DS4026S3+BCN [MAXIM]

CMOS Output Clock Oscillator, 10MHz Min, 51.84MHz Max, 12.8MHz Nom, ROHS COMPLIANT, SOP-16;
DS4026S3+BCN
型号: DS4026S3+BCN
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

CMOS Output Clock Oscillator, 10MHz Min, 51.84MHz Max, 12.8MHz Nom, ROHS COMPLIANT, SOP-16

文件: 总14页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Rev 2; 4/08  
10MHz to 51.84MHz TCXO  
DS4026  
General Description  
Features  
The DS4026 is a temperature-compensated crystal  
oscillator (TCXO) that provides ±±ppm ꢀreꢁuency staꢂili-  
ty over the -40°C to +85°C industrial temperature range.  
The DS4026 is also availaꢂle in Stratum 3 versions (see  
the Ordering Inꢀormation—Stratum 3 taꢂle). Each device  
is ꢀactory caliꢂrated over temperature to achieve the  
±±ppm ꢀreꢁuency staꢂility. Standard ꢀreꢁuencies ꢀor the  
device include ±0, ±2.8, ±9.44, 20, 38.88, 40, and  
5±.84MHz. Contact the ꢀactory ꢀor custom ꢀreꢁuencies.  
±±11pm FreqrꢀncmꢁnnqFꢂncmꢃOrFmꢄ-40°mꢅtmꢆ+80°  
SꢅꢂꢀdꢂFdm Freqrꢀnirs:m±4,m±2.+,m±9.--,m24,m3+.++,  
-4,m8±.+-MHz  
SꢅFꢂꢅqpm3m Freqrꢀnirs:m±4,m±2.+,m±9.2,m24MHz  
Mꢂxipqpm±-.ꢇ11pmꢈrOiꢂꢅitꢀmꢃOrFm24mꢉrꢂFs  
Miꢀipqpm±+11pmꢊ±811pmꢋtFm±4MHzꢌmꢈiDiꢅꢂꢍ  
2
 FreqrꢀncmTqꢀiꢀDmThFtqDhmI °mIꢀꢅrFꢋꢂnr  
The DS4026 provides excellent phase-noise characteris-  
tics. The output is a push-pull CMOS sꢁuare wave with  
symmetrical rise and ꢀall times. In addition, the DS4026  
is designed to provide a maximum ꢀreꢁuency deviation  
oꢀ less than ±4.6ppm over 20 years. The device also  
SqFꢋꢂnrꢄMtqꢀꢅm±ꢇꢄPiꢀmSꢃmPꢂnkꢂDr  
Pbm Frr/RtHSm°tp1ꢍiꢂꢀꢅ  
2
provides an I C interꢀace to allow pushing and pulling  
Pin Configuration  
oꢀ the output ꢀreꢁuency ꢂy a minimum oꢀ ±8ppm  
(±5ppm ꢀor ±0MHz) with typical ±ppꢂ resolution.  
TOP VIEW  
The DS4026 implements a temperature-to-voltage con-  
version with a nonlinear relationship. The output ꢀrom  
the temperature-to-voltage converter is used to drive  
the voltage-controlled crystal oscillator to compensate  
ꢀor ꢀreꢁuency change.  
+
GNDA  
1
2
3
4
5
6
7
8
16 V  
CCD  
V
REF  
15 FOUT  
14 GNDD  
13 SCL  
12 SDA  
11 GND  
10 N.C.  
V
CC  
The device implements an on-chip temperature sensor  
lookup taꢂle, and a digital-to-analog converter (DAC) to  
V
OSC  
DS4026  
2
GNDOSC  
N.C.  
adjust the ꢀreꢁuency. An I C interꢀace used to commu-  
nicate with the DS4026 perꢀorms temperature readings  
and ꢀreꢁuency push-pull.  
N.C.  
Applications  
N.C.  
9
N.C.  
Reꢀerence Clock Generation  
Telecom/Datacom/SATCOM  
Wireless  
Test and Measurement  
Ordering Information  
OUTPUT (f )  
(MHz, CMOS)  
C
PART  
TEMP RANGE  
PIN-PACKAGE  
TOP MARK*  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
10.00  
10.00  
12.80  
12.80  
16 SO  
16 SO  
16 SO  
16 SO  
DS4026-ACC  
DS4026-ACN  
DS4026-BCC  
DS4026-BCN  
DS4026S+ACC  
DS4026S+ACN  
DS4026S+BCC  
DS4026S+BCN  
-40°C to +85°C  
DS4026S+ECC  
DS4026S+ECN  
DS4026S+FCC  
DS4026S+FCN  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
16.80  
16.80  
16 SO  
16 SO  
16 SO  
16 SO  
DS4026-ECC  
DS4026-ECN  
DS4026-FCC  
DS4026-FCN  
16.384  
16.384  
-40°C to +85°C  
ꢃFdrFiꢀDmIꢀꢋtFpꢂꢅitꢀmntꢀꢅiꢀqrdmꢂꢅmrꢀdmtꢋmdꢂꢅꢂmshrrꢅ.  
