code Insertion  
Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions.  
The Transmit Idle Definition Registers (TIDR1-TIDR32) are provided to set the 8-bit idle code for each channel.  
The Transmit Channel Idle Code Enable registers (TCICE1-4) are used to enable idle code replacement on a per  
channel basis.  
9.9.12 Receive Per-Channel Idle Code Insertion  
Channel data can be replaced by an idle code on a per-channel basis in the transmit and receive directions. The  
Receive Idle Definition Registers (RIDR1-RIDR32) are provided to set the 8-bit idle code for each channel. The  
Receive Channel Idle Code Enable registers (RCICE1-4) are used to enable idle code replacement on a per-  
channel basis.  
9.9.13 Per-Channel Loopback  
The Per-Channel Loopback Registers (PCL1 to PCL4) determine which channels (if any) from the backplane  
should be replaced with the data from the receive side or in other words, off of the T1 or E1 line. If this loopback is  
enabled, then transmit and receive clocks and frame syncs must be synchronized. One method to accomplish this  
would be to tie RCLK to TCLK and RFSYNC to TSYNC. There are no restrictions on which channels can be looped  
back or on how many channels can be looped back.  
Each of the bit positions in the Per-Channel Loopback Registers (PCL1/PCLR2/PCLR3/ PCLR4) represent a DS0  
channel in the outgoing frame. When these bits are set to a one, data from the corresponding receive channel will  
replace the data on TSER for that channel.  
9.9.14 E1 G.706 Intermediate CRC-4 Updating (E1 Mode Only)  
The DS26528 can implement the G.706 CRC-4 recalculation at intermediate path points. When this mode is  
enabled, the data stream presented at TSER will already have the FAS/NFAS, CRC multiframe alignment word  
and CRC-4 checksum in time slot 0. The user can modify the Sa bit positions and this change in data content will  
be used to modify the CRC-4 checksum. This modification however will not corrupt any error information the  
original CRC-4 checksum may contain. In this mode of operation, TSYNC must be configured to multiframe mode.  
The data at TSER must be aligned to the TSYNC signal. If TSYNC is an input then the user must assert TSYNC  
aligned at the beginning of the multiframe relative to TSER. If TSYNC is an output, the user must multiframe align  
the data presented to TSER. This mode is enabled with the TCR3.0 control bit (CRC4R). Note that the E1  
transmitter must already be enabled for CRC insertion with the TCR1.0 control bit (TCRC4).  
Figure 9-15. CRC-4 Recalculate Method  
TPOSO/TNEGO  
INSERT  
EXTRACT  
OLD CRC-4  
CODE  
NEW CRC-4  
CODE  
TSER  
CRC-4  
XOR  
MODIFY  
Sa BIT  
CALCULATOR  
+
POSITIONS  
NEW Sa BIT  
DATA  
63 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.15 T1 Programmable In-Band Loop Code Generator  
The DS26528 can generate and detect a repeating bit pattern from one to eight bits or 16 bits in length. This  
function is available only in T1 mode.  
Table 9-29. Registers Related to T1 In-Band Loop Code Generator  
FRAMER 1  
REGISTER  
FUNCTION  
ADDRESSES  
T1TCD1  
1AC  
Pattern to be sent for Loop Code  
T1TCD2  
TCR3  
1AD  
183  
186  
Length of the pattern to be sent  
TLOOP bit for control of number of patterns being sent  
Length of the code being sent  
TCR4  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
To transmit a pattern, the user will load the pattern to be sent into the Transmit Code Definition registers  
(TCD1&TCD2) and select the proper length of the pattern by setting the TC0 and TC1 bits in Transmit Control  
Register 4 (TCR4). When generating a 1-, 2-, 4-, 8-, or 16-bit pattern both transmit code definition registers  
(TCD1&TCD2) must be filled with the proper code. Generation of a 3-, 5-, 6-, and 7-bit pattern only requires TCD1  
to be filled. Once this is accomplished, the pattern will be transmitted as long as the TLOOP control bit (TCR3.0) is  
enabled. Normally (unless the transmit formatter is programmed to not insert the F-bit position) the framer will  
overwrite the repeating pattern once every 193 bits to allow the F-bit position to be sent.  
As an example, to transmit the standard “loop up” code for Channel Service Units (CSUs), which is a repeating  
pattern of ...10000100001..., set TCD1 = 80h, TC0=0, TC1=0, and TCR3.0 = 1.  
64 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.9.15.1 T1 Programmable In-Band Loop Code Detection  
The DS26528 can generate and detect a repeating bit pattern from one to eight bits or 16 bits in length. This  
function is available only in T1 mode.  
Table 9-30. Registers Related to T1 In-Band Loop Code Detection  
REGISTERS RELATED T1 IN-BAND LOOP  
FRAMER 1  
FUNCTION  
CODE DETECTION  
ADDRESSES  
Receive In-Band Code Control Register  
(T1RIBCC)  
Used for Selecting Length of Receive In-  
Band Loop Code Register  
82  
Receive Up Code Definition Register 1  
AC  
AD  
AE  
AF  
Receive Up Code Definition Register 1  
Receive Up Code Definition Register 2  
Receive Down Code Definition Register 1  
Receive Up Code Definition Register 2  
(T1RUPCD1)  
Receive Up Code Definition Register 1  
(T1RUPCD2)  
Receive Down Code Definition Register 1  
(T1RDNCD1)  
Receive Down Code Definition Register 2  
(T1RDNCD2)  
Receive Spare Code Register 1 (T1RSCD1)  
Receive Spare Code Register 1 (T1RSCD2)  
Receive Real-Time Status Register 3 (RRTS3)  
Receive Latched Status Register 3 (RLS3)  
Receive Interrupt Mask Register 3 (RIM3)  
9C  
9D  
B2  
B3  
B4  
Receive Spare Code Register  
Receive Spare Code Register  
Real-Time Loop Code Detect  
Latched Loop Code Detect Bits  
Mask for Latched Loop Code Detect Bits  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
The framer has three programmable pattern detectors. Typically, two of the detectors are used for “loop up” and  
“loop down” code detection. The user will program the codes to be detected in the Receive Up Code Definition  
(RUPCD1 and RUPCD2) registers and the Receive Down Code Definition (RDNCD1 and RDNCD2) registers and  
the length of each pattern will be selected via the RIBCC register. There is a third detector (Spare) and it is defined  
and controlled via the RSPCD1/RSPCD2 and RSCC registers. When detecting a 16-bit pattern both receive code  
definition registers are used together to form a 16-bit register. For 8-bit patterns both receive code definition  
registers will be filled with the same value. Detection of a 1-, 2-, 3-, 4-, 5-, 6-, and 7-bit pattern only requires the first  
receive code definition register to be filled. The framer will detect repeating pattern codes in both framed and  
unframed circumstances with bit error rates as high as 10E–2. The detectors are capable of handling both F-bit  
inserted and F-bit overwrite patterns. Writing the least significant byte of receive code definition register resets the  
integration period for that detector. The code detector has a nominal integration period of 48ms. Hence, after about  
48ms of receiving a valid code, the proper status bit (LUP, LDN, and LSP) will be set to a one. Note that real-time  
status bits, as well as latched set and clear bits are available for LUP, LDN and LSP (RRTS3 and RLS3). Normally  
codes are sent for a period of 5 seconds. It is recommend that the software poll the framer every 50ms to 100ms  
until 5 seconds has elapsed to ensure that the code is continuously present.  
65 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.9.16 Framer Payload Loopbacks  
The framer, payload and remote loopbacks are controlled by RCR3.  
Table 9-31. Register Related to Framer Payload Loopbacks  
RECEIVE CONTROL  
FRAMER 1  
FUNCTION  
REGISTER 3 (RCR3)  
ADDRESSES  
Framer Loopback  
Payload Loopback  
Remote Loopback  
083  
083  
083  
Transmit data output from the framer is looped back to the receiver  
The 192-bit payload data is looped back to the Transmitter  
Data recovered by the Receiver is looped back to the transmitter  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
66 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.10 HDLC Controllers  
9.10.1 Receive HDLC Controller  
This device has an enhanced HDLC controller that can be mapped into a single time slot, or Sa4 to Sa8 bits (E1  
Mode) or the FDL (T1 Mode). The HDLC controller has 64-byte FIFO buffer in both the transmit and receive paths.  
The user can select any specific bits within the time slot(s) to assign to the HDLC controller, as well as specific Sa  
bits (E1 Mode)  
The HDLC controller performs all the necessary overhead for generating and receiving Performance Report  
Messages (PRM) as described in ANSI T1.403 and the messages as described in AT&T TR54016. The HDLC  
controller automatically generates and detects flags, generates and checks the CRC check sum, generates and  
detects abort sequences, stuffs and de-stuffs zeros, and byte aligns to the data stream. The 64-byte buffers in the  
HDLC controller are large enough to allow a full PRM to be received or transmitted without host intervention. The  
registers related to the HDLC are displayed in the following table.  
FRAMER 1  
REGISTER  
Receive HDLC Control Register (RHC)  
Receive HDLC Bit Suppress Register  
(RHBSE)  
FUNCTION  
Mapping of the HDLC to DS0 or FDL  
Receive HDLC bit suppression Register  
ADDRESSES  
010  
011  
Determines the length of the Receive HDLC  
FIFO  
Receive HDLC FIFO Control (RHFC)  
087  
Receive HDLC Packet Bytes Available  
Register (RHPBA)  
Tells the user how many bytes are available in  
the Receive HDLC FIFO  
0B5  
0B6  
0B4  
Receive HDLC FIFO Register (RHF)  
Receive Real-Time Status Register 5  
(RRTS5)  
The actual FIFDO data  
Indicates the FIFO status  
Receive Latched Status Register 5  
(RLS5)  
094  
Latched Status  
Interrupt Mask for interrupt generation for the  
Latched Status  
Receive Interrupt Mask 5 (RIM5)  
Transmit HDLC Control 1(THC1)  
Transmit HDLC Bit Suppress (THBSE)  
0A4  
110  
111  
Misc Transmit HDLC Control  
Transmit HDLC Bit Suppress for bits not to be  
used  
HDLC to DS0 channel selection and other  
control  
Transmit HDLC Control 2 (THC2)  
Transmit HDLC FIFO Control (THFC)  
Transmit HDLC Status (TRTS2)  
113  
187  
1B1  
191  
1A1  
Used to control the Transmit HDLC FIFO  
Indicates the Real-Time Status of the Transmit  
HDLC FIFO  
Transmit HDLC Latched Status (TLS2)  
Transmit Interrupt Mask Register 2  
(TIM2)  
Indicates the FIFO status  
Interrupt Mask for the Latched Status  
Transmit HDLC FIFO Buffer Available  
(TFBA)  
Indicates the number of bytes that can be  
written into the Transmit FIFO  
Transmit HDLC FIFO  
1B3  
1B4  
Transmit HDLC FIFO (THF)  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
9.10.1.1 HDLC FIFO Control  
Control of the transmit and receive FIFOs is accomplished via the Receive HDLC FIFO Control (RHFC) and  
Transmit HDLC FIFO Control (THFC) registers. The FIFO Control registers set the watermarks for the FIFO.  
When the receive FIFO fills above the high watermark, the RHWM bit (RRTS5.1) will be set. RHWM and THRM are  
real-time bits and will remain set as long as the FIFO’s write pointer is above the watermark. When the transmit  
FIFO empties below the low watermark, the TLWM bit in the TRTS2 register will be set. TLWM is a real-time bit  
67 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
and will remain set as long as the transmit FIFO’s write pointer is below the watermark. If enabled, this condition  
can also cause an interrupt via the INTB pin.  
If the receive HDLC FIFO does overrun the current packet being processed is dropped. The receive FIFO is  
emptied . The packet status bit in RRTS5 and RLS5.5 (ROVR) indicate an overrun.  
9.10.1.2 Receive Packet Bytes Available  
The lower 7 bits of the Receive Packet Bytes Available register indicates the number of bytes (0 through 64) that  
can be read from the receive FIFO. The value indicated by this register informs the host as to how many bytes can  
be read from the receive FIFO without going past the end of a message. This value will refer to one of four  
possibilities, the first part of a packet, the continuation of a packet, the last part of a packet, or a complete packet.  
After reading the number of bytes indicated by this register the host then checks the HDLC Status registers for  
detailed message status.  
If the value in the RHPBA register refers to the beginning portion of a message or continuation of a message then  
the MSB of the RHPBA register will return a value of 1. This indicates that the host may safely read the number of  
bytes returned by the lower 7 bits of the RHPBA register but there is no need to check the information register  
since the packet has not yet terminated (successfully or otherwise).  
9.10.1.3 HDLC Status And Information  
RRTS5, RLS5, and TLS2 provide status information for the HDLC controller. When a particular event has occurred  
(or is occurring), the appropriate bit in one of these registers will be set to a one. Some of the bits in these registers  
are latched and some are real-time bits that are not latched. This section contains register descriptions that list  
which bits are latched and which are real-time. With the latched bits, when an event occurs and a bit is set to a  
one, it will remain set until the user reads and clears that bit. The bit will be cleared when a ‘1’ is written to the bit  
and it will not be set again until the event has occurred again. The real-time bits report the current instantaneous  
conditions that are occurring and the history of these bits is not latched.  
Like the other latched status registers, the user will follow a read of the status bit with a write. The byte written to  
the register will inform the device which of the latched bits the user wishes to clear (the real-time bits are not  
affected by writing to the status register). The user will write a byte to one of these registers, with a one in the bit  
positions he or she wishes to clear and a zero in the bit positions he or she does not wish to clear.  
The HDLC status registers RLS5 and TLS2 have the ability to initiate a hardware interrupt via the INTB output  
signal. Each of the events in this register can be either masked or unmasked from the interrupt pin via the HDLC  
Interrupt Mask Registers RIM5 and TIM2. Interrupts will force the INTB signal low when the event occurs. The  
INTB pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that  
caused the interrupt to occur.  
9.10.1.4 HDLC Receive Example  
The HDLC status registers in the DS26528 allow for flexible software interface to meet the user’s preferences.  
When receiving HDLC messages, the host can chose to be interrupt driven, or to poll to desired status registers, or  
a combination of polling and interrupt processes may be used. An example routine for using the DS26528 HDLC  
receiver is given in the following figure.  
68 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-17. Receive HDLC Example  
Configure Receive  
HDLC Controller  
(RHC, RHBSE, RHFC)  
Reset Receive  
HDLC Controller  
(RHC.6)  
Start New  
Message Buffer  
Enable Interrupts  
RPE and RHWM  
No Action Required  
Work Another Process.  
NO  
Interrupt?  
YES  
Read Register  
RHPBA  
Start New  
NO  
MS = 1?  
YES  
Message Buffer  
(MS = RHPBA[7])  
Read N Bytes From  
Read N Bytes From  
Rx HDLC FIFO (RHF)  
N = RHPBA[5..0]  
Rx HDLC FIFO (RHF)  
N = RHPBA[5..0]  
Read RRTS5 for  
Packet Status (PS2..0)  
Take appropriate action  
69 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.10.2 Transmit HDLC Controller  
9.10.3 FIFO Information  
The Transmit FIFO Buffer Available register (TFBA) indicates the number of bytes that can be written into the  
transmit FIFO. The count form this register informs the host as to how many bytes can be written into the transmit  
FIFO without overflowing the buffer. This is a real-time register. The count shall remain valid and stable during the  
read cycle.  
9.10.4 HDLC Transmit Example  
The HDLC status registers in the DS26528 allow for flexible software interface to meet the user’s preferences.  
When transmitting HDLC messages, the host can choose to be interrupt driven, or to poll to desired status  
registers, or a combination of polling and interrupt processes may be used. An example routine for using the  
DS26528 HDLC receiver is given in the following figure.  
70 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-19. HDLC Message Transmit Example  
Configure Transmit  
HDLC Controller  
(THC1,THC2,THBSE,THFC)  
Reset Transmit  
HDLC Controller  
(THC.5)  
Enable TLWM  
Interrupt and  
Set TEOM  
(THC1.2)  
Verify TLWM Clear  
Push Last Byte  
into Tx FIFO  
Read TFBA  
N = TFBA[6..0]  
Push Message Byte  
into Tx HDLC FIFO  
(THF)  
Enable TMEND  
Interrupt  
Loop N  
NO  
Last Byte of  
Message?  
YES  
TMEND  
A
Interrupt?  
NO  
YES  
Read TUDR  
Status Bit  
NO  
TLWM  
A
Interrupt?  
YES  
NO  
TUDR = 1  
YES  
A
No Action Required  
Disable TMEND Interrupt  
Prepare New  
Disable TMEND Interrupt  
Resend Message  
Work Another Process  
Message  
71 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.11 Line Interface Units (LIU)  
The DS26528 has eight identical LIU transmit and receive front ends for each of the eight framers. Each LIU  
contains three sections: the transmitter, which waveshapes and drives the network line; the receiver, which handles  
clock and data recovery; and the jitter attenuator. The DS26528 LIUs can switch between T1 or E1 networks  
without changing any external components on either the transmit or receive side. Figure 9-21 shows a  
recommended circuit for software selected termination with protection. In this configuration the device can connect  
to 100T1 twisted pair, 110J1 twisted pair, 75or 120E1 twisted pair without additional component changes.  
The signals between the framer and LIU are not accessible by the user, thus the framer and LIU cannot be  
separated. The transmitters have fast High-Z capability and can be individually powered down.  
The DS26528’s transmit waveforms meet the corresponding G.703 and T1.102 specifications. Internal software-  
selectable transmit termination is provided for 100T1 twisted pair, 110J1 twisted pair, 120E1 twisted pair  
and 75E1 coaxial applications. The receiver can connect to 100T1 twisted pair, 110J1 twisted pair, 120E1  
twisted pair, and 75E1 coaxial. The receive LIU can function with a receive signal attenuation of up to 36dB for  
T1 mode and 43dB for E1 mode. The receiver sensitivity is programmable from 12dB to 43dB of cable loss. Also a  
monitor gain setting can be enabled to provide 14, 20, 26 and 32dB of resistive gain.  
72 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-21. Network Connection for Software Selected Termination, Longitudinal Protection  
NAME  
DESCRIPTION  
PART  
MANUFACTURER  
Notes  
1.25A Slow Blow Fuse  
SMP 1.25  
F1250T  
Bel Fuse  
5
5
F1 to F4  
1.25A Slow Blow Fuse  
Teccor Electronics  
Teccor Electronics  
S1, S2  
S3, S4, S5,  
S6  
25V (max) Transient Suppressor  
P0080SA MC  
1, 5  
180V (max) Transient Suppressor  
P1800SC MC  
Teccor Electronics  
1, 4, 5  
S7, S8  
40V (max) Transient Suppressor  
P0300SC MC  
T1136  
Teccor Electronics  
Pulse Engineering  
Pulse Engineering  
Pulse Engineering  
1, 5  
2, 3, 5  
2, 3, 5  
5
T1 and T2  
T1 and T2  
T3 and T4  
Transformer 1:1CT and 1:136CT (5.0V, SMT)  
Transformer 1:1CT and 1:2CT (3.3V, SMT)  
Dual Common-Mode Choke (SMT)  
PE-68678  
PE-65857  
Note 1: Changing S7 and S8 to P1800SC devices provides symmetrical voltage suppresion between Tip, Ring, and Ground.  
Note 2: The layout from the transformers to the network interface is critical. Traces should be at least 25 mils wide and separated from other  
circuit lines by at least 150 mils. The area under this portion of the circuit should not contain power planes.  
Note 3: Some T1 (never in E1) applications source or sink power from the network-side center taps of the Rx/Tx transformers.  
Note 4: The Ground trace connected to the S2/S3 pair and the S4/S5 pair should be at least 50 mils wide to conduct the extra current from a  
longitudinal power-cross event.  
Note 5: Alternative component recommendations and line interface circuits can be found by contacting telecom.support@dalsemi.com or in  
Application Note 324, which is available at www.maxim-ic.com  
73 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
74 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-23. Recommended Supply Decoupling  
SUPPLY PINS  
DECOUPLING CAPACITANCE  
0.01F + 0.1F + 1F + 10F  
0.01F + 0.1F + 1F + 10F  
NOTES  
DVDD / DVSS  
DVDDIO / DVSSIO  
It is recommended to use one 0.1F cap for each  
ATVDD/ATVSS pair (8 total), one 1F for every  
two ATVDD/ATVSS pairs (4 total), and two 10F  
capacitors for the analog transmit supply pins.  
These capcitors should be located as close to the  
intended power pins as possible.  
ATVDD / ATVSS  
0.1F (x8) + 1F (x4) + 10F (x2)  
It is recommended to use one 0.1F cap for each  
ARVDD/ARVSS pair (8 total), one 1F for every  
two ARVDD/ARVSS pairs (4 total), and two 10F  
capacitors for the analog receive supply pins.  
These capcitors should be located as close to the  
intended power pins as possible.  
ARVDD / ARVSS  
0.1F (x8) + 1F (x4) + 10F (x2)  
0.1F + 1F + 10F  
ACVDD / ACVSS  
9.11.1 LIU Operation  
The analog AMI/HDB3 waveforms off of the E1 lines or the AMI/B8ZS waveform off of the T1 lines are transformer  
coupled into the RTIP and RRING pins of the DS26528. The user has the option to use internal termination,  
software selectable for 75/100/110/120applications, or external termination. The LIU recovers clock and  
data from the analog signal and passes it through the jitter attenuation mux. The DS26528 contains an active filter  
that reconstructs the analog received signal for the nonlinear losses that occur in transmission. The receive  
circuitry also is configurable for various monitor applications. The device has a usable receive sensitivity of 0dB to  
-43dB for E1 and 0dB to -36dB for T1, which allows the device to operate on 0.63mm (22AWG) cables up to 2.5km  
(E1) and 6k feet (T1) in length. Data input to the transmit side of the LIU is sent via the jitter attenuation MUX to the  
wave shaping circuitry and line driver. The DS26528 will drive the E1 or T1 line from the TTIP and TRING pins via  
a coupling transformer. The line driver can handle both CEPT 30/ISDN-PRI lines for E1 and long-haul (CSU) or  
short-haul (DSX-1) lines for T1. The registers that control the LIU operation are shown in Table 9-32.  
Table 9-32. Registers Related to Control of DS26528 LIU  
REGISTER  
ADDRESS (HEX)  
FUNCTION  
GTCR2 - Global Transceiver Control  
00F2  
Global Transceiver Control  
Register 2  
GTCCR Global Transceiver Clock  
Control Register  
MPS Selections, Backplane Clock  
Selections  
00F3  
00F5  
00FB  
00FE  
GLSRR Global LIU Reset Register  
Control  
Software reset control for the LIU  
Interrupt Status bit for each of the 8 LIUs  
Interrupt Mask Register for the LIU  
GLISR Global LIU Interrupt Status  
Register  
GLIMR Global LIU Interrupt Mask  
Register  
LTRCR LIU Transmit Receive Control  
Register  
1000, 1020, 1040, 1060, 1080, 10A0, T1J1 E1 selection, Output Tri-state, Loss  
10C0, 10E0 Criteria  
1001, 1021, 1041, 1061, 1081, 10A1, Transmit Pulse Shape and Impedance  
10C1, 10E1 Selection  
LTITSR LIU Transmit Impedance  
Selection Register  
1002, 1022, 1042, 1062, 1082, 10A2, Trans Maintenance and Jitter Attenuation  
LMCR LIU Maintenance Register  
10C2, 10E2  
Control Register  
1003,1023,1043,1063,1083,10A3,  
10C3, 10E3  
LRSR LIU Real Status Register  
LSIMR LIU Status Interrupt Mask  
LIU Real-Time Status Register  
LIU Mask Registers based on Latched  
1004,1024,1044,1064,1084,10A4,  
75 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register  
10C4, 10E4  
1005,1025,1045,1065,1085,10A5,  
10C5, 10E5  
Status Bits  
LIU latched status bits related to loss,  
Open circuit, etc.  
LLSR LIU Latched Status Register  
1006,1026,1046,1066,1086,10A6,  
10C6, 10E6  
LRSL LIU Receive Signal Level  
LIU Receive Signal Level Indicator  
LRISMR LIU Receive Impedance and  
Sensitivity Monitor Register  
1007,1027,1047,1067,1087,10A7,  
10C7, 10E7  
LIU Impedance Match and Sensitivity  
Monitor  
9.11.2 Transmitter  
NRZ data arrives from the framer transmitter; the data is encoded with HDB3 or B8ZS or AMI. The encoded data  
passes through a jitter attenuator if it is enabled for the transmit path. A digital sequencer and DAC are used to  
generate transmit waveforms complaint with T1.102 and G.703 pulse templates.  
A line driver is used to drive an internal matched impedance circuit for provision of 75, 100, 110, and 120ꢀ  
terminations. The transmitter couples to the E1 or T1 transmit twisted pair (or coaxial cable in some E1  
applications) via a 1:2 step-up transformer. In order for the device to create the proper waveforms, the transformer  
used must meet the specifications listed in Table 9-34. The transmitter requires a transmit clock of 2.048MHz for  
E1 or 1.544MHz for T1/J1 operation.  
The DS26528 drivers have a short circuit and open circuit detection driver fail monitor. There is a TXEnable pin that  
can High-Z the transmitter outputs for protection switching. The individual transmitters can also be placed in High-Z  
through register settings. The DS26528 also has functionality for powering down the transmitters individually. The  
relevant telecommunications specification compliance is shown in Table 9-33.  
Table 9-33. The Telecommunications Specification Compliance for DS26528 Transmitters  
TRANSMITTER FUNCTION  
T1 Telecom Pulse Template Compliance  
TELECOMMUNICATIONS COMPLIANCE  
ANSI T1.403  
T1 Telecom Pulse Template Compliance  
ANSI T1.102  
Transmit Electrical Characteristics for E1  
Transmission and Return Loss Compliance  
ITUT G.703  
Table 9-34. Transformer Specifications  
SPECIFICATION  
Turns Ratio 3.3V Applications  
Primary Inductance  
RECOMMENDED VALUE  
1:1 (receive) and 1:2 (transmit) ±2%  
600H minimum  
Leakage Inductance  
1.0H maximum  
Intertwining Capacitance  
Transmit Transformer DC Resistance  
Primary (Device Side)  
Secondary  
40pF maximum  
1.0maximum  
2.0maximum  
Receive Transformer DC Resistance  
Primary (Device Side)  
Secondary  
1.2maximum  
1.2maximum  
76 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.11.2.1 Transmit Line Pulse Shapes  
The DS26528 transmitters can be selected individually to meet the pulse templates for E1 and T1/J1 modes. The  
T1/J1 pulse template is shown in Figure 9-25. The E1 pulse template is shown in Figure 9-27. The transmit pulse  
shape can be configured for each LIU on an individual basis. The LIU transmit impedance selection registers can  
be used to select an internal transmit terminating impedance of 100for T1, 110for J1 mode, 75or 120for  
E1 mode or no internal termination for E1 or T1 mode. The transmit pulse shape and terminating impedance is  
selected by LTITSR registers. The pulse shapes will be complaint to T1.102 and G.703. Pulse shapes are  
measured for compliance at the appropriate network interface (NI). For T1 long haul and E1, the pulse shape is  
measured at the far end. For T1 short haul, the pulse shape is measured at the near end.  
Figure 9-25. T1/J1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
T1.102/87, T1.403,  
CB 119 (Oct. 79), &  
I.431 Template  
-0.2  
-0.3  
-0.4  
-0.5  
-500  
-400  
-300  
-200  
-100  
0
100  
TIME (ns)  
200  
300  
400  
500  
600  
700  
DS1 Template (per ANSI T1.403 -  
1995)  
DSX-1 Template (per ANSI T1.102 -  
1993)  
MAXIMUM CURVE  
MINIMUM CURVE  
MAXIMUM CURVE  
MINIMUM CURVE  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
UI  
Time  
Amp.  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.00  
0.27  
0.35  
0.93  
1.16  
-500  
-255  
-175  
-175  
-75  
0.05  
0.05  
0.80  
1.15  
1.15  
1.05  
1.05  
-0.07  
0.05  
0.05  
-0.77  
-0.23  
-0.23  
-0.15  
0.00  
0.15  
0.23  
0.23  
0.46  
0.66  
0.93  
1.16  
-500  
-150  
-150  
-100  
0
-0.05  
-0.05  
0.50  
-0.77  
-0.39  
-0.27  
-0.27  
-0.12  
0.00  
0.27  
0.34  
0.77  
1.16  
-500  
-255  
-175  
-175  
-75  
0.05  
0.05  
0.80  
1.20  
1.20  
1.05  
1.05  
-0.05  
0.05  
0.05  
-0.77  
-0.23  
-0.23  
-0.15  
0.00  
0.15  
0.23  
0.23  
0.46  
0.61  
0.93  
1.16  
-500  
-150  
-150  
-100  
0
-0.05  
-0.05  
0.50  
0.95  
0.95  
0.95  
0.95  
0
100  
150  
150  
300  
430  
600  
750  
0.90  
0
100  
150  
150  
300  
430  
600  
750  
0.90  
175  
225  
600  
750  
0.50  
175  
225  
600  
750  
0.50  
-0.45  
-0.45  
-0.20  
-0.05  
-0.05  
-0.45  
-0.45  
-0.26  
-0.05  
-0.05  
77 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-27. E1 Transmit Pulse Templates  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
269ns  
G.703  
Template  
194ns  
0.6  
0.5  
219ns  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-250  
-200  
-150  
-100  
-50  
0
50  
100  
150  
200  
250  
TIME (ns)  
9.11.2.2 Transmit Power-Down  
The individual transmitters can be powered down by setting the TPDE bit in the LIU maintenance control register  
(LMCR). Note that powering down the transmit LIU results in a High-Z state for the corresponding TTIP and TRING  
pins.  
When Transmit all ones (AIS) is invoked, continuous ones are transmitted using MCLK as the timing reference.  
Data input from the framer is ignored. AIS can be sent by setting a bit in the LIU maintenance control register  
(LMCR). Transmit all ones will also be sent if the corresponding receiver goes into LOS state and the ATAIS bit is  
set in the LIU maintenance control register.  
9.11.2.3 Transmit Short-Circuit Detector/Limiter  
Each transmitter has an automatic short-circuit current limiter that activates when the load resistance is  
approximately 25or less. SCS (LRSR) provides a real-time indication of when the current limiter is activated. LIU  
Latched Status Register (LLSR) provides a latched versions of the information, which can be used to activate an  
interrupt when enable via the LSIMR register.  
78 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
9.11.2.4 Transmit Open-Circuit Detector  
The DS26528 can also detect when the TTIP or TRING outputs are open circuited. OCS (LRSR) will provide a real-  
time indication of when an open circuit is detected. Register LLSR provides latched versions of the information,  
which can be used to activate an interrupt when enabled via the LSIMR register. The open circuit detect feature is  
not available in T1 CSU operating modes (LBO 5, LBO6 and LBO7).  
9.11.3 Receiver  
The DS26528 contains eight identical receivers. All receivers are designed to be fully software-selectable for E1,  
T1, and J1 without the need to change any external resistors. The device couples to the receive E1 or T1 twisted  
pair (or coaxial cable in 75E1 applications) via a 1:1 or 2:1 transformer. See Table 9-34 for transformer details.  
Receive termination and sensitivity are user configurable. Receive termination is configurable for 75, 100,  
110, or 120termination by setting the appropriate RIMPM[1:0] bits (LRISMR). When using the internal  
termination feature, the resistors labeled Rr in Figure 9-21 should be 60each. If external termination is required,  
the resistors will need to be 37.5, 50, or 60each depending on the line impedance. Receive sensitivity is  
configurable by setting the appropriate RSMS[1:0] bits (LRISMR).  
The DS26528 uses a digital clock recovery system. The resultant E1, T1 or J1 clock derived from MCLK is  
multiplied by 16 via an internal PLL and fed to the clock recovery system. The clock recovery system uses the  
clock from the PLL circuit to form a 16 times over-sampler, which is used to recover the clock and data. This over-  
sampling technique offers outstanding performance to meet jitter tolerance specifications shown in Table 9-16.  
Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1 AMI/B8ZS  
waveform presented at the RTIP and RRING inputs. If the jitter attenuator (LTRCR) is placed in the receive path  
(as is the case in most applications), the jitter attenuator restores the RCLK to an approximate 50% duty cycle. If  
the jitter attenuator is either placed in the transmit path or is disabled, the RCLK output can exhibit slightly shorter  
high cycles of the clock. This is due to the highly over-sampled digital clock recovery circuitry. See the Receiver  
AC Characteristics section for more details. When no signal is present at RTIP and RRING, a receive carrier loss  
(RCL) condition will occur and the RCLK will be derived from the JACLK source  
9.11.3.1 Receive Level Indicator  
The DS26528 will report the signal strength at RTIP and RRING in approximately 2.5dB increments via RSL3-  
RSL0 located in the LIU receive signal level register (LRSL). This feature is helpful when trouble shooting line  
performance problems.  
9.11.3.2 Receive G.703 Section 10 Synchronization Signal  
The DS26528 is capable of receiving a 2.048MHz square-wave synchronization clock as specified in Section 10 of  
ITU G.703. In order to use this mode, set the Receive G.703 Clock Enable found in LIU Receive Impedance and  
Sensitivity Monitor Register (LRISMR).  
9.11.3.3 Receiver Monitor Mode  
The receive equalizer is equipped with a monitor mode function that is used to overcome the signal attenuation  
caused by the resistive bridge used in monitoring applications. This function allows for a resistive gain of up to  
32dB along with cable attenuation of 12dB to 30dB as shown in LIU Receive Impedance and Sensitivity Monitor  
Register (LRISMR).  
79 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-29. Typical Monitor Application  
PRIMARY  
T1/E1 LINE  
Rm  
T1/E1 TERMINATING  
DEVICE  
Rm  
X
F
DS26528  
Rt  
M
R
MONITOR  
PORT JACK  
SECONDARY T1/E1  
TERMINATING  
DEVICE  
9.11.3.4 Loss of Signal  
The DS26528 uses both the digital and analog loss detection method in compliance with the latest T1.231 for  
T1/J1 and ITU G.775 or ETSI 300 233 for E1 mode of operation.  
LOS is detected if the receiver level falls bellow a threshold analog voltage for certain duration. Alternatively, this  
can be termed as having received “zeros” for a certain duration. The signal level and timing duration are defined in  
accordance with the T1.231 or G.775 or ETSI 300 233 specifications.  
For short haul mode, the loss detection thresholds are based on cable loss of 12dB to 18dB for both T1/J1 and E1  
modes. The loss thresholds are selectable based on Table 10-18. For long-haul mode, the LOS Detection  
threshold is based on cable loss of 30dB to 38dB for T1/J1 and 30dB to 45dB for E1 mode. Note there is no explicit  
bit called short haul mode selection. Loss declaration level is set at 3dB lower that the maximum sensitivity setting  
programmed in Table 10-18.  
The loss state is exited when the receiver detects a certain ones density at the maximum sensitivity level or higher,  
which is 3dB higher than the loss detection level. The loss detection signal level and loss reset signal level are  
defined with hysteresis to prevent the receiver from bouncing between “LOS” and “no LOS” states. Table 9-35  
outlines the specifications governing the loss function.  
Table 9-35. T1.231, G.775, and ETSI 300 233 Loss Criteria Specifications  
STANDARD  
CRITERIA  
T1.231  
ITU G.775  
No pulses are detected for  
duration of 10 to 255 bit  
periods.  
ETSI 300 233  
No pulses are detected for a  
duration of 2048 bit periods or  
1ms  
Loss  
No pulses are detected for  
Detection 175 ±75 bits.  
Loss is terminated if a  
The incoming signal has  
transitions for duration of 10  
Loss reset criteria is not  
defined.  
duration of 12.5% ones are  
detected over duration of 175 to 255 bit periods.  
±75 bits.  
Loss  
Loss is not terminated if 8  
consecutive zeros are found if  
B8ZS encoding is used. If  
B8ZS is not used loss is not  
terminated if 100 consecutive  
pulses are zero.  
Reset  
80 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.11.3.5 ANSI T1.231 for T1 and J1 Modes  
For short haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 10-18 for a duration of 192-bit periods. Hence if the sensitivity is programmed to be 12dB, loss will be  
declared at 15dB.  
LOS is reset if all of the following criteria are met:  
Sꢂ 24 or more ones are detected in 192-bit period with a programmed sensitivity level measured at RTIP and  
RRING.  
Sꢂ During the 192 bits less than 100 consecutive zeros are detected.  
For long haul mode, loss is detected if the received signal level is 3dB lower from the programmed value (based on  
Table 10-18) for a duration of 192-bit periods. Hence, if the sensitivity is programmed at 30dB, loss declaration  
level will be 33dB.  
LOS is reset if all of the following criteria are met:  
Sꢂ 24 or more ones are detected in 192-bit period with a programmed sensitivity level measured at RTIP and  
RRING.  
Sꢂ During the 192 bits less than 100 consecutive zeros are detected.  
9.11.3.6 ITU G.775 for E1 Modes  
For short haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 10-18) for a duration of 192-bit periods. Hence, if the sensitivity is programmed to be 12dB, loss will be  
declared at 15dB.  
LOS is reset if the receive signal level is greater than or equal to the programmed sensitivity level for a duration of  
192-bit periods.  
For long haul mode, loss is detected if the received signal level is 3dB lower from the programmed value (based on  
Table 10-18) for a duration of 192-bit periods. Hence, if the sensitivity is programmed at 30dB, loss declaration  
level will be 33dB.  
LOS is reset if the receive signal level is greater than or equal to the programmed sensitivity level for a duration of  
192-bit periods.  
9.11.3.7 ETSI 200 233 for E1 Modes  
For short haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based  
on Table 10-18) continuous duration of 2048-bit periods (1ms). LOS is reset if the receive signal level is greater  
than or equal to programmed sensitivity level for a duration of 192-bit periods.  
For long haul mode, loss is declared if the received signal level is 3dB lower from the programmed value (based on  
Table 10-18) continuous duration of 2048 bit periods (1ms). LOS is reset if the receive signal level is greater than  
or equal to the programmed sensitivity level for a duration of 192-bit periods.  
9.11.4 Jitter Attenuator  
The DS26528 contains a jitter attenuator that can be set to a depth of 32 or 128-bits via the JADS bit in LIU  
Transmit and Receive Control Register (LTRCR).  
The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used  
in delay sensitive applications. The characteristics of the attenuation are shown in Figure 9-31. The jitter attenuator  
can be placed in either the receive path, the transmit path or disabled by appropriately setting the JAPS1 and  
JAPS0 bits in LIU Transmit and Receive Control Register (LTRCR).  
For the jitter attenuator to operate properly, a 2.048MHz, 1.544MHz, or a multiple of up to 8x clock must be applied  
at MCLK. See the Global Transceiver Clock Control Register (GTCCR ) for MCLK options. ITU specification G.703  
requires an accuracy of ±50ppm for both T1/J1 and E1 applications. TR62411 and ANSI specs require an accuracy  
of ±32ppm for T1/J1 interfaces. Circuitry adjusts either the recovered clock from the clock/data recovery block or  
the clock applied at the TCLK pin to create a smooth jitter-free clock, which is used to clock data out of the jitter  
attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed in  
81 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
the transmit side. If the incoming jitter exceeds either 120UIP-P (buffer depth is 128-bits) or 28UIP-P (buffer depth is  
32 bits), then the DS26528 will set the jitter attenuator limit trip (JALTS) bit in the LIU latched status register  
(LLSR). In T1/J1 mode, the jitter attenuator corner frequency is 3.75Hz and in E1 Mode it is 0.6Hz.  
The DS26528 jitter attenuator is complaint with the following specifications:  
Table 9-36. Jitter Attenuator Standards Compliance  
Standard  
ITUT I.431, G.703, G.736, G.823,  
ETSI 300011, TBR 12/12  
AT&T TR62411, TR43802  
TR-TSY 009, TR-TSY 253, TR-TSY 499  
82 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 9-31. Jitter Attenuation  
0dB  
ITU G.7XX  
Prohibited Area  
TBR12  
Prohibited  
Area  
-20dB  
-40dB  
-60dB  
E1  
T1  
TR 62411 (Dec. 90)  
Prohibited Area  
C
u
r
v
e
B
1
10  
100  
1K  
10K  
100K  
FREQUENCY (Hz)  
9.11.5 LIU Loopbacks  
The DS26528 provides four LIU loopbacks for diagnostic purposes: analog loopback, local loopback, remote  
loopback and dual loopback. In the “loopback diagrams” that follow, the TSER, TCLK and RSER and RCLK are  
inputs/outputs from the framer. Note that the framer input/output can be in IBO mode where a single TSER/RSER  
can be shared by up to eight framers.  
9.11.5.1  
Analog Loopback  
The analog output of the transmitter TTIP and TRING is looped back to RTIP and RRING of the receiver. Data at  
RTIP and RRING is ignored in analog loopback. This is shown in the following figure.  
Figure 9-33. Analog Loopback  
Optional  
TCLK  
TSER  
Transmit  
Framer  
Jitter  
Transmit  
Analog  
Transmit  
Digital  
Line  
Attenuator  
Driver  
Rtip  
Receive  
Digital  
RCLK  
Receive  
Analog  
Optional  
Jitter  
Receive  
Framer  
RSER  
Rring  
Attenuator  
83 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.11.5.2 Local Loopback  
The transmit system data from the transmit framer will be looped back to the inputs of the receive framer. The data  
input to the transmit LIU will be encoded and output on TTIP and TRING. Signals at RTIP and RRING will be  
ignored. This loopback is conceptually shown in following figure.  
Figure 9-35. Local Loopback  
TCLK  
TSER  
TPOS  
Optional  
Jitter  
Transmit  
Framer  
Transmit  
Analog  
Transmit  
Digital  
Line  
Attenuator  
Driver  
TNEG  
RCLK  
RSER  
RTIP  
Optional  
Jitter  
Receive  
Digital  
Receive  
Analog  
Receive  
Framer  
Attenuator  
RRING  
9.11.5.3  
Remote Loopback  
The outputs decoded from the receive LIU are looped back to the transmit LIU. The inputs from the transmit framer  
are ignored during a remote loopback. This loopback is conceptually shown in Figure 9-37.  
Figure 9-37. Remote Loopback  
TCLK  
TSER  
TPOS  
Optional  
Jitter  
Transmit  
Framer  
Transmit  
Analog  
Transmit  
Digital  
Line  
Attenuator  
Driver  
TNEG  
RCLK  
RSER  
RTIP  
Optional  
Jitter  
Receive  
Digital  
Receive  
Analog  
Receive  
Framer  
Attenuator  
RRING  
84 of 269  
 
 
 
DS26528 Octal T1/E1/J1 Transceiver  
9.11.5.4 Dual Loopback  
The inputs decoded from the receive LIU are looped back to the transmit LIU. The inputs from the transmit framer  
are looped back to the receiver with the optional jitter attenuator. This loopback is invoked if RLB and LLB are both  
set in the LIU Maintenance Control Register (LMCR). This loopback is conceptually shown in Figure 9-39.  
Figure 9-39. Dual Loopback  
TPOS  
TCLK  
TSER  
Optional  
Transmit  
Line  
Jitter  
Transmit  
Analog  
Transmit  
Digital  
Framer  
Attenuator  
Driver  
TNEG  
RCLK  
RSER  
RTIP  
Optional  
Jitter  
Receive  
Digital  
Receive  
Analog  
Receive  
Framer  
Attenuator  
RRING  
85 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
9.12 Bit Error Rate Test Function (BERT)  
The BERT (Bit Error Rate Tester) block can generate and detect both pseudo-random and repeating-bit patterns. It  
is used to test and stress data-communication links. BERT functionality is dedicated for each of the Transceivers.  
The registers related to the configure, control and status of the BERT are shown in the following table:  
FRAMER 1  
REGISTER  
GBISR  
FUNCTION  
ADDRESSES  
Global BERT Interrupt Register. When any of the 8 BERTs issue an  
interrupt, a bit will be set.  
0FA  
Global BERT Interrupt Mask Register. When any of the 8 BERTs issue an  
GBIMR  
0FD  
interrupt, a bit will be set.  
RXPC  
8A  
8B  
Enable for the Receiver BERT  
RBPBS  
Bit Suppression for the Receive BERT  
Channels to be enabled for the Framer to accept data from the BERT pattern  
generator  
RBPCS1-4  
D4, D5, D6, D7  
TXPC  
18A  
18B  
Enable for the Transmitter BERT  
TBPBS  
Bit Suppression for the Transmit BERT  
Channels to be enabled for the Framer to accept data from the Transmit  
BERT pattern generator  
1D4, 1D5, 1D6,  
1D7  
TBPCS1-4  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
1100  
BERT Alternating Pattern Count Register  
BERT Repetitive Pattern Set Register 1  
BERT Repetitive Pattern Set Register 2  
BERT Repetitive Pattern Set Register 3  
BERT Repetitive Pattern Set Register 4  
Pattern Selection and Misc Control  
BERT Bit Pattern Length Control  
1101  
1102  
1103  
1104  
1105  
BC2  
1106  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIM  
1107  
BERT Bit Counter—Increments for BERT Bit clocks  
BERT Bit Counter  
1108  
1109  
BERT Bit Counter  
110A  
110B  
110C  
110D  
110E  
110F  
BERT Bit Counter  
BERT Error Counter  
BERT Error Counter  
BERT Error Counter  
BERT Status Registers—Denotes Synchronization Loss and Other Status  
BERT Interrupt Mask  
Note: The addresses shown above are for Framer 1. Addresses for Framers 2 – 8 can be calculated using the following: Framer N = (Framer 1  
address + (n-1) x 200hex); where n = 2 to 8 for Framers 2 to 8.  
The BERT block can generate and detect the following patterns:  
Sꢂ The pseudo-random patterns 2E7-1, 2E9-1, 2E11-1, 2E15-1, and QRSS  
Sꢂ A repetitive pattern from 1 to 32 bits in length  
Sꢂ Alternating (16-bit) words that flip every 1 to 256 words  
Sꢂ Daly pattern  
The BERT function must be enabled and configured in the TXPC and RXPC registers for each port. The BERT can  
then be assigned on a per-channel basis for both the transmitter and receiver, using the special per-channel  
function in the TBPCS1-4 and RBCS1-4 registers. Individual bit positions within the channels can be suppressed  
with the TBPBS and RBPBS registers. Using combinations of these functions, the BERT pattern can be transmitted  
and/or received in single or across multiple DS0s, contiguous or broken. Transmit and receive bandwidth  
assignments are independent of each other.  
The BERT receiver has a 32-bit bit counter and a 24-bit error counter. The BERT receiver can generate interrupts  
on: a change in receive-synchronizer status, receive all zeros, receive all ones, error counter overflow, bit counter  
86 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
overflow, and bit error detection. Interrupts from each of these events can be masked within the BERT function via  
the BERT Status Interrupt Mask Register (BSIM). If the software detects that the BERT has reported an event, then  
the software must read the BERT Latched Status Register (BLSR) to determine which event(s) has occurred.  
9.12.1 BERT Repetitive Pattern Set  
These registers must be properly loaded for the BERT to generate and synchronize to a repetitive pattern, a  
pseudo-random pattern, alternating word pattern, or a Daly pattern. For a repetitive pattern that is less than 32 bits,  
the pattern should be repeated so that all 32 bits are used to describe the pattern. For example, if the pattern was  
the repeating 5-bit pattern …01101… (where the right-most bit is the one sent first and received first) then BRP1  
should be loaded with ADh, BRP2 with B5h, BRP3 with D6h, and BRP4 should be loaded with 5Ah. For a pseudo-  
random pattern, all four registers should be loaded with all ones (i.e., FFh). For an alternating word pattern, one  
word should be placed into BRP1 and BRP2 and the other word should be placed into BRP3 and BRP4. For  
example, if the DDS stress pattern “7E” is to be described, the user would place 00h in BRP1, 00h in BRP2, 7Eh in  
BRP3, and 7Eh in BRP4, and the alternating word counter would be set to 50 (decimal) to allow 100 bytes of 00h  
followed by 100 bytes of 7Eh to be sent and received.  
9.12.2 BERT Error Counter  
Once BERT has achieved synchronization, this 24-bit counter will increment for each data bit received in error.  
Toggling the LC control bit in BC1 can clear this counter. This counter saturates when full and will set the BECO  
status bit in the BLSR register.  
87 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10. DEVICE REGISTERS  
Thirteen address bits are used to control the settings of the registers. The address map is compatible with the  
Maxim/Dallas Semiconductor octal framer product, DS26401.  
The registers control functions of the framers, LIUs, and BERTs within the DS26528. The map is divided into eight  
framers, followed by eight LIUs and eight BERTs. Global Registers (applicable to all eight transceivers and BERTs)  
are located within the address space of Framer 1.  
The Bulk Write Mode is a special mode to write all eight transceivers with one write command (see the GTCR1  
register). Figure 10-1 shows the register map.  
The register details are provided in the following tables. The framer registers bits are provided for Framer 0 and  
address bits A11 to A8 determine the framer addressed.  
10.1 Register Listings  
The Framer Registers have an offset of 200 Hex, the LIU Registers have an offset of 20 Hex, and the BERT  
Registers have an offset of 10 Hex for each transceiver.  
Table 10-1. Register Address Ranges (in Hex)  
GLOBAL  
RECEIVE  
TRANSMIT  
LIU  
BERT  
REGISTERS  
FRAMER  
FRAMER  
00F0 – 00FF  
CH1  
0000 – 00EF  
0200 – 02EF  
0400 – 04EF  
0600 – 06EF  
0800 – 08EF  
0A00 – 0AEF  
0C00 – 0CEF  
0E00 – 0EEF  
0100 – 01EF  
0300 – 03EF  
0500 – 05EF  
0700 – 07EF  
0900 – 09EF  
0B00 – 0BEF  
0D00 – 0DEF  
0F00 – 0FEF  
1000 – 101F  
1020 – 103F  
1040 – 105F  
1060 – 107F  
1080 – 109F  
10A0 – 10BF  
10C0 – 10DF  
10E0 – 10FF  
1100 – 110F  
1110 – 111F  
1120 – 112F  
1130 – 113F  
1140 – 114F  
1150 – 115F  
1160 – 116F  
1170 – 117F  
CH 2  
CH 3  
CH 4  
CH 5  
CH 6  
CH 7  
CH 8  
88 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 10-1. Register Memory Map for the DS26528  
000  
Adrs = 0000 0000 0000  
Framer 1 Rx Regs  
240 Regs  
0EF  
0F0  
Adrs = 0000 1111 0000  
Global Registers  
0FF  
100  
Adrs = 0001 0000 0000  
Adrs = 0001 1111 0000  
Adrs = 0010 0000 0000  
Framer 1 Tx Regs 240 Regs  
Reserved  
1EF  
1F0  
1FF  
200  
Framer 2 Regs  
Framer 3 Regs  
3FF  
400  
Adrs = 0100 0000 0000  
Adrs = 0101 1111 1111  
Adrs = 0110 0000 0000  
5FF  
600  
Framer 4 Regs  
Framer 5 Regs  
Adrs = 0111 1111 1111  
Adrs = 1000 0000 0000  
7FF  
800  
Adrs = 01001 1111 1111  
Adrs = 01010 0000 0000  
9FF  
A00  
Framer 6 Regs  
Framer 7 Regs  
Adrs = 01011 1111 1111  
Adrs = 01100 0000 0000  
BFF  
C00  
Adrs = 01101 1111 1111  
Adrs = 01110 0000 0000  
DFF  
E00  
Framer 8 Regs  
LIU Regs  
Adrs = 01111 1111 1111  
Adrs = 10000 0000 0000  
FFF  
1000  
10FF  
1100  
Adrs = 10000 1111 1111  
Adrs = 10001 0000 0000  
BERT  
117F  
1FFF  
Adrs = 10001 0111 1111  
Adrs = 11111 1111 1111  
Reserved  
89 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.1.1 Global Register List  
Table 10-2. Global Register List  
GLOBAL REGISTER LIST  
ADDR  
ABBR  
DESCRIPTION  
R/W  
00F0  
00F1  
00F2  
00F3  
00F4  
00F5  
00F6  
00F7  
00F8  
00F9  
00FA  
00FB  
00FC  
00FD  
00FE  
001F  
GTCR1  
Global Transceiver Control Register 1  
Global Framer Control Register  
Global Transceiver Control Register 2  
Global Transceiver Clock Control Register  
Reserved  
R/W  
R/W  
R/W  
R/W  
-
GFCR  
GTCR2  
GTCCR  
GLSRR  
GFSRR  
Global LIU Software Reset Register  
R/W  
Global Framer and BERT Software Reset Register  
Reserved  
R/W  
-
IDR  
Device ID Register  
R
GFISR  
GBISR  
GLISR  
GFIMR  
GBIMR  
GLIMR  
Global Framers Interrupt Status Register  
Global BERT Interrupt Status Register  
Global LIU Interrupt Status Register  
Global Framers Interrupt Mask Register  
Global BERT Interrupt Mask Register  
Global LIU Interrupt Mask Register  
Reserved  
R
R
R
RW  
RW  
RW  
-
Note 1: Reserved registers should only be written with all zeros.  
Note 2: The global registers are located in the framer 1 address space. The corresponding address space for the other  
seven framers is “Reserved,” and should be initialized with all zeros for proper operation.  
10.1.2 Framer Register List  
Table 10-3. Framer Register List  
Note that only Framer 1 Address is presented here. The same set of registers definitions applies for transceiver 2 to 8 in accordance with the  
DS26528 map offsets. Transceiver offset is (n-1) x 200 hex, where n designates the transceiver in question.  
FRAMER REGISTER LIST  
ADDRESS  
000 – 00F  
010  
ABBR  
-
DESCRIPTION  
R/W  
-
Reserved  
RHC  
Rx HDLC Control  
R/W  
R/W  
R/W  
R/W  
011  
RHBSE  
RDS0SEL  
RSIGC  
Rx HDLC Bit Suppress  
Rx DS0 Monitor Select  
Rx Signaling Control  
Rx Control 2 (T1 Mode)  
012  
013  
T1RCR2  
014  
R/W  
E1RSAIMR  
Rx Sa Bit Interrupt Mask Register (E1 Mode)  
Rx BOC Control (T1 Mode Only)  
Reserved  
015  
016 – 01F  
020  
T1RBOCC  
R/W  
-
-
RIDR1  
RIDR2  
RIDR3  
RIDR4  
RIDR5  
RIDR6  
RIDR7  
RIDR8  
RIDR9  
RIDR10  
RIDR11  
RIDR12  
RIDR13  
Rx Idle Definition 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
021  
Rx Idle Definition 2  
022  
Rx Idle Definition 3  
023  
Rx Idle Definition 4  
024  
Rx Idle Definition 5  
025  
Rx Idle Definition 6  
026  
Rx Idle Definition 7  
027  
Rx Idle Definition 8  
028  
Rx Idle Definition 9  
029  
Rx Idle Definition 10  
Rx Idle Definition 11  
Rx Idle Definition 12  
Rx Idle Definition 13  
02A  
02B  
02C  
90 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
ADDRESS  
02D  
02E  
ABBR  
RIDR14  
RIDR15  
RIDR16  
RIDR17  
RIDR18  
RIDR19  
RIDR20  
RIDR21  
RIDR22  
RIDR23  
RIDR24  
T1RSAOI1  
E1RIDR25  
T1RSAOI2  
E1RIDR26  
T1RSAOI3  
E1RIDR27  
E1RIDR28  
T1RDMWE1  
E1RIDR29  
T1RDMWE2  
E1RIDR30  
T1RDMWE3  
E1RIDR31  
E1RIDR32  
RS1  
DESCRIPTION  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Rx Idle Definition 14  
Rx Idle Definition 15  
02F  
Rx Idle Definition 16  
030  
Rx Idle Definition 17  
031  
Rx Idle Definition 18  
032  
Rx Idle Definition 19  
033  
Rx Idle Definition 20  
034  
Rx Idle Definition 21  
035  
Rx Idle Definition 22  
036  
Rx Idle Definition 23  
037  
Rx Idle Definition 24  
Rx Sig All Ones Insertion 1 (T1 Mode)  
Rx Idle Definition 25 (E1 Mode)  
Rx Sig All Ones Insertion 2 (T1 Mode)  
Rx Idle Definition 26 (E1 Mode)  
Rx Sig All Ones Insertion 3 (T1 Mode)  
Rx Idle Definition 27 (E1 Mode)  
Rx Idle Definition 28 (E1 Mode)  
Rx Digital Milliwatt Enable 1 (T1 Mode)  
Rx Idle Definition 29 (E1 Mode)  
Rx Digital Milliwatt Enable 2 (T1 Mode)  
Rx Idle Definition 30 (E1 Mode)  
Rx Digital Milliwatt Enable 3 (T1 Mode)  
Rx Idle Definition 31 (E1 Mode)  
Rx Idle Definition 32 (E1 Mode)  
Rx Signaling 1  
038  
R/W  
039  
R/W  
03A  
03B  
03C  
R/W  
-
R/W  
03D  
03E  
R/W  
R/W  
03F  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
04A  
04B  
04C  
04D  
04E  
04F  
050  
051  
052  
053  
054  
055  
056  
057  
058-05F  
060  
061  
-
R
R
R
R
R
R
R
R
R
R
R
R
-
RS2  
Rx Signaling 2  
RS3  
Rx Signaling 3  
RS4  
Rx Signaling 4  
RS5  
Rx Signaling 5  
RS6  
Rx Signaling 6  
RS7  
Rx Signaling 7  
RS8  
Rx Signaling 8  
RS9  
Rx Signaling 9  
RS10  
Rx Signaling 10  
RS11  
Rx Signaling 11  
RS12  
Rx Signaling 12  
RS13  
Rx Signaling 13 (E1 Mode only)  
Rx Signaling 14 (E1 Mode only)  
Rx Signaling 15 (E1 Mode only)  
Rx Signaling 16 (E1 Mode only)  
Rx Line Code Violation Counter 1  
Rx Line Code Violation Counter 2  
Rx Path Code Violation Count 1  
Rx Path Code Violation Count 2  
Rx Frames Out of Sync Counter 1  
Rx Frames Out of Sync Counter 2  
RS14  
-
RS15  
-
RS16  
-
LCVCR1  
LCVCR2  
PCVCR1  
PCVCR2  
FOSCR1  
FOSCR2  
E1EBCR1  
E1EBCR2  
-
R
R
R
R
R
R
E1 Receive E-Bit Counter 1 (E1 Mode Only)  
E1 Receive E-Bit Counter 2 (E1 Mode Only)  
Reserved  
R
R
-
RDS0M  
-
Rx DS0 Monitor  
R
-
Reserved  
T1RFDL  
E1RRTS7  
Rx FDL (T1 Mode)  
062  
R
E1 Receive Real-Time Status 7 (E1 Mode)  
91 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
ADDRESS  
ABBR  
T1RBOC  
T1RSLC1  
E1RAF  
T1RSLC2  
E1RNAF  
T1RSLC3  
E1RsiAF  
E1RSiNAF  
E1RNAF  
E1RSa4  
E1RSa5  
E1RSa6  
E1RSa7  
E1RSa8  
SABITS  
Sa6CODE  
-
DESCRIPTION  
R/W  
063  
Rx BOC (T1 Mode Only)  
R
Rx SLC96 Data Link 1 (T1 Mode)  
E1 Receive Align Frame (E1 Mode)  
Rx SLC96 Data Link 2 (T1 Mode)  
E1 Receive Non-Align Frame (E1 Mode)  
Rx SLC96 Data Link 3 (T1 Mode)  
064  
065  
066  
R
R
R
E1 Receive Si Bits for Align Frame (E1 Mode)  
E1 Receive Si Bits for Non-Align Frame (E1 Mode Only)  
E1 Receive Remote Alarm Bits (E1 Mode Only  
E1 Receive Sa4 Bits (E1 Mode Only)  
E1 Receive Sa5 Bits (E1 Mode Only)  
E1 Receive Sa6 Bits (E1 Mode Only)  
E1 Receive Sa7 Bits (E1 Mode Only)  
E1 Receive Sa8 Bits (E1 Mode Only)  
E1 Receive Sa Bits  
067  
068  
R
R
069  
R
06A  
R
06B  
R
06C  
06D  
06E  
R
R
R
06F  
E1 Sa6 Codeword  
R
070-07F  
080  
Reserved  
-
RMMR  
RCR1  
T1RIBCC  
E1RCR2  
RCR3  
RIOCR  
RESCR  
ERCNT  
RHFC  
RIBOC  
T1RSCC  
RXPC  
RBPBS  
-
Rx Master Mode  
R/W  
R/W  
081  
Rx Control 1  
Rx In-Band Code Control (T1 Mode)  
E1 Rx Control 2 (E1 Mode)  
Rx Control 3  
082  
R/W  
083  
084  
085  
086  
087  
088  
089  
08A  
08B  
08C-08F  
090  
091  
092  
093  
094  
095  
096  
097  
098  
099  
09A  
09B  
09C  
09D  
09E  
09F  
0A0  
0A1  
0A2  
0A3  
0A4  
0A5  
0A6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
Rx I/O Configuration  
Rx Elastic Store Control  
Rx Error Count Configuration  
Rx HDLC FIFO Control  
Rx Interleave Bus Op Control  
Rx Spare Code Control (T1 Mode Only)  
Rx eXpansion Port Control Register  
Rx BERT Port Bit Suppress Register  
Reserved  
RLS1  
Rx Latched Status 1  
R/W  
R/W  
R/W  
R/W  
R/W  
-
RLS2  
Rx Latched Status 2  
RLS3  
Rx Latched Status 3  
RLS4  
Rx Latched Status 4  
RLS5  
Rx Latched Status 5  
-
Reserved  
RLS7  
Rx Latched Status 7  
R/W  
-
-
Reserved  
RSS1  
Rx Signaling CoS Status 1  
Rx Signaling CoS Status 2  
Rx Signaling CoS Status 3  
Rx Signaling CoS Status 4 (E1 Mode Only)  
Rx Spare Code Definition 1 (T1 Mode Only)  
Rx Spare Code Definition 2 (T1 Mode Only)  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
RSS2  
RSS3  
RSS4  
T1RSCD1  
T1RSCD2  
-
RIIR  
Rx Interrupt Information Reg  
Rx Interrupt Mask Reg 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
RIM1  
RIM2  
E1 Rx Interrupt Mask Reg 2 (E1 Mode Only)  
Rx Interrupt Mask Reg 3  
RIM3  
RIM4  
Rx Interrupt Mask Reg 4  
RIM5  
Rx Interrupt Mask Reg 5  
-
Reserved  
RIM7  
Rx Interrupt Mask Reg 7  
R/W  
92 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
0A7  
ABBR  
-
R/W  
-
Reserved  
0A8  
RSCSE1  
RSCSE2  
RSCSE3  
RSCSE4  
T1RUPCD1  
T1RUPCD2  
T1RDNCD1  
T1RDNCD2  
RRTS1  
-
Rx Sig CoS Interrupt Enable 1  
R/W  
R/W  
R/W  
-
0A9  
Rx Sig CoS Interrupt Enable 2  
0AA  
0AB  
0AC  
0AD  
0AE  
0AF  
Rx Sig CoS Interrupt Enable 3  
Rx Sig CoS Interrupt Enable 4  
Rx Up Code Definition 1 (T1 Mode Only)  
Rx Up Code Definition 2 (T1 Mode Only)  
R/W  
R/W  
Rx Down Code Definition 1 (T1 Mode Only)  
Rx Down Code Definition 2 (T1 Mode Only)  
Rx Real-Time Status 1  
R/W  
R/W  
R
0B0  
0B1  
Reserved  
-
0B2  
RRTS3  
-
Rx Real-Time Status 3  
R
0B3  
Reserved  
-
0B4  
RRTS5  
RHPBA  
RHF  
Rx Real-Time Status 5 (HDLC)  
Rx HDLC Packet Bytes Available  
Rx HDLC FIFO  
R
0B5  
R
0B6  
R
0B7-0BF  
0C0  
-
Reserved  
-
RBCS1  
RBCS2  
RBCS3  
RBCS4  
RCBR1  
RCBR2  
RCBR3  
RCBR4  
RSI1  
Rx Blank Channel Select 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
0C1  
Rx Blank Channel Select 2  
0C2  
Rx Blank Channel Select 3  
0C3  
Rx Blank Channel Select 4 (E1 Mode Only)  
Rx Channel Blocking 1  
0C4  
0C5  
Rx Channel Blocking 2  
0C6  
Rx Channel Blocking 3  
0C7  
Rx Channel Blocking 4 (E1 Mode Only)  
Rx Signaling Insertion 1  
0C8  
0C9  
RSI2  
Rx Signaling Insertion 2  
0CA  
0CB  
0CC  
0CD  
0CE  
0CF  
0D0  
RSI3  
Rx Signaling Insertion 3  
RSI4  
Rx Signaling Insertion 4 (E1 Mode Only)  
Rx Gapped Clock Channel Select 1  
Rx Gapped Clock Channel Select 2  
Rx Gapped Clock Channel Select 3  
Rx Gapped Clock Channel Select 4 (E1 Mode Only)  
Rx Channel Idle Code Enable 1  
Rx Channel Idle Code Enable 2  
Rx Channel Idle Code Enable 3  
Rx Channel Idle Code Enable 4 (E1 Mode Only)  
Rx BERT Port Channel Select Register 1  
Rx BERT Port Channel Select Register 2  
Rx BERT Port Channel Select Register 3  
Rx BERT Port Channel Select Register 4 (E1 Mode Only)  
Reserved  
RGCCS1  
RGCCS2  
RGCCS3  
RGCCS4  
RCICE1  
RCICE2  
RCICE3  
RCICE4  
RBPCS1  
RBPCS2  
RBPCS3  
RBPCS4  
-
0D1  
0D2  
0D3  
0D4  
0D5  
0D6  
0D7  
0D8-0EF  
Global Registers  
(Section 10.3)  
-
See the Global Register list in Table 10-2. Note that this space  
is “Reserved” in Framers 2-8.  
Reserved  
0F0-0FF  
R/W  
100-10F  
110  
-
THC1  
Tx HDLC Control 1  
R/W  
R/W  
-
111  
THBSE  
-
Tx HDLC Bit Suppress  
112  
Reserved  
113  
THC2  
Tx HDLC Control 2  
R/W  
R/W  
-
114  
E1TSACR  
-
E1 Tx Sa Bit Control Register  
Reserved  
115-117  
118  
SSIE1  
Tx Software Signaling Insertion Enable 1  
Tx Software Signaling Insertion Enable 2  
Tx Software Signaling Insertion Enable 3  
R/W  
R/W  
R/W  
119  
SSIE2  
11A  
SSIE3  
93 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
ADDRESS  
11B  
11C-11F  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
12A  
12B  
12C  
12D  
12E  
12F  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
13A  
13B  
13C  
13D  
13E  
13F  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
14A  
14B  
14C  
14D  
14E  
14F  
150  
151  
152  
153  
ABBR  
SSIE4  
Reserved  
TIDR1  
TIDR2  
TIDR3  
TIDR4  
TIDR5  
TIDR6  
TIDR7  
TIDR8  
TIDR9  
TIDR10  
TIDR11  
TIDR12  
TIDR13  
TIDR14  
TIDR15  
TIDR16  
TIDR17  
TIDR18  
TIDR19  
TIDR20  
TIDR21  
TIDR22  
TIDR23  
TIDR24  
TIDR25  
TIDR26  
TIDR27  
TIDR28  
TIDR29  
TIDR30  
TIDR31  
TIDR32  
TS1  
DESCRIPTION  
R/W  
Tx Software Signaling Insertion Enable 4 (E1 Mode Only)  
Reserved  
R/W  
-
Tx Idle Definition 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Tx Idle Definition 2  
Tx Idle Definition 3  
Tx Idle Definition 4  
Tx Idle Definition 5  
Tx Idle Definition 6  
Tx Idle Definition 7  
Tx Idle Definition 8  
Tx Idle Definition 9  
Tx Idle Definition 10  
Tx Idle Definition 11  
Tx Idle Definition 12  
Tx Idle Definition 13  
Tx Idle Definition 14  
Tx Idle Definition 15  
Tx Idle Definition 16  
Tx Idle Definition 17  
Tx Idle Definition 18  
Tx Idle Definition 19  
Tx Idle Definition 20  
Tx Idle Definition 21  
Tx Idle Definition 22  
Tx Idle Definition 23  
Tx Idle Definition 24  
Tx Idle Definition 25 (E1 Mode Only)  
Tx Idle Definition 26 (E1 Mode Only)  
Tx Idle Definition 27 (E1 Mode Only)  
Tx Idle Definition 28 (E1 Mode Only)  
Tx Idle Definition 29 (E1 Mode Only)  
Tx Idle Definition 30 (E1 Mode Only)  
Tx Idle Definition 31 (E1 Mode Only)  
Tx Idle Definition 32 (E1 Mode Only)  
Tx Signaling 1  
TS2  
Tx Signaling 2  
TS3  
Tx Signaling 3  
TS4  
Tx Signaling 4  
TS5  
Tx Signaling 5  
TS6  
Tx Signaling 6  
TS7  
Tx Signaling 7  
TS8  
Tx Signaling 8  
TS9  
Tx Signaling 9  
TS10  
Tx Signaling 10  
TS11  
Tx Signaling 11  
TS12  
Tx Signaling 12  
TS13  
Tx Signaling 13  
TS14  
Tx Signaling 14  
TS15  
Tx Signaling 15  
TS16  
Tx Signaling 16  
TCICE1  
TCICE2  
TCICE3  
TCICE4  
Tx Channel Idle Code Enable 1  
Tx Channel Idle Code Enable 2  
Tx Channel Idle Code Enable 3  
Tx Channel Idle Code Enable 4 (E1 Mode Only)  
94 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
DESCRIPTION  
ADDRESS  
154-161  
162  
ABBR  
-
R/W  
-
Reserved  
T1TFDL  
T1TBOC  
T1TSLC1  
E1TAF  
T1TSLC2  
E1TNAF  
T1TSLC3  
E1TSiAF  
E1TSiNAF  
E1TRA  
E1TSa4  
E1TSa5  
E1TSa6  
E1TSa7  
E1TSa8  
-
Tx FDL (T1 Mode Only)  
R/W  
R/W  
163  
Tx BOC (T1 Mode Only)  
Tx SLC96 Data Link 1 (T1 Mode)  
E1 Tx Align Frame (E1 Mode)  
Tx SLC96 Data Link 2 (T1 Mode)  
E1 Tx Non-Align Frame (E1 Mode)  
Tx SLC96 Data Link 3 (T1 Mode)  
E1 Tx Si bits for Align Frame (E1 Mode)  
164  
165  
166  
R/W  
R/W  
R/W  
167  
168  
E1 Tx Si bits for Non-Align Frame (E1 Mode Only)  
E1 Tx Remote Alarm (E1 Mode Only)  
E1 Tx Sa4 Bits (E1 Mode Only)  
E1 Tx Sa5 Bits (E1 Mode Only)  
E1 Tx Sa6 Bits (E1 Mode Only)  
E1 Tx Sa7 Bits (E1 Mode Only)  
E1 Tx Sa8 Bits (E1 Mode Only)  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
169  
16A  
16B  
16C  
16D  
16E-17F  
180  
TMMR  
TCR1  
TCR2  
TCR3  
TIOCR  
TESCR  
TCR4  
THFC  
TIBOC  
TDS0SEL  
TXPC  
TBPBS  
-
Tx Master Mode  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
181  
Tx Control 1  
182  
Tx Control 2  
183  
Tx Control 3  
184  
Tx I/O Configuration  
185  
Tx Elastic Store Control  
Tx Control 4 (T1 Mode Only)  
Tx HDLC FIFO Control  
Tx Interleave Bus Op Control  
Tx DS0 Monitor Select  
Tx eXpansion Port Control  
Tx BERT Port Bit Suppress  
Reserved  
186  
187  
188  
189  
18A  
18B  
18C-18D  
18E  
TSYNCC  
Reserved  
TLS1  
Tx Synchronizer Control  
Reserved  
R/W  
-
18F  
190  
Tx Latched Status 1  
R/W  
R/W  
R/W  
-
191  
TLS2  
Tx Latched Status 2 (HDLC)  
Tx Latched Status 3 (SYNC)  
Reserved  
192  
TLS3  
193-19E  
19F  
-
TIIR  
Tx Interrupt Information Register  
Tx Interrupt Mask Register 1  
Tx Interrupt Mask Register 2 (HDLC)  
Tx Interrupt Mask Register 3 (SYNC)  
Reserved  
R/W  
R/W  
R/W  
R/W  
-
1A0  
TIM1  
1A1  
TIM2  
1A2  
TIM3  
1A3-1AB  
1AC  
1AD  
1AE-1B0  
1B1  
-
T1TCD1  
T1TCD2  
-
Tx Code Definition 1 (T1 Mode Only)  
Tx Code Definition 2 (T1 Mode Only)  
Reserved  
R/W  
R/W  
-
TRTS2  
-
Tx Real-Time Status Register 2 (HDLC)  
Reserved  
R
1B2  
-
1B3  
TFBA  
THF  
Tx HDLC FIFO Buffer Available  
Tx HDLC FIFO  
R
1B4  
W
1B5-1BA  
1BB  
-
Reserved  
-
TDS0M  
-
Tx DS0 Monitor  
R
1BC-1BF  
1C0  
Reserved  
-
TBCS1  
TBCS2  
TBCS3  
Tx Blank Channel Select 1  
Tx Blank Channel Select 2  
Tx Blank Channel Select 3  
R/W  
R/W  
R/W  
1C1  
1C2  
95 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
FRAMER REGISTER LIST  
ADDRESS  
1C3  
ABBR  
TBCS4  
TCBR1  
TCBR2  
TCBR3  
TCBR4  
THSCS1  
THSCS2  
THSCS3  
THSCS4  
TGCCS1  
TGCCS2  
TGCCS3  
TGCCS4  
PCL1  
DESCRIPTION  
R/W  
Tx Blank Channel Select 4 (E1 Mode Only)  
Tx Channel Blocking 1  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
1C4  
1C5  
Tx Channel Blocking 2  
1C6  
Tx Channel Blocking 3  
1C7  
Tx Channel Blocking 4 (E1 Mode Only)  
Tx Hardware Signaling Channel Select 1  
Tx Hardware Signaling Channel Select 2  
Tx Hardware Signaling Channel Select 3  
Tx Hardware Signaling Channel Select 4 (E1 Mode Only)  
Tx Gapped Clock Channel Select 1  
Tx Gapped Clock Channel Select 2  
Tx Gapped Clock Channel Select 3  
Tx Gapped Clock Channel Select 4 (E1 Mode Only)  
Per-Channel Loopback Enable 1  
Per-Channel Loopback Enable 2  
Per-Channel Loopback Enable 3  
Per-Channel Loopback Enable 4 (E1 Mode Only)  
Tx BERT Channel Select 1  
1C8  
1C9  
1CA  
1CB  
1CC  
1CD  
1CE  
1CF  
1D0  
1D1  
PCL2  
1D2  
PCL3  
1D3  
PCL4  
1D4  
TBPCS1  
TBPCS2  
TBPCS3  
TBPCS4  
-
1D5  
Tx BERT Channel Select 2  
1D6  
Tx BERT Channel Select 3  
1D7  
Tx BERT Channel Select 4 (E1 Mode Only)  
Reserved  
1D8-1FF  
96 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.1.3 LIU and BERT Register List  
Table 10-4. LIU Register List  
LIU REGISTER LIST  
ADDRESS  
1000  
DESCRIPTION  
LIU Transmit Receive Control Register  
LIU Transmit Impedance Selection Register  
LIU Maintenance and Jitter Attenuator Control Register  
LIU Real Status Register  
ABBR  
LTRCR  
LTISR  
LMJCR  
LRSR  
1001  
1002  
1003  
1004  
LIU Status Interrupt Mask Register  
LIU Latched Status Register  
LSIMR  
LLSR  
1005  
1006  
LIU Receive Signal Level  
LRSL  
1007  
LIU Receive Impedance and Sensitivity Monitor Register  
Reserved  
LRISMR  
1008-101F  
Table 10-5. BERT Register List  
BERT REGISTER LIST  
ADDRESS  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
110A  
110B  
110C  
110D  
110E  
110F  
DESCRIPTION  
BERT Alternating Word Count Rate  
BERT Repetitive Pattern Set Register 1  
BERT Repetitive Pattern Set Register 2  
BERT Repetitive Pattern Set Register 3  
BERT Repetitive Pattern Set Register 4  
BERT Control Register 1  
ABBR  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
BERT Control Register 2  
BC2  
BERT Bit Count Register 1  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIMR  
BERT Bit Count Register 2  
BERT Bit Count Register 3  
BERT Bit Count Register 4  
BERT Error Count Register 1  
BERT Error Count Register 2  
BERT Error Count Register 3  
BERT Latched Status Register  
BERT Status Interrupt Mask Register  
97 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.2 Register Bit Maps  
10.2.1 Global Register Bit Map  
Table 10-6. Global Register Bit Map  
ADDR NAME  
BIT 7  
BIT 6  
BIT 5  
RLOFLTS  
BPCLK1  
--  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
GCLE  
TCBCS  
TSSYNIOSEL  
MPS1  
-
BIT 0  
GIPI  
--  
IBOMS1  
--  
--  
IBOMS0  
--  
GIBO  
--  
BWE  
00F0 GTCR1  
BPCLK0 RFLOSSFS RFMSS  
RCBCS  
--  
00F1  
GFCR  
--  
--  
LOSS  
00F2 GTCR2  
00F3 GTCCR  
00F4  
BPRFSEL3 BPRFSEL2 BPRFSEL1 BPRFSEL0 BFREQSEL FREQSEL  
MPS0  
-
-
-
-
-
-
-
LSRST8  
FSRST8  
-
LSRST7  
FSRST7  
-
LSRST6  
FSRST6  
-
ID5  
FIS6  
LSRST5  
FSRST5  
-
LSRST4  
FSRST4  
-
LSRST3  
FSRST3  
-
LSRST2  
FSRST2  
-
LSRST1  
FSRST1  
-
00F5 GLSRR  
00F6 GFSRR  
00F7  
ID7  
FIS8  
ID6  
FIS7  
ID4  
FIS5  
BIS5  
LIS5  
FIM5  
BIM5  
LIM5  
ID3  
FIS4  
BIS4  
LIS4  
FIM4  
BIM4  
LIM4  
ID2  
FIS3  
BIS3  
LIS3  
FIM3  
BIM3  
LIM3  
ID1  
ID0  
00F8  
IDR  
FIS2  
FIS1  
BIS1  
LIS1  
FIM1  
BIM1  
LIM1  
00F9 GFISR  
00FA GBISR  
00FB GLISR  
00FC GFIMR  
00FD GBIMR  
00FE GLIMR  
BIS8  
LIS8  
FIM8  
BIM8  
LIM8  
BIS7  
LIS7  
FIM7  
BIM7  
LIM7  
BIS6  
LIS6  
FIM6  
BIM6  
LIM6  
BIS2  
LIS2  
FIM2  
BIM2  
LIM2  
98 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.2.2 Framer Register Bit Map  
Table 10-7 contains the framer registers of the DS26528. Some registers have dual functionality based on the  
selection of T1/J1 or E1 operating mode in the RMMR and TMMR registers. These dual-function registers are  
shown below using two lines of text. The first line of text is the bit functionality for T1/J1 mode. The second line is  
the bit functionality in E1 mode, in italics. Bits that are not used for an operating mode are noted with a single dash  
“-“. When there is only one set of bit definitions listed for a register, the bit functionality does not change with  
respect to the selection of T1/J1 or E1 mode. All registers not listed are reserved and should be initialized with a  
value of 00h for proper operation. The addresses shown are for Framer 1. Addresses for Framers 2 – 8 can be  
calculated using the following formula: Address for Framer N = (Framer 1 address + (N-1) x 200hex).  
Table 10-7. Framer Register Bit Map  
ADDR  
0010  
0011  
0012  
NAME  
RHC  
BIT 7  
RCRCD  
BSE8  
-
BIT 6  
RHR  
BSE7  
-
BIT 5  
RHMS  
BSE6  
-
BIT 4  
RHCS4  
BSE5  
RCM4  
RFSA1  
CASMS  
RSLC96  
Sa4IM  
RBD0  
-
BIT 3  
RHCS3  
BSE4  
RCM3  
-
BIT 2  
RHCS2  
BSE3  
RCM2  
RSFF  
RSFF  
OOF1  
Sa6IM  
RBF1  
-
BIT 1  
RHCS1  
BSE2  
RCM1  
RSFE  
RSFE  
RAIIE  
Sa7IM  
RBF0  
-
BIT 0  
RHCS0  
BSE1  
RCM0  
RSIE  
RSIE  
RD4RM  
Sa8IM  
-
RHBSE  
RDS0SEL  
-
-
-
0013  
0014  
0015  
RSIGC  
-
-
-
-
T1RCR2  
-
-
-
OOF2  
Sa5IM  
-
E1RSAIMR  
-
-
-
RBR  
-
-
RBD1  
-
T1RBOCC  
-
-
-
0020  
0021  
0022  
0023  
0024  
0025  
0026  
0027  
0028  
0029  
002A  
002B  
002C  
002D  
002E  
002F  
0030  
0031  
0032  
0033  
0034  
0035  
0036  
0037  
RIDR1  
RIDR2  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
C7  
CH8  
C7  
CH16  
C7  
CH24  
C7  
-
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
C6  
CH7  
C6  
CH15  
C6  
CH23  
C6  
-
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
C5  
CH6  
C5  
CH14  
C5  
CH22  
C5  
-
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
RIDR3  
C4  
C3  
C2  
C1  
C0  
RIDR4  
C4  
C3  
C2  
C1  
C0  
RIDR5  
C4  
C3  
C2  
C1  
C0  
RIDR6  
C4  
C3  
C2  
C1  
C0  
RIDR7  
C4  
C3  
C2  
C1  
C0  
RIDR8  
C4  
C3  
C2  
C1  
C0  
RIDR9  
C4  
C3  
C2  
C1  
C0  
RIDR10  
RIDR11  
RIDR12  
RIDR13  
RIDR14  
RIDR15  
RIDR16  
RIDR17  
RIDR18  
RIDR19  
RIDR20  
RIDR21  
RIDR22  
RIDR23  
RIDR24  
T1RSAOI1  
RIDR25  
T1RSAOI2  
RIDR26  
T1RSAOI3  
RIDR27  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
C4  
C3  
C2  
C1  
C0  
CH5  
C4  
CH4  
C3  
CH3  
C2  
CH2  
C1  
CH1  
C0  
0038  
0039  
003A  
003B  
003C  
003D  
CH13  
C4  
CH12  
C3  
CH11  
C2  
CH10  
C1  
CH9  
C0  
CH21  
C4  
CH20  
C3  
CH19  
C2  
CH18  
C1  
CH17  
C0  
-
-
-
-
-
RIDR28  
C7  
CH8  
C7  
CH16  
C7  
CH24  
C7  
-
C6  
CH7  
C6  
CH15  
C6  
CH23  
C6  
-
C5  
CH6  
C5  
CH14  
C5  
CH22  
C5  
-
C4  
C3  
C2  
C1  
C0  
T1RDMWE1  
RIDR29  
CH5  
C4  
CH4  
C3  
CH3  
C2  
CH2  
C1  
CH1  
C0  
T1RDMWE2  
RIDR30  
CH13  
C4  
CH12  
C3  
CH11  
C2  
CH10  
C1  
CH9  
C0  
T1RDMWE3  
RIDR31  
CH21  
C4  
CH20  
C3  
CH19  
C2  
CH18  
C1  
CH17  
C0  
003E  
003F  
RIDR32  
-
-
-
-
-
99 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
C7  
BIT 6  
C6  
BIT 5  
C5  
BIT 4  
C4  
BIT 3  
C3  
BIT 2  
C2  
BIT 1  
C1  
BIT 0  
C0  
CH1-A  
0
CH1-B  
0
CH1-C  
0
CH1-D  
0
CH13-A  
X
CH13-B  
Y
CH13-C  
X
CH13-D  
X
0040  
0041  
0042  
0043  
0044  
0045  
0046  
0047  
0048  
0049  
004A  
004B  
004C  
004D  
004E  
004F  
RS1  
RS2  
CH2-A  
CH1-A  
CH3-A  
CH2-A  
CH4-A  
CH3-A  
CH5-A  
CH4-A  
CH6-A  
CH5-A  
CH7-A  
CH6-A  
CH8-A  
CH7-A  
CH9-A  
CH8-A  
CH10-A  
CH9-A  
CH11-A  
CH10-A  
CH12-A  
CH11-A  
-
CH2-B  
CH1-B  
CH3-B  
CH2-B  
CH4-B  
CH3-B  
CH5-B  
CH4-B  
CH6-B  
CH5-B  
CH7-B  
CH6-B  
CH8-B  
CH7-B  
CH9-B  
CH8-B  
CH10-B  
CH9-B  
CH11-B  
CH10-B  
CH12-B  
CH11-B  
-
CH2-C  
CH1-C  
CH3-C  
CH2-C  
CH4-C  
CH3-C  
CH5-C  
CH4-C  
CH6-C  
CH5-C  
CH7-C  
CH6-C  
CH8-C  
CH7-C  
CH9-C  
CH8-C  
CH10-C  
CH9-C  
CH11-C  
CH10-C  
CH12-C  
CH11-C  
-
CH2-D  
CH1-D  
CH3-D  
CH2-D  
CH4-D  
CH3-D  
CH5-D  
CH4-D  
CH6-D  
CH5-D  
CH7-D  
CH6-D  
CH8-D  
CH7-D  
CH9-D  
CH8-D  
CH10-D  
CH9-D  
CH11-D  
CH10-D  
CH12-D  
CH11-D  
-
CH14-A  
CH16-A  
CH15-A  
CH17-A  
CH16-A  
CH18-A  
CH17-A  
CH19-A  
CH18-A  
CH20-A  
CH19-A  
CH21-A  
CH20-A  
CH22-A  
CH21-A  
CH23-A  
CH22-A  
CH24-A  
CH23-A  
CH25-A  
CH24-A  
CH26-A  
-
CH14-B  
CH16-B  
CH15-B  
CH17-B  
CH16-B  
CH18-B  
CH17-B  
CH19-B  
CH18-B  
CH20-B  
CH19-B  
CH21-B  
CH20-B  
CH22-B  
CH21-B  
CH23-B  
CH22-B  
CH24-B  
CH23-B  
CH25-B  
CH24-B  
CH26-B  
-
CH14-C  
CH16-C  
CH15-C  
CH17-C  
CH16-C  
CH18-C  
CH17-C  
CH19-C  
CH18-C  
CH20-C  
CH19-C  
CH21-C  
CH20-C  
CH22-C  
CH21-C  
CH23-C  
CH22-C  
CH24-C  
CH23-C  
CH25-C  
CH24-C  
CH26-C  
-
CH14-D  
CH16-D  
CH15-D  
CH17-D  
CH16-D  
CH18-D  
CH17-D  
CH19-D  
CH18-D  
CH20-D  
CH19-D  
CH21-D  
CH20-D  
CH22-D  
CH21-D  
CH23-D  
CH22-D  
CH24-D  
CH23-D  
CH25-D  
CH24-D  
CH26-D  
-
RS3  
RS4  
RS5  
RS6  
RS7  
RS8  
RS9  
RS10  
RS11  
RS12  
RS13  
RS14  
RS15  
RS16  
CH12-A  
-
CH12-B  
-
CH12-C  
-
CH12-D  
-
CH27-A  
-
CH27-B  
-
CH27-C  
-
CH27-D  
-
CH13-A  
-
CH13-B  
-
CH13-C  
-
CH13-D  
-
CH28-A  
-
CH28-B  
-
CH28-C  
-
CH28-D  
-
CH14-A  
-
CH14-B  
-
CH14-C  
-
CH14-D  
-
CH29-A  
-
CH29-B  
-
CH29-C  
-
CH29-D  
-
CH15-A  
CH15-B  
CH15-C  
CH15-D  
CH30-A  
CH30-B  
CH30-C  
LCVC9  
LCVC1  
PCVC9  
PCVC1  
FOS9  
FOS1  
EB9  
CH30-D  
LCCV8  
LCVC0  
PCVC8  
PCVC0  
FOS8  
FOS0  
EB8  
0050  
0051  
0052  
0053  
0054  
0055  
0056  
0057  
0060  
0061  
LCVCR1  
LCVCR2  
PCVCR1  
PCVCR2  
FOSCR1  
FOSCR2  
E1EBCR1  
E1EBCR2  
RDS0M  
LCVC15 LCVC14 LCVC13 LCVC12 LCVC11 LCVC10  
LCVC7  
LCVC6  
LCVC5  
LCVC4  
LCVC3  
LCVC2  
PCVC15 PCVC14 PCVC13 PCVC12 PCVC11 PCVC10  
PCVC7  
FOS15  
FOS7  
EB15  
EB7  
B1  
PCVC6  
FOS14  
FOS6  
EB14  
EB6  
B2  
PCVC5  
FOS13  
FOS5  
EB13  
EB5  
B3  
PCVC4  
FOS12  
FOS4  
EB12  
EB4  
B4  
PCVC3  
FOS11  
FOS3  
EB11  
EB3  
B5  
PCVC2  
FOS10  
FOS2  
EB10  
EB2  
B6  
EB1  
EB0  
B7  
B8  
-
-
-
-
-
-
-
-
-
T1RFDL  
E1RRTS7  
T1RBOC  
T1RSLC1  
E1RAF  
RFDL7  
CSC5  
-
RFDL6  
CSC4  
-
RFDL5  
CSC3  
RBOC5  
C6  
RFDL4  
CSC2  
RBOC4  
C5  
RFDL3  
CSC0  
RBOC3  
C4  
RFDL2  
CRC4SA  
RBOC2  
C3  
RFDL1  
CASSA  
RBOC1  
C2  
RFDL0  
FASSA  
RBOC0  
C1  
0062  
0063  
0064  
C8  
C7  
Si  
0
0
1
1
0
1
1
T1RSLC2  
E1RNAF  
T1RSLC3  
E1RsiAF  
M2  
M1  
S=0  
A
S=1  
Sa4  
S2  
S=0  
Sa5  
C11  
C10  
C9  
0065  
0066  
0067  
0068  
0069  
006A  
006B  
Si  
1
Sa6  
Sa7  
Sa8  
S=1  
SiF14  
-
S4  
S3  
S1  
A2  
A1  
M3  
SiF12  
-
SiF10  
-
SiF8  
-
SiF6  
-
SiF4  
-
SiF2  
SiF0  
-
-
E1RSiNAF  
E1RNAF  
E1RSa4  
E1RSa5  
E1RSa6  
SiF15  
-
SiF13  
-
SiF11  
-
SiF9  
-
SiF7  
-
SiF5  
-
SiF3  
SiF1  
-
-
RRAF15 RRAF13 RRAF11  
RRAF9  
-
RRAF7  
-
RRAF5  
-
RRAF3  
-
RRAF1  
-
-
-
-
RSa4F15 RSa4F13 RSa4F11 RSa4F9  
RSa4F7  
-
RSa4F5  
-
RSa4F3  
-
RSa4F1  
-
-
-
-
-
RSa5F15 RSa5F13 RSa5F11 RSa5F9  
RSa5F7  
-
RSa5F5  
-
RSa5F3  
-
RSa5F1  
-
-
-
-
-
RSa6F15 RSa6F13 RSa6F11 RSa6F9  
RSa6F7  
RSa6F5  
RSa6F3  
RSa6F1  
100 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
006C  
NAME  
E1RSa7  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
-
BIT 2  
-
BIT 1  
-
BIT 0  
-
-
-
-
-
RSa7F15 RSa7F13 RSa7F11 RSa7F9  
RSa7F7  
-
RSa7F5  
-
RSa7F3  
-
RSa7F1  
-
-
-
-
-
006D  
E1RSa8  
RSa8F15 RSa8F13 RSa8F11 RSa8F9  
RSa8F7  
Sa5  
RSa8F5  
Sa6  
Sa6n  
-
RSa8F3  
Sa7  
RSa8F1  
Sa8  
006E  
006F  
0080  
SABITS  
Sa6CODE  
RMMR  
-
-
-
Sa4  
-
FRM_EN  
SYNCT  
-
-
INIT_DONE  
RB8ZS  
RHDB3  
-
-
-
Sa6n  
-
Sa6n  
SFTRST  
Sa6n  
T1/E1  
-
-
RFM  
RSIGM  
RUP2  
RSa6S  
RSERC  
ARC  
RG802  
RUP1  
RSa5S  
-
SYNCC  
RCRC4  
RUP0  
RSa4S  
-
RJC  
FRC  
RDN2  
-
SYNCE RESYNC  
0081  
RCR1  
SYNCE RESYNC  
T1RIBCC  
E1RCR2  
RCR3  
-
RDN1  
-
RDN0  
RLOSA  
FLB  
0082  
0083  
0084  
0085  
0086  
RSa8S  
IDF  
RSa7S  
-
-
PLB  
RCLKINV RSYNCINV H100EN RSCLKM  
RSMS  
-
RSIO  
RSIO  
RSMS2  
RSMS2  
RESMDM  
RSMS1  
RSMS1  
RESE  
RIOCR  
RESCR  
ERCNT  
RSYNCINV  
RCLKINV  
H100EN RSCLKM  
RDATFMT RGCLKEN  
-
RSZS  
RESALGN RESR  
1SECS  
MCUS  
MECU  
ECUS  
EAMS  
FSBE  
MOSCRF LCVCRF  
1SECS  
MCUS  
MECU  
ECUS  
EAMS  
-
-
LCVCRF  
0087  
0088  
RHFC  
-
-
-
-
-
-
-
-
-
DA2  
RSC2  
-
RFHWM1 RFHWM0  
RIBOC  
IBS1  
IBS0  
IBOSEL  
IBOEN  
DA1  
RSC1  
-
DA0  
RSC0  
-
-
-
-
-
-
-
-
-
-
-
0089  
T1RSCC  
RHPBMS RHPBEN RHPAMS RHPAEN  
RBPDIR RBPFUS RBPEN  
008A  
RXPC  
-
-
-
-
RBPDIR  
-
RBPEN  
008B  
0090  
RBPBS  
RLS1  
BPBSE8 BPBSE7 BPBSE6 BPBSE5 BPBSE4 BPBSE3 BPBSE2 BPBSE1  
RRAIC  
RAISC  
RLOSC  
COFA  
RLOFC  
8ZD  
RRAID  
16ZD  
RSA1  
LORCD  
LORCD  
RSCOS  
RPE  
RSLC96  
-
RAISD  
SEFE  
RSA0  
LSPD  
-
RLOSD  
B8ZS  
RLOFD  
FBE  
RPDV  
-
0091  
RLS2  
-
CRCRC  
CASRC  
LDNC  
FASRC  
LUPC  
RCMF  
LDND  
RAF  
LORCC  
LSPC  
LUPD  
0092  
RLS3  
LORCC  
-
V52LNKC RDMAC  
V52LNKD RDMAD  
0093  
0094  
RLS4  
RLS5  
RESF  
RESEM  
RSLIP  
-
1SEC  
RPS  
RFDLF  
-
TIMER  
RHWMS  
BC  
RMF  
RNES  
BD  
-
-
ROVR  
RHOBT  
-
-
RRAI-CI  
RAIS-CI  
0096  
RLS7  
-
-
-
-
Sa6CD  
-
SaXCD  
-
0097  
0098  
0099  
009A  
-
-
-
-
-
CH5  
CH13  
CH21  
-
-
-
RSS1  
RSS2  
RSS3  
CH8  
CH7  
CH6  
CH4  
CH12  
CH20  
-
CH3  
CH11  
CH19  
-
CH2  
CH10  
CH18  
-
CH1  
CH9  
CH17  
-
CH16  
CH15  
CH14  
CH24  
CH23  
CH22  
-
-
-
009B  
009C  
009D  
RSS4  
CH32  
CH31  
CH30  
CH29  
C4  
CH28  
C3  
CH27  
C2  
CH26  
C1  
CH25  
C0  
C7  
C6  
C5  
T1RSCD1  
T1RSCD2  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
-
RLS7  
RLS6**  
RLS5  
RLS5  
RLOFC  
-
RLS4  
RLS4  
RRAID  
-
RLS3  
RLS3  
RAISD  
-
RLS2*  
RLS2  
RLOSD  
-
RLS1  
RLS1  
RLOFD  
-
009F  
00A0  
00A1  
RIIR  
RIM1  
RIM2  
-
-
-
RRAIC  
RAISC  
RLOSC  
-
-
-
-
-
-
-
RSA1  
LORCD  
LORCD  
RSCOS  
RPE  
RSLC96  
-
RSA0  
LSPD  
-
RCMF  
LDND  
RAF  
LUPD  
LORCC  
LORCC  
RESF  
-
LSPC  
LDNC  
LUPC  
00A2  
RIM3  
-
V52LNKC RDMAC  
V52LNKD RDMAD  
00A3  
00A4  
RIM4  
RIM5  
RESEM  
-
RSLIP  
ROVR  
RRAI-CI  
-
-
RHOBT  
RAIS-CI  
-
1SEC  
RPS  
RFDLF  
-
TIMER  
RHWMS  
BC  
RMF  
RNES  
BD  
00A6  
RIM7  
-
-
Sa6CD  
CH2  
CH10  
CH18  
-
SaXCD  
CH1  
CH9  
CH17  
-
00A8  
00A9  
00AA  
RSCSE1  
RSCSE2  
RSCSE3  
CH8  
CH16  
CH24  
-
CH7  
CH15  
CH23  
-
CH6  
CH14  
CH22  
-
CH5  
CH13  
CH21  
-
CH4  
CH12  
CH20  
-
CH3  
CH11  
CH19  
-
00AB  
RSCSE4  
CH32  
C7  
CH31  
C6  
CH30  
C5  
CH29  
C4  
CH28  
C3  
CH27  
C2  
CH26  
C1  
CH25  
C0  
00AC T1RUPCD1  
-
-
-
-
-
-
-
-
101 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
NAME  
BIT 7  
C7  
BIT 6  
C6  
BIT 5  
C5  
BIT 4  
C4  
BIT 3  
C3  
BIT 2  
C2  
BIT 1  
C1  
BIT 0  
C0  
00AD T1RUPCD2  
00AE T1RDNCD1  
00AF T1RDNCD2  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
00B0  
00B2  
RRTS1  
RRTS3  
-
-
-
-
RRAI  
LORC  
LORC  
-
RAIS  
LSP  
-
RLOS  
LDN  
V52LNK  
RHWM  
RPBA1  
RHD1  
CH2  
CH10  
CH18  
-
RLOF  
LUP  
RDMA  
RNE  
RPBA0  
RHD0  
CH1  
CH9  
CH17  
-
-
-
-
-
-
-
-
-
00B4  
00B5  
00B6  
0C00  
00C1  
00C2  
RRTS5  
RHPBA  
RHF  
-
PS2  
RPBA6  
RHD6  
CH7  
CH15  
CH23  
-
PS1  
RPBA5  
RHD5  
CH6  
CH14  
CH22  
-
PS0  
RPBA4  
RHD4  
CH5  
CH13  
CH21  
-
-
MS  
RPBA3  
RHD3  
CH4  
CH12  
CH20  
-
RPBA2  
RHD2  
CH3  
CH11  
CH19  
-
RHD7  
CH8  
CH16  
CH24  
-
RBCS1  
RBCS2  
RBCS3  
00C3  
RBCS4  
CH32  
CH8  
CH16  
CH24  
-
CH31  
CH7  
CH15  
CH23  
-
CH30  
CH6  
CH14  
CH22  
-
CH29  
CH5  
CH13  
CH21  
-
CH28  
CH4  
CH12  
CH20  
-
CH27  
CH3  
CH11  
CH19  
-
CH26  
CH2  
CH10  
CH18  
-
CH25  
CH1  
CH9  
CH17  
-
00C4  
00C5  
00C6  
RCBR1  
RCBR2  
RCBR3  
00C7  
RCBR4  
CH32  
CH8  
CH16  
CH24  
-
CH31  
CH7  
CH15  
CH23  
-
CH30  
CH6  
CH14  
CH22  
-
CH29  
CH5  
CH13  
CH21  
-
CH28  
CH4  
CH12  
CH200  
-
CH27  
CH3  
CH11  
CH19  
-
CH26  
CH2  
CH100  
CH18  
-
CH25:Fbit  
CH1  
CH9  
CH17  
-
00C8  
00C9  
00CA  
RSI1  
RSI2  
RSI3  
00CB  
RSI4  
CH32  
CH8  
CH16  
CH24  
-
CH31  
CH7  
CH15  
CH23  
-
CH30  
CH6  
CH14  
CH22  
-
CH29  
CH5  
CH13  
CH21  
-
CH28  
CH4  
CH12  
CH20  
-
CH27  
CH3  
CH11  
CH19  
-
CH26  
CH2  
CH10  
CH18  
-
CH25  
CH1  
CH9  
CH17  
-
00CC  
00CD  
00CE  
RGCCS1  
RGCCS2  
RGCCS3  
00CF  
RGCCS4  
CH32  
CH8  
CH16  
CH24  
-
CH31  
CH7  
CH15  
CH23  
-
CH30  
CH6  
CH14  
CH22  
-
CH29  
CH5  
CH13  
CH21  
-
CH28  
CH4  
CH12  
CH20  
-
CH27  
CH3  
CH11  
CH19  
-
CH26  
CH2  
CH10  
CH18  
-
CH25/Fbit  
CH1  
CH9  
CH17  
-
00D0  
00D1  
00D2  
RCICE1  
RCICE2  
RCICE3  
00D3  
RCICE4  
CH32  
CH8  
CH16  
CH24  
-
CH31  
CH7  
CH15  
CH23  
-
CH30  
CH6  
CH14  
CH22  
-
CH29  
CH5  
CH13  
CH21  
-
CH28  
CH4  
CH12  
CH20  
-
CH27  
CH3  
CH11  
CH19  
-
CH26  
CH2  
CH10  
CH18  
-
CH25  
CH1  
CH9  
CH17  
-
00D4  
00D5  
00D6  
RBPCS1  
RBPCS2  
RBPCS3  
00D7  
RBPCS4  
CH32  
NOFS  
TBSE8  
TABT  
TABT  
CH8  
CH16  
CH24  
-
CH31  
TEOML  
TBSE7  
SBOC  
-
CH30  
THR  
TBSE6  
THCEN  
THCEN  
CH6  
CH14  
CH22  
-
CH29  
THMS  
TBSE5  
THCS4  
THCS4  
CH5  
CH13  
CH21  
-
CH28  
TFS  
TBSE4  
THCS3  
THCS3  
CH4  
CH12  
CH20  
-
CH27  
TEOM  
TBSE3  
THCS2  
THCS2  
CH3  
CH11  
CH19  
-
CH26  
TZSD  
TBSE2  
THCS1  
THCS1  
CH2  
CH10  
CH18  
-
CH25  
TCRCD  
TBSE1  
THCS0  
THCS0  
CH1  
CH9  
CH17  
-
0110  
0111  
THC1  
THBSE  
0113  
THC2  
0118  
0119  
011A  
SSIE1  
SSIE2  
SSIE3  
CH7  
CH15  
CH23  
-
011B  
SSIE4  
CH32  
C7  
CH31  
C6  
CH30  
C5  
CH29  
C4  
CH28  
C3  
CH27  
C2  
CH26  
C1  
CH25  
C0  
0120  
0121  
0122  
0123  
0124  
0125  
0126  
0127  
0128  
0129  
TIDR1  
TIDR2  
TIDR3  
TIDR4  
TIDR5  
TIDR6  
TIDR7  
TIDR8  
TIDR9  
TIDR10  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
102 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
012A  
012B  
012C  
012D  
012E  
012F  
0130  
0131  
0132  
0133  
0134  
0135  
0136  
0137  
NAME  
TIDR11  
TIDR12  
TIDR13  
TIDR14  
TIDR15  
TIDR16  
TIDR17  
TIDR18  
TIDR19  
TIDR20  
TIDR21  
TIDR22  
TIDR23  
TIDR24  
BIT 7  
C7  
BIT 6  
C6  
BIT 5  
C5  
BIT 4  
C4  
BIT 3  
C3  
BIT 2  
C2  
BIT 1  
C1  
BIT 0  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
0138  
0139  
013A  
013B  
013C  
013D  
013E  
013F  
0140  
0141  
0142  
0143  
0144  
0145  
0146  
0147  
0148  
0149  
014A  
014B  
014C  
014D  
014E  
014F  
TIDR25  
TIDR26  
TIDR27  
TIDR28  
TIDR29  
TIDR30  
TIDR31  
TIDR32  
TS1  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
-
-
-
-
-
-
-
-
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
CH1-A  
0
CH1-B  
0
CH1-C  
0
CH1-D  
0
CH13-A  
X
CH13-B  
Y
CH13-C  
X
CH13-D  
X
CH2-A  
CH1-A  
CH3-A  
CH2-A  
CH4-A  
CH3-A  
CH5-A  
CH4-A  
CH6-A  
CH5-A  
CH7-A  
CH6-A  
CH8-A  
CH7-A  
CH9-A  
CH8-A  
CH10-A  
CH9-A  
CH11-A  
CH10-A  
CH12-A  
CH11-A  
-
CH2-B  
CH1-B  
CH3-B  
CH2-B  
CH4-B  
CH3-B  
CH5-B  
CH4-B  
CH6-B  
CH5-B  
CH7-B  
CH6-B  
CH8-B  
CH7-B  
CH9-B  
CH8-B  
CH10-B  
CH9-B  
CH11-B  
CH10-B  
CH12-B  
CH11-B  
-
CH2-C  
CH1-C  
CH3-C  
CH2-C  
CH4-C  
CH3-C  
CH5-C  
CH4-C  
CH6-C  
CH5-C  
CH7-C  
CH6-C  
CH8-C  
CH7-C  
CH9-C  
CH8-C  
CH10-C  
CH9-C  
CH11-C  
CH10-C  
CH12-C  
CH11-C  
-
CH2-D  
CH1-D  
CH3-D  
CH2-D  
CH4-D  
CH3-D  
CH5-D  
CH4-D  
CH6-D  
CH5-D  
CH7-D  
CH6-D  
CH8-D  
CH7-D  
CH9-D  
CH8-D  
CH10-D  
CH9-D  
CH11-D  
CH10-D  
CH12-D  
CH11-D  
-
CH14-A  
CH16-A  
CH15-A  
CH17-A  
CH16-A  
CH18-A  
CH17-A  
CH19-A  
CH18-A  
CH20-A  
CH19-A  
CH21-A  
CH20-A  
CH22-A  
CH21-A  
CH23-A  
CH22-A  
CH24-A  
CH23-A  
CH25-A  
CH24-A  
CH26-A  
-
CH14-B  
CH16-B  
CH15-B  
CH17-B  
CH16-B  
CH18-B  
CH17-B  
CH19-B  
CH18-B  
CH20-B  
CH19-B  
CH21-B  
CH20-B  
CH22-B  
CH21-B  
CH23-B  
CH22-B  
CH24-B  
CH23-B  
CH25-B  
CH24-B  
CH26-B  
-
CH14-C  
CH16-C  
CH15-C  
CH17-C  
CH16-C  
CH18-C  
CH17-C  
CH19-C  
CH18-C  
CH20-C  
CH19-C  
CH21-C  
CH20-C  
CH22-C  
CH21-C  
CH23-C  
CH22-C  
CH24-C  
CH23-C  
CH25-C  
CH24-C  
CH26-C  
-
CH14-D  
CH16-D  
CH15-D  
CH17-D  
CH16-D  
CH18-D  
CH17-D  
CH19-D  
CH18-D  
CH20-D  
CH19-D  
CH21-D  
CH20-D  
CH22-D  
CH21-D  
CH23-D  
CH22-D  
CH24-D  
CH23-D  
CH25-D  
CH24-D  
CH26-D  
-
TS2  
TS3  
TS4  
TS5  
TS6  
TS7  
TS8  
TS9  
TS10  
TS11  
TS12  
TS13  
TS14  
TS15  
TS16  
CH12-A  
-
CH12-B  
-
CH12-C  
-
CH12-D  
-
CH27-A  
-
CH27-B  
-
CH27-C  
-
CH27-D  
-
CH13-A  
-
CH13-B  
-
CH13-C  
-
CH13-D  
-
CH28-A  
-
CH28-B  
-
CH28-C  
-
CH28-D  
-
CH14-A  
-
CH14-B  
-
CH14-C  
-
CH14-D  
-
CH29-A  
-
CH29-B  
-
CH29-C  
-
CH29-D  
-
CH15-A  
CH15-B  
CH15-C  
CH15-D  
CH30-A  
CH30-B  
CH30-C  
CH30-D  
103 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
0150  
0151  
0152  
NAME  
TCICE1  
TCICE2  
TCICE3  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
CH5  
CH13  
CH21  
-
BIT 3  
CH4  
CH12  
CH20  
-
BIT 2  
CH3  
CH11  
CH19  
-
BIT 1  
CH2  
CH10  
CH18  
-
BIT 0  
CH1  
CH9  
CH17  
-
CH8  
CH7  
CH6  
CH16  
CH15  
CH14  
CH24  
CH23  
CH22  
-
-
-
0153  
0162  
0163  
0164  
0165  
0166  
0167  
0168  
0169  
016A  
016B  
016C  
TCICE4  
T1TFDL  
T1TBOC  
CH32  
CH31  
CH30  
CH29  
CH5  
-
CH28  
CH4  
-
CH27  
CH3  
-
CH26  
CH2  
-
CH25  
CH1  
-
CH8  
CH7  
CH6  
-
-
-
-
-
TBOC5  
TBOC4  
-
TBOC3  
-
TBOC2  
-
TBOC1  
-
TBOC0  
-
-
-
-
T1TSLC1  
E1TAF  
C8  
C7  
C6  
C5  
C4  
C3  
C2  
C1  
Si  
0
0
1
1
0
1
1
T1TSLC2  
E1TNAF  
T1TSLC3  
E1TSiAF  
M2  
M1  
S=0  
S=1  
Sa4  
S2  
S=0  
C11  
Sa6  
A2  
C10  
Sa7  
A1  
C9  
Si  
1
A
Sa5  
Sa8  
S=1  
S4  
S3  
S1  
M3  
TSiF14  
TSiF12  
TSiF10  
TsiF8  
-
TsiF6  
-
TSiF4  
-
TsiF2  
-
TsiF0  
-
-
-
-
E1TSiNAF  
TsiF15  
TSiF13  
TSiF11  
TSiF9  
-
TSiF7  
-
TSiF5  
-
TSiF3  
-
TSiF1  
-
-
-
-
E1TRA  
TRAF15  
TRAF13  
TRAF11  
TRAF9  
-
TRAF7  
-
TRAF5  
-
TRAF3  
-
TRAF1  
-
-
-
-
E1TSa4  
E1TSa5  
E1TSa6  
E1TSa7  
TSa4F15 TSa4F13 TSa4F11 TSa4F9  
TSa4F7  
-
TSa4F5  
-
TSa4F3  
-
TSa4F1  
-
-
-
-
-
TSa5F15 TSa5F13 TSa5F11 TSa5F9  
TSa5F7  
-
TSa5F5  
-
TSa5F3  
-
TSa5F1  
-
-
-
-
-
TSa6F15 TSa6F13 TSa6F11 TSa6F9  
TSa6F7  
-