+Denotes a lead-ꢀree package.  
*The top mark will include a “+” ꢀor a lead-ꢀree/RoHS-compliant device.  
________________________________________________________________ MꢂxipmIꢀꢅrDFꢂꢅrdmPFtdqnꢅs  
±
 tFm1FiniꢀD,mdrꢍiOrFc,mꢂꢀdmtFdrFiꢀDmiꢀꢋtFpꢂꢅitꢀ,m1ꢍrꢂsrmntꢀꢅꢂnꢅmMꢂxipmꢈiFrnꢅmꢂꢅm±ꢄ+++ꢄꢇ29ꢄ-ꢇ-2,  
tFmOisiꢅmMꢂxip’smwrbsiꢅrmꢂꢅmwww.pꢂxipꢄin.ntp.  
10MHz to 51.84MHz TCXO  
ꢁBSꢃLUTEmMꢁXIMUMmRꢁTINGS  
Voltage Range on V  
V
, and V  
Operating Temperature Range (noncondensing)....-40°C to +85°C  
Storage Temperature Range...............................-40°C to +85°C  
Soldering Temperature...........................Reꢀer to the IPC/JEDEC  
J-STD-020 Speciꢀication.  
CC CCD  
OSC  
,
Relative to Ground..............................................-0.3V to +3.8V  
Voltage Range on SDA, SCL, and FOUT  
Relative to Ground...................................-0.3V to (V  
+ 0.3V)  
CC  
Stresses ꢂeyond those listed under “Aꢂsolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and ꢀunctional  
operation oꢀ the device at these or any other conditions ꢂeyond those indicated in the operational sections oꢀ the speciꢀications is not implied. Exposure to  
aꢂsolute maximum rating conditions ꢀor extended periods may aꢀꢀect device reliaꢂility.  
DS4026  
RE°ꢃMMENꢈEꢈmꢈ°mꢃPERꢁTINGm°ꢃNꢈITIꢃNSm  
(T = -40°C to +85°C, unless otherwise noted.)  
A
PARAMETER  
Power-Supply Voltage  
Oscillator Power Supply  
Driver Power Supply  
SYMBOL  
CONDITIONS  
MIN  
TYP  
3.3  
3.3  
3.3  
MAX  
3.465  
3.465  
3.465  
UNITS  
V
CC  
3.135  
3.135  
3.135  
V
V
V
V
OSC  
CCD  
V
ꢈ°mELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S  
(V  
CC  
= 3.±35V to 3.465V, T = -40°C to +85°C, unless otherwise noted.) (Notes ±, 2, 3)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Active-Supply Current  
I
(Note 4)  
1.5  
2.5  
mA  
CC  
CC  
FOUT CMOS output on, CL = 10pF,  
frequency < 25MHz  
3
5
2
3
4
9
3
5
Oscillator Active-Supply  
OSC  
I
mA  
mA  
OSC  
Current  
FOUT CMOS output on, CL = 10pF,  
frequency 25MHz  
FOUT CMOS output on, CL = 10pF,  
frequency < 25MHz  
V
CCD  
Driver Active-Supply  
I
CCD  
Current  
FOUT CMOS output on, CL = 10pF,  
frequency 25MHz  
SCL Input Leakage  
SDA Leakage  
I
-1  
-1  
+1  
+1  
μA  
μA  
LI  
I
Output off  
LO  
0.7 x  
V
CC  
+ 0.3  
SCL, SDA High Input Voltage  
SCL, SDA Low Input Voltage  
V
V
V
IH  
V
CC  
+0.3 x  
V
-0.3  
2.4  
IL  
V
CC  
SDA Logic 0 Output  
I
V
V
V
= 3.0V, V = 0.4V  
3
mA  
V
OL  
CC  
OL  
FOUT High Output Voltage  
FOUT Low Output Voltage  
FOUT Rise/Fall Time  
FOUT Duty Cycle  
V
= 3V, I  
= -2mA  
OH  
OH  
CCD  
CCD  
V
= 3V, I = 2.0mA  
0.4  
55  
V
OL  
OL  
t /t  
R F  
(0.1 x V  
) - (0.9 x V  
(Note 5)  
)
CCD  
2
ns  
%
CCD  
t
0.5 x V  
45  
D
CCD  
2
_______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
ꢁ°mELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S—T°Xꢃ  
(V  
CC  
= 3.±35V to 3.465V, T = -40°C to +85°C, unless otherwise noted.) (Note ±)  
A
PARAMETER  
SYMBOL  
f/f  
CONDITIONS  
CL = 10pF to ground  
MIN  
TYP  
MAX  
UNITS  
Frequency Stability vs.  