TSa6F5  
-
TSa6F3  
-
TSa6F1  
-
-
-
-
-
TSa7F15 TSa7F13 TSa7F11 TSa7F9  
TSa7F7  
-
TSa7F5  
-
TSa7F3  
-
TSa7F1  
-
-
-
-
-
016D  
0180  
0181  
E1TSa8  
TMMR  
TCR1  
TSa8F15 TSa8F13 TSa8F11 TSa8F9  
TSa8F7  
-
TSa8F5  
-
TSa8F3  
SFTRST  
TAIS  
TAIS  
PDE  
Sa7S  
IBPV  
IBPV  
TSDW  
-
TSa8F1  
T1/E1  
TRAI  
TCRC4  
TB7ZS  
Sa8S  
TLOOP  
CRC4R  
TSM  
TSM  
TESE  
TC0  
-
INIT_DONE  
TFPT  
FRM_EN  
TJC  
-
-
TCPT  
TG802  
-
TSSE  
TSiS  
GB7S  
TSA1  
FBCT1  
Sa5S  
MFRS  
MFRS  
TSSM  
TSSM  
TESALGN  
TRAIM  
-
TB8ZS  
THDB3  
TD4RM  
Sa6S  
TFM  
-
TTPT  
TFDLS  
AEBE  
ODF  
T16S  
TSLC96  
AAIS  
FBCT2  
Sa4S  
TCSS0  
TCSS0  
TSCLKM  
TSCLKM  
TSZS  
-
0182  
0183  
TCR2  
TCR3  
ARA  
ODM  
TCSS1  
TCSS1  
ODF  
ODM  
TCLKINV TSYNCINV  
TSIO  
TSIO  
TESR  
TAISM  
-
TSSYNCINV  
0184  
0185  
0186  
TIOCR  
TESCR  
TCR4  
TSSYNCINV  
TSYNCINV  
TCLKINV  
TDATFMT TGCLKEN  
--  
TESMDM  
TC1  
-
-
-
-
-
-
-
-
-
-
-
0187  
0188  
0189  
018A  
018B  
THFC  
TIBOC  
TDS0SEL  
TXPC  
TBPBS  
-
IBS1  
-
-
IBS0  
-
-
-
-
TFLWM1 TFLWM2  
IBOSEL  
TCM4  
IBOEN  
TCM3  
DA2  
TCM2  
DA1  
DA0  
TCM0  
TBPEN  
TCM1  
THPBMS THPBEN THPAMS THPAEN  
-
TBPDIR TBPFUS  
BPBSE8 BPBSE7 BPBSE6 BPBSE5 BPBSE4 BPBSE3 BPBSE2 BPBSE1  
-
-
-
-
-
TSEN  
TSEN  
TMF  
SYNCE RESYNC  
018E  
0190  
0191  
TSYNCC  
-
-
-
-
CRC4  
TPDV  
TAF  
SYNCE RESYNC  
TESF  
TESEM  
TSLIP  
TSLC96  
LOTCC  
LOTCC  
TLWMS  
TLWMS  
LOF  
LOTC  
LOTC  
TNFS  
TNFS  
LOFD  
TLS1  
TESF  
TESEM  
TSLIP  
-
TMF  
-
-
-
-
-
-
-
-
-
TFDLE  
TUDR  
TUDR  
-
TMEND  
TMEND  
-
TLS2  
-
0192  
019F  
TLS3  
TIIR  
-
-
-
-
-
-
TLS3  
TLS2  
TLS1  
TESF  
TESEM  
TSLIP  
TSLC96  
TPDV  
TAF  
TUDR  
TUDR  
-
TMF  
TMF  
TMEND  
TMEND  
-
LOTCC  
LOTCC  
TLWMS  
TLWMS  
-
LOTC  
LOTC  
TNFS  
TNFS  
LOFD  
C0  
01A0  
TIM1  
TESF  
TESEM  
TSLIP  
-
-
-
-
-
-
-
-
-
-
TFDLE  
01A1  
01A2  
01AC  
TIM2  
TIM3  
-
-
C7  
-
C6  
-
C5  
-
C4  
-
C3  
C2  
C1  
T1TCD1  
-
-
-
-
104 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
ADDR  
01AD  
NAME  
T1TCD2  
BIT 7  
C7  
-
BIT 6  
C6  
-
BIT 5  
C5  
-
BIT 4  
C4  
-
BIT 3  
C3  
-
BIT 2  
C2  
-
BIT 1  
C1  
-
BIT 0  
C0  
-
TNF  
TFBA0  
THD0  
B8  
01B1  
01B3  
01B4  
01BB  
01C0  
01C1  
01C2  
TRTS2  
TFBA  
THF  
TDS0M  
TBCS1  
TBCS2  
TBCS3  
-
-
-
-
TEMPTY  
TFBA3  
THD3  
B5  
TFULL  
TFBA2  
THD2  
B6  
TLWM  
TFBA1  
THD1  
B7  
--  
THD7  
B1  
TFBA6  
THD6  
B2  
TFBA5  
THD5  
B3  
TFBA4  
THD4  
B4  
CH8  
CH16  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH9  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH24  
-
CH23  
-
CH22  
-
CH21  
-
CH20  
-
CH19  
-
CH18  
-
CH17  
-
01C3  
TBCS4  
CH32  
CH8  
CH31  
CH7  
CH30  
CH6  
CH29  
CH5  
CH28  
CH4  
CH27  
CH3  
CH26  
CH2  
CH25  
CH1  
01C4  
01C5  
01C6  
TCBR1  
TCBR2  
TCBR3  
CH16  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH9  
CH24  
-
CH23  
-
CH22  
-
CH21  
-
CH20  
-
CH19  
-
CH18  
-
CH17  
-
01C7  
TCBR4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25:Fbit  
01C8  
01C9  
01CA  
THSCS1  
THSCS2  
THSCS3  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH9  
CH16  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH24  
-
CH23  
-
CH22  
-
CH21  
-
CH20  
-
CH19  
-
CH18  
-
CH17  
-
01CB  
THSCS4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
01CC  
01CD  
01CE  
TGCCS1  
TGCCS2  
TGCCS3  
CH8  
CH16  
CH24  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
-
-
-
-
-
-
-
-
01CF  
TGCCS4  
CH25:  
Fbit  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
01D0  
01D1  
01D2  
PCL1  
PCL2  
PCL3  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH9  
CH16  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH24  
-
CH23  
-
CH22  
-
CH21  
-
CH20  
-
CH19  
-
CH18  
-
CH17  
-
01D3  
PCL4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
01D4  
01D5  
01D6  
TBPCS1  
TBPCS2  
TBPCS3  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH9  
CH16  
CH15  
CH14  
CH13  
CH12  
CH11  
CH10  
CH24  
-
CH23  
-
CH22  
-
CH21  
-
CH20  
-
CH19  
-
CH18  
-
CH17  
-
01D7  
TBPCS4  
CH32  
CH31  
CH30  
CH29  
CH28  
CH27  
CH26  
CH25  
10.2.3 LIU Register Bit Map  
Table 10-8. LIU Register Bit Map  
ADDR  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
NAME  
LTRCR  
LTITSR  
LMCR  
LRSR  
BIT 7  
--  
BIT 6  
BIT 5  
--  
BIT 4  
JADS  
TIMPL0  
ALB  
BIT 3  
JAPS1  
--  
BIT 2  
JAPS0  
TS2  
BIT 1  
T1J1E1S  
TS1  
BIT 0  
LSC  
--  
--  
TIMPTOFF TIMPL1  
TS0  
TAIS  
--  
ATAIS  
--  
LLB  
RLB  
TPDE  
SCS  
RPDE  
OCS  
TXEN  
LOSS  
LOSSIM  
LOSSLS  
--  
OEQ  
UEQ  
LSIMR JALTRSIM OCSRIM SCSRIM  
LOSRIM JALTSSIM OCSSIM  
SCSSIM  
SCSLS  
--  
LLSR  
LRSL  
JFLTRLS  
RSL3  
OCRLS  
RSL2  
SCRLS  
RLS1  
LOSRLS JALTSLS  
OCSLS  
--  
RLS0  
--  
LRISMR  
RG703  
RIMPOFF RIMPM1  
RIMPM0  
RTR  
RMONEN  
RSMS1  
RSMS0  
105 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.2.4 BERT Register Bit Map  
Table 10-9. BERT Register Bit Map  
ADDR  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
110A  
110B  
110C  
110D  
110E  
110F  
NAME  
BAWC  
BRP1  
BRP2  
BRP3  
BRP4  
BC1  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
ACNT7 ACNT6 ACNT5 ACNT4 ACNT3 ACNT2 ACNT1 ACNT0  
RPAT7 RPAT6 RPAT5 RPAT4 RPAT3 RPAT2 RPAT1 RPAT0  
RPAT15 RPAT14 RPAT13 RPAT12 RPAT11 RPAT10 RPAT9 RPAT8  
RPAT23 RPAT22 RPAT21 RPAT20 RPAT19 RPAT18 RPAT17 RPAT16  
RPAT31 RPAT30 RPAT29 RPAT28 RPAT27 RPAT26 RPAT25 RPAT24  
TC  
EIB2  
BBC7  
BBC15  
BBC23  
BBC31  
EC7  
TINV  
EIB1  
RINV  
EIB0  
PS2  
SBE  
BBC4  
BBC12  
BBC20  
BBC28  
EC4  
EC12  
EC20  
BEC0  
BEC0  
PS1  
RPL3  
BBC3  
BBC11  
BBC19  
BBC27  
EC3  
EC11  
EC19  
BRA1  
BRA1  
PS0  
RPL2  
BBC2  
BBC10  
BBC18  
BBC26  
EC2  
EC10  
EC18  
BRA0  
BRA0  
LC  
RESYNC  
RPL0  
BBC0  
BBC8  
BBC16  
BBC24  
EC0  
RPL1  
BBC1  
BBC9  
BBC17  
BBC25  
EC1  
BC2  
BBC6  
BBC14  
BBC22  
BBC30  
EC6  
EC14  
EC22  
BBED  
BBED  
BBC5  
BBC13  
BBC21  
BBC29  
EC5  
BBC1  
BBC2  
BBC3  
BBC4  
BEC1  
BEC2  
BEC3  
BLSR  
BSIM  
EC15  
EC23  
-
EC13  
EC21  
BBCO  
BBCO  
EC9  
EC17  
BRLOS BSYNC  
BRLOS BSYNC  
EC8  
EC16  
-
106 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.3 Global Register Definitions  
Functions contained in the global registers include: framer reset, LIU reset, device ID, BERT interrupt status,  
framer interrupt status, IBO configuration, MCLK configuration, and BPCLK configuration. The global registers bit  
descriptions are presented below.  
Register Name  
GTCR1  
Register Description:  
Register Address:  
Read/Write Function  
Global Transceiver Control Register 1  
0F0H  
R/W  
Bit #  
7
--  
0
6
--  
0
5
4
3
--  
0
2
BWE  
0
1
GCLE  
0
0
GIPI  
0
Name  
Default  
RLOFLTS GIBO  
0
0
Bit 5 : Receive Loss Of Frame / Loss of Transmit Clock Indication Select (RLOFLTS).  
0 = RLOF/LOTCx pins indicate framer receive loss of frame  
1 = RLOF/LOTCx pins indicate framer loss of transmit clock  
Bit 4 : Ganged IBO Enable (GIBO). This bit is used to select either the internal mux for IBO operation or an  
external “wire-OR” operation. Normally this bit should be set = 0 and the internal mux used.  
0 = Use internal IBO mux.  
1 = Externally “wire-OR” TSERs and RSERs for IBO operation.  
Bits 2 : Bulk Write Enable (BWE). When this bit is set, a port write to one of the octal ports will be mapped into all  
eight ports. This applies to the framer, BERT and LIU register sets. It must be cleared before performing a read  
operation. This bit is useful for device initialization.  
0 = Normal operation  
1 = Bulk write is enabled  
Bit 1 : Global Counter Latch Enable (GCLE). A low-to-high transition on this bit will, when enabled, latch the  
framer performance monitor counters. Each framer can be independently enabled to accept this input. This bit must  
be cleared and set again to perform another counter latch.  
Bit 0 : Global Interrupt Pin Inhibit (GIPI).  
0 = Normal Operation. Interrupt pin (INT) will toggle low on an un-masked interrupt condition  
1 = Interrupt Inhibit. Interrupt pin (INT) is forced high (inactive) when this bit is set.  
107 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Description:  
Register Address:  
Read/Write Function  
GFCR  
Global Framer Control Register  
0F1H  
R/W  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
IBOMS1 IBOMS0 BPCLK1 BPCLK0 RFLOSSFS RFMSS TCBCS RCBCS  
0
0
0
0
0
0
0
0
Bits 7, 6 : Interleave Bus Operation Mode Select 1, 0 (IBOMS[1:0]). These bits determine the configuration of  
the IBO (interleaved bus) multiplexer. These bits should be used in conjunction with the Rx and Tx IBO control  
registers within each of the framer units. Additional information concerning the IBO multiplexer is given in  
Section 9.8.2.  
IBOMS1  
IBOMS0  
IBO Mode  
0
0
1
1
0
1
0
1
IBO Multiplexer Disabled  
2 devices on bus (4.096MHz)  
4 devices on bus (8.192MHz)  
8 devices on bus (16.384MHz)  
Bits 5, 4 : Backplane Clock Select 1, 0 (BPCLK[1:0]). These bits determine the clock frequency output on the  
BPCLK pin.  
BPCLK1  
BPCLK0  
BPCLK Frequency  
2.048MHz  
0
0
1
1
0
1
0
1
4.096MHz  
8.192MHz  
16.384MHz  
Bit 3 : Receive Loss of Signal / Signaling Freeze Select (RLOSSFS). This bit controls the function of all eight  
AL/RSIGF/FLOS pins. The Receive LOS is further selected between Framer LOS and LIU LOS by GTCR2 Bit 2.  
0 = AL/RSIGF/FLOS pins output RLOS (1-8) (Receive Loss)  
1 = AL/RSIGF/FLOS pins output RSIGF (1-8) (Receive Signaling Freeze)  
Bit 2 : Receive Frame/Multiframe Sync Select (RFMSS). This bit controls the function of all eight RM/RFSYNC  
pins.  
0 = RM/RFSYNC pins output RFSYNC (1-8) (Receive Frame Sync)  
1 = RM/RFSYNC pins output RMSYNC (1-8) (Receive Multi-Frame Sync)  
Bit 1 : Transmit Channel Block/Clock Select (TCBCS). This bit controls the function of all eight TCHBLK/CLK  
pins.  
0 = TCHBLK/CLK pins output TCHBLK (1-8) (Transmit Channel Block)  
1 = TCHBLK/CLK pins output TCHCLK (1-8) (Transmit Channel Clock)  
Bit 0 : Receive Channel Block/Clock Select (RCBCS). This bit controls the function of all eight RCHBLK/CLK  
pins.  
0 = RCHBLK/CLK pins output RCHBLK (1-8) (Receive Channel Block)  
1 = RCHBLK/CLK pins output RCHCLK (1-8) (Receive Channel Clock)  
108 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GTCR2  
Register Description:  
Register Address:  
Read/Write Function  
Global Transceiver Control Register 2  
0F2H  
R/W  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
--  
0
3
--  
0
2
LOSS  
0
1
0
--  
0
Name  
Default  
TSSYNIOSEL  
0
Bit 2 : LOS Selection. If this bit is set, the AL/RSIGF/FLOS pins can be driven with LIU Loss and if reset by Framer  
LOS . The selection of whether to drive AL/RSIGF/FLOS pins with LOS(Analog or Digital) or Signalling Freeze is  
controlled by GFCR bit 2. This selection effects all ports  
Bit 1 : Transmit System Synchronization I/0 Select (TSSYNCIOSEL). If this bit is set to a 1 the TSSYNCIO is an  
8kHz output synchronous to the BPCLK. This “frame pulse” can be used in conjunction with the Backplane clock to  
provide IBO signals for a System Backplane. If this bit is reset TSSYNCIO is an input. An 8kHz frame pulse is  
required for Transmit Synchronization and IBO operation  
109 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GTCCR  
Register Description:  
Register Address:  
Read/Write Function  
Global Transceiver Clock Control Register  
0F3H  
R/W  
Bit #  
7
6
5
4
3
2
1
0
BPREFSEL3 BPREFSEL2 BPREFSEL1 BPREFSEL0 BFREQSEL  
FREQSEL  
MPS1  
MPS0  
Name  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 4 : Backplane Clock Reference Selects (BPREFSEL[3:0]).These bits select which reference clock  
source will be used for BPCLK generation. The BPCLK can be generated from any of the LIU recovered clocks, an  
external reference or derivatives of MCLK input. This is shown in Table 10-10. See Figure 9-1 for additional  
information.  
Bit 3 : Backplane Frequency Select. In conjunction with BPRFSEL[3:0] identifies the reference clock frequency  
used by the DS26528 backplane clock generation circuit. Note that the setting of this bit should match the T1E1  
selection for the LIU whose recovered clock is being used to generate the backplane clock. See Figure 9-1 for  
additional information.  
0 = Backplane reference clock is 2.048MHz.  
1 = Backplane reference clock is 1.544MHz.  
Bit 2 : Frequency Selection (FREQSEL). In conjunction with the MPS[1:0] bits, selects the external MCLK  
frequency of the signal input at the MCLK pin of the DS26528.  
0 = The external master clock is 2.048MHz or multiple thereof.  
1 = The external master clock is 1.544MHz or multiple thereof.  
Bits 1, 0 : Master Period Select 1, 0 (MPS[1:0]). In conjunction with the FREQSEL bit, these bits select the  
external MCLK frequency of the signal input at the MCLK pin of the DS26528. This is shown in Table 10-11.  
Table 10-10. Backplane Reference Clock Select  
REFERENCE CLOCK  
BPREFSEL3 BPREFSEL2  
BPREFSEL1  
BPREFSEL0  
BFREQSEL  
SOURCE  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2.048MHz RCLK1  
1.544MHz RCLK1  
2.048MHz RCLK2  
1.544MHz RCLK2  
2.048MHz RCLK3  
1.544MHz RCLK3  
2.048MHz RCLK4  
1.544MHz RCLK4  
2.048MHz RCLK5  
1.544MHz RCLK5  
2.048MHz RCLK6  
1.544MHz RCLK6  
2.048MHz RCLK7  
1.544MHz RCLK7  
2.048MHz RCLK8  
1.544MHz RCLK8  
1.544MHz derived from MCLK. (REFCLKIO is an  
output)  
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
0
1
0
0
1
2.048MHz derived from MCLK. (REFCLKIO is an  
output)  
2.048MHz External clock input at REFCLKIO  
(REFCLKIO is an input)  
1.544MHz External clock input at REFCLKIO  
(REFCLKIO is an input)  
110 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 10-11. Master Clock Input Selection  
MCLK  
FREQSEL MPS1 MPS0  
(MHz ±50ppm)  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2.048  
4.096  
8.192  
16.384  
1.544  
3.088  
6.176  
12.352  
111 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GLSRR  
Register Description:  
Register Address:  
Read/Write Function  
Global LIU Software Reset Register  
0F5H  
R/W  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
LSRST8 LSRST7 LSRST6 LSRST5 LSRST4 LSRST3 LSRST2 LSRST1  
0
0
0
0
0
0
0
0
Bit 7 : Channel 8 LIU Software Reset (LSRST8). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 6: Channel 7 LIU Software Reset (LSRST7). LIU logic and registers are reset with a 0-to-1transition in this bit.  
The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 5 : Channel 6 LIU Software Reset (LSRST6). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 4 : Channel 5 LIU Software Reset (LSRST5). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 3 : Channel 4 LIU Software Reset (LSRST4). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 2 : Channel 3 LIU Software Reset (LSRST3). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
Bit 1 : Channel 2 LIU Software Reset (LSRST2). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU.  
Bit 0 : Channel 1 LIU Software Reset (LSRST1). LIU logic and registers are reset with a 0-to-1transition in this  
bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset LIU  
112 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GFSRR  
Register Description:  
Register Address:  
Read/Write Function  
Global Framer and BERT Software Reset Register  
0F6H  
R/W  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
FSRST8 FSRST7 FSRST6 FSRST5 FSRST4 FSRST3 FSRST2 FSRST1  
0
0
0
0
0
0
0
0
Bit 7 : Channel 8 Framer and BERT Software Reset (FSRST8). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 6: Channel 7 Framer and BERT Software Reset (FSRST7). Framer logic and registers are reset with a 0-to-1  
transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 5 : Channel 6 Framer and BERT Software Reset (FSRST6). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 4 : Channel 5 Framer and BERT Software Reset (FSRST5). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 3 : Channel 4 Framer and BERT Software Reset (FSRST4). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 2 : Channel 3 Framer and BERT Software Reset (FSRST3). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 1 : Channel 2 Framer and BERT Software Reset (FSRST2). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
Bit 0 : Channel 1 Framer and BERT Software Reset (FSRST1). Framer logic and registers are reset with a 0-to-  
1 transition in this bit. The reset is released when a zero is written to this bit.  
0 = Normal Operation  
1 = Reset Framer and BERT  
113 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
IDR  
Register Description:  
Register Address:  
Read/Write Function  
Device Identification Register  
0F8H  
R
Bit #  
7
ID7  
0
6
ID6  
1
5
ID5  
0
4
ID4  
1
3
ID3  
1
2
ID2  
0
1
ID1  
0
0
ID0  
1
Name  
Default  
Bits 7 to 3: Device ID (ID3 to ID7). The upper five bits of the IDR are used to display the DS26528 ID.  
Table 10-12. Device ID Codes in this Product Family  
DEVICE  
DS26528  
DS26524  
DS26522  
DS26521  
ID7  
0
ID6  
1
ID5  
0
ID4  
1
ID3  
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
Bits 2 to 0: Silicon Revision Bits (ID0 to ID2). The lower three bits of the IDR are used to display a sequential  
number denoting the die revision of the chip. The initial silicon revision = “000”, and is incremented with each  
silicon revision. This value is not the same as the two-character device revision on the top brand of the device. This  
is due to the fact that portions of the device assembly other than the silicon may change, causing the device  
revision increment on the brand without having a revision of the silicon. IDO is the LSB of a decimal code that  
represents the chip revision.  
114 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GFISR  
Register Description:  
Register Address:  
Read/Write Function  
Global Framer Interrupt Status Register  
0F9H  
R
Bit #  
7
FIS8  
0
6
FIS7  
0
5
FIS6  
0
4
FIS5  
0
3
FIS4  
0
2
FIS3  
0
1
FIS2  
0
0
FIS1  
0
Name  
Default  
The GFISR register reports the framer interrupt status for each of the 8 T1/E1 framers. A logic one in the  
associated bit location indicates a framer has set its interrupt signal.  
Bit 7 : Framer Interrupt Status 8 (FIS8).  
0 = Framer 8 has not issued an interrupt.  
1 = Framer 8 has issued an interrupt.  
Bit 6 : Framer Interrupt Status 7 (FIS7).  
0 = Framer 7 has not issued an interrupt.  
1 = Framer 7 has issued an interrupt.  
Bit 5 : Framer Interrupt Status 6 (FIS6).  
0 = Framer 6 has not issued an interrupt.  
1 = Framer 6 has issued an interrupt.  
Bit 4 : Framer Interrupt Status 5 (FIS5).  
0 = Framer 5 has not issued an interrupt.  
1 = Framer 5 has issued an interrupt.  
Bit 3 : Framer Interrupt Status 4 (FIS4).  
0 = Framer 4 has not issued an interrupt.  
1 = Framer 4 has issued an interrupt.  
Bit 2 : Framer Interrupt Status 3 (FIS3).  
0 = Framer 3 has not issued an interrupt.  
1 = Framer 3 has issued an interrupt.  
Bit 1 : Framer Interrupt Status 2 (FIS2).  
0 = Framer 2 has not issued an interrupt.  
1 = Framer 2 has issued an interrupt.  
Bit 0 : Framer Interrupt Status 1(FIS1).  
0 = Framer 1 has not issued an interrupt.  
1 = Framer 1 has issued an interrupt.  
115 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GBISR  
Register Description:  
Register Address:  
Read/Write Function  
Global BERT Interrupt Status Register  
0FAH  
R
Bit #  
7
BIS8  
0
6
BIS7  
0
5
BIS6  
0
4
BIS5  
0
3
BIS4  
0
2
BIS3  
0
1
BIS2  
0
0
BIS1  
0
Name  
Default  
The GBISR register reports the interrupt status for each of the 8 T1/E1 bit error rate testers (BERT). A logic one in  
the associated bit location indicates a BERT has set its interrupt signal.  
Bit 7 : BERT Interrupt Status 8  
0 = BERT 8 has not issued an interrupt.  
1 = BERT 8 has issued an interrupt.  
Bit 6 : BERT Interrupt Status 7  
0 = BERT 7 has not issued an interrupt.  
1 = BERT 7 has issued an interrupt.  
Bit 5 : BERT Interrupt Status 6  
0 = BERT 6 has not issued an interrupt.  
1 = BERT 6 has issued an interrupt.  
Bit 4 : BERT Interrupt Status 5  
0 = BERT 5 has not issued an interrupt.  
1 = BERT 5 has issued an interrupt.  
Bit 3 : BERT Interrupt Status 4  
0 = BERT 4 has not issued an interrupt.  
1 = BERT 4 has issued an interrupt.  
Bit 2 : BERT Interrupt Status 3  
0 = BERT 3 has not issued an interrupt.  
1 = BERT 3 has issued an interrupt.  
Bit 1 : BERT Interrupt Status 2  
0 = BERT 2 has not issued an interrupt.  
1 = BERT 2 has issued an interrupt.  
Bit 0 : BERT Interrupt Status 1  
0 = BERT 1 has not issued an interrupt.  
1 = BERT 1 has issued an interrupt.  
116 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GLISR  
Register Description:  
Register Address:  
Read/Write Function  
Global LIU Interrupt Status Register  
0FBH  
R
Bit #  
7
LIS8  
0
6
LIS7  
0
5
LIS6  
0
4
LIS5  
0
3
LIS4  
0
2
LIS3  
0
1
LIS2  
0
0
LIS1  
0
Name  
Default  
The GLISR register reports the LIU interrupt status for each of the 8 T1/E1 LIUs. A logic one in the associated bit  
location indicates a LIU has set its interrupt signal.  
Bit 7 : LIU Interrupt Status 8  
0 = LIU 8 has not issued an interrupt.  
1 = LIU 8 has issued an interrupt.  
Bit 6 : LIU Interrupt Status 7  
0 = LIU 7 has not issued an interrupt.  
1 = LIU 7 has issued an interrupt.  
Bit 5 : LIU Interrupt Status 6  
0 = LIU 6 has not issued an interrupt.  
1 = LIU 6 has issued an interrupt.  
Bit 4 : LIU Interrupt Status 5  
0 = LIU 5 has not issued an interrupt.  
1 = LIU 5 has issued an interrupt.  
Bit 3 : LIU Interrupt Status 4  
0 = LIU 4 has not issued an interrupt.  
1 = LIU 4 has issued an interrupt.  
Bit 2 : LIU Interrupt Status 3  
0 = LIU 3 has not issued an interrupt.  
1 = LIU 3 has issued an interrupt.  
Bit 1 : LIU Interrupt Status 2  
0 = LIU 2 has not issued an interrupt.  
1 = LIU 2 has issued an interrupt.  
Bit 0 : LIU Interrupt Status 1  
0 = LIU 1 has not issued an interrupt.  
1 = LIU 1 has issued an interrupt.  
117 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GFIMR  
Register Description:  
Register Address:  
Read/Write Function  
Global Framer Interrupt Mask Register  
0FCH  
R/W  
Bit #  
7
FIM8  
0
6
FIM7  
0
5
FIM6  
0
4
FIM5  
0
3
FIM4  
0
2
FIM3  
0
1
FIM2  
0
0
FIM1  
0
Name  
Default  
Bit 7 : Framer 8 Interrupt Mask (FIM8).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6 : Framer 7 Interrupt Mask (FIM7).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5 : Framer 6 Interrupt Mask (FIM6).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4 : Framer 5 Interrupt Mask (FIM5).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3 : Framer 4 Interrupt Mask (FIM4).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2 : Framer 3 Interrupt Mask (FIM3).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1 : Framer 2 Interrupt Mask (FIM2).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0 : Framer 1 Interrupt Mask (FIM1).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
118 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GBIMR  
Register Description:  
Register Address:  
Read/Write Function  
Global Bert Interrupt Mask Register  
0FDH  
R/W  
Bit #  
7
BIM8  
0
6
BIM7  
0
5
BIM6  
0
4
BIM5  
0
3
BIM4  
0
2
BIM3  
0
1
BIM2  
0
0
BIM1  
0
Name  
Default  
Bit 7 : BERT Interrupt Mask 8  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6 : BERT Interrupt Mask 7  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5 : BERT Interrupt Mask 6  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4 : BERT Interrupt Mask 5  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3 : BERT Interrupt Mask 4  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2 : BERT Interrupt Mask 3  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1 : BERT Interrupt Mask 2  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0 : BERT Interrupt Mask 1  
0 = Interrupt masked.  
1 = Interrupt enabled.  
119 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
GLIMR  
Register Description:  
Register Address:  
Read/Write Function  
Global LIU Interrupt Mask Register  
0FEH  
R/W  
Bit #  
7
LIM8  
0
6
LIM7  
0
5
LIM6  
0
4
LIM5  
0
3
LIM4  
0
2
LIM3  
0
1
LIM2  
0
0
LIM1  
0
Name  
Default  
Bit 7 : LIU Interrupt Mask 8  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6 : LIU Interrupt Mask 7  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5 : LIU Interrupt Mask 6  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4 : LIU Interrupt Mask 5  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3 : LIU Interrupt Mask 4  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2 : LIU Interrupt Mask 3  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1 : LIU Interrupt Mask 2  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0 : LIU Interrupt Mask 1  
0 = Interrupt masked.  
1 = Interrupt enabled.  
120 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.4 Framer Register Definitions  
10.4.1 Receive Register Definitions  
Register Name:  
Register Description:  
Register Address:  
RHC  
Receive HDLC Control Register  
010H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RCRCD  
0
6
RHR  
0
5
RHMS  
0
4
RHCS4  
0
3
2
1
RHCS1  
0
0
RHCS0  
0
Name  
Default  
RHCS3 RHCS2  
0
0
Bit 7: Receive CRC16 Display (RCRCD).  
0 = Do not write received CRC16 code to FIFO. (default)  
1 = Write received CRC16 code to FIFO after last octet of packet.  
Bit 6: Receive HDLC Reset (RHR). Will reset the receive HDLC controller and flush the receive FIFO. Note that  
this bit is a acknowledged reset. The host should set this bit and the DS26528 will clear it once the reset operation  
is complete. The DS26528 will complete the HDLC reset within 2 frames.  
0 = Normal operation  
1 = Reset receive HDLC controller and flush the receive FIFO  
Bit 5: Receive HDLC Mapping Select (RHMS).  
0 = Receive HDLC assigned to channels  
1 = Receive HDLC assigned to FDL(T1 mode), Sa Bits(E1 mode)  
Bit 4 to 0 : Receive HDLC Channel Select 4 to 0 (RHCS[4:0]). These bits determine which DS0 is mapped to the  
HDLC controller when enabled with RHMS = 0. RHCS0 to RHCS4 = all 0s selects channel 1, RHCS0 to RHCS4 =  
all 1s selects channel 32 (E1). A change to the receive HDLC channel select is acknowledged only after a Receive  
HDLC Reset (RHR).  
121 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RHBSE  
Receive HDLC Bit Suppress Register  
011H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
BSE8  
0
6
BSE7  
0
5
BSE6  
0
4
BSE5  
0
3
BSE4  
0
2
BSE3  
0
1
BSE2  
0
0
BSE1  
0
Name  
Default  
Bit 7 : Receive Channel Bit 8 Suppress (BSE8). MSB of the channel. Set to one to stop this bit from being used.  
Bit 6 : Receive Channel Bit 7 Suppress (BSE7). Set to one to stop this bit from being used.  
Bit 5 : Receive Channel Bit 6 Suppress (BSE6). Set to one to stop this bit from being used.  
Bit 4 : Receive Channel Bit 5 Suppress (BSE5). Set to one to stop this bit from being used.  
Bit 3 : Receive Channel Bit 4 Suppress (BSE4). Set to one to stop this bit from being used.  
Bit 2 : Receive Channel Bit 3 Suppress (BSE3). Set to one to stop this bit from being used.  
Bit 1 : Receive Channel Bit 2 Suppress (BSE2). Set to one to stop this bit from being used.  
Bit 0 : Receive Channel Bit 1 Suppress (BSE1). LSB of the channel. Set to one to stop this bit from being used.  
122 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RDS0SEL  
Receive Channel Monitor Select  
012H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
RCM4  
0
3
RCM3  
0
2
RCM2  
0
1
RCM1  
0
0
RCM0  
0
Name  
Default  
0
0
0
Bits 4 to 0 : Receive Channel Monitor Bits (RCM[4:0]). RCM0 is the LSB of a five bit channel select that  
determines which receive DS0 channel data will appear in the RDS0M register.  
Register Name:  
Register Description:  
Register Address:  
RSIGC  
Receive Signaling Control Register  
013H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
3
-
2
1
0
Name  
RFSA1  
CASMS  
0
RSFF  
RSFE  
RSIE  
-
-
-
-
-
-
-
Default  
0
0
0
0
0
0
0
Bit 4 (T1 Mode): Receive Force Signaling All Ones (RFSA1).  
0 = do not force robbed bit signaling to all ones  
1 = force signaling bits to all ones on a per-channel basis according to the RSAOI1-RSAOI3 registers.  
Bit 4 (E1 Mode): CAS Mode Select (CASMS).  
0 = The DS26528 will initiate a resync when two consecutive multiframe alignment signals have been  
received with an error.  
1 = The DS26528 will initiate a resync when two consecutive multiframe alignment signals have been  
received with an error, or 1 multiframe has been received with all the bits in time slot 16 in state 0.  
Alignment criteria is met when at least one bit in state 1 is present in the time slot 16 preceding the  
multiframe alignment signal first detected (G.732 alternate criteria).  
Bit 2 : Receive Signaling Force Freeze (RSFF). Freezes receive side signaling at RSIG (and RSER if Receive  
Signaling Reinsertion is enabled); will override Receive Freeze Enable (RFE).  
0 = do not force a freeze event  
1 = force a freeze event  
Bit 1 : Receive Signaling Freeze Enable (RSFE).  
0 = no freezing of receive signaling data will occur  
1 = allow freezing of receive signaling data at RSIG (and RSER if Receive Signaling Reinsertion is  
enabled).  
Bit 0 : Receive Signaling Integration Enable (RSIE).  
0 = signaling changes of state reported on any change in selected channels  
1 = signaling must be stable for 3 multiframes in order for a change of state to be reported  
123 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RCR2  
Receive Control Register 2  
014H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
RSLC96  
0
3
OOF2  
0
2
OOF1  
0
1
RAIIE  
0
0
RD4RM  
0
Name  
Default  
0
0
0
Bit 4: Receive SLC-96 Synchronizer Enable (RSLC96). See Section 9.9.4.4 for SLC-96 details.  
0 = the SLC-96 synchronizer is disabled  
1 = the SLC-96 synchronizer is enabled  
Bits 3 to 2: Out Of Frame Select Bits (OOF[2:1]).  
OOF2 OOF1  
OUT OF FRAME CRITERIA  
2/4 frame bits in error  
2/5 frame bits in error  
2/6 frame bits in error  
2/6 frame bits in error  
0
0
1
1
0
1
0
1
Bit 1: Receive RAI Integration Enable (RAIIE). The ESF RAI indication can be interrupted for a period not to  
exceed 100ms per interruption (T1.403). In ESF mode, setting RAIIE will cause the RAI status from the DS26528  
to be integrated for 200ms.  
0 = RAI detects when 16 consecutive patterns of 00FF appear in the FDL.  
RAI clears when 14 or less patterns of 00FF hex out of 16 possible appear in the FDL  
1 = RAI detects when the condition has been present for greater than 200ms.  
RAI clears when the condition has been absent for greater than 200ms.  
Bit 0: Receive Side D4 Remote Alarm Select (RD4RM).  
0 = zeros in bit 2 of all channels  
1 = a one in the S-bit position of frame 12 (J1 Yellow Alarm Mode)  
124 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSAIMR  
Receive Sa Bit Interrupt Mask Register  
014H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
3
2
1
0
Name  
Default  
Rsa4IM Rsa5IM Rsa6IM Rsa7IM Rsa8IM  
0
0
0
0
0
0
0
0
Bit 4: Sa4 Change Detect Interrupt Mask. This bit will enable the change detect interrupt for the Sa4 bits. Any  
change of state of the Sa4 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = Interrupt Masked.  
1 = Interrupt Enabled.  
Bit 3: Sa5 Change Detect Interrupt Mask. This bit will enable the change detect interrupt for the Sa5 bits. Any  
change of state of the Sa5 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = Interrupt Masked.  
1 = Interrupt Enabled.  
Bit 2: Sa6 Change Detect Interrupt Mask. This bit will enable the change detect interrupt for the Sa6 bits. Any  
change of state of the Sa6 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = Interrupt Masked.  
1 = Interrupt Enabled.  
Bit 1: Sa7 Change Detect Interrupt Mask. This bit will enable the change detect interrupt for the Sa7 bits. Any  
change of state of the Sa7 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = Interrupt Masked.  
1 = Interrupt Enabled.  
Bit 0: Sa8 Change Detect Interrupt Mask. This bit will enable the change detect interrupt for the Sa8 bits. Any  
change of state of the Sa8 bit will then generate an interrupt in RLS7.0 to indicate the change of state.  
0 = Interrupt Masked.  
1 = Interrupt Enabled.  
125 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RBOCC  
Receive BOC Control Register  
015H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RBR  
0
6
-
5
RBD1  
0
4
RBD0  
0
3
-
2
RBF1  
0
1
RBF0  
0
0
-
Name  
Default  
0
0
0
Bit 7: Receive BOC Reset (RBR). The host should set this bit to force a reset of the BOC circuitry. Note that this is  
an acknowledged reset – that is the host need only set the bit and the DS26528 will clear it once the reset  
operation is complete (less than 250us). Modifications to the RBF0, RBF1, RBD0, and RBD1 bits will not be  
applied to the BOC controller until a BOC reset has been completed.  
Bits 5, 4: Receive BOC Disintegration bits (RBD[1:0]). The BOC Disintegration filter sets the number of  
message bits that must be received without a valid BOC to set the BC bit indicating that a valid BOC is no longer  
being received.  
CONSECUTIVE MESSAGE BITS  
RBD1  
RBD0  
FOR BOC CLEAR IDENTIFICATION  
0
0
1
1
0
1
0
1
16  
32  
48  
641  
Bits 2, 1: Receive BOC Filter bits (RBF[1:0). The BOC filter sets the number of consecutive patterns that must be  
received without error prior to an indication of a valid message.  
CONSECUTIVE BOC CODES FOR  
RBF1  
RBF0  
VALID SEQUENCE IDENTIFICATION  
0
0
1
1
0
1
0
1
None  
3
5
71  
Note: The DS26528’s BOC controller does not integrate and disintegrate concurrently. Therefore, if the maximum  
integration time and the maximum disintegration time are used together, BOC messages which repeat fewer than  
11 times may not be detected.  
Register Name:  
Register Description:  
Register Address:  
RIDR1 to RIDR32  
Receive Idle Code Definition Registers 1 to 32  
20H to 3FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bits 7 to 0: Per-Channel Idle Code Bits (C[7:0]). C0 is the LSB of the Code (this bit is transmitted last). Address  
20H is for channel 1. Address 37H is for channel 24. Address 3FH is for channel 32.  
126 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RSAOI1, T1RSAOI2, T1RSAOI3,  
Receive Signaling All Ones Insertion Registers  
038H, 039H, 03AH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH15  
CH23  
CH6  
CH14  
CH22  
CH5  
CH13  
CH21  
CH4  
CH12  
CH20  
CH3  
CH11  
CH19  
CH2  
CH10  
CH18  
CH1  
CH9  
CH17  
T1RSAOI1  
T1RSAOI2  
T1RSAOI3  
CH16  
CH24  
Setting any of the CH1 through CH24 bits in the RSAOI1 through RSAOI3 registers will cause signaling data to be  
replaced with logic ones as reported on RSER. The RSIG signal will continue to report received signaling data.  
Note that this feature must be enabled with control bit RSIGC.4.  
Register Name:  
Register Description:  
Register Address:  
T1RDMWE1, T1RDMWE2, T1RDMWE3  
T1 Receive Digital Milliwatt Enable Registers  
03CH, 03DH, 03EH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH9  
CH17  
T1RDMWE1  
T1RDMWE2  
T1RDMWE3  
CH16  
CH24  
CH15  
CH23  
CH14  
CH22  
CH13  
CH21  
CH12  
CH20  
CH11  
CH19  
CH10  
CH18  
Bits 7 to 0: Receive Digital Milliwatt Enable for Channels 1 to 24 (CH1 to CH24).  
0 =do not affect the receive data associated with this channel  
1 = replace the receive data associated with this channel with digital milliwatt code  
127 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1 Mode:  
RS1 to RS12  
Receive Signaling Registers  
040H to 04FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH13-A CH13-B CH13-C CH13-D RS1  
CH14-A CH14-B CH14-C CH14-D RS2  
CH15-A CH15-B CH15-C CH15-D RS3  
CH16-A CH16-B CH16-C CH16-D RS4  
CH17-A CH17-B CH17-C CH17-D RS5  
CH18-A CH18-B CH18-C CH18-D RS6  
CH19-A CH19-B CH19-C CH19-D RS7  
CH20-A CH20-B CH20-C CH20-D RS8  
CH21-A CH21-B CH21-C CH21-D RS9  
CH10-A CH10-B CH10-C CH10-D CH22-A CH22-B CH22-C CH22-D RS10  
CH11-A CH11-B CH11-C CH11-D CH23-A CH23-B CH23-C CH23-D RS11  
CH12-A CH12-B CH12-C CH12-D CH24-A CH24-B CH24-C CH24-D RS12  
E1 MODE:  
(MSB)  
0
(LSB)  
0
0
0
X
Y
X
X
RS1  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH16-A CH16-B CH16-C CH16-D RS2  
CH17-A CH17-B CH17-C CH17-D RS3  
CH18-A CH18-B CH18-C CH18-D RS4  
CH19-A CH19-B CH19-C CH19-D RS5  
CH20-A CH20-B CH20-C CH20-D RS6  
CH21-A CH21-B CH21-C CH21-D RS7  
CH22-A CH22-B CH22-C CH22-D RS8  
CH23-A CH23-B CH23-C CH23-D RS9  
CH24-A CH24-B CH24-C CH24-D RS10  
CH10-A CH10-B CH10-C CH10-D CH25-A CH25-B CH25-C CH25-D RS11  
CH11-A CH11-B CH11-C CH11-D CH26-A CH26-B CH26-C CH26-D RS12  
CH12-A CH12-B CH12-C CH12-D CH27-A CH27-B CH27-C CH27-D RS13  
CH13-A CH13-B CH13-C CH13-D CH28-A CH28-B CH28-C CH28-D RS14  
CH14-A CH14-B CH14-C CH14-D CH29-A CH29-B CH29-C CH29-D RS15  
CH15-A CH15-B CH15-C CH15-D CH30-A CH30-B CH30-C CH30-D RS16  
In the ESF framing mode, there can be up to four signaling bits per channel (A, B, C, and D). In the D4 framing  
mode, there are only two signaling bits per channel (A and B). In the D4 framing mode, the framer will repeat the A  
and B signaling data in the C and D bit locations. Therefore, when the framer is operated in D4 framing mode, the  
user will need to retrieve the signaling bits every 1.5ms as opposed to 3ms for ESF mode. The Receive Signaling  
Registers are frozen and not updated during a loss of sync condition. They will contain the most recent signaling  
information before the “OOF” occurred.  
128 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LCVCR1  
Line Code Violation Count Register 1  
050H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
LCCV8  
0
Name  
Default  
LCVC15 LCVC14 LCVC13 LCVC12 LCVC11 LCVC10 LCVC9  
0
0
0
0
0
0
0
Bits 7 to 0 : Line Code Violation Counter Bits 15 to 8 (LCVC15 to LCVC8). LCV15 is the MSB of the 16–bit  
code violation count  
Register Name:  
LCVCR2  
Register Description:  
Register Address:  
Line Code Violation Count Register 2  
051H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
LCVC7  
0
6
LCVC6  
0
5
LCVC5  
0
4
LCVC4  
0
3
2
1
LCVC1  
0
0
LCVC0  
0
Name  
Default  
LCVC3 LCVC2  
0
0
Bits 7 to 0 : Line Code Violation Counter Bits 7 to 0 (LCVC7 to LCVC0). LCV0 is the LSB of the 16–bit code  
violation count  
Register Name:  
Register Description:  
Register Address:  
PCVCR1  
Path Code Violation Count Register 1  
052H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
PCVC15  
0
6
PCVC14  
0
5
PCVC13  
0
4
PCVC12  
0
3
PCVC11  
0
2
1
0
Name  
Default  
PCVC10 PCVC9 PCVC8  
0
0
0
Bits 7 to 0 : Path Code Violation Counter Bits 15 to 8 (PCVC15 to PCVC8). PCVC15 is the MSB of the 16–bit  
path code violation count  
129 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
PCVCR2  
Path Code Violation Count Register 2  
053H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
PCVC7  
0
6
PCVC6  
0
5
PCVC5  
0
4
PCVC4  
0
3
PCVC3  
0
2
PCVC2  
0
1
PCVC1  
0
0
PCVC0  
0
Name  
Default  
Bits 7 to 0: Path Code Violation Counter Bits 0 to 7 (PCVC7 to PCVC0). PCVC0 is the LSB of the 16–bit path  
code violation count.  
Register Name:  
Register Description:  
Register Address:  
FOSCR1  
Frames Out Of Sync Count Register 1  
054H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
FOS15  
0
6
FOS14  
0
5
FOS13  
0
4
FOS12  
0
3
2
1
FOS9  
0
0
FOS8  
0
Name  
Default  
FOS11 FOS10  
0
0
Bits 7 to 0: Frames Out of Sync Counter Bits 15 to 8 (FOS15 to FOS8). FOS15 is the MSB of the 16–bit frames  
out of sync count.  
Register Name:  
Register Description:  
Register Address:  
FOSCR2  
Frames Out Of Sync Count Register 2  
055H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
FOS7  
0
6
FOS6  
0
5
FOS5  
0
4
FOS4  
0
3
FOS3  
0
2
FOS2  
0
1
FOS1  
0
0
FOS0  
0
Name  
Default  
Bits 7 to 0: Frames Out of Sync Counter Bits 7 to 0 (FOS7 to FOS0). FOS0 is the LSB of the 16–bit frames out  
of sync count.  
Register Name:  
E1EBCR1  
Register Description:  
Register Address:  
E–Bit Count Register 1  
056H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EB15  
0
6
EB14  
0
5
EB13  
0
4
EB12  
0
3
EB11  
0
2
EB10  
0
1
EB9  
0
0
EB8  
0
Name  
Default  
Bits 7 to 0 : E-Bit Counter Bits 15 to 8 (EB[15:8]). EB15 is the MSB of the 16–bit E-Bit count  
130 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
E1EBCR2  
Register Description:  
Register Address:  
E–Bit Count Register 2  
057H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EB7  
0
6
EB6  
0
5
EB5  
0
4
EB4  
0
3
EB3  
0
2
EB2  
0
1
EB1  
0
0
EB0  
0
Name  
Default  
Bits 7 to 0 : E-Bit Counter Bits 7 to 0 (EB[7:0]). EB0 is the LSB of the 16–bit E-Bit count  
Register Name:  
Register Description:  
Register Address:  
RDS0M  
Receive DS0 Monitor Register  
060H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
B1  
0
6
B2  
0
5
B3  
0
4
B4  
0
3
B5  
0
2
B6  
0
1
B7  
0
0
B8  
0
Name  
Default  
Bits 7 to 0: Receive DS0 Channel Bits (B1 to B8). Receive channel data that has been selected by the Receive  
Channel Monitor Select Register. B8 is the LSB of the DS0 channel (last bit to be received).  
Register Name:  
Register Description:  
Register Address:  
E1RFRID  
Receive Firmware Revision ID Register  
061H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
FR7  
0
6
FR6  
0
5
FR5  
0
4
FR4  
0
3
FR3  
0
2
FR2  
0
1
FR1  
0
0
FR0  
0
Name  
Default  
Bits 7 to 0 : Firmware Revision (FR[7:0]). This read-only register reports the current revision of the receive  
firmware.  
131 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RFDL  
Receive FDL Register – T1 MODE  
062H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RFDL7  
0
6
RFDL6  
0
5
RFDL5  
0
4
RFDL4  
0
3
RFDL3  
0
2
RFDL2  
0
1
RFDL1  
0
0
RFDL0  
0
Name  
Default  
Note: This register has an alternate definition for E1 mode. See E1RRTS7.  
Bit 7: Receive FDL Bit 7 (RFDL7). MSB of the Received FDL Code.  
Bit 6: Receive FDL Bit 6 (RFDL6).  
Bit 5: Receive FDL Bit 5 (RFDL5).  
Bit 4: Receive FDL Bit 4 (RFDL4).  
Bit 3: Receive FDL Bit 3 (RFDL3).  
Bit 2: Receive FDL Bit 2 (RFDL2).  
Bit 1: Receive FDL Bit 1 (RFDL1).  
Bit 0: Receive FDL Bit 0 (RFDL0). LSB of the Received FDL Code.  
Register Name:  
Register Description:  
Register Address:  
E1RRTS7  
Receive Real-Time Status Register 7 – E1 MODE  
062H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
CSC5  
CSC4  
CSC3  
CSC2  
CSC0  
CRC4S  
CASSA  
FASSA  
A
0
Default  
0
0
0
0
0
0
0
Note: This register has an alternate definition for T1 mode. See T1RFDL. All bits in this register are real-time (not  
latched).  
Bits 7 to 3 : CRC4 Sync Counter Bits (CSC[5:2} & CSC0). The CRC4 Sync Counter increments each time the 8  
ms CRC4 multiframe search times out. The counter is cleared when the framer has successfully obtained  
synchronization at the CRC4 level. The counter can also be cleared by disabling the CRC4 mode (RCR1.3 = 0).  
This counter is useful for determining the amount of time the framer has been searching for synchronization at the  
CRC4 level. ITU G.706 suggests that if synchronization at the CRC4 level cannot be obtained within 400 ms, then  
the search should be abandoned and proper action taken. The CRC4 Sync Counter will saturate (not rollover).  
CSC0 is the LSB of the 6–bit counter. (Note: The next to LSB is not accessible. CSC1 is omitted to allow resolution  
to >400ms using 5 bits)  
Bit 2 : CRC4 MF Sync Active (CRC4SA). Set while the synchronizer is searching for the CRC4 MF alignment  
word.  
Bit 1 : CAS MF Sync Active (CASSA). Set while the synchronizer is searching for the CAS MF alignment word.  
Bit 0 : FAS Sync Active (FASSA). Set while the synchronizer is searching for alignment at the FAS level.  
132 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RBOC  
Receive BOC Register  
63H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
4
3
2
1
RBOC1  
0
0
RBOC0  
0
Name  
Default  
RBOC5 RBOC4 RBOC3 RBOC2  
0
0
0
0
0
0
Bit 5: BOC Bit 5 (RBOC5).  
Bit 4: BOC Bit 4 (RBOC4).  
Bit 3: BOC Bit 3 (RBOC3).  
Bit 2: BOC Bit 2 (RBOC2).  
Bit 1: BOC Bit 1 (RBOC1).  
Bit 0: BOC Bit 0 (RBOC0).  
The RBOC Register always contains the last valid BOC received.  
The Receive FDL Register (RFDL) reports the incoming Facility Data Link (FDL) or the incoming Fs bits. The LSB  
is received first. In D4 framing mode, RFDL updates on multiframe boundaries and reports the six Fs bits in  
RFDL0-RFDL5.  
Register Name:  
Register Description:  
Register Address:  
T1RSLC1, T1RSLC2, T1RSLC3  
Receive SLC96 Data Link Registers – T1 MODE.  
064H, 065H, 066H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
C8  
M2  
C7  
M1  
S4  
C6  
S=0  
S3  
C5  
S=1  
S2  
C4  
S=0  
S1  
C3  
C11  
A2  
C2  
C10  
A1  
C1  
C9  
M3  
T1RSLC1  
T1RSLC2  
T1RSLC3  
S=1  
Note: These registers have an alternate definition for E1 mode. See E1RAF, E1RNAF, and E1RsiAF.  
Register Name:  
Register Description:  
Register Address:  
E1RAF  
E1 Receive Align Frame Register – E1 MODE  
064H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
Si  
0
6
0
0
5
0
0
4
1
0
3
1
0
2
0
0
1
1
0
0
1
0
Name  
Default  
Note: This register has an alternate definition for T1 mode. See T1RSLC1.  
Bit 7 : International Bit (Si).  
Bit 6 : Frame Alignment Signal Bit (0).  
Bit 5 : Frame Alignment Signal Bit (0).  
Bit 4 : Frame Alignment Signal Bit (1).  
Bit 3 : Frame Alignment Signal Bit (1).  
Bit 2 : Frame Alignment Signal Bit (0).  
Bit 1 : Frame Alignment Signal Bit (1).  
Bit 0 : Frame Alignment Signal Bit (1).  
133 of 269  
 
 
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RNAF  
E1 Receive Non-Align Frame Register – E1 MODE  
065H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
Si  
0
6
1
0
5
A
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Name  
Default  
Note: This register has an alternate definition for T1 mode. See T1RSLC2.  
Bit 7 : International Bit (Si).  
Bit 6 : Frame Non–Alignment Signal Bit (1).  
Bit 5 : Remote Alarm (A).  
Bit 4 : Additional Bit 4 (Sa4).  
Bit 3 : Additional Bit 5 (Sa5).  
Bit 2 : Additional Bit 6 (Sa6).  
Bit 1 : Additional Bit 7 (Sa7).  
Bit 0 : Additional Bit 8 (Sa8).  
Register Name:  
Register Description:  
Register Address:  
E1RsiAF  
Received Si bits of the Align Frame – E1 MODE  
066H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
SiF14  
0
6
SiF12  
0
5
SiF10  
0
4
SiF8  
0
3
SiF6  
0
2
SiF4  
0
1
SiF2  
0
0
SiF0  
0
Name  
Default  
Note: This register has an alternate definition for T1 mode. See T1RSLC3.  
Bit 7 : Si Bit of Frame 14 (SiF14).  
Bit 6 : Si Bit of Frame 12 (SiF12).  
Bit 5 : Si Bit of Frame 10 (SiF10).  
Bit 4 : Si Bit of Frame 8 (SiF8).  
Bit 3 : Si Bit of Frame 6 (SiF6).  
Bit 2 : Si Bit of Frame 4 (SiF4).  
Bit 1 : Si Bit of Frame 2 (SiF2).  
Bit 0 : Si Bit of Frame 0 (SiF0).  
134 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSiNAF  
Received Si Bits of the Non-Align Frame  
067H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
SiF15  
0
6
SiF13  
0
5
SiF11  
0
4
SiF9  
0
3
SiF7  
0
2
SiF5  
0
1
SiF3  
0
0
SiF1  
0
Name  
Default  
Bit 7 : Si Bit of Frame 15 (SiF15).  
Bit 6 : Si Bit of Frame 13 (SiF13).  
Bit 5 : Si Bit of Frame 11 (SiF11).  
Bit 4 : Si Bit of Frame 9 (SiF9).  
Bit 3 : Si Bit of Frame 7 (SiF7).  
Bit 2 : Si Bit of Frame 5 (SiF5).  
Bit 1 : Si Bit of Frame 3 (SiF3).  
Bit 0 : Si Bit of Frame 1 (SiF1).  
Register Name:  
Register Description:  
Register Address:  
E1RRA  
Received Remote Alarm  
068H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
RRAF7  
0
2
RRAF5  
0
1
RRAF3  
0
0
RRAF1  
0
Name  
Default  
RRAF15 RRAF13 RRAF11 RRAF9  
0
0
0
0
Bit 7 : Remote Alarm Bit of Frame 15 (RRAF15).  
Bit 6 : Remote Alarm Bit of Frame 13 (RRAF13).  
Bit 5 : Remote Alarm Bit of Frame 11 (RRAF11).  
Bit 4 : Remote Alarm Bit of Frame 9 (RRAF9).  
Bit 3 : Remote Alarm Bit of Frame 7 (RRAF7).  
Bit 2 : Remote Alarm Bit of Frame 5 (RRAF5).  
Bit 1 : Remote Alarm Bit of Frame 3 (RRAF3).  
Bit 0 : Remote Alarm Bit of Frame 1 (RRAF1).  
135 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSa4  
Received Sa4 Bits  
069H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RSa4F15 RSa4F13 RSa4F11 RSa4F9 RSa4F7 RSa4F5 RSa4F3 RSa4F1  
0 0  
0
0
0
0
0
0
Bit 7 : Sa4 Bit of Frame 15 (RSa4F15).  
Bit 6 : Sa4 Bit of Frame 13 (RSa4F13).  
Bit 5 : Sa4 Bit of Frame 11 (RSa4F11).  
Bit 4 : Sa4 Bit of Frame 9 (RSa4F9).  
Bit 3 : Sa4 Bit of Frame 7 (RSa4F7).  
Bit 2 : Sa4 Bit of Frame 5 (RSa4F5).  
Bit 1 : Sa4 Bit of Frame 3 (RSa4F3).  
Bit 0 : Sa4 Bit of Frame 1 (RSa4F1).  
Register Name:  
Register Description:  
Register Address:  
E1RSa5  
Received Sa5 Bits  
06AH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RSa5F15 RSa5F13 RSa5F11 RSa5F9 RSa5F7 RSa5F5 RSa5F3 RSa5F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa5 Bit of Frame 15 (RSa5F15).  
Bit 6 : Sa5 Bit of Frame 13 (RSa5F13).  
Bit 5 : Sa5 Bit of Frame 11 (RSa5F11).  
Bit 4 : Sa5 Bit of Frame 9 (RSa5F9).  
Bit 3 : Sa5 Bit of Frame 7 (RSa5F7).  
Bit 2 : Sa5 Bit of Frame 5 (RSa5F5).  
Bit 1 : Sa5 Bit of Frame 3 (RSa5F3).  
Bit 0 : Sa5 Bit of Frame 1 (RSa5F1).  
136 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSa6  
Received Sa6 Bits  
06BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RSa6F15 RSa6F13 RSa6F11 RSa6F9 RSa6F7 RSa6F5 RSa6F3 RSa6F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa6 Bit of Frame 15 (RSa6F15).  
Bit 6 : Sa6 Bit of Frame 13 (RSa6F13).  
Bit 5 : Sa6 Bit of Frame 11 (RSa6F11).  
Bit 4 : Sa6 Bit of Frame 9 (RSa6F9).  
Bit 3 : Sa6 Bit of Frame 7 (RSa6F7).  
Bit 2 : Sa6 Bit of Frame 5 (RSa6F5).  
Bit 1 : Sa6 Bit of Frame 3 (RSa6F3).  
Bit 0 : Sa6 Bit of Frame 1 (RSa6F1).  
Register Name:  
Register Description:  
Register Address:  
E1RSa7  
Received Sa7 Bits  
06CH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
RSa7F1  
0
Name  
Default  
RSa7F15 RSa7F13 RSa7F11 RSa7F9 RSa7F7 RSa7F5  
RSa7F3  
0
0
0
0
0
0
0
Bit 7 : Sa7 Bit of Frame 15 (RSa4F15).  
Bit 6 : Sa7 Bit of Frame 13 (RSa7F13).  
Bit 5 : Sa7 Bit of Frame 11 (RSa7F11).  
Bit 4 : Sa7 Bit of Frame 9 (RSa7F9).  
Bit 3 : Sa7 Bit of Frame 7 (RSa7F7).  
Bit 2 : Sa7 Bit of Frame 5 (RSa7F5).  
Bit 1 : Sa7 Bit of Frame 3 (RSa7F3).  
Bit 0 : Sa7 Bit of Frame 1 (RSa7F1).  
137 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RSa8  
Received Sa8 Bits  
06DH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
RSa8F1  
0
Name  
Default  
RSa8F15 RSa8F13 RSa8F11 RSa8F9 RSa8F7 RSa8F5 RSa8F3  
0
0
0
0
0
0
0
Bit 7 : Sa8 Bit of Frame 15 (RSa8F15).  
Bit 6 : Sa8 Bit of Frame 13 (RSa8F13).  
Bit 5 : Sa8 Bit of Frame 11 (RSa8F11).  
Bit 4 : Sa8 Bit of Frame 9 (RSa8F9).  
Bit 3 : Sa8 Bit of Frame 7 (RSa8F7).  
Bit 2 : Sa8 Bit of Frame 5 (RSa8F5).  
Bit 1 : Sa8 Bit of Frame 3 (RSa8F3).  
Bit 0 : Sa8 Bit of Frame 1 (RSa8F1).  
Register Name:  
Register Description:  
Register Address:  
SaBITS  
Received SaX Bits  
06EH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
RSa8F1  
0
Name  
Default  
RSa8F15 RSa8F13 RSa8F11 RSa8F9 RSa8F7 RSa8F5 RSa8F3  
0
0
0
0
0
0
0
This register indicates the last received SaX bit. This can be used in conjunction with the RLS7 register to  
determine which SaX bits have changed. The user can program which Sa bit positions should be monitored via the  
E1RSAIMR register, and when a change is detected through an Interrupt in RSL6.0, the user can determine which  
bit has changed by reading this register and comparing it with previous known values.  
Bit 4 : Last Received Sa4 Bit.  
Bit 3 : Last Received Sa5 Bit.  
Bit 2 : Last Received Sa6 Bit.  
Bit 1 : Last Received Sa7 Bit.  
Bit 0 : Last Received Sa8 Bit.  
138 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
Sa6CODE  
Received Sa6 Codeword  
06FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
Sa6n  
0
2
Sa6n  
0
1
Sa6n  
0
0
Sa6n  
0
Name  
Default  
0
0
0
0
This register will report the received Sa6 codeword per ETS300233. The bits are monitored on a sub-multiframe  
asynchronous basis, so the pattern reported could be one of multiple patterns that would represent a valid  
codeword. The table below indicates which patterns reported in this register correspond to a given valid Sa6  
codeword.  
Bit 3 : Sa6 Codeword Bit.  
Bit 2 : Sa6 Codeword Bit.  
Bit 1 : Sa6 Codeword Bit.  
Bit 0 : Sa6 Codeword Bit.  
Valid Sa6 Code  
Sa6_8  
Possible Reported Patterns  
1000, 0100, 0010, 0001  
1010, 0101  
Sa6_A  
Sa6_C  
110, 0110, 0011, 1001  
1110, 0111, 1011, 1101  
1111  
Sa6_E  
Sa6_F  
139 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RMMR  
Receive Master Mode Register  
080H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
-
4
-
3
-
2
-
1
SFTRST  
0
0
T1/E1  
0
Name  
Default  
FRM_EN INIT_DONE  
0
0
0
0
0
0
Bit 7: Framer Enable (FRM_EN). This bit must be set to the desired state before writing INIT_DONE.  
0 = Framer disabled – held in low-power state  
1 = Framer enabled – all features active  
Bit 6: Initialization Done (INIT_DONE). The user must set this bit once he has written the configuration registers.  
The host is required to write or clear all device registers prior to setting this bit. Once INIT_DONE is set, the  
DS26528 will check the FRM_EN bit and, if enabled will begin operation based on the initial configuration.  
Bit 1 : Soft Reset (SFTRST). Level sensitive ‘soft’ reset. Should be taken high then low to reset the receiver.  
0 = Normal operation  
1 = Reset the receiver.  
Bit 0 : Receiver T1/E1 Mode Select (T1/E1). Sets operating mode for receiver only! This bit must be set to the  
desired state before writing INIT_DONE.  
0 = T1 operation  
1 = E1 operation  
140 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RCR1  
Receive Control Register 1 – T1 MODE  
081H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
SYNCT  
0
6
RB8ZS  
0
5
RFM  
0
4
ARC  
0
3
SYNCC  
0
2
RJC  
0
1
SYNCE  
0
0
RESYNC  
0
Name  
Default  
Note: This register has an alternate definition for E1 mode. See RCR1.  
Bit 7 : Sync Time (SYNCT).  
0 = qualify 10 bits  
1 = qualify 24 bits  
Bit 6 : Receive B8ZS Enable (RB8ZS).  
0 = B8ZS disabled  
1 = B8ZS enabled  
Bit 5 : Receive Frame Mode Select (RFM).  
0 = ESF framing mode  
1 = D4 framing mode  
Bit 4 : Auto Resync Criteria (ARC).  
0 = Resync on OOF or LOS event  
1 = Resync on OOF only  
Bit 3 : Sync Criteria (SYNCC).  
In D4 Framing Mode.  
0 = search for Ft pattern, then search for Fs pattern  
1 = cross couple Ft and Fs pattern  
In ESF Framing Mode.  
0 = search for FPS pattern only  
1 = search for FPS and verify with CRC6  
Bit 2 : Receive Japanese CRC6 Enable (RJC).  
0 = use ANSI:AT&T:ITU CRC6 calculation (normal operation)  
1 = use Japanese standard JT–G704 CRC6 calculation  
Bit 1 : Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0 : Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive side framer  
is initiated. Must be cleared and set again for a subsequent resync.  
141 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RCR1  
Receive Control Register 1 – E1 MODE  
081H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
RHDB3  
0
5
RSIGM  
0
4
RG802  
0
3
RCRC4  
0
2
FRC  
0
1
SYNCE  
0
0
RESYNC  
0
Name  
Default  
0
Note: This register has an alternate definition for T1 mode. See RCR1.  
Bit 6 : Receive HDB3 Enable (RHDB3).  
0 = HDB3 disabled  
1 = HDB3 enabled (decoded per O.162)  
Bit 5 : Receive Signaling Mode Select (RSIGM).  
0 = CAS signaling mode  
1 = CCS signaling mode  
Bit 4 : Receive G.802 Enable (RG802). See Section 19 for details.  
0 = do not force RCHBLK high during bit 1 of time slot 26  
1 = force RCHBLK high during bit 1 of time slot 26  
Bit 3 : Receive CRC4 Enable (RCRC4).  
0 = CRC4 disabled  
1 = CRC4 enabled  
Bit 2 : Frame Resync Criteria (FRC).  
0 = resync if FAS received in error 3 consecutive times  
1 = resync if FAS or bit 2 of non–FAS is received in error 3 consecutive times  
Bit 1 : Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0 : Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the receive side framer  
is initiated. Must be cleared and set again for a subsequent resync.  
142 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RIBCC  
Receive In-Band Code Control Register – T1 MODE  
082H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
RUP2  
0
4
RUP1  
0
3
RUP0  
0
2
RDN2  
0
1
RDN1  
0
0
RDN0  
0
Name  
Default  
Note: This register has an alternate definition for E1 mode. See E1RCR2.  
Bits 5 to 3 : Receive Up Code Length Definition Bits (RUP2 to RUP0).  
RUP2  
RUP1  
RUP0  
LENGTH SELECTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 bits  
2 bits  
3 bits  
4 bits  
5 bits  
6 bits  
7 bits  
8 : 16 bits  
Bits 2 to 0 : Receive Down Code Length Definition Bits (RDN2 to RDN0).  
RDN2  
RDN1  
RDN0  
LENGTH SELECTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 bits  
2 bits  
3 bits  
4 bits  
5 bits  
6 bits  
7 bits  
8 : 16 bits  
143 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1RCR2  
Receive Control Register 2 – E1 MODE  
082H+ (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RSa8S  
0
6
RSa7S  
0
5
RSa6S  
0
4
RSa5S  
0
3
RSa4S  
0
2
-
1
-
0
RLOSA  
0
Name  
Default  
0
0
Note: This register has an alternate definition for T1 mode. See T1RIBCC.  
Bit 7 : Sa8 Bit Select (Sa8S). Set to one to have RLCLK pulse at the Sa8 bit position; set to zero to force RLCLK  
low during Sa8 bit position.  
Bit 6 : Sa7 Bit Select (Sa7S). Set to one to have RLCLK pulse at the Sa7 bit position; set to zero to force RLCLK  
low during Sa7 bit position.  
Bit 5 : Sa6 Bit Select (Sa6S). Set to one to have RLCLK pulse at the Sa6 bit position; set to zero to force RLCLK  
low during Sa6 bit position.  
Bit 4 : Sa5 Bit Select (Sa5S). Set to one to have RLCLK pulse at the Sa5 bit position; set to zero to force RLCLK  
low during Sa5 bit position.  
Bit 3 : Sa4 Bit Select (Sa4S). Set to one to have RLCLK pulse at the Sa4 bit position; set to zero to force RLCLK  
low during Sa4 bit position.  
Bit 0 : Receive Loss of Signal Alternate Criteria (RLOSA). Defines the criteria for a Loss of Signal condition.  
0 = LOS declared upon 255 consecutive zeros (125s)  
1 = LOS declared upon 2048 consecutive zeros (1ms)  
144 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RCR3  
Receive Control Register 3  
083H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
IDF  
0
6
-
5
RSERC  
0
4
-
3
-
2
-
1
PLB  
0
0
FLB  
0
Name  
Default  
0
0
0
0
Bit 7 : Input Data Format (IDF).  
0 = Bipolar data is expected at RTIP and RRING (either AMI or B8ZS)  
1 = NRZ data is expected at RTIP. The BPV counter will be disabled and RRING will be ignored by the  
DS26528.  
Bit 5 : RSER Control (RSERC).  
0 = allow RSER to output data as received under all conditions (normal operation)  
1 = force RSER to one under loss of frame alignment conditions  
Bit 1 : Payload Loopback (PLB).  
0 = loopback disabled  
1 = loopback enabled  
When PLB is enabled, the following will occur:  
1.  
2.  
3.  
4.  
5.  
data will be transmitted from the TTIP and TRING pins synchronous with RCLK instead of TCLK  
all of the receive side signals will continue to operate normally  
the TCHCLK and TCHBLK signals are forced low  
data at the TSER, TDATA, and TSIG pins is ignored  
the TLCLK signal will become synchronous with RCLK instead of TCLK.  
In a PLB situation, the DS26528 will loop the 192 bits (248 for E1) of pay-load data (with BPVs corrected) from the  
receive section back to the transmit section. The transmitter will follow the frame alignment provided by the  
receiver. The receive frame boundary is automatically fed into the transmit section, such that the transmit frame  
position is locked to the receiver (i.e., TSYNC is sourced from RSYNC). The FPS framing pattern, CRC6  
calculation, and the FDL bits (FAS word, Si, Sa, E-bits, and CRC4 for E1) are not looped back, they are reinserted  
by the DS26528 (i.e., the transmit section will modify the payload as if it was input at TSER).  
Bit 0 : Framer Loopback (FLB).  
0 = loopback disabled  
1 = loopback enabled  
This loopback is useful in testing and debugging applications. In FLB, the DS26528 will loop data from the transmit  
side back to the receive side. When FLB is enabled, the following will occur:  
1.  
(T1 mode) an unframed all-ones code will be transmitted at TTIP and TRING  
(E1 mode) normal data will be transmitted at TTIP and TRING  
Data at RTIP and RRING will be ignored  
2.  
3.  
All receive side signals will take on timing synchronous with TCLK instead of RCLK.  
Note that it is not acceptable to have RCLK tied to TCLK during this loopback because this will cause an  
unstable condition.  
145 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIOCR  
Receive I/O Configuration Register  
084H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
RSMS  
0
2
RSIO  
1
1
0
RCLKINV  
RSYNCINV H100EN RSCLKM  
Name  
Default  
RSMS2 RSMS1  
0
0
0
0
0
0
Bit 7 : RCLK Invert (RCLKINV).  
0 = No inversion  
1 = Invert RCLK as input  
Bit 6 : RSYNC Invert (RSYNCINV).  
0 = No inversion  
1 = Invert RSYNC as either input or output  
Bit 5 : H.100 SYNC Mode (H100EN). See Section 9.8.3 for more information.  
0 = Normal operation  
1 = RSYNC and TSSYNCIO signals are shifted  
Bit 4 : RSYSCLK Mode Select (RSCLKM).  
0 = if RSYSCLK is 1.544MHz  
1 = if RSYSCLK is 2.048MHz or IBO enabled  
Bit 3 : RSYNC Multiframe Skip Control (RSMS). T1 Mode ONLY. Useful in framing format conversions from D4  
to ESF. This function is not available when the receive side elastic store is enabled. RSYNC must be set to output  
multiframe pulses.  
0 = RSYNC will output a pulse at every multiframe  
1 = RSYNC will output a pulse at every other multiframe  
Bit 2 : RSYNC I/O Select (RSIO). (Note: this bit must be set to zero when elastic store is disabled) The default  
value for this bit is a logic 1 so that the default state of RSYNC is as an input.  
0 = RSYNC is an output  
1 = RSYNC is an input (only valid if elastic store enabled)  
Bit 1 : RSYNC Mode Select 2 (RSMS2).  
T1: RSYNC pin must be programmed in the output frame mode  
0 = do not pulse double wide in signaling frames  
1 = do pulse double wide in signaling frames  
E1: RSYNC pin must be programmed in the output multiframe mode  
0 = RSYNC outputs CAS multiframe boundaries  
1 = RSYNC outputs CRC4 multiframe boundaries  
In E1 mode, RSMS2 also selects which multiframe signal is available at the RMSYNC pin, regardless of the  
configuration for RSYNC. When RSMS2 = 0, RMSYNC outputs CAS multiframe boundaries; when RSMS2 = 1,  
RMSYNC outputs CRC4 multiframe boundaries.  
Bit 0 : RSYNC Mode Select 1 (RSMS1). Selects frame or multiframe pulse when RSYNC pin is in output mode. In  
input mode (elastic store must be enabled) multiframe mode is only useful when receive signaling reinsertion is  
enabled.  
0 = frame mode  
1 = multiframe mode  
146 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RESCR  
Receive Elastic Store Control Register  
085H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
-
4
RSZS  
0
3
2
RESR  
0
1
0
RESE  
0
RDATFMT  
RGCLKEN  
RESALGN  
RESMDM  
Name  
Default  
0
0
0
0
0
Bit 7 : Receive Channel Data Format (RDATFMT).  
0 = 64KBps (data contained in all 8 bits)  
1 = 56KBps (data contained in 7 out of the 8 bits)  
Bit 6 : Receive Gapped Clock Enable (RGCLKEN).  
0 = RCHCLK functions normally  
1 = Enable gapped bit clock output on RCHCLK  
RGPCKEN and RDATFMT are not associated with the elastic store and will be explained in the fractional support  
section.  
Bit 4 : Receive Slip Zone Select (RSZS). This bit determines the minimum distance allowed between the elastic  
store read and write pointers before forcing a controlled slip. This bit is only applies during T1 to E1 or E1 to T1  
conversion applications.  
0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)  
1 = force a slip at 2 bytes or less of separation (used for distributed blank channels and minimum delay  
mode)  
Bit 3 : Receive Elastic Store Align (RESALGN). Setting this bit from a zero to a one will force the receive elastic  
store’s write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation  
is already greater or equal to half a frame. If pointer separation is less than half a frame, the command will be  
executed and the data will be disrupted. Should be toggled after RSYSCLK has been applied and is stable. Must  
be cleared and set again for a subsequent align.  
Bit 2 : Receive Elastic Store Reset (RESR). Setting this bit from a zero to a one will force the read pointer into the  
same frame that the write pointer is exiting, minimizing the delay through the elastic store. If this command should  
place the pointers within the slip zone (see bit 4), then an immediate slip will occur and the pointers will move back  
to opposite frames. Should be toggled after RSYSCLK has been applied and is stable. Do not leave this bit set  
HIGH.  
Bit 1 : Receive Elastic Store Minimum Delay Mode (RESMDM).  
0 = elastic stores operate at full two frame depth  
1 = elastic stores operate at 32–bit depth  
Bit 0 : Receive Elastic Store Enable (RESE).  
0 = elastic store is bypassed  
1 = elastic store is enabled  
147 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
ERCNT  
Error Counter Configuration Register  
086H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
MOSCR  
F
0
Name  
1SECS  
MCUS  
MECU  
ECUS  
EAMS  
FSBE  
LCVCRF  
Default  
0
0
0
0
0
0
0
0
Bit 7 / One-Second Select (1SECS). This bit allows for synchronization of the error counter updates between  
multiple ports. When ERCNT.3=0, setting this bit (on a specific framer) will update the framer’s error counters on  
the transition of the one-second timer from framer #1. Note that this bit should always be clear for framer #1.  
0 = Use the one-second timer that is internal to the framer.  
1 = Use the one-second timer from framer #1 to latch updates.  
Bit 6 : Manual Counter Update Select (MCUS). When manual update mode is enabled with EAMS, this bit can be  
used to allow the incoming LATCH_CNT signal to latch all counters. Useful for synchronously latching counters of  
multiple DS26528 cores located on the same die.  
0 = MECU is used to manually latch counters.  
1 = Counters are latched on the rising edge of the LATCH_CNT signal.  
Bit 5 : Manual Error Counter Update (MECU). When enabled by ERCNT.3, the changing of this bit from a 0 to a  
1 allows the next clock cycle to load the error counter registers with the latest counts and reset the counters. The  
user must wait a minimum of 250s before reading the error count registers to allow for proper update.  
Bit 4 : Error Counter Update Select (ECUS).  
T1 mode:  
0 = Update error counters once a second  
1 = Update error counters every 42ms (333 frames)  
E1 mode:  
0 = Update error counters once a second  
1 = Update error counters every 62.5ms (500 frames)  
Bit 3 : Error Accumulation Mode Select (EAMS).  
0 = Automatic updating of error counters enabled. The state of ERCNT.4 determines accumulation time  
(timed update)  
1 = User toggling of ERCNT.5 determines accumulation time (manual update)  
Bit 2 : PCVCR Fs-Bit Error Report Enable (FSBE). T1 Mode Only.  
0 = do not report bit errors in Fs-bit position; only Ft-bit position  
1 = report bit errors in Fs-bit position as well as Ft-bit position  
Bit 1 : Multiframe Out of Sync Count Register Function Select (MOSCRF). T1 Mode Only.  
0 = count errors in the framing bit position  
1 = count the number of multiframes out of sync  
Bit 0 : T1 Line Code Violation Count Register Function Select (LCVCRF).  
0 = do not count excessive zeros  
1 = count excessive zeros  
148 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RHFC  
Receive HDLC FIFO Control Register  
087H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
0
Name  
Default  
RFHWM1 RFHWM0  
0
0
0
0
0
0
0
0
Bits 1 to 0 : Receive FIFO High Watermark Select (RFHWM1 to RFHWM0).  
RFHWM1 RFHWM0  
Receive FIFO Watermark  
4 bytes  
0
0
1
1
0
1
0
1
16 bytes  
32 bytes  
48 bytes  
149 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIBOC  
Receive Interleave Bus Operation Control Register  
088H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
IBS1  
0
5
IBS0  
0
4
IBOSEL  
0
3
IBOEN  
0
2
DA2  
0
1
DA1  
0
0
DA0  
0
Name  
Default  
0
Bits 6 to 5 : IBO Bus Size bit 1 (IBS1 to IBS0). Indicates how many devices on the bus.  
IBS1  
IBS0  
Bus Size  
0
0
1
1
0
1
0
1
2 Devices on bus (4.096MHz)  
4 Devices on bus (8.192MHz)  
8 Devices on bus (16.384MHz)  
Reserved for future use  
Bit 4 : Interleave Bus Operation Select (IBOSEL). This bit selects channel or frame interleave mode.  
0 = Channel Interleave  
1 = Frame Interleave  
Bit 3 : Interleave Bus Operation Enable (IBOEN).  
0 = Interleave Bus Operation disabled.  
1 = Interleave Bus Operation enabled.  
Bits 2 to 0 : Device Assignment bits (DA2 to DA0).  
DA2  
0
DA1  
0
DA0  
0
Device Position  
1st Device on bus  
2nd Device on bus  
3rd Device on bus  
4th Device on bus  
5th Device on bus  
6th Device on bus  
7th Device on bus  
8th Device on bus  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
150 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RSCC  
In-Band Receive Spare Control Register  
089H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
RSC2  
0
1
RSC1  
0
0
RSC0  
0
Name  
Default  
0
0
0
0
0
Bits7 to 3 : Reserved, must be set to zero for proper operation  
Bits 2 to 0 : Receive Spare Code Length Definition Bits (RSC2 to RSC0).  
RSC2 RSC1 RSC0  
LENGTH SELECTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1 bits  
2 bits  
3 bits  
4 bits  
5 bits  
6 bits  
7 bits  
8 : 16 bits  
Register Name:  
Register Description:  
Register Address:  
RXPC  
Receive eXpansion Port Control Register  
08AH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
--  
0
3
--  
0
2
1
0
RBPEN  
0
Name  
Default  
RBPDIR RBPFUS  
0
0
Bit 2 : Receive BERT Port Direction Control (RBPDIR).  
0 = Normal (line) operation. Rx BERT port sources data from the receive path (RNRZ Data).  
1 = System (Backplane) operation. Rx BERT port sources data from the transmit path. In this mode the  
data on RBPDATA becomes TDATA (transmit data on the line side of the e-store). The clock on RBPCLK  
becomes the clock that was generated for TBPCLK (must be referenced to TCLK).  
Bit 1 : Receive BERT Port Framed/Unframed Select (RBPFUS). T1 Mode Only.  
0 = The DS26528’s RBP_CLK will not clock data from the F-bit position (framed)  
1 = The DS26528’s RBP_CLK will clock data from the F-bit position (unframed)  
Bit 0 : Receive BERT Port Enable (RBPEN).  
0 = Receive BERT Port is not active  
1 = Receive BERT Port is active.  
151 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RBPBS  
Receive BERT Port Bit Suppress Register  
08BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
BPBSE8 BPBSE  
7
BPBSE  
BPBSE  
BPBSE  
BPBSE  
BPBSE  
BPBSE  
6
0
5
0
4
0
3
0
2
0
1
0
Default  
0
0
Bit 7 : Receive Channel Bit 8 Suppress (BPBSE8). MSB of the channel. Set to one to stop this bit from being  
used.  
Bit 6 : Receive Channel Bit 7 Suppress (BPBSE7). Set to one to stop this bit from being used.  
Bit 5 : Receive Channel Bit 6 Suppress (BPBSE6). Set to one to stop this bit from being used.  
Bit 4 : Receive Channel Bit 5 Suppress (BPBSE5). Set to one to stop this bit from being used.  
Bit 3 : Receive Channel Bit 4 Suppress (BPBSE4). Set to one to stop this bit from being used.  
Bit 2 : Receive Channel Bit 3 Suppress (BPBSE3). Set to one to stop this bit from being used.  
Bit 1 : Receive Channel Bit 2 Suppress (BPBSE2). Set to one to stop this bit from being used.  
Bit 0 : Receive Channel Bit 1 Suppress (BPBSE1). LSB of the channel. Set to one to stop this bit from being  
used.  
152 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS1  
Receive Latched Status Register 1  
090H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RRAIC  
0
6
RAISC  
0
5
RLOSC  
0
4
RLOFC  
0
3
RRAID  
0
2
RAISD  
0
1
RLOSD  
0
0
RLOFD  
0
Name  
Default  
All bits in this register are latched and can create interrupts.  
Bit 7 : Receive Remote Alarm Indication Condition Clear (RRAIC). Falling edge detect of RRAI. Set when a  
RRAI condition has cleared.  
Bit 6 : Receive Alarm Indication Signal Condition Clear (RAISC). Falling edge detect of RAIS. Set when a RAIS  
condition has cleared.  
Bit 5 : Receive Loss of Signal Condition Clear (RLOSC). Falling edge detect of RLOS. Set when an RLOS  
condition has cleared.  
Bit 4 : Receive Loss of Frame Condition Clear (RLOFC). Falling edge detect of RLOF. Set when an RLOF  
condition has cleared.  
Bit 3 : Receive Remote Alarm Indication Condition Detect (RRAID). Rising edge detect of RRAI. Set when a  
remote alarm is received at RTIP and RRING.  
Bit 2 : Receive Alarm Indication Signal Condition Detect (RAISD). Rising edge detect of RAIS.Set when an  
unframed all one’s code is received at RTIP and RRING.  
Bit 1 : Receive Loss of Signal Condition Detect (RLOSD). Rising edge detect of RLOS. Set when 192  
consecutive zeros have been detected at RTIP and RRING.  
Bit 0 : Receive Loss of Frame Condition Detect (RLOFD). Rising edge detect of RLOF. Set when the DS26528  
has lost synchronized to the received data stream.  
153 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS2 – T1 Mode  
Receive Latched Status Register 2  
091H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RPDV  
0
6
-
5
COFA  
0
4
8ZD  
0
3
16ZD  
0
2
SEFE  
0
1
B8ZS  
0
0
FBE  
0
Name  
Default  
0
All bits in these register are latched. This register does not create interrupts.  
Bit 7 : Receive Pulse Density Violation Event (RPDV). Set when the receive data stream does not meet the  
ANSI T1.403 requirements for pulse density.  
Bit 5 : Change of Frame Alignment Event (COFA). Set when the last resync resulted in a change of frame or  
multiframe alignment.  
Bit 4 : Eight Zero Detect Event (8ZD). Set when a string of at least eight consecutive zeros (regardless of the  
length of the string) have been received at RTIP and RRING.  
Bit 3 : Sixteen Zero Detect Event (16ZD). Set when a string of at least sixteen consecutive zeros (regardless of  
the length of the string) have been received at RTIP and RRING.  
Bit 2 : Severely Errored Framing Event (SEFE). Set when 2 out of 6 framing bits (Ft or FPS) are received in  
error.  
Bit 1 : B8ZS Codeword Detect Event (B8ZS). Set when a B8ZS codeword is detected at RTIP and RRING  
independent of whether the B8ZS mode is selected or not. Useful for automatically setting the line coding.  
Bit 0 : Frame Bit Error Event (FBE). Set when a Ft (D4) or FPS (ESF) framing bit is received in error.  
Register Name:  
Register Description:  
Register Address:  
RLS2 – E1 Mode  
E1 Receive Latched Status Register 2  
091H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
5
4
3
RSA1  
0
2
RSA0  
0
1
RCMF  
0
0
RAF  
0
Name  
Default  
CRCRC CASRC FASRC  
0
0
0
0
Note: All bits in this register are latched. Bits 0 – 3 can cause interrupts. There is no associated real-time register.  
Bit 6 : CRC Resync Criteria Met Event (CRCRC). Set when 915:1000 codewords are received in error.  
Bit 5 : CAS Resync Criteria Met Event (CASRC). Set when 2 consecutive CAS MF alignment words are received  
in error.  
Bit 4 : FAS Resync Criteria Met Event (FASRC). Set when 3 consecutive FAS words are received in error.  
Bit 3 : Receive Signaling All Ones Event (RSA1). Set when the contents of time slot 16 contains less than three  
zeros over 16 consecutive frames. This alarm is not disabled in the CCS signaling mode.  
Bit 2 : Receive Signaling All Zeros Event (RSA0). Set when over a full MF, time slot 16 contains all zeros.  
Bit 1 : Receive CRC4 Multiframe Event (RCMF). Set on CRC4 multiframe boundaries; will continue to be set  
every 2 ms on an arbitrary boundary if CRC4 is disabled.  
Bit 0 : Receive Align Frame Event (RAF). Set approximately every 250s to alert the host that Si and Sa bits are  
available in the RAF and RNAF registers.  
154 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS3 – T1 Mode  
Receive Latched Status Register 3  
092H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
LORCC  
0
6
LSPC  
0
5
LDNC  
0
4
LUPC  
0
3
LORCD  
0
2
LSPD  
0
1
LDND  
0
0
LUPD  
0
Name  
Default  
All bits in this register are latched and can create interrupts.  
Bit 7 : Loss of Receive Clock Condition Clear (LORCC). Falling edge detect of LORC. Set when a LORC  
condition was detected and then removed.  
Bit 6 : Spare Code Detected Condition Clear (LSPC). Falling edge detect of LSP. Set when a spare-code match  
condition was detected and then removed.  
Bit 5 : Loop Down Code Detected Condition Clear (LDNC). Falling edge detect of LDN. Set when a loop-down  
condition was detected and then removed  
Bit 4 : Loop Up Code Detected Condition Clear (LUPC). Falling edge detect of LUP. Set when a loop-up  
condition was detected and then removed.  
Bit 3 : Loss of Receive Clock Condition Detect (LORCD). Rising edge detect of LORC. Set when the RCLK pin  
has not transitioned for one channel time.  
Bit 2 : Spare Code Detected Condition Detect (LSPD). Rising edge detect of LSP. Set when the spare code as  
defined in the RSCD1:2 registers is being received.  
Bit 1 : Loop Down Code Detected Condition Detect (LDND). Rising edge detect of LDN. Set when the loop  
down code as defined in the RDNCD1:2 register is being received.  
Bit 0 : Loop Up Code Detected Condition Detect (LUPD). Rising edge detect of LUP. Set when the loop up code  
as defined in the RUPCD1:2 register is being received.  
155 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS3 – E1 Mode  
Receive Latched Status Register 3  
092H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
LORCC  
0
6
-
5
4
3
2
-
1
0
Name  
Default  
V52LNKC RDMAC LORCD  
V52LNKD RDMAD  
0
0
0
0
0
0
0
Note: All bits in this register are latched and can create interrupts.  
Bit 7 : Loss of Receive Clock Clear (LORCC). Change of state indication. Set when a LORC condition has  
cleared (falling edge detect of LORC)  
Bit 5 : V5.2 Link Detected Clear (V52LNKC). Change of state indication. Set when a V52LNK condition has  
cleared (falling edge detect of V52LNK).  
Bit 4 : Receive Distant MF Alarm Clear (RDMAC). Change of state indication. Set when a RDMA condition has  
cleared (falling edge detect of RDMA).  
Bit 3 : Loss of Receive Clock Detect (LORCD). Change of state indication. Set when the RCLK pin has not  
transitioned for one channel time (rising edge detect of LORC).  
Bit 1 : V5.2 Link Detect (V52LNKD). Change of state indication. Set on detection of a V5.2 link identification  
signal. (G.965). This is the rising edge detect of V52LNK.  
Bit 0 : Receive Distant MF Alarm Detect (RDMAD). Change of state indication. Set when bit-6 of time slot 16 in  
frame 0 has been set for two consecutive multiframes. This alarm is not disabled in the CCS signaling mode. This  
is the rising edge detect of RDMA.  
156 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS4  
Receive Latched Status Register 4  
093H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RESF  
0
6
RESEM  
0
5
RSLIP  
0
4
3
RSCOS  
0
2
1SEC  
0
1
TIMER  
0
0
RMF  
0
Name  
Default  
0
All bits in this register are latched and can create interrupts.  
Bit 7 : Receive Elastic Store Full Event (RESF). Set when the receive elastic store buffer fills and a frame is  
deleted.  
Bit 6 : Receive Elastic Store Empty Event (RESEM). Set when the receive elastic store buffer empties and a  
frame is repeated.  
Bit 5 : Receive Elastic Store Slip Occurrence Event (RSLIP). Set when the receive elastic store has either  
repeated or deleted a frame.  
Bit 3 : Receive Signaling Change Of State Event (RSCOS). Set when any channel selected by the Receive  
Signaling Change Of State Interrupt Enable registers (RSCSE1 through RSCSE3), changes signaling state.  
Bit 2 : One Second Timer (1SEC). Set on every 1 second interval based on RCLK.  
Bit 1 : Timer Event (TIMER). This status bit indicates that the performance monitor counters have been updated  
and are available to be read by the host. The error counter update interval as determined by the settings in the  
Error Counter Configuration Register (ERCNT).  
T1: Set on increments of 1 second or 42ms based on RCLK, or a manual latch event.  
E1: Set on increments of 1 second or 62.5ms based on RCLK, or a manual latch event.  
Bit 0 : Receive Multiframe Event (RMF). In T1 operation, set every 1.5ms on D4 MF boundaries or every 3ms on  
ESF MF boundaries.  
In E1 operation, set every 2.0ms on receive CAS multiframe boundaries to alert host the signaling data is available.  
Continues to set on an arbitrary 2.0ms boundary when CAS signaling is not enabled.  
157 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS5  
Receive Latched Status Register 5 (HDLC)  
094H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
ROVR  
0
4
RHOBT  
0
3
RPE  
0
2
RPS  
0
1
RHWMS  
0
0
RNES  
0
Name  
Default  
0
0
All bits in this register are latched and can cause interrupts.  
Bit 5 : Receive FIFO Overrun (ROVR). Set when the receive HDLC controller has terminated packet reception  
because the FIFO buffer is full.  
Bit 4 : Receive HDLC Opening Byte Event (RHOBT). Set when the next byte available in the receive FIFO is the  
first byte of a message.  
Bit 3 : Receive Packet End Event (RPE). Set when the HDLC controller detects either the finish of a valid  
message (i.e., CRC check complete) or when the controller has experienced a message fault such as a CRC  
checking error, or an overrun condition, or an abort has been seen. This is a latched bit and will be cleared when  
read.  
Bit 2 : Receive Packet Start Event (RPS). Set when the HDLC controller detects an opening byte. This is a  
latched bit and will be cleared when read.  
Bit 1 : Receive FIFO Above High Watermark Set Event (RHWMS). Set when the receive 64-byte FIFO crosses  
the high watermark as defined by the Receive HDLC FIFO Control Register (RHFC). Rising edge detect of RHWM.  
Bit 0 : Receive FIFO Not Empty Set Event (RNES). Set when the receive FIFO has transitioned from ‘empty’ to  
‘not-empty’ (at least one byte has been put into the FIFO). Rising edge detect of RNE.  
158 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS7 (T1 Mode)  
Receive Latched Status Register 7  
096H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
4
3
2
1
BC  
0
0
BD  
0
Name  
Default  
RRAI-CI RAIS-CI RSLC96 RFDLF  
0
0
0
0
0
0
All bits in this register are latched and can create interrupts.  
Bit 5 : Receive RAI-CI Detect (RRAI-CI). Set when an RAI-CI pattern has been detected by the receiver (see  
Section). This bit is active in ESF framing mode only, and will set only if an RAI condition is being detected  
(RRTS1.3). When the host reads (and clears) this bit, it will set again each time the RAI-CI pattern is detected  
(approximately every 1.1 seconds).  
Bit 4 : Receive AIS-CI Detect (RAIS-CI). Set when an AIS-CI pattern has been detected by the receiver (see  
Section). This bit will set only if an AIS condition is being detected (RRTS1.2). This is a latched bit which must be  
cleared by the host, and will set again each time the AIS-CI pattern is detected (approximately every 1.2 seconds).  
Bit 3 : Receive SLC-96 Alignment Event (RSLC96). Set when a valid SLC-96 alignment pattern is detected in the  
Fs bit stream, and the RSLCx registers have data available for retrieval. See Section 9.9.4.4 for more information.  
Bit 2 : Receive FDL Register Full Event (RFDLF). Set when the 8-bit RFDL register is full. Useful for SLC-96  
operation, or manual extraction of FDL data bits. See Section 9.9.5.4 for more information.  
Bit 1 : BOC Clear Event (BC). Set when a valid BOC is no longer detected (with the Disintegration filter applied).  
Bit 0 : BOC Detect Event (BD). Set when a valid BOC has been detected (with the BOC filter applied).  
159 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RLS7 (E1 Mode)  
Receive Latched Status Register 7  
096H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
Sa6CD  
0
0
SaXCD  
0
Name  
Default  
0
0
0
0
0
0
All bits in this register are latched and can create interrupts.  
Bit 1 : Sa6 Codeword Detect. Set when a calid codeword (per ETS 300233) is detected in the Sa6 bit positions.  
Bit 0 : SaX Bit Change Detect. Set when a bit change is detected in the SaX bit position. The enabled SaX bits  
are selected by the E1RSAIMR register.  
Register Name:  
Register Description:  
Register Address:  
RSS1, RSS2, RSS3, RSS4  
Receive Signaling Status Registers  
098H, 099H, 09AH, 09BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1*  
CH9  
RSS1  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
RSS2  
CH17*  
CH25  
RSS3  
RSS4  
(E1 mode)  
Note: Status bits in this register are latched.  
When a channel’s signaling data changes state, the respective bit in registers RSS1-RSS4 will be set and latched.  
The RSCOS bit (RLSR4.3) will be set if the channel was also enabled by setting the appropriate bit in RSCSE1-4.  
The INTB signal will go low if enabled by the interrupt mask bit RIM4.3. The bit will remain set until read. Note that  
in E1 CAS mode, the LSB of RSS1 would typically represent the CAS alignment bits, and the LSB of RSS3  
represents reserved bits and the distant multiframe alarm.  
160 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RSCD1  
Receive Spare Code Definition Register 1  
09CH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Note: Writing this register resets the detector’s integration period.  
Bit 7 : Receive Spare Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6 : Receive Spare Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5 : Receive Spare Code Definition Bit 5 (C5). A Don’t Care if a 1 or 2 bit length is selected.  
Bit 4 : Receive Spare Code Definition Bit 4 (C4). A Don’t Care if a 1 to 3 bit length is selected.  
Bit 3 : Receive Spare Code Definition Bit 3 (C3). A Don’t Care if a 1 to 4 bit length is selected.  
Bit 2 : Receive Spare Code Definition Bit 2 (C2). A Don’t Care if a 1 to 5 bit length is selected.  
Bit 1 : Receive Spare Code Definition Bit 1 (C1). A Don’t Care if a 1 to 6 bit length is selected.  
Bit 0 : Receive Spare Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
Register Name:  
Register Description:  
Register Address:  
T1RSCD2  
Receive Spare Code Definition Register 2  
09DH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bit 7 : Receive Spare Code Definition Bit 7 (C7). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 6 : Receive Spare Code Definition Bit 6 (C6). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 5 : Receive Spare Code Definition Bit 5 (C5). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 4 : Receive Spare Code Definition Bit 4 (C4). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 3 : Receive Spare Code Definition Bit 3 (C3). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 2 : Receive Spare Code Definition Bit 2 (C2). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 1 : Receive Spare Code Definition Bit 1 (C1). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 0 : Receive Spare Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
161 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIIR  
Receive Interrupt Information Register  
9FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
RLS7  
0
5
RLS6*  
0
4
RLS5  
0
3
RLS4  
0
2
RLS3  
0
1
RLS2**  
0
0
RLS1  
0
Name  
Default  
0
* RLS6 is reserved for future use.  
** Currently RLS2 does not create an interrupt therefore this bit is not used in T1 mode.  
The Interrupt Information Registers indicate which of the DS26528 status registers are generating an interrupt.  
When an interrupt occurs, the host can read RIIR to quickly identify which of the receive status registers is (are)  
causing the interrupt(s). The Interrupt Information Register bits will clear once the appropriate interrupt has been  
serviced and cleared, as long as no additional, unmasked interrupt condition is present in the associated status  
register. Status bits that have been masked via the Receive Interrupt Mask (RIMx) registers, will also be masked  
from the RIIR register.  
Register Name:  
Register Description:  
Register Address:  
RIM1  
Receive Interrupt Mask Register 1  
0A0H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RRAIC  
0
6
RAISC  
0
5
RLOSC  
0
4
RLOFC  
0
3
RRAID  
0
2
RAISD  
0
1
RLOSD  
0
0
RLOFD  
0
Name  
Default  
Bit 7 : Receive Remote Alarm Indication Condition Clear (RRAIC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6 : Receive Alarm Indication Signal Condition Clear (RAISC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : Receive Loss of Signal Condition Clear (RLOSC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Receive Loss of Frame Condition Clear (RLOFC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Receive Remote Alarm Indication Condition Detect (RRAID).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Receive Alarm Indication Signal Condition Detect (RAISD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Receive Loss of Signal Condition Detect (RLOSD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Receive Loss of Frame Condition Detect (RLOFD).  
0 = interrupt masked  
1 = interrupt enabled  
162 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM2 – E1 Mode Only  
E1 Receive Interrupt Mask Register 2  
0A1H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
RSA1  
0
2
RSA0  
0
1
RCMF  
0
0
RAF  
0
Name  
Default  
0
0
0
0
Bit 3 : Receive Signaling All Ones Event (RSA1).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Receive Signaling All Zeros Event (RSA0).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Receive CRC4 Multiframe Event (RCMF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Receive Align Frame Event (RAF).  
0 = interrupt masked  
1 = interrupt enabled  
163 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM3 – T1 Mode  
Receive Interrupt Mask Register 3  
0A2H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
LORCC  
0
6
LSPC  
0
5
LDNC  
0
4
LUPC  
0
3
LORCD  
0
2
LSPD  
0
1
LDND  
0
0
LUPD  
0
Name  
Default  
Bit 7 : Loss of Receive Clock Condition Clear (LORCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6 : Spare Code Detected Condition Clear (LSPC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : Loop Down Code Detected Condition Clear(LDNC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Loop Up Code Detected Condition Clear (LUPC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Loss of Receive Clock Condition Detect (LORCD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Spare Code Detected Condition Detect (LSPD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Loop Down Code Detected Condition Detect (LDND).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Loop Up Code Detected Condition Detect (LUPD).  
0 = interrupt masked  
1 = interrupt enabled  
164 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM3 – E1 Mode  
E1 Receive Interrupt Mask Register 3  
0A2H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
LORCC  
0
6
-
5
4
3
2
-
1
0
Name  
Default  
V52LNKC RDMAC LORCD  
V52LNKD RDMAD  
0
0
0
0
0
0
0