Temperature  
f
C
f
C
+ 1ppm  
f
C
ppm  
C
– 1ppm  
f  
VOLTAGE  
Frequency Stability vs. Voltage  
CL = 10pF to ground, +25°C  
(Note 5)  
-2  
+2  
ppm/V  
ppm  
/f  
C
First Year  
Aging  
-1  
-2  
8
+1  
+2  
f  
/f  
AGING C  
Years 2–20  
Except 10MHz  
10MHz  
15  
10  
1
Frequency Pull  
Range  
FTUNEH = 3Fh and FTUNEL = FFh;  
FTUNEH = 40h and FTUNEL = 00h at +25°C  
f/f  
ppm  
ppb  
C
5
Frequency Pull Resolution  
f  
/f  
RES C  
ꢁ°mELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S—STRꢁTUMm3  
(V  
CC  
= +3.±35V to +3.465V, T = -40°C to +85°C, unless otherwise noted.) (Note ±)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STRATUM 3 FREQUENCY STABILITY  
Frequency Stability vs.  
Temperature  
f  
/f  
-40°C to +85°C (Note 6)  
T = +25°C, 3°C and V = 3.3V  
C A  
-0.28  
-0.8  
+0.28  
+0.8  
ppm  
ppm  
ppm  
TEMP C  
Initial Tolerance and Reflow  
f  
/f  
INITIAL  
DD  
f  
V = 3.3V 5%, C = 10pF to ground,  
CC L  
VOLTAGE  
Frequency Stability vs. Voltage  
-0.33  
+0.33  
/f  
C
+25°C (Note 7)  
Frequency Stability vs.  
Aging/20 Years  
f  
/f  
f
= Nominal (Note 8)  
-3.0  
-0.1  
+3.0  
+0.1  
ppm  
ppm  
ppm  
ppm  
AGING C  
C
Frequency Stability vs. Load  
Change  
f  
/f  
Load = 10pF 5%, +25°C (Note 5)  
LOAD C  
Operating temperature, load, supply, and  
initial tolerance, aging (20 years) (Notes 5, 8)  
Free-Run Accuracy  
-4.6  
+4.6  
f  
24HOURS  
Holdover Stability (24 Hours)  
24-hour elapsed time (Notes 5, 9)  
-0.32  
+0.32  
/f  
C
PHꢁSEmNꢃISE  
PHASE NOISE (dBc/Hz) (TYPICAL, +25°C, 3.3V)  
OFFSET (MHz)  
12.80  
10Hz  
100Hz  
-130.16  
-125.12  
-120.76  
-120.06  
-115.44  
-120.39  
-134.83  
-128.53  
-126.20  
-119.45  
1kHz  
10kHz  
-150.84  
-146.87  
-150.96  
-150.59  
-151.59  
-151.14  
-150.84  
-150.78  
-151.90  
-150.33  
100kHz  
-151.71  
-151.69  
-151.18  
-152.50  
-152.37  
-153.21  
-151.25  
-152.72  
-152.28  
-150.34  
1MHz  
-88.41  
-82.63  
-83.71  
-79.01  
-80.80  
-74.09  
-92.52  
-87.44  
-89.6  
-147.84  
-145.03  
-145.44  
-141.75  
-141.17  
-142.33  
-147.22  
-147.67  
-146.88  
-143.08  
-151.87  
-151.52  
-151.45  
-153.06  
-153.00  
-153.94  
-150.84  
-151.75  
-151.93  
-150.67  
19.44  
20.00  
CARRIER  
FREQUENCY  
38.88  
40.00  
51.84  
10.0  
16.384  
16.8  
24.0  
-83.98  
_______________________________________________________________________________________  
3
10MHz to 51.84MHz TCXO  
TEMPERꢁTUREmSENSꢃRmELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S  
(V  
CC  
= 3.±35V to 3.465V, T = -40°C to +85°C, unless otherwise noted.) (Note ±)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Temperature Sensor Accuracy  
T  
-3  
+3  
°C  
Temperature Sensor Conversion  
Time  
t
11  
12  
ms  
CONVT  
DS4026  
Temperature Sensor Resolution  
N2  
Bits  
2
ꢁ°mELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S—I °mSERIꢁLmINTER ꢁ°E  
(V  
CC  
= 3.±35V to 3.465V, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
100  
UNITS  
Standard mode  
Fast mode  
0
100  
SCL Clock Frequency  
f
kHz  
SCL  
BUF  
400  
Standard mode  
Fast mode  
4.7  
Bus Free Time Between STOP  
and START Conditions  
t
μs  
μs  
μs  
μs  
μs  
ns  
μs  
ns  
ns  
μs  
pF  
1.3  
Standard mode  
Fast mode  
4.0  