Bit 7 : Loss of Receive Clock Clear (LORCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : V5.2 Link Detected Clear (V52LNKC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Receive Distant MF Alarm Clear (RDMAC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Loss of Receive Clock Detect (LORCD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : V5.2 Link Detect (V52LNKD).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Receive Distant MF Alarm Detect (RDMAD).  
0 = interrupt masked  
1 = interrupt enabled  
165 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM4  
Receive Interrupt Mask Register 4  
0A3H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RESF  
0
6
RESEM  
0
5
RSLIP  
0
4
-
3
RSCOS  
0
2
1SEC  
0
1
TIMER  
0
0
RMF  
0
Name  
Default  
0
Bit 7 : Receive Elastic Store Full Event (RESF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6 : Receive Elastic Store Empty Event (RESEM).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : Receive Elastic Store Slip Occurrence Event (RSLIP).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Receive Signaling Change Of State Event (RSCOS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : One Second Timer (1SEC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Timer Event (TIMER).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Receive Multiframe Event (RMF).  
0 = interrupt masked  
1 = interrupt enabled  
166 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM5  
Receive Interrupt Mask 5 (HDLC)  
0A4H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
ROVR  
0
4
RHOBT  
0
3
RPE  
0
2
RPS  
0
1
RHWMS  
0
0
RNES  
0
Name  
Default  
0
0
Bit 5 : Receive FIFO Overrun (ROVR).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Receive HDLC Opening Byte Event (RHOBT).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Receive Packet End Event (RPE).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Receive Packet Start Event (RPS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Receive FIFO Above High Watermark Set Event (RHWMS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Receive FIFO Not Empty Set Event (RNES).  
0 = interrupt masked  
1 = interrupt enabled  
167 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM7 (T1 Mode)  
Receive Interrupt Mask Register 7 (BOC:FDL)  
A6H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
4
3
2
1
BC  
0
0
BD  
0
Name  
Default  
RRAI-CI RAIS-CI RSLC96 RFDLF  
0
0
0
0
0
0
Bit 5 : Receive RAI-CI (RRAI-CI).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Receive AIS-CI (RAIS-CI).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Receive SLC-96 (RSLC96).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Receive FDL Register Full (RFDLF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : BOC Clear Event (BC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : BOC Detect Event (BD).  
0 = interrupt masked  
1 = interrupt enabled  
168 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RIM7 (E1 Mode)  
Receive Interrupt Mask Register 7 (BOC:FDL)  
A6H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
Sa6CD  
0
0
SaXCD  
0
Name  
Default  
0
0
0
0
0
0
Bit 1 : Sa6 Codeword Detect. This bit will enable the interrupt generated when a valid codeword (per ETS 300  
233) is detected in the Sa6 bits.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : SaX Change Detect. This bit will enable the interrupt generated when a change of state is detected in any  
of the unmasked SaX bit positions. The masked or unmasked SaX bits are selected by the E1RSAIMR register.  
0 = interrupt masked  
1 = interrupt enabled  
169 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RSCSE1, RSCSE2, RSCSE3, RSCSE4  
Receive Signaling Change of State Enable  
0A8H, 0A9H, 0AAH, 0ABH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
RSCSE1  
RSCSE2  
RSCSE3  
RSCSE4  
(E1 Only)  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Setting any of the CH1 through CH32 bits in the RSS1 through RSS4 registers will cause RSCOS (RLSR4.3) to be  
set when that channel’s signaling data changes state.  
Register Name:  
Register Description:  
Register Address:  
T1RUPCD1  
Receive Up Code Definition Register 1  
0ACH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Note: Writing this register resets the detector’s integration period.  
Bit 7 : Receive Up Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6 : Receive Up Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5 : Receive Up Code Definition Bit 5 (C5). A Don’t Care if a 1 or 2 bit length is selected.  
Bit 4 : Receive Up Code Definition Bit 4 (C4). A Don’t Care if a 1 to 3 bit length is selected.  
Bit 3 : Receive Up Code Definition Bit 3 (C3). A Don’t Care if a 1 to 4 bit length is selected.  
Bit 2 : Receive Up Code Definition Bit 2 (C2). A Don’t Care if a 1 to 5 bit length is selected.  
Bit 1 : Receive Up Code Definition Bit 1 (C1). A Don’t Care if a 1 to 6 bit length is selected.  
Bit 0 : Receive Up Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
170 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RUPCD2  
Receive Up Code Definition Register 2  
0ADH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bit 7 : Receive Up Code Definition Bit 7 (C7). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 6 : Receive Up Code Definition Bit 6 (C6). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 5 : Receive Up Code Definition Bit 5 (C5). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 4 : Receive Up Code Definition Bit 4 (C4). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 3 : Receive Up Code Definition Bit 3 (C3). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 2 : Receive Up Code Definition Bit 2 (C2). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 1 : Receive Up Code Definition Bit 1 (C1). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 0 : Receive Up Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
Register Name:  
Register Description:  
Register Address:  
T1RDNCD1  
Receive Down Code Definition Register 1  
0AEH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Note: Writing this register resets the detector’s integration period.  
Bit 7 : Receive Down Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6 : Receive Down Code Definition Bit 6 (C6). A Don’t Care if a 1-bit length is selected.  
Bit 5 : Receive Down Code Definition Bit 5 (C5). A Don’t Care if a 1 or 2 bit length is selected.  
Bit 4 : Receive Down Code Definition Bit 4 (C4). A Don’t Care if a 1 to 3 bit length is selected.  
Bit 3 : Receive Down Code Definition Bit 3 (C3). A Don’t Care if a 1 to 4 bit length is selected.  
Bit 2 : Receive Down Code Definition Bit 2 (C2). A Don’t Care if a 1 to 5 bit length is selected.  
Bit 1 : Receive Down Code Definition Bit 1 (C1). A Don’t Care if a 1 to 6 bit length is selected.  
Bit 0 : Receive Down Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
171 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1RDNCD2  
Receive Down Code Definition Register 2  
0AFH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bit 7 : Receive Down Code Definition Bit 7 (C7). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 6 : Receive Down Code Definition Bit 6 (C6). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 5 : Receive Down Code Definition Bit 5 (C5). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 4 : Receive Down Code Definition Bit 4 (C4). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 3 : Receive Down Code Definition Bit 3 (C3). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 2 : Receive Down Code Definition Bit 2 (C2). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 1 : Receive Down Code Definition Bit 1 (C1). A Don’t Care if a 1 to 7 bit length is selected.  
Bit 0 : Receive Down Code Definition Bit 0 (C0). A Don’t Care if a 1 to 7 bit length is selected.  
Register Name:  
Register Description:  
Register Address:  
RRTS1  
Receive Real-Time Status Register 1  
0B0H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
--  
0
3
RRAI  
0
2
RAIS  
0
1
RLOS  
0
0
RLOF  
0
Name  
Default  
All bits in this register are real-time (not latched).  
Bit 3 : Receive Remote Alarm Indication Condition (RRAI). Set when a remote alarm is received at RTIP and  
RRING.  
Bit 2 : Receive Alarm Indication Signal Condition (RAIS). Set when an unframed all one’s code is received at  
RTIP and RRING.  
Bit 1 : Receive Loss of Signal Condition (RLOS). Set when 192 consecutive zeros have been detected at RTIP  
and RRING.  
Bit 0 : Receive Loss of Frame Condition (RLOF). Set when the DS26528 is not synchronized to the received  
data stream.  
172 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RRTS3 – T1 Mode  
Receive Real-Time Status Register 3  
0B2H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
--  
0
3
LORC  
0
2
LSP  
0
1
LDN  
0
0
LUP  
0
Name  
Default  
All bits in this register are real-time (not latched).  
Bit 3 : Loss of Receive Clock Condition (LORC). Set when the RCLK pin has not transitioned for one channel  
time.  
Bit 2 : Spare Code Detected Condition (LSP). Set when the spare code as defined in the RSCD1/2 registers is  
being received.  
Bit 1 : Loop Down Code Detected Condition (LDN). Set when the loop down code as defined in the RDNCD1/2  
register is being received.  
Bit 0 : Loop Up Code Detected Condition (LUP). Set when the loop up code as defined in the RUPCD1/2  
register is being received.  
Register Name:  
Register Description:  
Register Address:  
RRTS3 – E1 Mode  
Receive Real-Time Status Register 3  
0B2H  
Bit #  
7
-
6
-
5
-
4
-
3
LORC  
0
2
-
1
V52LNK  
0
0
RDMA  
0
Name  
Default  
0
0
0
0
0
Note: All bits in this register are real-time (not latched).  
Bit 3 : Loss of Receive Clock Condition (LORC). Set when the RCLK pin has not transitioned for one channel  
time.  
Bit 1 : V5.2 Link Detected Condition (V52LNK). Set on detection of a V5.2 link identification  
signal. (G.965).  
Bit 0 : Receive Distant MF Alarm Condition (RDMA). Set when bit-6 of time slot 16 in frame 0 has been set for  
two consecutive multiframes. This alarm is not disabled in the CCS signaling mode.  
173 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RRTS5  
Receive Real-Time Status Register 5 (HDLC)  
0B4H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
PS2  
0
5
PS1  
0
4
PS0  
0
3
-
2
-
1
RHWM  
0
0
RNE  
0
Name  
Default  
0
0
0
All bits in this register are real time.  
Bits 6 to 4 : Receive Packet Status (PS0 to PS2). These are real-time bits indicating the status as of the last read  
of the receive FIFO.  
PS2  
0
PS1  
0
PS0  
0
PACKET STATUS  
In Progress: End of message has not yet been reached.  
0
0
0
1
0
1
1
0
1
0
1
0
Packet OK: Packet ended with correct CRC codeword.  
CRC Error: A closing flag was detected, preceded by a corrupt CRC codeword.  
Abort: Packet ended because an abort signal was detected. (7 or more ones in a row).  
Overrun: HDLC controller terminated reception of packet because receive FIFO is full.  
Bit 1 : Receive FIFO Above High Watermark Condition (RHWM). Set when the receive 64-byte FIFO fills  
beyond the high watermark as defined by the Receive HDLC FIFO Control Register (RHFC). This is a real-time bit.  
Bit 0 : Receive FIFO Not Empty Condition (RNE). Set when the receive 64-byte FIFO has at least one byte  
available for a read. This is a real-time bit.  
Register Name:  
Register Description:  
Register Address:  
RHPBA  
Receive HDLC Packet Bytes Available Register  
0B5H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
MS  
0
6
RPBA6  
0
5
RPBA5  
0
4
RPBA4  
0
3
RPBA3  
0
2
RPBA2  
0
1
RPBA1  
0
0
RPBA0  
0
Name  
Default  
Bit 7 : Message Status (MS).  
0 = Bytes indicated by RPBA0 through RPBA6 are the end of a message. Host must check the HDLC  
Status register for details.  
1 = Bytes indicated by RPBA0 through RPBA6 are the beginning or continuation of a message. The host  
does not need to check the HDLC Status. The MS bit will return to a value of ‘1’ when the Rx HDLC FIFO  
is empty.  
Bits 6 to 0 : Receive FIFO Packet Bytes Available Count (RPBA6 to RPBA0). RPBA0 is the LSB.  
174 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RHF  
Receive HDLC FIFO Register  
0B6H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RHD7  
0
6
RHD6  
0
5
RHD5  
0
4
RHD4  
0
3
RHD3  
0
2
RHD2  
0
1
RHD1  
0
0
RHD0  
0
Name  
Default  
Bit 7 : Receive HDLC Data Bit 7 (RHD7). MSB of a HDLC packet data byte.  
Bit 6 : Receive HDLC Data Bit 6 (RHD6).  
Bit 5 : Receive HDLC Data Bit 5 (RHD5).  
Bit 4 : Receive HDLC Data Bit 4 (RHD4).  
Bit 3 : Receive HDLC Data Bit 3 (RHD3).  
Bit 2 : Receive HDLC Data Bit 2 (RHD2).  
Bit 1 : Receive HDLC Data Bit 1 (RHD1).  
Bit 0 : Receive HDLC Data Bit 0 (RHD0). LSB of a HDLC packet data byte.  
Register Name:  
Register Description:  
Register Address:  
RBCS1, RBCS2, RBCS3, RBCS4  
Receive Blank Channel Select Registers  
0C0H, 0C1H, 0C2H, 0C3H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
CH8  
CH16  
CH24  
CH32  
0
6
CH7  
CH15  
CH23  
CH31  
0
5
CH6  
CH14  
CH22  
CH30  
0
4
CH5  
CH13  
CH21  
CH29  
0
3
CH4  
CH12  
CH20  
CH28  
0
2
CH3  
CH11  
CH19  
CH27  
0
1
CH2  
CH10  
CH18  
CH26  
0
0
CH1  
CH9  
CH17  
CH25  
0
Name  
Name  
Name  
Name  
Default  
RBCS1  
RBCS2  
RBCS3  
RBCS4  
Bit 7 to 0 : Receive Blank Channel Select for Channels 32 to 1 (CH1-32).  
0 = do not blank this channel (channel data is available on RSER)  
1 = data on RSER is forced to all ones for this channel  
Note that when two or more sequential channels are chosen to be blanked, the receive slip zone select bit should  
be set to zero. If the blank channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29) then the RSZS bit can be  
set to one, which may provide a lower occurrence of slips in certain applications.  
175 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RCBR1, RCBR2, RCBR3, RCBR4  
Receive Channel Blocking Registers  
0C4H, 0C5H, 0C6H, 0C7H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
CH1  
CH9  
CH17  
CH25  
(Fbit)  
0
Name  
Name  
Name  
Name  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
RCBR1  
RCBR2  
RCBR3  
RCBR4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
Default  
0
0
0
0
0
0
0
Bits 7 to 0 : Channel Blocking Control Bits for Receive Channels 32 to 1 (CH32 – CH1).  
0 = force the RCHBLK pin to remain low during this channel time  
1 = force the RCHBLK pin high during this channel time  
* Note that RCBR4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the channel blocking  
signal for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not the  
RCHBLK signal will pulse high during the F-Bit time. In this mode RCBR4.1 to RCBR4.7 should be set to  
'0'.  
RCBR4.0 = 0, do not pulse RCHBLK during the F-Bit  
RCBR4.0 = 1, pulse RCHBLK during the F-Bit  
Register Name:  
Register Description:  
Register Address:  
RSI1, RSI2, RSI3, RSI4  
Receive Signaling Reinsertion Enable Registers  
0C8H, 0C9H, 0CAH, 0CBH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
CH8  
CH16  
CH24  
CH32  
0
6
CH7  
CH15  
CH23  
CH31  
0
5
CH6  
CH14  
CH22  
CH30  
0
4
CH5  
CH13  
CH21  
CH29  
0
3
CH4  
CH12  
CH20  
CH28  
0
2
CH3  
CH11  
CH19  
CH27  
0
1
CH2  
CH10  
CH18  
CH26  
0
0
CH1  
CH9  
CH17  
CH25  
0
Name  
Name  
Name  
Name  
Default  
RSI1  
RSI2  
RSI3  
RSI4  
Setting any of the CH1 through CH24 bits in the RSI1 through RSI4 registers will cause signaling data to be  
reinserted for the associated channel. RSI4 is used for 2.048MHz backplane operation.  
176 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RGCCS1, RGCCS2, RGCCS3, RGCCS4  
Receive Gapped Clock Channel Select Registers  
0CCH, 0CDH, 0CEH, 0CFH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Name  
Name  
Name  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
RGCCS1  
RGCCS2  
RGCCS3  
RGCCS4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
(Fbit)  
Default  
0
0
0
0
0
0
0
0
Bits 7 to 0 : Gapped Clock Channel Select Bits for Receive Channels 32 to 1(CH32 – CH1).  
0 = no clock is present on RCHCLK during this channel time  
1 = force a clock on RCHCLK during this channel time. The clock will be synchronous with RCLK if the  
elastic store is disabled, and synchronous with RSYSCLK if the elastic store is enabled.  
* Note that RGCCS4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the 'gapped' clock on  
RCHCLK for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is  
generated on RCHCLK during the F-Bit time:  
RGCCS4.0 = 0, do not generate a clock during the F-Bit  
RGCCS4.0 = 1, generate a clock during the F-Bit  
In this mode RGCCS4.1 to RGCCS4.7 should be set to '0'.  
Register Name:  
Register Description:  
Register Address:  
RCICE1, RCICE2, RCICE3, RCICE4  
Receive Channel Idle Code Enable Registers  
0D0H, 0D1H, 0D2H, 0D3H + (200h x n): where n = 0 to 7, for Ports 1  
to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
RCICE1  
RCICE2  
RCICE3  
RCICE4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : Receive Channels 1 to 32 Code Insertion Control Bits (CH1 to CH32)  
0 = do not insert data from the Idle Code Array into the receive data stream  
1 = insert data from the Idle Code Array into the receive data stream  
177 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
RBPCS1, RBPCS2, RBPCS3, RBPCS4  
Receive BERT Port Channel Select Registers  
0D4H, 0D5H, 0D6H, 0D7H + (200h x n): where n = 0 to 7, for Ports 1  
to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
RBPCS1  
RBPCS2  
RBPCS3  
RBPCS4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : BERT Port Channel Select Receive Channels 1 to 32(CH1 to CH32)  
0 = Do not enable RBP_CLK for the associated channel time, or map the selected channel data out of the  
receive BERT Port.  
1 = Enable RBP_CLK for the associated channel time, and allow mapping of the selected channel data out  
of the receive BERT Port. Multiple, or all channels may be selected simultaneously.  
178 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.4.2 Transmit Register Definitions  
Register Name:  
Register Description:  
Register Address:  
THC1  
Transmit HDLC Control Register 1  
110H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
NOFS  
0
6
TEOML  
0
5
THR  
0
4
THMS  
0
3
TFS  
0
2
TEOM  
0
1
TZSD  
0
0
TCRCD  
0
Name  
Default  
Bit 7 : Number Of Flags Select (NOFS).  
0 = send one flag between consecutive messages  
1 = send two flags between consecutive messages  
Bit 6 : Transmit End of Message and Loop (TEOML). To loop on a message, should be set to a one just before  
the last data byte of an HDLC packet is written into the transmit FIFO. The message will repeat until the user clears  
this bit or a new message is written to the transmit FIFO. If the host clears the bit, the looping message will  
complete then flags will be transmitted until new message is written to the FIFO. If the host terminates the loop by  
writing a new message to the FIFO the loop will terminate, one or two flags will be transmitted and the new  
message will start. If not disabled via TCRCD, the transmitter will automatically append a two-byte CRC code to the  
end of all messages.  
Bit 5 : Transmit HDLC Reset (THR). Will reset the transmit HDLC controller and flush the transmit FIFO. An abort  
followed by 7Eh or FFh flags/idle will be transmitted until a new packet is initiated by writing new data into the  
FIFO. This is an acknowledged reset, that is, the host need only to set the bit and the DS26528 will clear it once  
the reset operation is complete. Total time for the reset is less than 250s.  
0 = Normal operation  
1 = Reset transmit HDLC controller and flush the transmit FIFO  
Bit 4 : Transmit HDLC Mapping Select (THMS).  
0 = Transmit HDLC assigned to channels  
1 = Transmit HDLC assigned to FDL(T1 mode), Sa Bits(E1 mode). This mode must be enabled with  
TCR2.7.  
Bit 3 : Transmit Flag/Idle Select (TFS). This bit selects the inter-message fill character after the closing and  
before the opening flags (7Eh).  
0 = 7Eh  
1 = FFh  
Bit 2 : Transmit End of Message (TEOM). Should be set to a one just before the last data byte of an HDLC  
packet is written into the transmit FIFO at THF. If not disabled via TCRCD, the transmitter will automatically append  
a two byte CRC code to the end of the message.  
Bit 1 : Transmit Zero Stuffer Defeat (TZSD). The Zero Stuffer function automatically inserts a zero in the  
message field (between the flags) after 5 consecutive ones to prevent the emulation of a flag or abort sequence by  
the data pattern. The receiver automatically removes (de-stuffs) any zero after 5 ones in the message field.  
0 = enable the zero stuffer (normal operation)  
1 = disable the zero stuffer  
Bit 0 : Transmit CRC Defeat (TCRCD). A two-byte CRC code is automatically appended to the outbound  
message. This bit can be used to disable the CRC function.  
0 = enable CRC generation (normal operation)  
1 = disable CRC generation  
179 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
THBSE  
Transmit HDLC Bit Suppress  
111H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TBSE8  
0
6
TBSE7  
0
5
TBSE6  
0
4
TBSE5  
0
3
TBSE4  
0
2
TBSE3  
0
1
TBSE2  
0
0
TBSE1  
0
Name  
Default  
Bit 7 : Transmit Bit 8 Suppress (TBSE8). MSB of the channel. Set to one to stop this bit from being used.  
Bit 6 : Transmit Bit 7 Suppress (TBSE7). Set to one to stop this bit from being used.  
Bit 5 : Transmit Bit 6 Suppress (TBSE6). Set to one to stop this bit from being used.  
Bit 4 : Transmit Bit 5 Suppress (TBSE5). Set to one to stop this bit from being used  
Bit 3 : Transmit Bit 4 Suppress (TBSE4). Set to one to stop this bit from being used  
Bit 2 : Transmit Bit 3 Suppress (TBSE3). Set to one to stop this bit from being used  
Bit 1 : Transmit Bit 2 Suppress (TBSE2). Set to one to stop this bit from being used  
Bit 0 : Transmit Bit 1 Suppress (TBSE1). LSB of the channel. Set to one to stop this bit from being used.  
Register Name:  
Register Description:  
Register Address:  
THC2  
Transmit HDLC Control Register 2  
113H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TABT  
0
6
SBOC  
0
5
4
THCS4  
0
3
THCS3  
0
2
THCS2  
0
1
THCS1  
0
0
THCS0  
0
THCEN  
Name  
Default  
0
Bit 7 : Transmit Abort (TABT). A 0-to-1 transition will cause the FIFO contents to be dumped and one FEh abort  
to be sent followed by 7Eh or FFh flags/idle until a new packet is initiated by writing new data into the FIFO. Must  
be cleared and set again for a subsequent abort to be sent.  
Bit 6 : Send BOC (SBOC). T1 Mode Only. Set = 1 to transmit the BOC code placed in bits 0 to 5 of the TBOC  
register.  
Bit 5 : Transmit HDLC Controller Enable (THCEN).  
0 = Transmit HDLC Controller is not enabled  
1 = Transmit HDLC Controller is enabled  
Bits 4 to 0 : Transmit HDLC Channel Select (THCS4-0). Determines which DSO channel will carry the HDLC  
message if enabled. Changes to this value are acknowledged only upon a transmit HDLC controller reset (THR at  
THC1.5).  
180 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1TSACR  
E1 Transmit Sa Bit Control Register  
114h + (200h * n) : where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
SiAF  
0
6
SiNAF  
0
5
RA  
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Name  
Default  
Bit 7 : International Bit in Align Frame Insertion Control Bit (SiAF).  
0 = do not insert data from the TSiAF register into the transmit data stream  
1 = insert data from the TSiAF register into the transmit data stream  
Bit 6 : International Bit in Non-Align Frame Insertion Control Bit (SiNAF).  
0 = do not insert data from the TSiNAF register into the transmit data stream  
1 = insert data from the TSiNAF register into the transmit data stream  
Bit 5 : Remote Alarm Insertion Control Bit (RA).  
0 = do not insert data from the TRA register into the transmit data stream  
1 = insert data from the TRA register into the transmit data stream  
Bit 4 : Additional Bit 4 Insertion Control Bit (Sa4).  
0 = do not insert data from the TSa4 register into the transmit data stream  
1 = insert data from the TSa4 register into the transmit data stream  
Bit 3 : Additional Bit 5 Insertion Control Bit (Sa5).  
0 = do not insert data from the TSa5 register into the transmit data stream  
1 = insert data from the TSa5 register into the transmit data stream  
Bit 2 : Additional Bit 6 Insertion Control Bit (Sa6).  
0 = do not insert data from the TSa6 register into the transmit data stream  
1 = insert data from the TSa6 register into the transmit data stream  
Bit 1 : Additional Bit 7 Insertion Control Bit (Sa7).  
0 = do not insert data from the TSa7 register into the transmit data stream  
1 = insert data from the TSa7 register into the transmit data stream  
Bit 0 : Additional Bit 8 Insertion Control Bit (Sa8).  
0 = do not insert data from the TSa8 register into the transmit data stream  
1 = insert data from the TSa8 register into the transmit data stream  
181 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
SSIE1, SSIE2, SSIE3, SSIE4  
Register Description:  
Register Address:  
Software Signaling Insertion Enable Registers  
118H, 119H, 11AH, 11BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
SSIE1  
SSIE2  
SSIE3  
SSIE4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : Software Signaling Insertion Enable for Channels 1 to 32 (SSIEx). These bits determine which  
channels are to have signaling inserted form the Transmit Signaling registers.  
0 = do not source signaling data from the TS registers for this channel  
1 = source signaling data from the TS registers for this channel  
Register Name:  
Register Description:  
Register Address:  
TIDR1 to TIDR32  
Transmit Idle Code Definition Registers 1 to 32  
120H to 13FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bits 7 to 0 : Per-Channel Idle Code Bits (C7 to C0). C0 is the LSB of the Code (this bit is transmitted last).  
Address 120H is for channel 1, address 13FH is for channel 32.  
182 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TS1 to TS16  
Transmit Signaling Registers  
140H – 14FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
T1 Mode:  
(MSB)  
(LSB)  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH13-A CH13-B CH13-C CH13-D TS1  
CH14-A CH14-B CH14-C CH14-D TS2  
CH15-A CH15-B CH15-C CH15-D TS3  
CH16-A CH16-B CH16-C CH16-D TS4  
CH17-A CH17-B CH17-C CH17-D TS5  
CH18-A CH18-B CH18-C CH18-D TS6  
CH19-A CH19-B CH19-C CH19-D TS7  
CH20-A CH20-B CH20-C CH20-D TS8  
CH21-A CH21-B CH21-C CH21-D TS9  
CH10-A CH10-B CH10-C CH10-D CH22-A CH22-B CH22-C CH22-D TS10  
CH11-A CH11-B CH11-C CH11-D CH23-A CH23-B CH23-C CH23-D TS11  
CH12-A CH12-B CH12-C CH12-D CH24-A CH24-B CH24-C CH24-D TS12  
Note: In D4 framing mode, the C and D bits are not used.  
E1 Mode:  
(MSB)  
0
(LSB)  
X
0
0
0
X
Y
X
TS1  
CH1-A  
CH2-A  
CH3-A  
CH4-A  
CH5-A  
CH6-A  
CH7-A  
CH8-A  
CH9-A  
CH1-B  
CH2-B  
CH3-B  
CH4-B  
CH5-B  
CH6-B  
CH7-B  
CH8-B  
CH9-B  
CH1-C  
CH2-C  
CH3-C  
CH4-C  
CH5-C  
CH6-C  
CH7-C  
CH8-C  
CH9-C  
CH1-D  
CH2-D  
CH3-D  
CH4-D  
CH5-D  
CH6-D  
CH7-D  
CH8-D  
CH9-D  
CH16-A CH16-B CH16-C CH16-D TS2  
CH17-A CH17-B CH17-C CH17-D TS3  
CH18-A CH18-B CH18-C CH18-D TS4  
CH19-A CH19-B CH19-C CH19-D TS5  
CH20-A CH20-B CH20-C CH20-D TS6  
CH21-A CH21-B CH21-C CH21-D TS7  
CH22-A CH22-B CH22-C CH22-D TS8  
CH23-A CH23-B CH23-C CH23-D TS9  
CH24-A CH24-B CH24-C CH24-D TS10  
CH10-A CH10-B CH10-C CH10-D CH25-A CH25-B CH25-C CH25-D TS11  
CH11-A CH11-B CH11-C CH11-D CH26-A CH26-B CH26-C CH26-D TS12  
CH12-A CH12-B CH12-C CH12-D CH27-A CH27-B CH27-C CH27-D TS13  
CH13-A CH13-B CH13-C CH13-D CH28-A CH28-B CH28-C CH28-D TS14  
CH14-A CH14-B CH14-C CH14-D CH29-A CH29-B CH29-C CH29-D TS15  
CH15-A CH15-B CH15-C CH15-D CH30-A CH30-B CH30-C CH30-D TS16  
183 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCICE1, TCICE2, TCICE3, TCICE4  
Transmit Channel Idle Code Enable Registers  
150H, 151H, 152H, 153H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
TCICE1  
TCICE2  
TCICE3  
TCICE4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
The Transmit Channel Idle Code Enable Registers (TCICE1:2:3:4) are used to determine which of the 24 T1  
channels (or 32 E1 Channels) from the backplane should be overwritten with the code placed in the Transmit Idle  
Code Definition Register.  
Bits 7 to 0 : Transmit Channels 1 to 32 Code Insertion Control Bits (CH1 to CH32)  
0 = do not insert data from the Idle Code Array into the transmit data stream  
1 = insert data from the Idle Code Array into the transmit data stream  
184 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TFRID  
Transmit Firmware Revision ID Register  
161H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
FR7  
0
6
FR6  
0
5
FR5  
0
4
FR4  
0
3
FR3  
0
2
FR2  
0
1
FR1  
0
0
FR0  
0
Name  
Default  
Bits 7 to 0 : Firmware Revision (FR0-FR7). This read-only register reports the transmitter firmware revision.  
Register Name:  
Register Description:  
Register Address:  
T1TFDL  
Transmit FDL Register  
162H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
CH8  
0
6
CH7  
0
5
CH6  
0
4
CH5  
0
3
CH4  
0
2
CH3  
0
1
CH2  
0
0
CH1  
0
Name  
Default  
[also used to insert Fs framing pattern in D4 framing mode]  
The Transmit FDL Register (TFDL) contains the Facility Data Link (FDL) information that is to be inserted on a byte  
basis into the outgoing T1 data stream. The LSB is transmitted first. In D4 mode, only the lower six bits are used.  
Bit 7 : Transmit FDL Bit 7 (TFDL7). MSB of the Transmit FDL Code.  
Bit 6 : Transmit FDL Bit 6 (TFDL6).  
Bit 5 : Transmit FDL Bit 5 (TFDL5).  
Bit 4 : Transmit FDL Bit 4 (TFDL4).  
Bit 3 : Transmit FDL Bit 3 (TFDL3).  
Bit 2 : Transmit FDL Bit 2 (TFDL2).  
Bit 1 : Transmit FDL Bit 1 (TFDL1).  
Bit 0 : Transmit FDL Bit 0 (TFDL0). LSB of the Transmit FDL Code.  
Register Name:  
Register Description:  
Register Address:  
T1TBOC  
Transmit BOC Register  
163H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
TBOC5  
0
4
TBOC4  
0
3
TBOC3  
0
2
TBOC2  
0
1
TBOC1  
0
0
TBOC0  
0
Name  
Default  
0
0
Bit 5 : Transmit BOC Bit 5 (TBOC5). MSB of the Transmit BOC Code.  
Bit 4 : Transmit BOC Bit 4 (TBOC4).  
Bit 3 : Transmit BOC Bit 3 (TBOC3).  
Bit 2 : Transmit BOC Bit 2 (TBOC2).  
Bit 1 : Transmit BOC Bit 1 (TBOC1).  
Bit 0 : Transmit BOC Bit 0 (TBOC0). LSB of the Transmit BOC Code.  
185 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
T1TSLC1, T1TSLC2, T1TSLC3  
Transmit SLC96 Data Link Registers  
164H, 165H, 166H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
C8  
M2  
C7  
M1  
S4  
C6  
S=0  
S3  
C5  
S=1  
S2  
C4  
S=0  
S1  
C3  
C11  
A2  
C2  
C10  
A1  
C1  
C9  
M3  
T1TSLC1  
T1TSLC2  
T1TSLC3  
S=1  
Register Name:  
Register Description:  
Register Address:  
E1TAF  
Transmit Align Frame Register  
164H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
Si  
0
6
0
0
5
0
0
4
1
1
3
1
1
2
0
0
1
1
1
0
1
1
Name  
Default  
Bit 7 : International Bit (Si).  
Bit 6 : Frame Alignment Signal Bit (0).  
Bit 5 : Frame Alignment Signal Bit (0).  
Bit 4 : Frame Alignment Signal Bit (1).  
Bit 3 : Frame Alignment Signal Bit (1).  
Bit 2 : Frame Alignment Signal Bit (0).  
Bit 1 : Frame Alignment Signal Bit (1).  
Bit 0 : Frame Alignment Signal Bit (1).  
Register Name:  
Register Description:  
Register Address:  
E1TNAF  
Transmit Non-Align Frame Register  
165H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
Si  
0
6
1
1
5
A
0
4
Sa4  
0
3
Sa5  
0
2
Sa6  
0
1
Sa7  
0
0
Sa8  
0
Name  
Default  
Bit 7 : International Bit (Si).  
Bit 6 : Frame Non-Alignment Signal Bit (1).  
Bit 5 : Remote Alarm (Used to Transmit the Alarm (A).  
Bit 4 : Additional Bit 4 (Sa4).  
Bit 3 : Additional Bit 5 (Sa5).  
Bit 2 : Additional Bit 6 (Sa6).  
Bit 1 : Additional Bit 7 (Sa7).  
Bit 0 : Additional Bit 8 (Sa8).  
186 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1TSiAF  
Transmit Si Bits of the Align Frame  
166H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TSiF14  
0
6
TSiF12  
0
5
TSiF10  
0
4
TSiF8  
0
3
TSiF6  
0
2
TSiF4  
0
1
TSiF2  
0
0
TSiF0  
0
Name  
Default  
Bit 7 : Si Bit of Frame 14 (TSiF14).  
Bit 6 : Si Bit of Frame 12 (TSiF12).  
Bit 5 : Si Bit of Frame 10 (TSiF10).  
Bit 4 : Si Bit of Frame 8 (TSiF8).  
Bit 3 : Si Bit of Frame 6 (TSiF6).  
Bit 2 : Si Bit of Frame 4 (TSiF4).  
Bit 1 : Si Bit of Frame 2 (TSiF2).  
Bit 0 : Si Bit of Frame 0 (TSiF0).  
Register Name:  
Register Description:  
Register Address:  
E1TSiNAF  
Transmit Si Bits of the Non-Align Frame  
167H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TSiF15  
0
6
TSiF13  
0
5
TSiF11  
0
4
TSiF9  
0
3
TSiF7  
0
2
TSiF5  
0
1
TSiF3  
0
0
TSiF1  
0
Name  
Default  
Bit 7 : Si Bit of Frame 15 (TSiF15).  
Bit 6 : Si Bit of Frame 13 (TSiF13).  
Bit 5 : Si Bit of Frame 11 (TSiF11).  
Bit 4 : Si Bit of Frame 9 (TSiF9).  
Bit 3 : Si Bit of Frame 7 (TSiF7).  
Bit 2 : Si Bit of Frame 5 (TSiF5).  
Bit 1 : Si Bit of Frame 3 (TSiF3).  
Bit 0 : Si Bit of Frame 1 (TSiF1).  
187 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1TRA  
Transmit Remote Alarm  
168H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
TRAF3  
0
0
TRAF1  
0
Name  
Default  
TRAF15 TRAF13 TRAF11 TRAF9  
TRAF7 TRAF5  
0
0
0
0
0
0
Bit 7 : Remote Alarm Bit of Frame 15 (TRAF15).  
Bit 6 : Remote Alarm Bit of Frame 13 (TRAF13).  
Bit 5 : Remote Alarm Bit of Frame 11 (TRAF11).  
Bit 4 : Remote Alarm Bit of Frame 9 (TRAF9).  
Bit 3 : Remote Alarm Bit of Frame 7 (TRAF7).  
Bit 2 : Remote Alarm Bit of Frame 5 (TRAF5).  
Bit 1 : Remote Alarm Bit of Frame 3 (TRAF3).  
Bit 0 : Remote Alarm Bit of Frame 1 (TRAF1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa4  
Transmit Sa4 Bits  
169H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
TSa4F15 TSa4F13 TSa4F11 TSa4F9 TSa4F7 TSa4F5 TSa4F3 TSa4F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa4 Bit of Frame 15 (TSa4F15).  
Bit 6 : Sa4 Bit of Frame 13 (TSa4F13).  
Bit 5 : Sa4 Bit of Frame 11 (TSa4F11).  
Bit 4 : Sa4 Bit of Frame 9 (TSa4F9).  
Bit 3 : Sa4 Bit of Frame 7 (TSa4F7).  
Bit 2 : Sa4 Bit of Frame 5 (TSa4F5).  
Bit 1 : Sa4 Bit of Frame 3 (TSa4F3).  
Bit 0 : Sa4 Bit of Frame 1 (TSa4F1).  
188 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1TSa5  
Transmitted Sa5 Bits  
16AH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
TSa5F15 TSa5F13 TSa5F11 TSa5F9 TSa5F7 TSa5F5 TSa5F3 TSa5F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa5 Bit of Frame 15 (TSa5F15).  
Bit 6 : Sa5 Bit of Frame 13 (TSa5F13).  
Bit 5 : Sa5 Bit of Frame 11 (TSa5F11).  
Bit 4 : Sa5 Bit of Frame 9 (TSa5F9).  
Bit 3 : Sa5 Bit of Frame 7 (TSa5F7).  
Bit 2 : Sa5 Bit of Frame 5 (TSa5F5).  
Bit 1 : Sa5 Bit of Frame 3 (TSa5F3).  
Bit 0 : Sa5 Bit of Frame 1 (TSa5F1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa6  
Transmit Sa6 Bits  
16BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
TSa6F15 TSa6F13 TSa6F11 TSa6F9 TSa6F7 TSa6F5 TSa6F3 TSa6F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa6 Bit of Frame 15 (TSa6F15).  
Bit 6 : Sa6 Bit of Frame 13 (TSa6F13).  
Bit 5 : Sa6 Bit of Frame 11 (TSa6F11).  
Bit 4 : Sa6 Bit of Frame 9 (TSa6F9).  
Bit 3 : Sa6 Bit of Frame 7 (TSa6F7).  
Bit 2 : Sa6 Bit of Frame 5 (TSa6F5).  
Bit 1 : Sa6 Bit of Frame 3 (TSa6F3).  
Bit 0 : Sa6 Bit of Frame 1 (TSa6F1).  
189 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
E1TSa7  
Transmit Sa7 Bits  
16CH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
TSa7F15 TSa7F13 TSa7F11 TSa7F9 TSa7F7 TSa7F5 TSa7F3 TSa7F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa7 Bit of Frame 15 (TSa4F15).  
Bit 6 : Sa7 Bit of Frame 13 (TSa7F13).  
Bit 5 : Sa7 Bit of Frame 11 (TSa7F11).  
Bit 4 : Sa7 Bit of Frame 9 (TSa7F9).  
Bit 3 : Sa7 Bit of Frame 7 (TSa7F7).  
Bit 2 : Sa7 Bit of Frame 5 (TSa7F5).  
Bit 1 : Sa7 Bit of Frame 3 (TSa7F3).  
Bit 0 : Sa7 Bit of Frame 1 (TSa7F1).  
Register Name:  
Register Description:  
Register Address:  
E1TSa8  
Transmit Sa8 Bits  
16DH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
TSa8F15 TSa8F13 TSa8F11 TSa8F9 TSa8F7 TSa8F5 TSa8F3 TSa8F1  
0
0
0
0
0
0
0
0
Bit 7 : Sa8 Bit of Frame 15 (TSa8F15).  
Bit 6 : Sa8 Bit of Frame 13 (TSa8F13).  
Bit 5 : Sa8 Bit of Frame 11 (TSa8F11).  
Bit 4 : Sa8 Bit of Frame 9 (TSa8F9).  
Bit 3 : Sa8 Bit of Frame 7 (TSa8F7).  
Bit 2 : Sa8 Bit of Frame 5 (TSa8F5).  
Bit 1 : Sa8 Bit of Frame 3 (TSa8F3).  
Bit 0 : Sa8 Bit of Frame 1 (TSa8F1).  
190 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TMMR  
Transmit Master Mode Register  
180H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
-
4
-
3
-
2
-
1
SFTRST  
0
0
T1/E1  
0
Name  
Default  
FRM_EN INIT_DONE  
0
0
0
0
0
0
Bit 7 : Framer Enable (FRM_EN). This bit must be set to the desired state before writing INIT_DONE.  
0 = Framer disabled – held in low-power state  
1 = Framer enabled – all features active  
Bit 6 : Initialization Done (INIT_DONE). The user must set this bit once he has written the configuration registers.  
The host is required to write or clear all device registers prior to setting this bit. Once INIT_DONE is set, the  
DS26528 will check the FRM_EN bit and, if enabled will begin operation based on the initial configuration.  
Bit 1 : Soft Reset (SFTRST). Level sensitive ‘soft’ reset. Should be taken high then low to reset the transceiver.  
0 = Normal operation  
1 = Reset the transceiver.  
Bit 0 : Transmitter T1/E1 Mode Select (T1/E1). Sets operating mode for transmitter only! This bit must be written  
with the desired value prior to setting INIT_DONE.  
0 = T1 operation  
1 = E1 operation  
191 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR1 – T1 Mode  
Transmit Control Register 1  
181H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TJC  
0
6
TFPT  
0
5
TCPT  
0
4
TSSE  
0
3
GB7S  
0
2
TB8ZS  
0
1
TAIS  
0
0
TRAI  
0
Name  
Default  
Bit 7 : Transmit Japanese CRC6 Enable (TJC).  
0 = use ANSI/AT&T:ITU CRC6 calculation (normal operation)  
1 = use Japanese standard JT–G704 CRC6 calculation  
Bit 6 : Transmit F–Bit Pass Through (TFPT).  
0 = F bits sourced internally  
1 = F bits sampled at TSER  
Bit 5 : Transmit CRC Pass Through (TCPT).  
0 = source CRC6 bits internally  
1 = CRC6 bits sampled at TSER during F–bit time  
Bit 4 : Transmit Software Signaling Enable (TSSE). This function is enabled by TB7ZS (TCR2.0).  
0 = do not source signaling data from the TSx registers regardless of the SSIEx registers. The SSIEx  
registers still define which channels are to have B7 stuffing performed.  
1 = source signaling data as enabled by the SSIEx registers.  
Bit 3 : Global Bit 7 Stuffing (GB7S). This function is enabled by TB7ZS (TCR2.0).  
0 = allow the SSIEx registers to determine which channels containing all zeros are to be Bit 7 stuffed  
1 = force Bit 7 stuffing in all zero byte channels of that port, regardless of how the SSIEx registers are  
programmed  
Bit 2 : Transmit B8ZS Enable (TB8ZS).  
0 = B8ZS disabled  
1 = B8ZS enabled  
Bit 1 : Transmit Alarm Indication Signal (TAIS).  
0 = transmit data normally  
1 = transmit an unframed all one’s code at TTIP and TRING  
Bit 0 : Transmit Remote Alarm Indication (TRAI).  
0 = do not transmit Remote Alarm  
1 = transmit Remote Alarm  
192 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR1 – E1 Mode  
Transmit Control Register 1  
181H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TTPT  
0
6
T16S  
0
5
TG802  
0
4
TSiS  
0
3
TSA1  
0
2
THDB3  
0
1
TAIS  
0
0
TCRC4  
0
Name  
Default  
Bit 7 : Transmit Time Slot 0 Pass Through (TTPT).  
0 = FAS bits/Sa bits/Remote Alarm sourced internally from the TAF and TNAF registers  
1 = FAS bits/Sa bits/Remote Alarm sourced from TSER  
Bit 6 : Transmit Time Slot 16 Data Select (T16S). See Section 9.9.4 on Software Signaling.  
0 = time slot 16 determined by the SSIEx and THSCS registers  
1 = source time slot 16 from TS1 to TS16 registers  
Bit 5 : Transmit G.802 Enable (TG802). See Section 11.4.  
0 = do not force TCHBLK high during bit 1 of time slot 26  
1 = force TCHBLK high during bit 1 of time slot 26  
Bit 4 : Transmit International Bit Select (TSiS).  
0 = sample Si bits at TSER pin  
1 = source Si bits from TAF and TNAF registers (in this mode, TCR1.7 must be set to 0)  
Bit 3 : Transmit Signaling All Ones (TSA1).  
0 = normal operation  
1 = force time slot 16 in every frame to all ones  
Bit 2 : Transmit HDB3 Enable (THDB3).  
0 = HDB3 disabled  
1 = HDB3 enabled  
Bit 1 : Transmit AIS (TAIS).  
0 = transmit data normally  
1 = transmit an unframed all-ones code at TTIP and TRING  
Bit 0 : Transmit CRC4 Enable (TCRC4).  
0 = CRC4 disabled  
1 = CRC4 enabled  
193 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR2 – T1 Mode  
Transmit Control Register 2  
182H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TFDLS  
0
6
TSLC96  
0
5
-
4
FBCT2  
0
3
FBCT1  
0
2
TD4RM  
0
1
PDE  
0
0
TB7ZS  
0
Name  
Default  
0
Bit 7 : TFDL Register Select (TFDLS).  
0 = source FDL or Fs bits from the internal TFDL register or the SLC-96 data formatter (TCR2.6)  
1 = source FDL or Fs bits from the internal HDLC controller or the TLINK pin  
Bit 6 : Transmit SLC–96 (TSLC96). Set this bit to a one in SLC-96 framing applications. Must be set to source the  
SLC-96 alignment pattern and data from the TSLC1-3 registers. See Section 9.9.4.3 for details.  
0 = SLC–96 insertion disabled  
1 = SLC–96 insertion enabled  
Bit 4 : F Bit Corruption Type 2. (FBCT2). Setting this bit high enables the corruption of one Ft (D4 framing mode)  
or FPS (ESF framing mode) bit in every 128 Ft or FPS bits as long as the bit remains set.  
Bit 3 : F Bit Corruption Type 1. (FBCT1). A low-to-high transition of this bit causes the next three consecutive Ft  
(D4 framing mode) or FPS (ESF framing mode) bits to be corrupted causing the remote end to experience a loss of  
synchronization.  
Bit 2 : Transmit D4 RAI Select (TD4RM).  
0 = zeros in bit 2 of all channels  
1 = a one in the S–bit position of frame 12  
Bit 1 : Pulse Density Enforcer Enable (PDE). The framer always examines both the transmit and receive data  
streams for violations of the following rules which are required by ANSI T1.403: no more than 15 consecutive zeros  
and at least N ones in each and every time window of 8 x (N +1) bits where N = 1 through 23. Violations for the  
transmit and receive data streams are reported in the TLS1.3 and RLS2.7 bits respectively. When this bit is set to  
one, the DS26528 will force the transmitted stream to meet this requirement no matter the content of the  
transmitted stream. When running B8ZS, this bit should be set to zero since B8ZS encoded data streams cannot  
violate the pulse density requirements.  
0 = disable transmit pulse density enforcer  
1 = enable transmit pulse density enforcer  
Bit 0 : Transmit Side Bit 7 Zero Suppression Enable (TB7ZS).  
0 = no stuffing occurs  
1 = force bit 7 to a one as determined by the GB7S bit at TCR1.3  
194 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR2 – E1 Mode  
Transmit Control Register 2  
182H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
AEBE  
0
6
AAIS  
0
5
ARA  
0
4
Sa4S  
0
3
Sa5S  
0
2
Sa6S  
0
1
Sa7S  
0
0
Sa8S  
0
Name  
Default  
Bit 7 : Automatic E–Bit Enable (AEBE).  
0 = E–bits not automatically set in the transmit direction  
1 = E–bits automatically set in the transmit direction  
Bit 6 : Automatic AIS Generation (AAIS).  
0 = disabled  
1 = enabled  
Bit 5 : Automatic Remote Alarm Generation (ARA).  
0 = disabled  
1 = enabled  
Bit 4 : Sa4 Bit Select (Sa4S). Set to one to source the Sa4 bit from the TLINK pin; set to zero to not source the  
Sa4 bit.  
Bit 3 : Sa5 Bit Select (Sa5S). Set to one to source the Sa5 bit from the TLINK pin; set to zero to not source the  
Sa5 bit.  
Bit 2 : Sa6 Bit Select (Sa6S). Set to one to source the Sa6 bit from the TLINK pin; set to zero to not source the  
Sa6 bit  
Bit 1 : Sa7 Bit Select (Sa7S). Set to one to source the Sa7 bit from the TLINK pin; set to zero to not source the  
Sa7 bit.  
Bit 0 : Sa8 Bit Select (Sa8S). Set to one to source the Sa8 bit from the TLINK pin; set to zero to not source the  
Sa8 bit.  
195 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR3  
Transmit Control Register 3  
183H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
ODF  
0
6
ODM  
0
5
TCSS1  
0
4
TCSS0  
0
3
MFRS  
0
2
TFM  
0
1
IBPV  
0
0
TLOOP  
0
Name  
Default  
Bit 7 : Output Data Format (ODF).  
0 = bipolar data at TTIP and TRING  
1 = NRZ data at TTIP; TRING = 0  
Bit 6 : Output Data Mode (ODM).  
0 = pulses at TTIP and TRING are one full TCLK period wide  
1 = pulses at TTIP and TRING are 1/2 TCLK period wide  
Bits 5, 4 : Transmit Clock Source Select 1, 0 (TCSS1/0).  
TCSS1 TCSS0  
Transmit Clock Source  
0
0
1
1
0
1
0
1
The TCLK pin is always the source of Transmit Clock.  
Switch to the clock present at RCLK when the signal at the TCLK pin fails to  
transition after 1 channel time.  
Reserved  
Use the signal present at RCLK as the Transmit Clock. The TCLK pin is  
ignored.  
Bit 3 : Multiframe Reference Select (MFRS). This bit selects the source for the transmit formatter multiframe  
boundary.  
0 = Normal Operation. Transmit multiframe boundary is determined by 'line-side' counters referenced to  
TSYNC when TSYNC is an input. Free-running when TSYNC is an output.  
1 = Pass-Forward Operation. Tx multiframe boundary determined by 'system-side' counters referenced to  
TSSYNCIO( input mode3), which is then 'passed forward' to the line side clock domain. This mode can  
only be used when the transmit elastic store is enabled with a synchronous backplane (ie: no frame slips  
allowed). This mode must be used to allow Tx hardware signaling insertion while the Tx elastic store is  
enabled.  
Bit 2 : Transmit Frame Mode Select (TFM). T1 Mode Only  
0 = ESF framing mode  
1 = D4 framing mode  
Bit 1 : Insert BPV (IBPV). A 0-to-1 transition on this bit will cause a single BiPolar Violation (BPV) to be inserted  
into the transmit data stream. Once this bit has been toggled from a 0 to a 1, the device waits for the next  
occurrence of three consecutive ones to insert the BPV. This bit must be cleared and set again for a subsequent  
error to be inserted.  
Bit 0 (T1 Mode): Transmit Loop Code Enable (TLOOP). See Section 9.9.15 for details.  
0 = transmit data normally  
1 = replace normal transmitted data with repeating code as defined in registers TCD1 and TCD2  
Bit 0 (E1 Mode) : CRC-4 Recalculate (CRC4R).  
0 = transmit CRC-4 generation and insertion operates in normal mode  
1 = transmit CRC-4 generation operates according to G.706 Intermediate Path Recalculation method.  
196 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIOCR  
Transmit I/O Configuration Register  
184H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
TCLKINV TSYNCINV TSSYNCINV TSCLKM  
TSSM  
TSIO  
TSDW  
TSM  
Name  
Default  
0
0
0
0
0
0
0
0
Bit 7 : TCLK Invert (TCLKINV).  
0 = No inversion  
1 = Invert  
Bit 6 : TSYNC Invert (TSYNCINV).  
0 = No inversion  
1 = Invert  
Bit 5 : TSSYNCIO(Input Mode Only) Invert (TSSYNCINV).  
0 = No inversion  
1 = Invert  
Bit 4 : TSYSCLK Mode Select (TSCLKM).  
0 = if TSYSCLK is 1.544MHz  
1 = if TSYSCLK is 2.048/4.096/8.192MHz or IBO enabled (see Section 9.8.2 for details on IBO function)  
Bit 3 : TSSYNCIO Mode Select (TSSM). Selects frame or multiframe mode for the TSSYNCIO pin.  
0 = frame mode  
1 = multiframe mode  
Bit 2 : TSYNC I/O Select (TSIO).  
0 = TSYNC is an input  
1 = TSYNC is an output  
Bit 1 : TSYNC Double-Wide (TSDW). (Note: this bit must be set to zero when TSM = 1 or when TSIO = 0)  
0 = do not pulse double–wide in signaling frames  
1 = do pulse double–wide in signaling frames  
Bit 0 : TSYNC Mode Select (TSM). Selects frame or multiframe mode for the TSYNC pin.  
0 = frame mode  
1 = multiframe mode  
197 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TESCR  
Transmit Elastic Store Control Register  
185H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
--  
0
4
3
2
1
0
TDATFMT TGCLKEN  
TSZS  
TESALGN  
TESR  
TESMDM  
TESE  
Name  
Default  
0
0
0
0
0
0
0
Bit 7 : Transmit Channel Data Format (TDATFMT).  
0 = 64kBps (data contained in all 8 bits)  
1 = 56kBps (data contained in 7 out of the 8 bits)  
Bit 6 : Transmit Gapped Clock Enable (TGPCKEN).  
0 = TCHCLK functions normally  
1 = Enable gapped bit clock output on TCHCLK  
Note: Bits 6 and 7 are used for fractional backplane support. See Section 9.8.5.  
Bit 5 : Reserved, must be set to zero for proper operation.  
Bit 4 : Transmit Slip Zone Select (TSZS). This bit determines the minimum distance allowed between the elastic  
store read and write pointers before forcing a controlled slip. This bit is only applies during T1 to E1 or E1 to T1  
conversion applications.  
0 = force a slip at 9 bytes or less of separation (used for clustered blank channels)  
1 = force a slip at 2 bytes or less of separation (used for distributed blank channels)  
Bit 3 : Transmit Elastic Store Align (TESALGN). Setting this bit from a zero to a one will force the transmit elastic  
store’s write/read pointers to a minimum separation of half a frame. No action will be taken if the pointer separation  
is already greater or equal to half a frame. If pointer separation is less than half a frame, the command will be  
executed and the data will be disrupted. Should be toggled after TSYSCLK has been applied and is stable. Must  
be cleared and set again for a subsequent align.  
Bit 2 : Transmit Elastic Store Reset (TESR). Setting this bit from a zero to a one will force the read pointer into  
the same frame that the write pointer is exiting, minimizing the delay through the elastic store. If this command  
should place the pointers within the slip zone (see bit 4), then an immediate slip will occur and the pointers will  
move back to opposite frames. Should be toggled after TSYSCLK has been applied and is stable. Do not leave this  
bit set HIGH.  
Bit 1 : Transmit Elastic Store Minimum Delay Mode (TESMDM).  
0 = elastic stores operate at full two frame depth  
1 = elastic stores operate at 32-bit depth  
Bit 0 : Transmit Elastic Store Enable (TESE).  
0 = elastic store is bypassed  
1 = elastic store is enabled  
198 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCR4 — T1 Mode Only  
Transmit Control Register 4  
186H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
TRAIM  
0
2
TAISM  
0
1
TC1  
0
0
TC0  
0
Name  
Default  
0
0
0
0
Bits 3 : Transmit RAI Mode (TRAIM). Determines the pattern sent when TRAI (TCR1.0) is activated in ESF frame  
mode only.  
0 = transmit normal RAI upon activation with TCR1.0  
1 = transmit RAI-CI (T1.403) upon activation with TCR1.0  
Bits 2 : Transmit AIS Mode (TAISM). Determines the pattern sent when TAIS (TCR1.1) is activated.  
0 = transmit normal AIS (unframed all ones) upon activation with TCR1.1  
1 = transmit AIS-CI (T1.403) upon activation with TCR1.1  
Bits 1, 0 : Transmit Code Length Definition Bits (TC[1:0]).  
TC1  
TC0  
Length Selected  
0
0
1
1
0
1
0
1
5 bits  
6 bits : 3 bits  
7 bits  
16 bits : 8 bits : 4 bits : 2 bits : 1 bit  
Register Name:  
Register Description:  
Register Address:  
THFC  
Transmit HDLC FIFO Control Register  
187H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
TFLWM1  
0
0
TFLWM2  
0
Name  
Default  
0
0
0
0
0
0
Bits 1, 0 : Transmit HDLC FIFO Low Watermark Select (TFLWM[1:0]).  
TFLWM1  
TFLWM0  
Transmit FIFO Watermark  
4 bytes  
0
0
1
1
0
1
0
1
16 bytes  
32 bytes  
48 bytes  
199 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIBOC  
Transmit Interleave Bus Operation Control Register  
188H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
IBS1  
0
5
IBS0  
0
4
IBOSEL  
0
3
IBOEN  
0
2
DA2  
0
1
DA1  
0
0
DA0  
0
Name  
Default  
0
Bit 7 : Unused, must be set to zero for proper operation.  
Bits 6, 5 : IBO Bus Size (IBS[1:0]). Indicates how many devices on the bus.  
IBS1  
IBS0  
Bus Size  
0
0
1
1
0
1
0
1
2 Devices on bus  
4 Devices on bus  
8 Devices on bus  
Reserved for future use  
Bit 4 : Interleave Bus Operation Select (IBOSEL). This bit selects channel or frame interleave mode.  
0 = Channel Interleave  
1 = Frame Interleave  
Bit 3 : Interleave Bus Operation Enable (IBOEN).  
0 = Interleave Bus Operation disabled.  
1 = Interleave Bus Operation enabled.  
Bits 2 to 0 : Device Assignment bits (DA[2:0]).  
DA2  
0
DA1  
0
DA0  
0
Device Position  
1st Device on bus  
2nd Device on bus  
3rd Device on bus  
4th Device on bus  
5th Device on bus  
6th Device on bus  
7th Device on bus  
8th Device on bus  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
200 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TDS0SEL  
Transmit DS0 Channel Monitor Select  
189H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
TCM4  
0
3
TCM3  
0
2
TCM2  
0
1
TCM1  
0
0
TCM0  
0
Name  
Default  
0
0
0
Bits 7 to 5 : Unused, must be set to zero for proper operation  
Bits 4 to 0 : Transmit Channel Monitor Bits (TCM[4:0]). TCM0 is the LSB of a 5 bit channel select that  
determines which transmit channel data will appear in the TDS0M register. Channels 1 through 32 are represented  
by a 5-bit BCD code from 0 to 31. TCM0 to TCM4 = all 0s selects channel 1, TCM 0 to TCM 4 = 11111 selects  
channel 32.  
Register Name:  
Register Description:  
Register Address:  
TXPC  
Transmit Expansion Port Control Register  
18AH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
--  
0
3
--  
0
2
1
0
TBPEN  
0
Name  
Default  
TBPDIR TBPFUS  
0
0
Bit 2 : Transmit BERT Port Direction Control (TBPDIR).  
0 = Normal (line) operation. Tx BERT port sources data into the transmit path.  
1 = System (Backplane) operation. Tx BERT port sources data into the transmit path (RDATA). In this  
mode the data on TBPDATA is muxed into the receive path at RDATA (the line side of the e-store). The  
clock on TBPCLK becomes the clock that was generated for RBPCLK, referenced to RCLK.  
Bit 1 : Transmit BERT Port Framed/Unframed Select (TBPFUS).  
0 = The DS26528’s TBP_CLK will not clock data into the F-bit position (framed)  
1 = The DS26528’s TBP_CLK will clock data into the F-bit position (unframed)  
Bit 0 : Transmit BERT Port Enable (TBPEN).  
0 = Transmit BERT Port is not active  
1 = Transmit BERT Port is active.  
201 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TBPBS  
Transmit BERT Port Bit Suppress Register  
18BH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
BPBSE8 BPBSE7 BPBSE6 BPBSE5 BPBSE4 BPBSE3 BPBSE2 BPBSE1  
0
0
0
0
0
0
0
0
Bit 7 : Transmit Channel Bit 8 Suppress (BSE8). MSB of the channel. Set to one to stop this bit from being used.  
Bit 6 : Transmit Channel Bit 7 Suppress (BSE7). Set to one to stop this bit from being used.  
Bit 5 : Transmit Channel Bit 6 Suppress (BSE6). Set to one to stop this bit from being used.  
Bit 4 : Transmit Channel Bit 5 Suppress (BSE5). Set to one to stop this bit from being used  
Bit 3 : Transmit Channel Bit 4 Suppress (BSE4). Set to one to stop this bit from being used  
Bit 2 : Transmit Channel Bit 3 Suppress (BSE3). Set to one to stop this bit from being used  
Bit 1 : Transmit Channel Bit 2 Suppress (BSE2). Set to one to stop this bit from being used  
Bit 0 : Transmit Channel Bit 1 Suppress (BSE1). LSB of the channel. Set to one to stop this bit from being used.  
Register Name:  
Register Description:  
Register Address:  
TSYNCC  
Transmit Synchronizer Control Register  
18EH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
CRC4  
0
2
TSEN  
0
1
0
Name  
Default  
SYNCE RESYNC  
0
0
0
0
0
0
Bit 3 : CRC4 Enable (RCRC4). E1 Mode Only  
0 = Do not search for the CRC4 multiframe word  
1 = Search for the CRC4 multiframe word  
Bit 2 : Transmit Synchronizer Enable (TSEN).  
0 = Transmit Synchronizer Disabled  
1 = Transmit Synchronizer Enabled  
Bit 1 : Sync Enable (SYNCE).  
0 = auto resync enabled  
1 = auto resync disabled  
Bit 0 : Resynchronize (RESYNC). When toggled from low to high, a resynchronization of the transmit side framer  
is initiated. Must be cleared and set again for a subsequent resync.  
202 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TLS1  
Transmit Latched Status Register 1  
190H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TESF  
0
6
TESEM  
0
5
TSLIP  
0
4
TSLC96  
0
3
TPDV  
0
2
1
LOTCC  
0
0
LOTC  
0
Name  
TMF  
TAF  
0
Default  
Note: All bits in this register are latched and can cause interrupts.  
Bit 7 : Transmit Elastic Store Full Event (TESF). Set when the transmit elastic store buffer fills and a frame is  
deleted.  
Bit 6 : Transmit Elastic Store Empty Event (TESEM). Set when the transmit elastic store buffer empties and a  
frame is repeated.  
Bit 5 : Transmit Elastic Store Slip Occurrence Event (TSLIP). Set when the transmit elastic store has either  
repeated or deleted a frame.  
Bit 4 : Transmit SLC-96 Multiframe Event (TSLC96). T1 Mode Only. When enabled by TCR2.6, this bit will set  
once per SLC-96 multiframe (72 frames) to alert the host that new data may be written to the TSLC1-TSLC3  
registers. See Section 9.9.4.3 for more information.  
Bit 3 (T1 Mode): Transmit Pulse Density Violation Event (TPDV). Set when the transmit data stream does not  
meet the ANSI T1.403 requirements for pulse density.  
Bit 3 (E1 Mode) : Transmit Align Frame Event (TAF). Set every 250s to alert the host that the TAF and TNAF  
registers need to be updated.  
Bit 2 : Transmit Multiframe Event (TMF). In T1 mode, this bit is set every 1.5ms on D4 MF boundaries or every  
3ms on ESF MF boundaries. In E1 operation, this but is set every 2ms (regardless if CRC4 is enabled) on transmit  
multiframe boundaries. Used to alert the host that signaling data needs to be updated.  
Bit 1 : Loss of Transmit Clock Condition Clear (LOTCC). Set when the LOTC condition has cleared (a clock has  
been sensed at the TCLK pin).  
Bit 0 : Loss of Transmit Clock Condition (LOTC). Set when the TCLK pin has not transitioned for approximately  
3 clock periods. Will force the LOTC pin high if enabled. This bit can be cleared by the host even if the condition is  
still present. The LOTC pin will remain high while the condition exists, even if the host has cleared the status bit. If  
enabled by TIM1.0, the INTB pin will transition low when this bit is set, and transition high when this bit is cleared (if  
no other unmasked interrupt conditions exist).  
203 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TLS2  
Transmit Latched Status Register 2 (HDLC)  
191H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
TFDLE  
0
3
TUDR  
0
2
TMEND  
0
1
TLWMS  
0
0
TNFS  
0
Name  
Default  
0
0
0
Note: All bits in this register are latched and can create interrupts.  
Bit 4 : Transmit FDL Register Empty (TFDLE). T1 Mode Only. Set when the TFDL register has shifted out all 8  
bits. Useful if the user wants to manually use the TFDL register to send messages, instead of using the HDLC or  
BOC controller circuits.  
Bit 3 : Transmit FIFO Underrun Event (TUDR). Set when the transmit FIFO empties out without having seen the  
TMEND bit set. An abort is automatically sent.  
Bit 2 : Transmit Message End Event (TMEND). Set when the transmit HDLC controller has finished sending a  
message.  
Bit 1 : Transmit FIFO Below Low Watermark Set Condition (TLWMS). Set when the transmit 64-byte FIFO  
empties beyond the low watermark as defined by the Transmit Low Watermark Bits (TLWM), (Rising edge detect of  
TLWM).  
Bit 0 : Transmit FIFO Not Full Set Condition (TNFS). Set when the transmit 64-byte FIFO has at least one empty  
byte available for write. Rising edge detect of TNF. Indicates change of state from full to not full.  
Register Name:  
Register Description:  
Register Address:  
TLS3  
Transmit Latched Status Register 3 (Synchronizer)  
192H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
LOF  
0
0
LOFD  
0
Name  
Default  
0
0
0
0
0
0
Some bits in this register are latched and can create interrupts.  
Bit 1 : Loss of Frame (LOF). A real-time bit that indicates that the transmit synchronizer is searching for the sync  
pattern in the incoming data stream.  
Bit 0 : Loss Of Frame Synchronization Detect (LOFD). This latched bit is set when the transmit synchronizer is  
searching for the sync pattern in the incoming data stream.  
204 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIIR  
Transmit Interrupt Information Register  
19FH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
TLS3  
0
1
TLS2  
0
0
TLS1  
0
Name  
Default  
0
0
0
0
0
The interrupt information register provides an indication of which status registers are generating an interrupt. When  
an interrupt occurs, the host can read TIIR to quickly identify which of the transmit status registers are causing the  
interrupt(s). These are real-time registers in that the bits will clear once the appropriate interrupt has been serviced  
and cleared.  
Bit 2 : Transmit Latched Status Register 3 Interrupt Status (TLS3).  
0 = No interrupt pending  
1 = Interrupt pending  
Bit 1 : Transmit Latched Status Register 2 Interrupt Status (TLS2).  
0 = No interrupt pending  
1 = Interrupt pending  
Bit 0 : Transmit Latched Status Register 1 Interrupt Status (TLS1).  
0 = No interrupt pending  
1 = Interrupt pending  
205 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIM1  
Transmit Interrupt Mask Register 1  
1A0H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TESF  
0
6
TESEM  
0
5
TSLIP  
0
4
TSLC96  
0
3
TPDV  
TAF  
0
2
TMF  
0
1
LOTCC  
0
0
LOTC  
0
Name  
Default  
Bit 7 : Transmit Elastic Store Full Event (TESF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 6 : Transmit Elastic Store Empty Event (TESEM).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : Transmit Elastic Store Slip Occurrence Event (TSLIP).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : Transmit SLC96 Multiframe Event (TSLC96). T1 Mode Only.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 (T1 Mode): Transmit Pulse Density Violation Event (TPDV).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 (E1 Mode): Transmit Align Frame Event (TAF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Transmit Multiframe Event (TMF).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Loss of Transmit Clock Clear Condition (LOTCC).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Loss of Transmit Clock Condition (LOTC).  
0 = interrupt masked  
1 = interrupt enabled  
206 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIM2  
Transmit Interrupt Mask Register 2  
1A1H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
TFDLE  
0
3
2
1
TLWMS  
0
0
TNFS  
0
Name  
Default  
TUDR TMEND  
0
0
0
0
0
Bit 4 : Transmit FDL Register Empty (TFDLE). T1 Mode Only.  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Transmit FIFO Underrun Event (TUDR).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 2 : Transmit Message End Event (TMEND).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 1 : Transmit FIFO Below Low WaterMark Set Condition (TLWMS).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 0 : Transmit FIFO Not Full Set Condition (TNFS).  
0 = interrupt masked  
1 = interrupt enabled  
207 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TIM3  
Transmit Interrupt Mask Register 3 (Synchronizer)  
1A2H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
-
2
-
1
-
0
LOFD  
0
Name  
Default  
0
0
0
0
0
0
0
Bit 0 : Loss Of Frame Synchronization Detect (LOFD).  
0 = Interrupt Masked  
1 = Interrupt Enabled  
Register Name:  
Register Description:  
Register Address:  
T1TCD1  
Transmit Code Definition Register 1  
1ACH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
0
C0  
0
Name  
Default  
C1  
0
Bit 7 : Transmit Code Definition Bit 7 (C7). First bit of the repeating pattern.  
Bit 6 : Transmit Code Definition Bit 6 (C6).  
Bit 5 : Transmit Code Definition Bit 5 (C5).  
Bit 4 : Transmit Code Definition Bit 4 (C4).  
Bit 3 : Transmit Code Definition Bit 3 (C3).  
Bit 2 : Transmit Code Definition Bit 2 (C2). A Don’t Care if a 5 bit length is selected.  
Bit 1 : Transmit Code Definition Bit 1 (C1). A Don’t Care if a 5 or 6 bit length is selected.  
Bit 0 : Transmit Code Definition Bit 0 (C0). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Register Name:  
Register Description:  
Register Address:  
T1TCD2  
Transmit Code Definition Register 2  
1ADH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
C7  
0
6
C6  
0
5
C5  
0
4
C4  
0
3
C3  
0
2
C2  
0
1
C1  
0
0
C0  
0
Name  
Default  
Bit 7 : Transmit Code Definition Bit 7 (C7). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 6 : Transmit Code Definition Bit 6 (C6). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 5 : Transmit Code Definition Bit 5 (C5). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 4 : Transmit Code Definition Bit 4 (C4). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 3 : Transmit Code Definition Bit 3 (C3). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 2 : Transmit Code Definition Bit 2 (C2). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 1 : Transmit Code Definition Bit 1 (C1). A Don’t Care if a 5, 6 or 7 bit length is selected.  
Bit 0 : Transmit Code Definition Bit 0 (C0). A Don’t Care if a 5, 6 or 7 bit length is selected.  
208 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TRTS2  
Transmit Real-Time Status Register 2 (HDLC)  
1B1H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
-
5
-
4
-
3
TEMPTY  
0
2
TFULL  
0
1
TLWM  
0
0
TNF  
0
Name  
Default  
0
0
0
0
Note:All bits in this register are real time.  
Bit 3 : Transmit FIFO Empty (TEMPTY). A real-time bit that is set high when the FIFO is empty.  
Bit 2 : Transmit FIFO Full (TFULL). A real-time bit that is set high when the FIFO is full.  
Bit 1 : Transmit FIFO Below Low Watermark Condition (TLWM). Set when the transmit 64-byte FIFO empties  
beyond the low watermark as defined by the Transmit Low Watermark Bits (TLWM).  
Bit 0 : Transmit FIFO Not Full Condition (TNF). Set when the transmit 64-byte FIFO has at least one byte  
available.  
Register Name:  
Register Description:  
Register Address:  
TFBA  
Transmit HDLC FIFO Buffer Available  
1B3H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
TFBA6  
0
5
TFBA5  
0
4
TFBA4  
0
3
TFBA3  
0
2
TFBA2  
0
1
TFBA1  
0
0
TFBA0  
0
Name  
Default  
Bits 6 to 0 : Transmit FIFO Bytes Available (TFBA6 to TFBA0). TFBA0 is the LSB.  
Register Name:  
THF  
Register Description:  
Transmit HDLC FIFO  
Register Address:  
1B4 + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
THD7  
0
6
THD6  
0
5
THD5  
0
4
THD4  
0
3
THD3  
0
2
THD2  
0
1
THD1  
0
0
THD0  
0
Name  
Default  
Bit 7 : Transmit HDLC Data Bit 7 (THD7). MSB of a HDLC packet data byte.  
Bit 6 : Transmit HDLC Data Bit 6 (THD6).  
Bit 5 : Transmit HDLC Data Bit 5 (THD5).  
Bit 4 : Transmit HDLC Data Bit 4 (THD4).  
Bit 3 : Transmit HDLC Data Bit 3 (THD3).  
Bit 2 : Transmit HDLC Data Bit 2 (THD2).  
Bit 1 : Transmit HDLC Data Bit 1 (THD1).  
Bit 0 : Transmit HDLC Data Bit 0 (THD0). LSB of a HDLC packet data byte.  
209 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TDS0M  
Transmit DS0 Monitor Register  
1BBH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
B1  
0
6
B2  
0
5
B3  
0
4
B4  
0
3
B5  
0
2
B6  
0
1
B7  
0
0
B8  
0
Name  
Default  
Bits 7 to 0 : Transmit DS0 Channel Bits (B1 to B8). Transmit channel data that has been selected by the  
Transmit Channel Monitor Select Register. B8 is the LSB of the DS0 channel (last bit to be transmitted).  
Register Name:  
Register Description:  
Register Address:  
TBCS1, TBCS2, TBCS3, TBCS4  
Transmit Blank Channel Select Registers  
1C0H, 1C1H, 1C2H, 1C3H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
TBCS1  
TBCS2  
TBCS3  
TBCS4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : Transmit Blank Channel Select for Channels 1 to 32 (TBCS1 to TBCS32).  
0 = transmit TSER data from this channel  
1 = ignore TSER data from this channel  
Note that when two or more sequential channels are chosen to be ignored, the receive slip zone select bit should  
be set to zero. If the ignore channels are distributed (such as 1, 5, 9, 13, 17, 21, 25, 29) then the RSZS bit can be  
set to one, which may provide a lower occurrence of slips in certain applications.  
210 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TCBR1, TCBR2, TCBR3, TCBR4  
Transmit Channel Blocking Registers  
1C4H, 1C5H, 1C6H, 1C7H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
TCBR1  
TCBR2  
TCBR3  
TCBR4*  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25:  
Fbit  
Bits 7 to 0 : Transmit Channels 1 to 32 Channel Blocking Control Bits (CH1 to CH32).  
0 = force the TCHBLK pin to remain low during this channel time  
1 = force the TCHBLK pin high during this channel time  
* Note that TCBR4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the channel blocking  
signal for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not the  
TCHBLK signal will pulse high during the F-Bit time:  
TCBR4.0 = 0, do not pulse TCHBLK during the F-Bit  
TCBR4.0 = 1, pulse TCHBLK during the F-Bit  
In this mode TCBR4.1 to TCBR4.7 should be set to '0'.  
Register Name:  
THSCS1, THSCS2, THSCS3, THSCS4  
Register Description:  
Register Address:  
Transmit Hardware Signaling Channel Select Registers  
1C8H, 1C9H, 1CAH, 1CBH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
THSCS1  
THSCS2  
THSCS3  
THSCS4*  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : Transmit Hardware Signaling Channel Select for Channels 1 to 32 (THSCS1 to THSCS4). These  
bits determine which channels have signaling data inserted from the TSIG pin into the TSER PCM data.  
0 = do not source signaling data from the TSIG pin for this channel  
1 = source signaling data from the TSIG pin for this channel  
* Note that THSCS4 is only used in 2.048MHz backplane applications.  
211 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TGCCS1, TGCCS2, TGCCS3, TGCCS4  
Transmit Gapped Clock Channel Select Registers  
1CCH, 1CDH, 1CEH, 1CFH + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
TGCCS1  
TGCCS2  
TGCCS3  
TGCCS4*  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25:  
Fbit  
Bits 7 to 0 : Transmit Channels 1 to 32 Gapped Clock Channel Select Bits (CH1 to CH32).  
0 = no clock is present on TCHCLK during this channel time  
1 = force a clock on TCHCLK during this channel time. The clock will be synchronous with TCLK if the  
elastic store is disabled, and synchronous with TSYSCLK if the elastic store is enabled.  
* Note that TGCCS4 has two functions:  
When 2.048MHz backplane mode is selected, this register allows the user to enable the 'gapped' clock on  
TCHCLK for any of the 32 possible backplane channels.  
When 1.544MHz backplane mode is selected, the LSB of this register determines whether or not a clock is  
generated on TCHCLK during the F-Bit time:  
TGCCS4.0 = 0, do not generate a clock during the F-Bit  
TGCCS4.0 = 1, generate a clock during the F-Bit  
In this mode TGCCS4.1 to TGCCS4.7 should be set to '0'.  
Register Name:  
Register Description:  
Register Address:  
PCL1, PCL2, PCL3, PCL4  
Per-Channel Loopback Enable Registers  
1D0H, 1D1H, 1D2H, 1DH3 + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
PCL1  
PCL2  
PCL3  
PCL4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Bits 7 to 0 : Per-Channel Loopback Enable for Channels 32 to 1 (CH32 to CH1).  
0 = Loopback disabled  
1 = Enable Loopback. Source data from the corresponding receive channel  
212 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
TBPCS1, TBPCS2, TBPCS3, TBPCS4  
Transmit BERT Port Channel Select Registers  
1D4H, 1D5H, 1D6H, 1D7H + (200h x n): where n = 0 to 7, for Ports 1 to 8  
(MSB)  
(LSB)  
CH8  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
TBPCS1  
TBPCS2  
TBPCS3  
TBPCS4  
CH16  
CH24  
CH32  
CH15  
CH23  
CH31  
CH14  
CH22  
CH30  
CH13  
CH21  
CH29  
CH12  
CH20  
CH28  
CH11  
CH19  
CH27  
CH10  
CH18  
CH26  
CH9  
CH17  
CH25  
Setting any of the CH1 through CH24 bits in the TBPCS1 through TBPCS3 registers will enable the TBP_CLK for  
the associated channel time, and allow mapping of the selected channel data out of the receive BERT Port.  
Multiple, or all channels may be selected simultaneously.  
213 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.5 LIU Register Definitions  
Table 10-13. LIU Register Set  
ADDR  
1000  
ABBR  
LTRCR  
LTITSR  
LMCR  
LRSR  
DESCRIPTION  
LIU Transmit Receive Control Register  
LIU Transmit Impedance Selection Register  
LIU Maintenance Control Register  
LIU Real Status Register  
R/W  
R/W  
R/W  
R/W  
R
1001  
1002  
1003  
1004  
LSIMR  
LLSR  
LIU Status Interrupt Mask Register  
LIU Latched Status Register  
R/W  
R/W  
R
1005  
1006  
LRSL  
LIU Receive Signal Level  
1007  
LRISMR LIU Receive Impedance and Sensitivity Monitor Register  
R/W  
-
1008-101F  
-
Reserved  
Note: Reserved registers should only be written with all zeros.  
Register Name:  
Register Description:  
Register Addresses:  
LTRCR  
LIU Transmit Receive Control Register  
1000H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
--  
0
4
JADS  
0
3
JAPS1  
0
2
JAPS0  
0
1
T1J1E1S  
0
0
Name  
Default  
LSC  
0
Bit 4 : Jitter Attenuator Depth Select (JADS).  
0 = JA FIFO depth set to 128 bits.  
1 = JA FIFO depth set to 32 bits. Use for delay-sensitive applications.  
Bit 3, 2 : Jitter Attenuator Position Select 1, 0 (JAPS[1:0]). These bits are used to select the position of the jitter  
attenuator (JA).  
JAPS1  
JAPS0  
Function  
JA in the receive path  
JA in the transmit path  
JA is not used  
0
0
1
1
0
1
0
1
JA is not used  
Bit 1 : T1J1E1 Selection (T1J1E1S). This bit configures the LIU for E1 or T1/J1 operation.  
0 = E1  
1 = T1 or J1  
Bit 0 : LOS Criteria Selection (LCS). This bit is used for LIU LOS Selection Criteria.  
E1 Mode  
0 = G.775.  
1 = ETSI (300233).  
T1 / J1 Mode  
0 = T1.231.  
1 = T1.231.  
214 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LTITSR  
LIU Transmit Impedance and Pulse Shape Selection Register  
1001H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
5
4
TIMPL0  
0
3
--  
0
2
L2  
0
1
L1  
0
0
L0  
0
Name  
Default  
TIMPTOFF TIMPL1  
0
0
Bit 6 : Transmit Impedance Off (TIMPTOFF).  
0 = Enable transmit terminating impedance.  
1 = Disable transmit terminating impedance.  
Bits 5, 4 : Transmit Load Impedance 1, 0 (TIMPL[1:0]). These bits are used to select the transmit load  
impedance. These must be set to match the cable impedance. Even if the Internal load impedance is turned off (via  
TIMPTOFF); the external cable impedance has to be specified for optimum operation. For J1 applications, use  
110. See Table 10-14.  
Bits 2 to 0 : Line Build-Out Select 2 to 0 (L[2:0]). Used to select the transmit waveshape. The waveshape has a  
voltage level and load impedance associated with it once the T1/J1 or E1 selection is made by settings in the  
LTRCR register. See Table 10-15.  
Table 10-14. Transmit Load Impedance Selection  
TIMPL1  
TIMPLO  
IMPEDANCE SELECTION  
0
0
1
1
0
1
0
1
75ꢀ  
100ꢀ  
110ꢀ  
120ꢀ  
Table 10-15. Transmit Pulse Shape Selection  
NOMINAL  
L2 L1 L0 MODE  
IMPEDANCE  
VOLTAGE  
2.37V  
0
0
0
0
0
1
E1  
E1  
75ꢀ  
120ꢀ  
3.0V  
MAX  
ALLOWED  
CABLE LOSS  
0.6dB  
L2 L1 L0 MODE  
CABLE LENGTH  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
T1/J1  
DSX-1/0dB CSU, 0ft–133ft ABAM 100ꢀ  
DSX-1, 133ft–266ft ABAM 100ꢀ  
DSX-1, 266ft–399ft ABAM 100ꢀ  
DSX-1, 399ft–533ft ABAM 100ꢀ  
DSX-1, 533ft–655ft ABAM 100ꢀ  
-7.5dB CSU  
1.2dB  
1.8dB  
2.4dB  
3.0dB  
-15dB CSU  
-22.5dB CSU  
215 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LMCR  
LIU Maintenance Control Register  
1002H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TAIS  
0
6
ATAIS  
0
5
LLB  
0
4
ALB  
0
3
RLB  
0
2
TPDE  
0
1
RPDE  
0
0
TE  
0
Name  
Default  
Bit 7 : Transmit AIS (TAIS). Alarm Indication Signal (AIS) is sent using MCLK as the reference clock. The transmit  
data coming from the framer is ignored.  
0 = TAIS is disabled.  
1 = Output an unframed all ones pattern (AIS) at TTIP and TRING.  
Bit 6 : Automatic Transmit AIS (ATAIS).  
0 = ATAIS is disabled.  
1 = Automatically transmit AIS on the occurrence of a LIU LOS.  
Bit 5 : Local Loopback (LLB). See Section 9.11.5.2 Local Loopback for operational details.  
0 = LLB is disabled.  
1 = LLB is enabled.  
Bit 4 : Analog Loopback (ALB). See Section 9.11.5.1 Analog Loopback for operational details.  
0 = ALB is disabled.  
1 = ALB is enabled.  
Bit 3 : Remote Loopback (RLB). See Section 9.11.5.3 Remote Loopback for operational details.  
0 = Remote loopback is disabled.  
1 = Remote loopback is enabled.  
In this loopback, received data passes all the way through the receive LIU and is then transmitted back  
trough the transmit side of the LIU. Data will continue to pass through the receive side framer of the  
DS26528 as it would normally and the data from the transmit side of the framer will be ignored.  
Bit 2 : Transmit Power-Down Enable (TPDE).  
0 = Transmitter power enabled.  
1 = Transmitter powered down. TIP/RING outputs are High-Z.  
Bit 1 : Receiver Power-Down Enable (RPDE).  
0 = Receiver power enabled.  
1 = Receiver powered down.  
Bit 0 : Transmit Enable (TE). This function is overridden by the TXENABLE pin.  
0 = TTIP/TRING outputs are High-Z.  
1 = TTIP/TRING outputs enabled.  
216 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LRSR  
LIU Real Status Register  
1003H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
--  
0
6
--  
0
5
OEQ  
0
4
UEQ  
0
3
--  
0
2
SCS  
0
1
OCS  
0
0
LOSS  
0
Name  
Default  
Bit 5 : Over Equalized (OEQ). The equalizer is over equalized. This can happen if there very large unexpected  
resistive loss. This could result if monitor mode is used and the device is not placed in monitor mode. This indicator  
provides more qualitative information to the receive loss indicators.  
Bit 4 : Under Equalized (UEQ). The equalizer is under equalized. A signal with a very high resistive gain is being  
applied. This indicator provides more qualitative information to the receive loss indicators.  
Bit 2: Short Circuit Status (SCS). A real-time bit set when the LIU detects that the TTIP and TRING outputs are  
short-circuited. The load resistance has to be 25(typically) or less for short circuit detection.  
Bit 1: Open Circuit Status (OCS). A real-time bit set when the LIU detects that the TTIP and TRING outputs are  
open-circuited.  
Bit 0: Loss of Signal Status (LOS). A real-time bit set when the LIU detects a LOS condition at RTIP and RRING.  
217 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LSIMR  
LIU Status Interrupt Mask Register  
1004H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
JALTCIM OCCIM  
SCCIM LOSCIM JALTSIM OCDIM SCDIM LOSDIM  
0
0
0
0
0
0
0
0
Bit 7 : Jitter Attenuator Limit Trip Clear Interrupt Mask (JALTCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 6 : Open Circuit Clear Interrupt Mask (OCCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 5 : Short Circuit Clear Interrupt Mask (SCCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 4 : Loss of Signal Clear Interrupt Mask (LOSCIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 3 : Jitter Attenuator Limit Trip Set Interrupt Mask (JALTSIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 2 : Open Circuit Detect Interrupt Mask (OCDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 1 : Short Circuit Detect Interrupt Mask (SCDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
Bit 0 : Loss of Signal Detect Interrupt Mask (LOSDIM).  
0 = Interrupt masked.  
1 = Interrupt enabled.  
218 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LLSR  
LIU Latched Status Register  
1005H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
JALTC  
0
6
OCC  
0
5
SCC  
0
4
LOSC  
0
3
JALTS  
0
2
OCD  
0
1
SCD  
0
0
LOSD  
0
Name  
Default  
All bits in this register are latched and can create interrupts.  
Bit 7 : Jitter Attenuator Limit Trip Clear (JALTC). This latched bit is set when a JA limit trip condition was  
detected and then removed.  
Bit 6 : Open Circuit Clear (OCC). This latched bit is set when an open circuit condition was detected at TTIP and  
TRING and then removed.  
Bit 5: Short Circuit Clear (SCC). This latched bit is set when a short circuit condition was detected at TTIP and  
TRING and then removed.  
Bit 4 : Loss of Signal Clear (LOSC). This latched bit is set when a loss of signal condition was detected at RTIP  
and RRING and then removed.  
Bit 3 : Jitter Attenuator Limit Trip Set (JALTS). This latched bit is set when the jitter attenuator trip condition is  
detected.  
Bit 2 : Open Circuit Detect (OCD). This latched bit when set when open circuit condition is detected at TTIP and  
TRING. This bit is not functional in T1 CSU operating modes (T1 LBO 5, LBO 6, and LBO 7).  
Bit 1 : Short Circuit Detect (SCD). This latched bit is set when short circuit condition is detected at TTIP and  
TRING. This bit is not functional in T1 CSU operating modes (T1 LBO 5, LBO 6, and LBO 7).  
Bit 0 : Loss of Signal Detect (LOSD). This latched bit is set when LOS condition is detected at RTIP and RRING.  
219 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LRSL  
LIU Receive Signal Level  
1006H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RSL3  
0
6
RSL2  
0
5
RLS1  
0
4
RLS0  
0
3
--  
0
2
--  
0
1
--  
0
0
--  
0
Name  
Default  
Bit 7 to 4 : Receiver Signal Level 3 to 0 (RSL[3:0]). Real-time receive signal level as shown in Table 10-16. Note  
that the range of signal levels reported the RSL0-3 is limited by the Equalizer Gain Limit (EGL) in short-haul  
applications.  
Table 10-16. Receive Level Indication  
RECEIVE LEVEL (dB)  
RSL3  
RSL2  
RSL1  
RSL0  
T1  
>-2.5  
E1  
>-2.5  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
-2.5 to -5  
-5 to –7.5  
-7.5 to -10  
-10 to –12.5  
-12.5 to -15  
-15 to –17.5  
-17.5 to -20  
-20 to –23  
-23 to -26  
-26 to –29  
-29 to -32  
-32 to -36  
<-36  
-2.5 to -5  
-5 to –7.5  
-7.5 to -10  
-10 to –12.5  
-12.5 to -15  
-15 to –17.5  
-17.5 to -20  
-20 to –23  
-23 to -26  
-26 to –29  
-29 to -32  
-32 to -36  
-36 to -40  
-40 to -44  
<-44  
220 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
LRISMR  
LIU Receive Impedance and Sensitivity Monitor Register  
1007H + (20h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
RIMPM0  
0
3
RTR  
0
2
1
0
RSMS0  
0
Name  
Default  
RG703 RIMPOFF RIMPM1  
RMONEN RSMS1  
0
0
0
0
0
Bit 7 : Receive G.703 Clock (RG703). If this bit is set, the receiver expects a 2.048MHz or 1.544MHz clock from  
the RTIP/RRING, based on the selection of T1 (1.544) or E1 (2.048) mode in the LTRCR register.  
Bit 6 : Receive Impedance Termination Off (RIMPOFF).  
0 = Receive terminating impedance match is enabled.  
1 = Receive terminating impedance match is disabled.  
Bit 5, 4 : Receive Impedance Match 1, 0 (RIMPM[1:0]).These bits are used to select the receive impedance  
match value. These must be set according to the Cable Impedance. Even if the Internal Receive Match Impedance  
is turned off (RIMOFF); the external cable impedance has to be specified for optimum operation by RIMPM1 to 0.  
See Table 10-17.  
Bit 3 : Receiver Turns Ratio (RTR).  
0 = Receive transformer turns ratio is 1:1.  
1 = Receive transformer turns ratio is 2:1. This option should only be used in short haul applications.  
Bit 2 : Receiver Monitor Mode Enable (RMONEN).  
0 = Disable receive monitor mode.  
1 = Enable receive monitor mode. Resistive gain is added with the maximum sensitivity. The receiver  
sensitivity is determined by RSMS1 and RSMS0  
Bit 1, 0 : Receiver Sensitivity / Monitor Gain Select 1, 0 (RSMS[1:0]). These bits are used to select the receiver  
sensitivity level and additional gain in monitoring applications. The monitor mode (RMONEN) adds resistive gain to  
compensate for the signal loss caused by the isolation resistors. See Table 10-18 and Table 10-19.  
Table 10-17. Receive Impedance Selection  
RECEIVE IMPEDANCE  
RIMPRM1,  
RIMPRM0  
SELECTED ()  
00  
01  
10  
11  
75  
100  
110  
120  
221 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Table 10-18. Receiver Sensitivity Selection with Monitor Mode Disabled  
RECEIVER  
MONITOR MODE  
GAIN (dB)  
RECEIVER SENSITIVITY  
RMONEN  
RSMS [1:0]  
(MAX CABLE LOSS  
ALLOWED) (dB)  
0
0
0
0
00  
01  
10  
11  
0
0
0
0
12  
18  
30  
36 for T1; 43 for E1  
Table 10-19. Receiver Sensitivity Selection with Monitor Mode Enabled  
RECEIVER  
RECEIVER SENSITIVITY  
RMONEN  
RSMS [1:0]  
MONITOR MODE  
(MAX CABLE LOSS  
GAIN (dB)  
ALLOWED) (dB)  
1
1
1
1
00  
01  
10  
11  
14  
20  
26  
32  
30  
22.5  
17.5  
12  
222 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
10.6 BERT Register Definitions  
Table 10-20. BERT Register Set  
ADDR  
ABBR  
DESCRIPTION  
R/W  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
110A  
110B  
110C  
110D  
110E  
110F  
BAWC BERT Alternating Word Count Rate  
BRP1 BERT Repetitive Pattern Set Register 1  
BRP2 BERT Repetitive Pattern Set Register 2  
BRP3 BERT Repetitive Pattern Set Register 3  
BRP4 BERT Repetitive Pattern Set Register 4  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
BC1  
BC2  
BERT Control Register 1  
BERT Control Register 2  
BBC1 BERT Bit Count Register 1  
BBC2 BERT Bit Count Register 2  
BBC3 BERT Bit Count Register 3  
BBC4 BERT Bit Count Register 4  
BEC1 BERT Error Count Register 1  
BEC2 BERT Error Count Register 2  
BEC3 BERT Error Count Register 3  
BLSR BERT Status Register  
R
R
R
R
R
R
R
BSIM  
BERT Status Interrupt Mask  
R/W  
Register Name:  
Register Description:  
Register Address:  
BAWC  
BERT Alternating Word Count Rate  
1100H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
ACNT7  
0
6
ACNT6  
0
5
ACNT5  
0
4
ACNT4  
0
3
ACNT3  
0
2
ACNT2  
0
1
ACNT1  
0
0
ACNT0  
0
Name  
Default  
Bits 7 to 0: Alternating Word Count Rate Bits 7 to 0 (ACNT[7:0]). When the BERT is programmed in the  
alternating word mode, the words will repeat for the count loaded into this register then flip to the other word and  
again repeat for the number of times loaded into this register. ACNT0 is the LSB of the 8-bit alternating word count  
rate counter.  
Register Name:  
Register Description:  
Register Address:  
BRP1  
BERT Repetitive Pattern Set Register 1  
1101H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
RPAT7  
0
6
RPAT6  
0
5
RPAT5  
0
4
RPAT4  
0
3
2
1
RPAT1  
0
0
RPAT0  
0
Name  
Default  
RPAT3 RPAT2  
0
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 7 to 0 (RPAT[7:0]). RPAT0 is the LSB of the 32-bit repetitive  
pattern.  
223 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BRP2  
BERT Repetitive Pattern Set Register 2  
1102H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
RPAT8  
0
Name  
Default  
RPAT15 RPAT14 RPAT13 RPAT12 RPAT11 RPAT10 RPAT9  
0
0
0
0
0
0
0
Bits 7 to 0: BERT Repetitive Pattern Set Bits 15 to 8 (RPAT[15:8]).  
Register Name:  
Register Description:  
Register Address:  
BRP3  
BERT Repetitive Pattern Set Register 3  
1103H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RPAT23 RPAT22 RPAT21 RPAT20 RPAT19 RPAT18 RPAT17 RPAT16  
0
0
0
0
0
0
0
0
Bits 7 to 0 : BERT Repetitive Pattern Set Bits 23 to 16 (RPAT[23:16]).  
Register Name:  
Register Description:  
Register Address:  
BRP4  
BERT Repetitive Pattern Set Register 4  
1104H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
6
5
4
3
2
1
0
Name  
Default  
RPAT31 RPAT30 RPAT29 RPAT28 RPAT27 RPAT26 RPAT25 RPAT24  
0
0
0
0
0
0
0
0
Bits 7 to 0 : BERT Repetitive Pattern Set Bits 31 to 24 (RPAT[31:24]). RPAT31 is the MSB of the 32-bit  
repetitive pattern.  
224 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
BC1  
Register Description:  
Register Address:  
BERT Control Register 1  
1105H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
TC  
0
6
TINV  
0
5
RINV  
0
4
PS2  
0
3
PS1  
0
2
PS0  
0
1
LC  
0
0
RESYNC  
0
Name  
Default  
Bit 7: Transmit Pattern Load (TC). A low-to-high transition loads the pattern generator with the pattern that is to  
be generated. This bit should be toggled from low to high whenever the host wishes to load a new pattern. Must be  
cleared and set again for a subsequent loads.  
Bit 6:Transmit Invert Data Enable (TINV).  
0 = do not invert the outgoing data stream  
1 = invert the outgoing data stream  
Bit 5:Receive Invert Data Enable (RINV).  
0 = do not invert the incoming data stream  
1 = invert the incoming data stream  
Bits 4 to 2: Pattern Select Bits 2 to 0 (PS[2:0]). These bits select data pattern used by the transmit and receive  
circuits. See Table 10-21.  
Table 10-21. BERT Pattern Select  
PS2  
PS1  
PS0  
PATTERN DEFINITION  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
Pseudo-Random 2E7–1  
Pseudo-Random 2E11–1  
Pseudo-Random 2E15–1  
Pseudo-Random Pattern QRSS. A 220 - 1 pattern with 14 consecutive zero restriction.  
Repetitive Pattern  
Alternating Word Pattern  
Modified 55 Octet (Daly) Pattern. The Daly pattern is a repeating 55 octet pattern that is  
byte-aligned into the active DS0 time slots. The pattern is defined in an ATIS (Alliance  
for Telecommunications Industry Solutions) Committee T1 Technical Report Number 25  
(November 1993).  
1
1
1
1
0
1
Pseudo-Random 2E-9-1  
Bit 1: Load Bit and Error Counters (LC). A low-to-high transition latches the current bit and error counts into the  
registers BBC1, BBC2, BBC3, BBC4 and BEC1, BEC2, BEC3 and clears the internal count. This bit should be  
toggled from low to high whenever the host wishes to begin a new acquisition period. Must be cleared and set  
again for a subsequent loads.  
Bit 0: Force Resynchronization (RESYNC). A low-to-high transition will force the receive BERT synchronizer to  
resynchronize to the incoming data stream. This bit should be toggled from low to high whenever the host wishes  
to acquire synchronization on a new pattern. Must be cleared and set again for a subsequent resynchronization.  
225 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BC2  
BERT Control Register 2  
1106H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EIB2  
0
6
EIB1  
0
5
EIB0  
0
4
SBE  
0
3
RPL3  
0
2
RPL2  
0
1
RPL1  
0
0
RPL0  
0
Name  
Default  
Bits 7 to 5: Error Insert Bits 2 to 0 (EIB[2:0]). Will automatically insert bit errors at the prescribed rate into the  
generated data pattern. Can be used for verifying error detection features. See Table 10-22.  
Table 10-22. BERT Error Insertion Rate  
EIB2 EIB1 EIB0  
ERROR RATE INSERTED  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
No errors automatically inserted  
10E-1  
10E-2  
10E-3  
10E-4  
10E-5  
10E-6  
10E-7  
Bit 4: Single Bit Error Insert (SBE). A low-to-high transition will create a single bit error. Must be cleared and set  
again for a subsequent bit error to be inserted.  
Bits 3 to 0: Repetitive Pattern Length Select 3 to 0 (RPL[3:0]). RPL0 is the LSB and RPL3 is the MSB of a  
nibble that describes the how long the repetitive pattern is. The valid range is 17 (0000) to 32 (1111). These bits  
are ignored if the receive BERT is programmed for a pseudo-random pattern. To create repetitive patterns less  
than 17 bits in length, the user must set the length to an integer number of the desired length that is less than or  
equal to 32. For example, to create a 6-bit pattern, the user can set the length to 18 (0001) or to 24 (0111) or to 30  
(1101). See Table 10-23.  
Table 10-23. BERT Repetitive Pattern Length Select  
LENGTH  
RPL3  
RPL2  
RPL1  
RPL0  
(BITS)  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
226 of 269  
 
 
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BBC1  
BERT Bit Count Register 1  
1107H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
BBC7  
0
6
BBC6  
0
5
BBC5  
0
4
BBC4  
0
3
BBC3  
0
2
BBC2  
0
1
BBC1  
0
0
BBC0  
0
Name  
Default  
Bits 7 to 0: BERT Bit Counter Bits 7 to 0 (BBC[7:0]). BBC0 is the LSB of the 32-bit counter.  
Register Name:  
Register Description:  
Register Address:  
BBC2  
BERT Bit Count Register 2  
1108H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
BBC15  
0
6
BBC14  
0
5
BBC13  
0
4
BBC12  
0
3
2
1
BBC9  
0
0
BBC8  
0
Name  
Default  
BBC11 BBC10  
0
0
Bits 7 to 0: BERT Bit Counter Bits 15 to 8 (BBC[15:8]).  
Register Name:  
Register Description:  
Register Address:  
BBC3  
BERT Bit Count Register 3  
1109H + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
BBC23  
0
6
BBC22  
0
5
BBC21  
0
4
BBC20  
0
3
2
1
BBC17  
0
0
BBC16  
0
Name  
Default  
BBC19 BBC18  
0
0
Bits 7 to 0: BERT Bit Counter Bits 23 to 16 (BBC[23:16]).  
Register Name:  
Register Description:  
Register Address:  
BBC4  
BERT Bit Count Register 4  
110AH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
BBC31  
0
6
BBC30  
0
5
BBC29  
0
4
BBC28  
0
3
2
1
BBC25  
0
0
BBC24  
0
Name  
Default  
BBC27 BBC26  
0
0
Bits 7 to 0: BERT Bit Counter Bits 31 to 24 (BBC[31:24]). BBC31 is the MSB of the 32-bit counter.  
227 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BEC1  
BERT Error Count Register 1  
110BH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EC7  
0
6
EC6  
0
5
EC5  
0
4
EC4  
0
3
EC3  
0
2
EC2  
0
1
EC1  
0
0
EC0  
0
Name  
Default  
Bits 7 to 0: Error Counter Bits 7 to 0 (EC[7:0]). EC0 is the LSB of the 24-bit counter.  
Register Name:  
Register Description:  
Register Address:  
BEC2  
BERT Error Count Register 2  
110CH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EC15  
0
6
EC14  
0
5
EC13  
0
4
EC12  
0
3
EC11  
0
2
EC10  
0
1
EC9  
0
0
EC8  
0
Name  
Default  
Bits 7 to 0: Error Counter Bits 15 to 8 (EC[15:8]).  
Register Name:  
Register Description:  
Register Address:  
BEC3  
BERT Error Count Register 3  
110DH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
EC23  
0
6
EC22  
0
5
EC21  
0
4
EC20  
0
3
EC19  
0
2
EC18  
0
1
EC17  
0
0
EC16  
0
Name  
Default  
Bits 7 to 0: Error Counter Bits 23 to 16 (EC[23:16]). EC23 is the MSB of the 24-bit counter.  
228 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BLSR  
Bert Latched Status Register  
110EH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
BBED  
0
5
BBCO  
0
4
BEC0  
0
3
BRA1  
0
2
1
0
BSYNC  
0
Name  
Default  
BRA0 BRLOS  
0
0
0
All bits in this register are latched and can create interrupts.  
Bit 6: BERT Bit Error Detected (BED) Event (BBED). A latched bit, which is set when a bit error is detected. The  
receive BERT must be in synchronization for it to detect bit errors.  
Bit 5: BERT Bit Counter Overflow Event (BBCO). A latched bit, which is set when the 32-bit BERT Bit Counter  
(BBC) overflows.  
Bit 4: BERT Error Counter Overflow (BECO) Event (BECO). A latched bit, which is set when the 24-bit BERT  
Error Counter (BEC) overflows.  
Bit 3: BERT Receive All-Ones Condition (BRA1). A latched bit, which is set when 32 consecutive ones are  
received.  
Bit 2: BERT Receive All-Zeros Condition (BRA0). A latched bit, which is set when 32 consecutive zeros are  
received.  
Bit 1: BERT Receive Loss Of Synchronization Condition (BRLOS). A latched bit which is set whenever the  
receive BERT begins searching for a pattern.  
Bit 0: BERT in Synchronization Condition (BSYNC). Will be set when the incoming pattern matches for 32  
consecutive bit positions.  
229 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Register Name:  
Register Description:  
Register Address:  
BSIM  
BERT Status Interrupt Mask Register  
110FH + (10h x n): where n = 0 to 7, for Ports 1 to 8  
Bit #  
7
-
6
BBED  
0
5
BBCO  
0
4
BEC0  
0
3
BRA1  
0
2
1
0
BSYNC  
0
Name  
Default  
BRA0 BRLOS  
0
0
0
Bit 6 : Bit Error Detected Event (BBED).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 5 : BERT Bit Counter Overflow Event (BBCO).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 4 : BERT Error Counter Overflow Event (BECO).  
0 = interrupt masked  
1 = interrupt enabled  
Bit 3 : Receive All Ones Condition (BRA1).  
0 = interrupt masked  
1 = interrupt enabled – interrupts on rising and falling edges  
Bit 2 : Receive All Zeros Condition (BRA0).  
0 = interrupt masked  
1 = interrupt enabled – interrupts on rising and falling edges  
Bit 1 : Receive Loss Of Synchronization Condition (BRLOS)  
0 = interrupt masked  
1 = interrupt enabled – interrupts on rising and falling edges  
Bit 0 : BERT in Synchronization Condition (BSYNC).  
0 = interrupt masked  
1 = interrupt enabled – interrupts on rising and falling edges  
230 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
11. FUNCTIONAL TIMING  
11.1 T1 Receiver Functional Timing Diagrams  
Figure 11-1. T1 Receive Side D4 Timing  
1
FRAME#  
RFSYNC  
RSYNC 1  
RSYNC 2  
RSYNC3  
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
Notes:  
1. RSYNC in the frame mode (RIOCR.0 = 0) and doublewide frame sync is not enabled (RIOCR.1 = 0)  
2. RSYNC in the frame mode (RIOCR.0 = 0) and doublewide frame sync is enabled (RIOCR.1 = 1)  
3. RSYNC in the multiframe mode (RIOCR.0 = 1)  
Figure 11-3. T1 Receive Side ESF Timing  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
1
2
3
4
5
FRAME#  
RSYNC1  
RFSYNC  
RSYNC2  
RSYNC 3  
Notes:  
1. RSYNC in frame mode (RIOCR.0 = 0) and doublewide frame sync is not enabled (RIOCR.1 = 0)  
2. RSYNC in frame mode (RIOCR.0 = 0) and doublewide frame sync is enabled (RIOCR.1 = 1)  
3. RSYNC in multiframe mode (RIOCR.0 = 1)  
231 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-5. T1 Receive Side Boundary Timing (elastic store disabled)  
RCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
MSB  
LSB  
D/B  
LSB MSB  
F
RSER  
RSYNC  
RFSYNC  
CHANNEL 23  
CHANNEL 24  
C/A  
CHANNEL 1  
A
C/A  
A
B
A
B
D/B  
RSIG  
RCHCLK  
1
RCHBLK  
Notes:  
1. RCHBLK is programmed to block channel 24  
Figure 11-7. T1 Receive Side 1.544MHz Boundary Timing (e-store enabled)  
RSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
MSB  
LSB  
LSB MSB  
F
RSER  
RSYNC1  
RMSYNC  
RSYNC2  
CHANNEL 1  
CHANNEL 23  
C/A  
CHANNEL 24  
C/A  
A
A
B
A
B
D/B  
D/B  
RSIG  
RCHCLK  
RCHBLK 3  
Notes:  
1. RSYNC is in the output mode (RIOCR.2 = 0)  
2. RSYNC is in the input mode (RIOCR.2 = 1)  
3. RCHBLK is programmed to block channel 24  
232 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-9. T1 Receive Side 2.048MHz Boundary Timing (e-store enabled)  
RSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
RSER1  
RSYNC2  
RMSYNC  
LSB  
LSB MSB  
3
RSYNC  
CHANNEL 1  
CHANNEL 32  
C/A  
CHANNEL 31  
C/A  
A
B
A
B
D/B  
D/B  
RSIG  
RCHCLK  
RCHBLK 4  
Notes:  
1. RSER data in channels 1, 5, 9, 13, 17, 21, 25, and 29 are forced to one  
2. RSYNC is in the output mode (RIOCR.2 = 0)  
3. RSYNC is in the input mode (RIOCR.2 = 1)  
4. RCHBLK is programmed to block channel 1  
5. The F-Bit position is passed through the receive side elastic store  
233 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-11. T1 Receive Side Interleave Bus Operation, BYTE Mode  
RSYNC  
RSER1  
RSIG1  
RSER2  
RSIG2  
RSER3  
RSIG3  
FR1 CH 32  
FR1 CH132  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH32  
FR2 CH32  
FR3 CH32  
FR3 CH32  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR2 CH1  
FR2 CH1  
FR3 CH1  
FR3 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH2  
FR2 CH2  
FR3 CH2  
FR3 CH2  
FR4  
FR5  
FR6  
FR7  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
FR5  
Ch1  
FR6  
Ch1  
FR7  
FR0  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch32  
Ch32  
Ch32  
Ch32  
Ch1  
Ch1  
Ch2  
Ch2  
Ch2  
FR4  
FR5  
FR6  
FR7  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
Ch32  
Ch32  
BIT DETAIL  
SYSCLK  
RSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 1, Channel 1  
Framer 1, Channel 1  
RSER  
RSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. RSYNC is in the input mode (RIOCR.2 = 0).  
5. Shows system implementation with multiple DS26528 cores driving the backplane.  
6. Though not shown, RCHCLK continues to mark the channel LSB for the framers active period.  
7. Though not shown, RCHBLK continues to mark the blocked channels for the framers active period.  
234 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-13. T1 Receive Side Interleave Bus Operation, FRAME Mode  
RSYNC  
RSER1  
RSIG1  
RSER2  
RSIG2  
RSER3  
RSIG3  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
BIT DETAIL  
SYSCLK  
RSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 0, Channel 2  
Framer 0, Channel 2  
RSER  
RSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. RSYNC is in the input mode (RIOCR.2 = 0).  
5. Shows system implementation with multiple DS26528 cores driving the backplane.  
6. Though not shown, RCHCLK continues to mark the channel LSB for the framers active period.  
7. Though not shown, RCHBLK continues to mark the blocked channels for the framers active period.  
235 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
11.2 T1 Transmitter Functional Timing Diagrams  
Figure 11-15. T1 Transmit Side D4 Timing  
FRAME#  
1
2
3
4
5
6
7
8
9
10 11 12  
1
2
3
4
5
TSYNC1  
TSSYNC  
TSYNC2  
TSYNC3  
Notes:  
1. TSYNC in the frame mode (TIOCR.0 = 0) and doublewide frame sync is not enabled (TIOCR.1 = 0)  
2. TSYNC in the frame mode (TIOCR.0 = 0) and doublewide frame sync is enabled (TIOCR.1 = 1)  
3. TSYNC in the multiframe mode (TIOCR.0 = 1)  
Figure 11-17. T1 Transmit Side ESF Timing  
1
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 1 2 3 4 5  
FRAME#  
TSYNC1  
TSSYNC  
TSYNC2  
TSYNC3  
Notes:  
1. TSYNC in frame mode (TIOCR.0 = 0) and doublewide frame sync is not enabled (TIOCR.1 = 0)  
2. TSYNC in frame mode (TIOCR.0 = 0) and doublewide frame sync is enabled (TIOCR.1 = 1)  
3. TSYNC in multiframe mode (TIOCR.0 = 1)  
236 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-19. T1 Transmit Side Boundary Timing (e-store disabled)  
TCLK  
CHANNEL 1  
CHANNEL 2  
LSB  
F
MSB  
LSB MSB  
LSB MSB  
TSER  
TSYNC1  
TSYNC2  
CHANNEL 1  
CHANNEL 2  
D/B  
A
B
C/A D/B  
A
B
C/A D/B  
TSIG  
TCHCLK  
TCHBLK3  
Notes:  
1. TSYNC is in the output mode (TIOCR.2 = 1)  
2. TSYNC is in the input mode (TIOCR.2 = 0)  
3. TCHBLK is programmed to block channel 2  
Figure 11-21. T1 Transmit Side 1.544MHz Boundary Timing (e-store enabled)  
TSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
LSB MSB  
LSB  
F MSB  
TSER  
TSSYNC  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
A
A
B
C/A D/B  
A
B
C/A D/B  
TSIG  
TCHCLK  
TCHBLK1  
Notes:  
1. TCHBLK is programmed to block channel 24  
237 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-23. T1 Transmit Side 2.048MHz Boundary Timing (e-store enabled)  
TSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
CHANNEL 1  
TSER1  
F4  
LSB MSB  
LSB  
TSSYNC  
CHANNEL 31  
CHANNEL 32  
A
B
C/A D/B  
A
B
C/A D/B  
A
TSIG  
TCHCLK  
TCHBLK2  
Notes:  
1. TSER data in channels 1, 5, 9, 13, 17, 21, 25, and 29 is ignored  
2. TCHBLK is programmed to block channels 31 and 1  
3. The F-bit position for the T1 frame is sampled and passed through the transmit side elastic store into the MSB bit position of  
channel 1. (normally the transmit side formatter overwrites the F-bit position unless the formatter is programmed to pass-  
through the F-bit position)  
238 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-25. T1 Transmit Side Interleave Bus Operation, BYTE Mode  
TSYNC  
TSER1  
TSIG1  
TSER2  
TSIG2  
TSER3  
TSIG3  
FR1 CH 32  
FR1 CH132  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH32  
FR2 CH32  
FR3 CH32  
FR3 CH32  
FR0 CH1  
FR0 CH1  
FR1 CH1  
FR1 CH1  
FR2 CH1  
FR2 CH1  
FR3 CH1  
FR3 CH1  
FR0 CH2  
FR0 CH2  
FR1 CH2  
FR1 CH2  
FR2 CH2  
FR2 CH2  
FR3 CH2  
FR3 CH2  
FR4  
FR5  
FR6  
FR7  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
FR5  
Ch1  
FR6  
Ch1  
FR7  
FR0  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch32  
Ch32  
Ch32  
Ch32  
Ch1  
Ch1  
Ch2  
Ch2  
Ch2  
FR4  
FR5  
FR6  
FR7  
FR0  
Ch1  
FR1  
Ch1  
FR2  
Ch1  
FR3  
Ch1  
FR4  
Ch1  
FR5  
Ch1  
FR6  
Ch1  
FR7  
Ch1  
FR0  
Ch2  
FR1  
Ch2  
FR2  
Ch2  
FR3  
Ch2  
FR4  
Ch2  
FR5  
Ch2  
FR6  
Ch2  
FR7  
Ch2  
Ch32  
Ch32  
Ch32  
Ch32  
BIT DETAIL  
SYSCLK  
TSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 1, Channel 1  
Framer 1, Channel 1  
TSER  
TSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. TSYNC is in the input mode (TIOCR.2 = 0).  
5. Though not shown, TCHCLK continues to mark the channel LSB for the framers active period.  
6. Though not shown, TCHBLK continues to mark the blocked channels for the framers active period.  
239 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-27. T1 Transmit Interleave Bus Operation, FRAME Mode  
TSYNC  
TSER1  
TSIG1  
TSER2  
TSIG2  
TSER3  
TSIG3  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR0 CH1-32  
FR0 CH1-32  
FR1 CH1-32  
FR1 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32 FR0 CH1-32 FR1 CH1-32 FR2 CH1-32 FR3 CH1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
FR0  
FR1  
FR2  
FR3  
FR4  
FR5  
FR6  
FR7  
Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32 Ch1-32  
BIT DETAIL  
SYSCLK  
TSYNC4  
Framer 3, Channel 32  
Framer 3, Channel 32  
Framer 0, Channel 1  
Framer 0, Channel 1  
Framer 0, Channel 2  
Framer 0, Channel 2  
TSER  
TSIG  
MSB  
LSB MSB  
LSB MSB  
LSB  
A
B
A
B
C/A D/B  
A
B
C/A D/B  
A
B
C/A D/B  
Notes:  
1. 4.096 MHz bus configuration.  
2. 8.192 MHz bus configuration.  
3. 16.384 MHz bus configuration.  
4. TSYNC is in the input mode (TIOCR.2 = 0).  
5. Though not shown, TCHCLK continues to mark the channel LSB for the framers active period.  
6. Though not shown, TCHBLK continues to mark the blocked channels for the framers active period.  
240 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
11.3 E1 Receiver Functional Timing Diagrams  
Figure 11-29. E1 Receive Side Timing  
Notes:  
1
FRAME#  
RFSYNC  
RSYNC 1  
RSYNC2  
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
1
1. RSYNC in frame mode (RIOCR.0 = 0)  
2. RSYNC in multiframe mode (RIOCR.0 = 1)  
3. This diagram assumes the CAS MF begins in the RAF frame  
Figure 11-31. E1 Receive Side Boundary Timing (elastic store disabled)  
RCLK  
CHANNEL 32  
CHANNEL 1  
CHANNEL 2  
MSB  
LSB Si  
1
A
Sa4 Sa5 Sa6 Sa7 Sa8  
RSER  
RSYNC  
RFSYNC  
CHANNEL 32  
CHANNEL 1  
CHANNEL 2  
C
D
A
A
B
B
RSIG  
RCHCLK  
RCHBLK1  
Note 3  
Notes:  
1. RCHBLK is programmed to block channel 1  
2. Shown is a RNAF frame boundary  
3. RSIG normally contains the CAS multiframe alignment nibble (0000) in channel 1  
241 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-33. E1 Receive Side 1.544MHz Boundary Timing (e-store enabled)  
RSYSCLK  
CHANNEL 23/31  
LSB MSB  
CHANNEL 24/32  
CHANNEL 1/2  
RSER1  
MSB  
LSB  
F
RSYNC2  
RMSYNC  
RSYNC3  
RCHCLK  
RCHBLK 4  
Notes:  
1. Data from the E1 channels 1. 5. 9, 13, 17, 21, 25, and 29 is dropped (channel 2 from the E1 link is (mapped to channel 1 of  
the T1 link, etc.) and the F-bit position is added (forced to one)  
2. RSYNC in the output mode (RIOCR.2 = 0)  
3. RSYNC in the input mode (RIOCR.2 = 1)  
4. RCHBLK is programmed to block channel 24  
Figure 11-35. E1 Receive Side 2.048MHz Boundary Timing (e-store enabled)  
Notes:  
1. RSYNC is in the output mode (RIOCR.2 = 0)  
RSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
LSB MSB  
MSB  
LSB  
RSER  
RSYNC1  
RMSYNC  
2
RSYNC  
CHANNEL 1  
CHANNEL 32  
CHANNEL 31  
C
C
A
B
A
B
D
D
RSIG  
RCHCLK  
RCHBLK3  
Note 4  
2. RSYNC is in the input mode (RIOCR.2 = 1)  
3. RCHBLK is programmed to block channel 1  
4. RSIG normally contains the CAS multiframe alignment nibble (0000) in Channel 1  
242 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
11.4 E1 Transmitter Functional Timing Diagrams  
Figure 11-37. E1 Transmit Side Timing  
1
2
3
4
5
6
7
8
9
10 11 12 13  
1
14 15 16  
2
3
4
5
6
7
8
9 10  
FRAME# 14 15 16  
TSYNC1  
TSSYNC  
TSYNC2  
Notes:  
1. TSYNC in frame mode (TIOCR.0 = 0)  
2. TSYNC in multiframe mode (TIOCR.0 = 1)  
3. This diagram assumes both the CAS MF and the CRC4 MF begin with the TAF frame  
Figure 11-39. E1 Transmit Side Boundary Timing (elastic store disabled)  
Notes:  
TCLK  
CHANNEL 1  
CHANNEL 2  
LSB  
MSB  
LSB MSB  
Si  
1
A
Sa4 Sa5 Sa6 Sa7 Sa8  
TSER  
TSYNC1  
TSYNC2  
CHANNEL 1  
CHANNEL 2  
D
A
B
C
D
TSIG  
TCHCLK  
TCHBLK3  
1. TSYNC is in the output mode (TIOCR.2 = 1)  
2. TSYNC is in the input mode (TIOCR.2 = 0)  
3. TCHBLK is programmed to block channel 2  
4. The signaling data at TSIG during channel 1 is normally overwritten in the transmit formatter with the CAS MF alignment  
nibble (0000)  
5. Shown is a TNAF frame boundary  
243 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-41. E1 Transmit Side 1.544MHz Boundary Timing (e-store enabled)  
TSYSCLK  
CHANNEL 23  
CHANNEL 24  
CHANNEL 1  
1
LSB MSB  
LSB  
F
MSB  
TSER  
TSSYNC  
TCHCLK  
TCHBLK2  
Notes:  
1. The F bit position in the TSER data is ignored  
2. TCHBLK is programmed to block channel 24  
Figure 11-43. E1 Transmit Side 2.048MHz Boundary Timing (e-store enabled)  
TSYSCLK  
CHANNEL 31  
CHANNEL 32  
CHANNEL 1  
LSB MSB  
MSB  
LSB  
TSER  
1
TSYNC  
TSIG  
CHANNEL 1  
CHANNEL 32  
CHANNEL 31  
C
C
A
B
A
B
D
D
TCHCLK  
TCHBLK 2  
Notes:  
1. TSYNC is in the input mode (TIOCR.2 = 0)  
2. TCHBLK is programmed to block channel 1  
244 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 11-45. E1 G.802 Timing  
31 32 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 0 1 2  
TS #  
RSYNC  
TSYNC  
RCHCLK  
TCHCLK  
RCHBLK  
TCHBLK  
RCLK / RSYSCLK  
TCLK / TSYSCLK  
CHANNEL 25  
CHANNEL 26  
MSB  
LSB  
RSER / TSER  
RCHCLK / TCHCLK  
RCHBLK / TCHBLK  
NOTES:  
RCHBLK or TCHBLK programmed to pulse high during time slots 1 through 15, 17 through 25, and bit 1 of time slot 26  
245 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
12. OPERATING PARAMETERS  
ABSOLUTE MAXIMUM RATINGS  
Voltage Range on Any Lead with Respect to VSS (except VDD)…………………………………………….-0.3V to +5.5V  
Supply Voltage (VDD) Range with Respect to VSS…………………………………………………………..-0.3V to +3.63V  
Operating Temperature Range for DS26528…………………………………………………………………..0°C to +70°C  
Operating Temperature Range for DS26528N……………………………………………………………...-40°C to +85°C  
Storage TemperatureRange…………………………………………………………………………………-55°C to +125°C  
Soldering Temperature………………………………………………………..See IPC/JEDEC J-STD-020A Specification  
This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation  
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.  
RECOMMENDED DC OPERATING CONDITIONS  
(TA = -40ºC to +85ºC for DS26528N.)  
PARAMETER  
SYMBOL  
VIH  
MIN  
2.0  
TYP  
MAX  
5.5  
UNITS  
NOTES  
NOTES  
Logic 1  
Logic 0  
Supply  
V
V
V
VIL  
-0.3  
+0.8  
3.465  
VDD  
3.135  
3.3  
CAPACITANCE  
(TA = +25°C)  
PARAMETER  
SYMBOL  
CIN  
MIN  
TYP  
7
MAX  
UNITS  
pF  
Input Capacitance  
Output Capacitance  
COUT  
7
pF  
RECOMMENDED DC OPERATING CONDITIONS  
(VDD = 3.135V to 3.465V, TA = -40ºC to +85ºC.)  
PARAMETER  
Supply Current at 3.3V  
SYMBOL  
IDD  
MIN  
TYP  
MAX  
875  
UNITS  
mA  
µA  
NOTES  
510  
1, 2  
Input Leakage  
IIL  
-10.0  
-500.0  
-10.0  
2.4  
+10.0  
+10.0  
+10.0  
Pullup Pin Input Leakage  
Tri-State Output Leakage  
Output Voltage (Io = -1.6mA)  
Output Voltage (Io = +0.4mA)  
IILP  
µA  
3
IOL  
µA  
VOH  
VOL  
V
0.4  
V
Note 1:  
Note 2:  
RCLK1-n = TCLK1-n = 2.048MHz.  
Max power dissipation is measured with all ports transmitting an all-ones data pattern with a transmitter load  
of 100.  
Note 3:  
Pullup pins include DIGIOEN, JTRST, JTMS, and JTDI.  
246 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
THERMAL CHARACTERISTICS  
PARAMETER  
Ambient Temperature  
MIN  
-40  
TYP  
MAX  
UNITS  
NOTES  
+85  
°C  
°C  
1
Junction Temperature  
+125  
Theta-JA () in Still Air for 256-Pin  
TE-CSBGAJA  
+17.5  
°C/W  
2
Note 1:  
Note 2:  
The package is mounted on a four-layer JEDEC standard test board.  
Theta-JA () is the junction-to-ambient thermal resistance, when the package is mounted on a four-layer  
JA  
JEDEC standard test board.  
12.1 Line Interface Characteristics  
Table 12-1. Transmitter Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
2.13  
2.70  
2.40  
2.40  
2.37  
3.00  
3.00  
3.00  
2.61  
3.30  
3.60  
3.60  
E1 75ꢁ  
E1 120ꢁ  
T1 100ꢁ  
J1 110ꢁ  
Output Mark Amplitude  
Vm  
V
Output Zero Amplitude  
Vs  
-0.3  
-1  
+0.3  
+1  
V
1
Transmit Amplitude Variation  
with Supply  
%
Table 12-2. Reciever Characteristics  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
NOTES  
Cable Attenuation  
Attn  
43  
dB  
192  
192  
2048  
24  
192  
192  
Allowable Zeros Before Loss  
Allowable Ones Before Loss  
1
2
Note 1:  
Note 2:  
192 Zeros for T1 and T1.231 Specification Compliance. 192 Zeros for E1 and G.775 Specification  
Compliance. 2048 Zeros for ETSI 300 233 compliance.  
24 ones in 192-bit period for T1.231; 192 ones for G.775; 192 ones for ETSI 300 233.  
247 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
13. AC TIMING CHARACTERISTICS  
Unless otherwise noted, all timing numbers assume 20pF test load on output signals, 40pF test load on bus  
signals.  
13.1 Microprocessor Bus AC Characteristics  
Table 13-1. AC Characteristics –Microprocessor Bus Timing  
(VDD = 3.3V M5%, TA = 0°C to +70°C for DS26528; VDD = 3.3V M5%, TA = -40°C to +85°C for DS26528N.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
t1  
0
ns  
Setup Time for A[7:0] Valid to CSB Active  
Setup Time for CSB Active to either RDB, or  
WRB Active  
t2  
t3  
0
ns  
ns  
Delay Time from Either RDB or DSB Active to  
125  
20  
1
D:AD[7:0] Valid  
Hold Time from Either RDB or WRB Inactive to  
CSB Inactive  
t4  
t5  
0
5
ns  
ns  
Hold Time from CSB or RDB or DSB Inactive to  
D:AD[7:0] Tri-State  
t6  
t7  
t8  
t9  
40  
10  
2
ns  
ns  
ns  
ns  
Wait Time from WRB Active to Latch Data  
Data Setup Time to WRB Inactive  
Data Hold Time from WRB Inactive  
Address Hold from WRB Inactive  
0
Write Access to Subsequent Write/Read Access  
t10  
80  
ns  
1
Delay Time  
Note 1:  
If supplying a 1.544MHz MCLK, the FREQSEL bit must be set to meet this timing.  
248 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-1. Intel Bus Read Timing (BTS = 0)  
t9  
Address Valid  
ADDR[11:0]  
Data Valid  
DATA[7:0]  
t5  
WRB  
t1  
CSB  
t4  
t2  
t3  
t10  
RDB  
Figure 13-3. Intel Bus Write Timing (BTS = 0)  
t9  
Address Valid  
ADDR[11:0]  
DATA[7:0]  
t7  
t8  
RDB  
t1  
CSB  
t2  
t4  
t6  
WRB  
t10  
249 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-5. Motorola Bus Read Timing (BTS = 1)  
t9  
Address Valid  
ADDR[12:0]  
Data Valid  
DATA[7:0]  
t5  
RWB  
t1  
CSB  
t4  
t2  
t3  
t10  
DSB  
Figure 13-7. Motorola Bus Write Timing (BTS = 1)  
t9  
Address Valid  
ADDR[11:0]  
DATA[7:0]  
t7  
t8  
RWB  
t1  
CSB  
t2  
t4  
t6  
DSB  
t10  
250 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 13-2. Receiver AC Characteristics  
(VDD = 3.3V M 5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
648  
1
RCLK Period  
tCP  
ns  
488  
2
tCH  
tCL  
125  
125  
60  
RCLK Pulse Width  
ns  
648  
488  
3
4
RSYSCLK Period  
tSP  
ns  
ns  
60  
tSH  
tSL  
tSU  
30  
30  
20  
RSYSCLK Pulse Width  
RSYNC Setup to RSYSCLK Falling  
RSYNC Pulse Width  
tSH - 5  
ns  
ns  
ns  
ns  
ns  
tPW  
tSU  
tHD  
tD1  
50  
20  
20  
RTIP:RRING Setup to RCLK Falling  
RTIP:RRING Hold From RCLK Falling  
Delay RCLK to RSER, RSIG Valid  
50  
50  
50  
50  
Delay RCLK to RCHCLK, RSYNC, RCHBLK,  
RFSYNC  
tD2  
tD3  
tD4  
ns  
ns  
ns  
Delay RSYSCLK to RSER, RSIG Valid  
Delay RSYSCLK to RCHCLK, RCHBLK,  
RMSYNC, RSYNC  
Note 1:  
Note 2:  
Note 3:  
Note 4:  
T1 Mode.  
E1 Mode.  
RSYSCLK = 1.544MHz.  
RSYSCLK = 2.048MHz.  
251 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-9. Receive Framer Timing—Backplane (T1 Mode)  
RCLK  
t
D1  
F Bit  
RSER / RSIG  
RCHCLK  
t
D2  
t
t
t
D2  
D2  
D2  
RCHBLK  
RFSYNC / RMSYNC  
1
RSYNC  
Notes:  
1. RSYNC is in the output mode  
2. No Relationship between RCHCLK and RCHBLK and other signals is implied  
252 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-11. Receive Side Timing, Elastic Store Enabled (T1 Mode)  
t
t
SL  
SH  
RSYSCLK  
t
SP  
t
D3  
SEE NOTE 3  
RSER / RSIG  
t
D4  
RCHCLK  
RCHBLK  
RMSYNC  
t
D4  
t
t
D4  
D4  
1
RSYNC  
t
HD  
t
SU  
2
RSYNC  
Notes:  
1. RSYNC is in the output mode  
2. RSYNC is in the input mode  
3. F-BIT when RIOCR.4 = 0, MSB of TS0 when RIOCR.4 = 1  
Figure 13-13. Receive Framer Timing—Line Side  
t
t
CL  
CH  
RCLK  
t
t
CP  
SU  
RTIP, RRING  
t
HD  
253 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Table 13-3. Transmit AC Characteristics  
(VDD = 3.3V ±5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
648  
1
tCP  
tCP  
tCH  
tCL  
tSP  
tSP  
tSH  
tSL  
TCLK Period  
ns  
488  
2
125  
125  
60  
TCLK Pulse Width  
TSYSCLK Period  
ns  
ns  
ns  
648  
448  
3
4
60  
30  
TSYSCLK Pulse Width  
30  
tCH - 5  
or  
TSYNC or TSSYNCIO Setup to TCLK or  
TSYSCLK falling  
tSU  
20  
ns  
ns  
tSH - 5  
TSYNC or TSSYNCIO Pulse Width  
tPW  
50  
5
488  
244  
122  
61  
TSSYNCIO Pulse Width  
tPW  
ns  
6, 7  
TSER, TSIG, Setup to TCLK, TSYSCLK Falling  
tSU  
tHD  
20  
ns  
ns  
TSER, TSIG, Hold from TCLK, TSYSCLK  
Falling  
20  
Delay TCLK to TCHBLK, TCHCLK, TSYNC  
Delay TSYSCLK to TCHCLK, TCHBLK  
Delay TCLK to TTIP, TRING  
tD2  
tD3  
tD4  
50  
50  
50  
ns  
ns  
ns  
Delay BPCLK to TSSYNCIO  
tD5  
5
ns  
6
Note 1:  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
Note 6:  
Note 7:  
T1 Mode.  
E1 Mode.  
RSYSCLK = 1.544MHz.  
RSYSCLK = 2.048MHz.  
TSSYNCIO configured as an Input (GTCR2.1 = 0)  
TSSYNCIO configured as an Output (GTCR2.1 = 1)  
Varies depending on the frequency of BPCLK  
254 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-15. Transmit Formatter Timing—Backplane  
t
CP  
t
t
CL  
CH  
TCLK  
t
D1  
TESO  
t
SU  
TSER / TSIG  
t
t
HD  
D2  
TCHCLK  
TCHBLK  
t
D2  
t
D2  
1
TSYNC  
t
HD  
t
SU  
2
TSYNC  
Notes:  
1. TSYNC is in the output mode  
2. TSYNC is in the input mode  
3. TSER is sampled on the falling edge of TCLK when the transmit side elastic store is disabled.  
4. TCHCLK and TCHBLK are synchronous with TCLK when the transmit side elastic store is disabled.  
5. No relationship between TCHCLK and TCHBLK and the other signals is implied.  
255 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 13-17. Transmit Formatter Timing, Elastic Store Enabled  
t
SP  
t
t
SL  
SH  
TSYSCLK  
TSER  
t
SU  
t
t
D3  
HD  
TCHCLK  
TCHBLK  
t
D3  
t
HD  
t
SU  
TSSYNC  
Notes:  
1. TSER is only sampled on the falling edge of TSYSCLK when the transmit side elastic store is enabled.  
2. TCHCLK and TCHBLK are synchronous with TSYSCLK when the transmit side elastic store is enabled.  
Figure 13-19. BPCLK Timing  
BPCLK  
tD5  
TSSYNCIO1  
Notes:  
1. TSSYNCIO is configured as an Output (GTCR2.TSSYNIOSEL = 1)  
Figure 13-20. Transmit Formatter Timing—Line Side  
t
CP  
t
t
CL  
CH  
TCLK  
TTIP, TRING  
t
D3  
256 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
13.2 JTAG Interface Timing  
(VDD = 3.3V M5%, TA = -40°C to +85°C.)  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
JTCLK Clock Period  
t1  
t2:t3  
t4  
t5  
t6  
1000  
500  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTCLK Clock High:Low Time  
JTCLK to JTDI, JTMS Setup Time  
JTCLK to JTDI, JTMS Hold Time  
JTCLK to JTDO Delay  
JTCLK to JTDO HIZ Delay  
JTRST Width Low Time  
50  
5
2
2
2
1
50  
50  
t7  
t8  
100  
Note 1:  
Clock can be stopped high or low.  
Figure 13-22. JTAG Interface Timing Diagram  
t1  
t2  
t3  
JTCLK  
t4  
t5  
JTDI, JTMS, JTRST  
t6  
t7  
JTD0  
t8  
JTRST  
257 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
13.3 System Clock AC Characteristics  
PARAMETER  
SYMBOL  
MIN  
TYP  
MAX  
UNITS  
NOTES  
1.544  
REF_CLK Frequency  
MHz  
2.048  
45  
REF_CLK Duty Cycle  
40  
43  
40  
60  
60  
60  
%
MHz  
%
Gapped Clock Frequency  
Gapped Clock Duty Cycle  
1
Note 1:  
The gapped clock is output on the RCHCLK pin when RESCR.6=1.  
258 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
14. JTAG-BOUNDARY SCAN AND TEST ACCESS PORT  
The DS26528 IEEE 1149.1 design supports the standard instruction codes SAMPLE:PRELOAD, BYPASS, and  
EXTEST. Optional public instructions included are HIGHZ, CLAMP, and IDCODE. See Table 14-1. The DS26528  
contains the following as required by IEEE 1149.1 Standard Test Access Port and Boundary Scan Architecture.  
Test Access Port (TAP)  
TAP Controller  
Instruction Register  
Bypass Register  
Boundary Scan Register  
Device Identification Register  
The Test Access Port has the necessary interface pins; JTRST, JTCLK, JTMS, JTDI, and JTDO. See the pin  
descriptions for details.  
Figure 14-1. JTAG Functional Block Diagram  
BOUNDRY SCAN  
REGISTER  
IDENTIFICATION  
REGISTER  
MUX  
BYPASS  
REGISTER  
INSTRUCTION  
REGISTER  
TEST ACCESS PORT  
CONTROLLER  
SELECT  
OUTPUT ENABLE  
Vdd  
Vdd  
Vdd  
10K  
10K  
10K  
JTDI  
JTMS  
JTCLK  
JTRST  
JTDO  
259 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
TAP CONTROLLER STATE MACHINE  
The TAP controller is a finite state machine that responds to the logic level at JTMS on the rising edge of JTCLK.  
See Figure 14-3.  
Test-Logic-Reset  
Upon power up, the TAP Controller will be in the Test-Logic-Reset state. The Instruction register will contain the  
IDCODE instruction. All system logic of the device will operate normally.  
Run-Test-Idle  
The Run-Test-Idle is used between scan operations or during specific tests. The Instruction register and test  
registers will remain idle.  
Select-DR-Scan  
All test registers retain their previous state. With JTMS LOW, a rising edge of JTCLK moves the controller into the  
Capture-DR state and will initiate a scan sequence. JTMS HIGH during a rising edge on JTCLK moves the  
controller to the Select-IR-Scan state.  
Capture-DR  
Data may be parallel-loaded into the test data registers selected by the current instruction. If the instruction does  
not call for a parallel load or the selected register does not allow parallel loads, the test register will remain at its  
current value. On the rising edge of JTCLK, the controller will go to the Shift-DR state if JTMS is LOW or it will go to  
the Exit1-DR state if JTMS is HIGH.  
Shift-DR  
The test data register selected by the current instruction will be connected between JTDI and JTDO and will shift  
data one stage towards its serial output on each rising edge of JTCLK. If a test register selected by the current  
instruction is not placed in the serial path, it will maintain its previous state.  
Exit1-DR  
While in this state, a rising edge on JTCLK will put the controller in the Update-DR state, which terminates the  
scanning process, if JTMS is HIGH. A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-  
DR state.  
Pause-DR  
Shifting of the test registers is halted while in this state. All test registers selected by the current instruction will  
retain their previous state. The controller will remain in this state while JTMS is LOW. A rising edge on JTCLK with  
JTMS HIGH will put the controller in the Exit2-DR state.  
Exit2-DR  
A rising edge on JTCLK with JTMS HIGH while in this state will put the controller in the Update-DR state and  
terminate the scanning process. A rising edge on JTCLK with JTMS LOW will enter the Shift-DR state.  
Update-DR  
A falling edge on JTCLK while in the Update-DR state will latch the data from the shift register path of the test  
registers into the data output latches. This prevents changes at the parallel output due to changes in the shift  
register.  
Select-IR-Scan  
All test registers retain their previous state. The instruction register will remain unchanged during this state. With  
JTMS LOW, a rising edge on JTCLK moves the controller into the Capture-IR state and will initiate a scan  
sequence for the instruction register. JTMS HIGH during a rising edge on JTCLK puts the controller back into the  
Test-Logic-Reset state.  
Capture-IR  
The Capture-IR state is used to load the shift register in the instruction register with a fixed value. This value is  
loaded on the rising edge of JTCLK. If JTMS is HIGH on the rising edge of JTCLK, the controller will enter the  
Exit1-IR state. If JTMS is LOW on the rising edge of JTCLK, the controller will enter the Shift-IR state.  
260 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Shift-IR  
In this state, the shift register in the instruction register is connected between JTDI and JTDO and shifts data one  
stage for every rising edge of JTCLK towards the serial output. The parallel register, as well as all test registers,  
remains at their previous states. A rising edge on JTCLK with JTMS HIGH will move the controller to the Exit1-IR  
state. A rising edge on JTCLK with JTMS LOW will keep the controller in the Shift-IR state while moving data one  
stage thorough the instruction shift register.  
Exit1-IR  
A rising edge on JTCLK with JTMS LOW will put the controller in the Pause-IR state. If JTMS is HIGH on the rising  
edge of JTCLK, the controller will enter the Update-IR state and terminate the scanning process.  
Pause-IR  
Shifting of the instruction shift register is halted temporarily. With JTMS HIGH, a rising edge on JTCLK will put the  
controller in the Exit2-IR state. The controller will remain in the Pause-IR state if JTMS is LOW during a rising edge  
on JTCLK.  
Exit2-IR  
A rising edge on JTCLK with JTMS LOW will put the controller in the Update-IR state. The controller will loop back  
to Shift-IR if JTMS is HIGH during a rising edge of JTCLK in this state.  
Update-IR  
The instruction code shifted into the instruction shift register is latched into the parallel output on the falling edge of  
JTCLK as the controller enters this state. Once latched, this instruction becomes the current instruction. A rising  
edge on JTCLK with JTMS LOW, will put the controller in the Run-Test-Idle state. With JTMS HIGH, the controller  
will enter the Select-DR-Scan state.  
261 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
Figure 14-3. Tap Controller State Diagram  
Test Logic  
1
Reset  
0
1
1
1
Run Test/  
Select  
Select  
0
Idle  
DR-Scan  
0
IR-Scan  
0
1
1
Capture DR  
Capture IR  
0
0
Shift DR  
Shift IR  
0
1
0
1
1
1
Exit DR  
Exit IR  
0
0
Pause DR  
Pause IR  
0
0
1
1
0
0
Exit2 DR  
Exit2 IR  
1
1
Update DR  
Update IR  
1
0
1
0
262 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
14.1 Instruction Register  
The instruction register contains a shift register as well as a latched parallel output and is 3 bits in length. When the  
TAP controller enters the Shift-IR state, the instruction shift register will be connected between JTDI and JTDO.  
While in the Shift-IR state, a rising edge on JTCLK with JTMS LOW will shift the data one stage towards the serial  
output at JTDO. A rising edge on JTCLK in the Exit1-IR state or the Exit2-IR state with JTMS HIGH will move the  
controller to the Update-IR state. The falling edge of that same JTCLK will latch the data in the instruction shift  
register to the instruction parallel output. Instructions supported by the DS26528 and its respective operational  
binary codes are shown in Table 14-1.  
Table 14-1. Instruction Codes for IEEE 1149.1 Architecture  
INSTRUCTION  
SELECTED REGISTER  
INSTRUCTION CODES  
SAMPLE:PRELOAD  
Boundary Scan  
010  
111  
000  
011  
100  
001  
BYPASS  
Bypass  
EXTEST  
Boundary Scan  
Bypass  
CLAMP  
HIGHZ  
Bypass  
IDCODE  
Device Identification  
SAMPLE:PRELOAD  
This is a mandatory instruction for the IEEE 1149.1 specification. This instruction supports two functions. The  
digital I/Os of the device can be sampled at the boundary scan register without interfering with the normal operation  
of the device by using the Capture-DR state. SAMPLE:PRELOAD also allows the device to shift data into the  
boundary scan register via JTDI using the Shift-DR state.  
BYPASS  
When the BYPASS instruction is latched into the parallel instruction register, JTDI connects to JTDO through the  
one-bit bypass test register. This allows data to pass from JTDI to JTDO not affecting the device’s normal  
operation.  
EXTEST  
This allows testing of all interconnections to the device. When the EXTEST instruction is latched in the instruction  
register, the following actions occur. Once enabled via the Update-IR state, the parallel outputs of all digital output  
pins will be driven. The boundary scan register will be connected between JTDI and JTDO. The Capture-DR will  
sample all digital inputs into the boundary scan register.  
CLAMP  
All digital outputs of the device will output data from the boundary scan parallel output while connecting the bypass  
register between JTDI and JTDO. The outputs will not change during the CLAMP instruction.  
HIGHZ  
All digital outputs of the device will be placed in a high impedance state. The BYPASS register will be connected  
between JTDI and JTDO.  
IDCODE  
When the IDCODE instruction is latched into the parallel instruction register, the identification test register is  
selected. The device identification code will be loaded into the identification register on the rising edge of JTCLK  
following entry into the Capture-DR state. Shift-DR can be used to shift the identification code out serially via  
JTDO. During Test-Logic-Reset, the identification code is forced into the instruction register’s parallel output. The  
ID code will always have a ‘1’ in the LSB position. The next 11 bits identify the manufacturer’s JEDEC number and  
number of continuation bytes followed by 16 bits for the device and 4 bits for the version.  
263 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
14.2 JTAG ID Codes  
Table 14-2. ID Code Structure  
REVISION  
ID[31:28]  
DEVICE CODE  
ID[27:12]  
MANUFACTURER’S CODE  
REQUIRED  
ID[0]  
DEVICE  
ID[11:1]  
DS26528  
DS26524  
Consult factory  
Consult factory  
0000000000110111  
0000000000111001  
00010100001  
00010100001  
1
1
14.3 Test Registers  
IEEE 1149.1 requires a minimum of two test registers; the bypass register and the boundary scan register. An  
optional test register has been included with the DS26528 design. This test register is the identification register and  
is used in conjunction with the IDCODE instruction and the Test-Logic-Reset state of the TAP controller.  
14.4 Boundary Scan Register  
This register contains both a shift register path and a latched parallel output for all control cells and digital I/O cells  
and is n bits in length. See Table 14-3 for all of the cell bit locations and definitions.  
14.5 Bypass Register  
This is a single one-bit shift register used in conjunction with the BYPASS, CLAMP, and HIGHZ instructions, which  
provides a short path between JTDI and JTDO.  
14.6 Identification Register  
The identification register contains a 32-bit shift register and a 32-bit latched parallel output. This register is  
selected during the IDCODE instruction and when the TAP controller is in the Test-Logic-Reset state.  
Table 14-3. Boundary Scan Control Bits  
CONTROL  
CELL  
CONTROL  
CELL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
0
1
2
3
4
5
6
7
8
rser(1)  
controlr  
output3  
controlr  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
rchblk_clk(2)  
rchblk_clk(2)  
rsig(2)  
rsig(2)  
rlf_ltc(2)  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
0
2
19  
rm_rfsync(1)  
rm_rfsync(1)  
rsync(1)  
rsync(1)  
tsig(1)  
tsig(1)  
tsync(1)  
tsync(1)  
tser(1)  
tclk(1)  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
22  
5
8
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
25  
27  
29  
31  
9
al_rsigf_flos(2)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
rser(2)  
rm_rfsync(2)  
rm_rfsync(2)  
rsync(2)  
rsync(2)  
output3  
11  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
34  
tchblk_clk(1)  
tchblk_clk(1)  
16  
264 of 269  
 
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
tsig(2)  
tsig(2)  
tsync(2)  
tsync(2)  
tser(2)  
tclk(2)  
output3  
observe_only  
controlr  
37  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
rsync(7)  
rsync(7)  
rm_rfsync(7)  
rm_rfsync(7)  
rser(7)  
al_rsigf_flos(7)  
rlf_ltc(7)  
rsig(7)  
rsig(7)  
rchblk_clk(7)  
rchblk_clk(7)  
tchblk_clk(8)  
tchblk_clk(8)  
tclk(8)  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
79  
output3  
40  
82  
observe_only  
observe_only  
observe_only  
controlr  
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
85  
87  
89  
91  
tchblk_clk(2)  
tchblk_clk(2)  
mclk  
output3  
45  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
refclkio  
refclkio  
49  
52  
observe_only  
controlr  
output3  
observe_only  
controlr  
bpclk  
output3  
94  
97  
a(12)  
a(11)  
a(10)  
digio_en  
a(9)  
a(8)  
a(7)  
a(6)  
a(5)  
a(4)  
a(3)  
a(2)  
a(1)  
a(0)  
tchblk_clk(7)  
tchblk_clk(7)  
tclk(7)  
tser(7)  
tsync(7)  
tsync(7)  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
97  
98  
99  
output3  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
tser(8)  
tsync(8)  
tsync(8)  
tsig(8)  
tsig(8)  
102  
105  
108  
111  
rsync(8)  
rsync(8)  
rm_rfsync(8)  
rm_rfsync(8)  
rser(8)  
al_rsigf_flos(8)  
output3  
68  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
114  
116  
118  
120  
73  
76  
tsig(7)  
tsig(7)  
rlf_ltc(8)  
rclk(8)  
265 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
rclk(8)  
rclk(7)  
rclk(7)  
rsig(8)  
rsig(8)  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
tsig(6)  
tsig(6)  
tsync(6)  
tsync(6)  
tser(6)  
tclk(6)  
controlr  
output3  
observe_only  
controlr  
164  
123  
126  
129  
132  
135  
output3  
167  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
rchblk_clk(8)  
rchblk_clk(8)  
tchblk_clk(6)  
tchblk_clk(6)  
rchblk_clk(5)  
rchblk_clk(5)  
rsig(5)  
rsig(5)  
rlf_ltc(5)  
172  
175  
178  
rclk(6)  
rclk(6)  
rclk(5)  
rclk(5)  
resetb  
txen_b  
bts  
rsysclk  
tssyncio  
tssyncio  
tsysclk  
rchblk_clk(6)  
rchblk_clk(6)  
rsig(6)  
rsig(6)  
rlf_ltc(6)  
output3  
observe_only  
controlr  
output3  
observe_only  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
181  
183  
185  
187  
al_rsigf_flos(5)  
output3  
142  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
rser(5)  
rm_rfsync(5)  
rm_rfsync(5)  
rsync(5)  
rsync(5)  
tsig(5)  
tsig(5)  
146  
149  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
190  
193  
196  
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
152  
154  
156  
158  
al_rsigf_flos(6)  
tsync(5)  
tsync(5)  
tser(5)  
tclk(5)  
output3  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
rser(6)  
rm_rfsync(6)  
rm_rfsync(6)  
observe_only  
controlr  
output3  
observe_only  
tchblk_clk(5)  
tchblk_clk(5)  
201  
204  
rsync(6)  
rsync(6)  
161  
intb  
output3  
266 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
241  
242  
243  
244  
245  
246  
247  
d(7)  
d(7)  
d(6)  
d(6)  
d(5)  
d(5)  
d(4)  
d(4)  
d(3)  
d(3)  
d(2)  
d(2)  
d(1)  
d(1)  
d(0)  
d(0)  
output3  
observe_only  
output3  
observe_only  
output3  
observe_only  
output3  
observe_only  
output3  
observe_only  
output3  
observe_only  
output3  
observe_only  
controlr  
220  
220  
220  
220  
220  
220  
220  
248  
249  
250  
251  
252  
253  
254  
255  
256  
257  
258  
259  
260  
261  
262  
263  
264  
265  
266  
267  
268  
269  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
280  
281  
282  
283  
284  
285  
286  
287  
288  
289  
rlf_ltc(4)  
rsig(4)  
rsig(4)  
rchblk_clk(4)  
rchblk_clk(4)  
tchblk_clk(3)  
tchblk_clk(3)  
tclk(3)  
tser(3)  
tsync(3)  
tsync(3)  
tsig(3)  
tsig(3)  
rsync(3)  
rsync(3)  
rm_rfsync(3)  
rm_rfsync(3)  
rser(3)  
al_rsigf_flos(3)  
rlf_ltc(3)  
rsig(3)  
rsig(3)  
rchblk_clk(3)  
rchblk_clk(3)  
output3  
controlr  
output3  
247  
249  
252  
255  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
260  
263  
266  
269  
output3  
220  
observe_only  
observe_only  
observe_only  
observe_only  
controlr  
rdb_dsb  
wrb_rwb  
csb  
tchblk_clk(4)  
tchblk_clk(4)  
tclk(4)  
tser(4)  
tsync(4)  
tsync(4)  
tsig(4)  
tsig(4)  
rsync(4)  
rsync(4)  
rm_rfsync(4)  
rm_rfsync(4)  
rser(4)  
al_rsigf_flos(4)  
output3  
226  
observe_only  
observe_only  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
controlr  
output3  
controlr  
output3  
controlr  
output3  
272  
274  
276  
278  
231  
234  
237  
240  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
281  
284  
287  
output3  
observe_only  
controlr  
rclk(4)  
rclk(4)  
rclk(3)  
rclk(3)  
output3  
controlr  
output3  
controlr  
243  
245  
267 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
CONTROL  
CELL  
CONTROL  
CELL#  
NAME  
TYPE  
CELL#  
NAME  
TYPE  
CELL  
290  
291  
292  
293  
294  
295  
296  
297  
rclk(2)  
rclk(2)  
rclk(1)  
rclk(1)  
controlr  
output3  
observe_only  
controlr  
output3  
observe_only  
controlr  
298  
299  
300  
301  
302  
303  
304  
305  
rchblk_clk(1)  
observe_only  
controlr  
output3  
observe_only  
controlr  
290  
293  
296  
rsig(1)  
rsig(1)  
rlf_ltc(1)  
299  
output3  
controlr  
output3  
302  
304  
rchblk_clk(1)  
output3  
al_rsigf_flos(1)  
15. DOCUMENT REVISION HISTORY  
REVISION  
DESCRIPTION  
072304  
New Product Release  
1. Corrected the default direction of RIOCR.RSIO = 1 to show that the default direction of RSYNC is  
Input.  
2. Added Figure 13-3 for BPCLK and TSSYNCIO timing and updated Table 13-3.  
3. Corrected Figure 7-3 to show different relationship of TSSYNCIO depending on the operation mode  
(either Input or Output).  
4. Added Section 9.9.6.3 to provide more details on Sa bit support.  
5. Modified RIM7 register at address 0A6h for E1 mode document additional Sa bit support.  
6. Added E1RSAIMR (014h) for E1 mode to allow Sa bit interrupt masks.  
7. Added SABITS (06Eh) register to indicate the last valid Sa bits received.  
8. Added Sa6CODE (06Fh) register to indicate the reported Sa6 received pattern.  
9. Changed the recommended Line Interface Circuit (Figure 9-11) to match the Telecom App Note  
324.  
10. Corrected the Recommended Supply Decoupling Capacitor values: changed the digital  
120204  
recommended value from 0.1F to 0.01F because the 0.01F value was listed twice.  
11. Figure 8-1 - Added associated port number to each analog ATVDD/ATVSS and ARVDD/ARVSS  
pair to help clarify the recommended decoupling for these pins. Note, the pin locations did not  
change, and the functional description did not change, the numbers 1-8 were only added for  
clarification purposes.  
12. Added a note to TTIP and TRING Pin descriptions in Table 8-1 to clarify that the two pins shown  
should tied together (for example, pins A1 and A2 for TTIP1).  
13. Corrected the AIS (Blue Alarm) set criteria from 5 or less zeros in a 3ms window to 4 or less zeros  
and changed the clear criteria from 6 or more zeros in a 3ms window to 5 or more zeros. This is  
defined in Table 9-23.  
14. Added E1BCR1 and E1EBCR2 to Table 9-22.  
15. Added note to indicate that Transmit Open Circuit Detect and Short Circuit Detect are not functional  
in the CSU modes (T1 LBO 5, 6 and 7). This was added in the bit description of register LLSR Bit 1  
(SCD) and Bit2 (OCD), as well as Section 9.11.2.4.  
1. Removed references to RPOS/RNEG, TPOS/TNEG and replaced them with RTIP/RRING and  
TTIP/TRING for clarification.  
2. Corrected the typical current draw in Section 12.  
012405  
268 of 269  
DS26528 Octal T1/E1/J1 Transceiver  
16. PACKAGE INFORMATION  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline  
information, go to www.maxim-ic.com/DallasPackInfo.)  
269 of 269  
Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product.  
No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2005 Maxim Integrated Products S Printed USA  
are registered trademarks of Maxim Integrated Products, Inc., and Dallas Semiconductor Corporation.  

相关型号:

DS26528_07

Octal T1/E1/J1 Transceiver
DALLAS

DS26556

4-Port Cell/Packet Over T1/E1/J1 Transceiver
MAXIM

DS26556N

4-Port Cell/Packet Over T1/E1/J1 Transceiver
MAXIM

DS26556_07

4-Port Cell/Packet Over T1/E1/J1 Transceiver
MAXIM

DS2660-7ED0TB1

D/A Converter,
BEL

DS2660-7EPB1

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid, HEAT SINK, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0B1

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0B2

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0T

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0TB1

DC-DC Regulated Power Supply Module, 2 Output, Hybrid, METAL, CASE S02, MODULE
BEL

DS2660-7EPD0TB2

DC-DC Regulated Power Supply Module, 2 Output, 100W, Hybrid, METAL, CASE S02, MODULE
BEL