Hold Time (Repeated) START  
Condition (Note 10)  
t
HD:STA  
0.6  
Standard mode  
Fast mode  
4.7  
Low Period of SCL Clock  
High Period of SCL Clock  
t
LOW  
1.3  
Standard mode  
Fast mode  
4.0  
t
HIGH  
0.6  
Standard mode  
Fast mode  
0
0.9  
0.9  
Data Hold Time  
(Notes 11, 12)  
t
t
t
HD:DAT  
SU:DAT  
SU:STA  
0
Standard mode  
Fast mode  
250  
Data Setup Time (Note 13)  
START Setup Time  
100  
Standard mode  
Fast mode  
4.7  
0.6  
Standard mode  
Fast mode  
20 + 0.1C  
20 + 0.1C  
20 + 0.1C  
20 + 0.1C  
4.7  
1000  
300  
300  
300  
Rise Time of Both SDA and SCL  
Signals (Note 14)  
B
t
R
B
B
B
Standard mode  
Fast mode  
Fall Time of Both SDA and SCL  
Signals (Note 14)  
t
F
Standard mode  
Fast mode  
Setup Time for STOP Condition  
t
SU:STO  
0.6  
Pin Capacitance SDA, SCL  
(Note 5)  
C
10  
I/O  
-
_______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
2
ꢁ°mELE°TRI°ꢁLm°HꢁRꢁ°TERISTI°S—I °mSERIꢁLmINTER ꢁ°Emꢊntꢀꢅiꢀqrdꢌ  
(V  
CC  
= 3.±35V to 3.465V, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Capacitive Load for Each Bus  
Line (Note 14)  
C
400  
pF  
B
Pulse Width of Spikes That Must  
Be Suppressed by the Input  
Filter  
t
Fast mode  
30  
ns  
SP  
Ntꢅrm±: Typical values are at +25°C, nominal supply voltages, unless otherwise indicated.  
Ntꢅrm2: Voltages reꢀerenced to ground.  
Ntꢅrm3: Limits at -40°C are guaranteed ꢂy design and not production tested.  
2
Ntꢅrm-: Speciꢀied with I C ꢂus inactive.  
Ntꢅrm8: Guaranteed ꢂy design and not production tested.  
Ntꢅrmꢇ: Freꢁuency staꢂility vs. temperature is deꢀined as (Δꢀ  
- Δꢀ )/2.  
MIN  
MAX  
Ntꢅrm7: Maximum power-supply variations to meet the speciꢀication are 5%.  
Ntꢅrm+: Crystal vendor speciꢀication.  
Ntꢅrm9: Holdover is deꢀined as (ꢀ  
- ꢀ  
)/2 as measured within a 24-hour period. Warmup time = ± hour.  
MAX MIN  
Ntꢅrm±4: Aꢀter this period, the ꢀirst clock pulse is generated.  
Ntꢅrm±±: A device must internally provide a hold time oꢀ at least 300ns ꢀor the SDA signal (reꢀerred to the V  
to ꢂridge the undeꢀined region oꢀ the ꢀalling edge oꢀ SCL.  
oꢀ the SCL signal)  
IH(MIN)  
Ntꢅrm±2: The maximum t  
need only ꢂe met iꢀ the device does not stretch the low period (t  
) oꢀ the SCL signal.  
LOW  
HD:DAT  
Ntꢅrm±3: A ꢀast-mode device can ꢂe used in a standard-mode system, ꢂut the reꢁuirement that t  
250ns must then ꢂe met.  
SU:DAT  
This is automatically the case iꢀ the device does not stretch the low period oꢀ the SCL signal. Iꢀ such a device does not  
stretch the low period oꢀ the SCL signal, it must output the next data ꢂit to the SDA line t  
±250ns ꢂeꢀore the SCL line is released.  
+ t  
= ±000 + 250 =  
R(MAX)  
SU:DAT  
Ntꢅrm±-: C —total capacitance oꢀ one ꢂus line in pF.  
B
2
Data Transfer on I C Serial Bus  
SDA  
t
BUF  
t
SP  
t
HD:STA  
t
LOW  
t
R
t
F
SCL  
t
SU:STA  
t
HD:STA  
t
HIGH  
t
SU:STO  
t
REPEATED  
START  
SU:DAT  
STOP  
START  
t
HD:DAT  
_______________________________________________________________________________________  
8
10MHz to 51.84MHz TCXO  
Typical Operating Characteristics  
(V  
CC  
= +3.3V, T = +25°C, unless otherwise noted.)  
A
ACTIVE-SUPPLY CURRENT  
vs. DRIVER POWER SUPPLY  
ACTIVE-SUPPLY CURRENT  
vs. OSCILLATOR POWER SUPPLY  
ACTIVE-SUPPLY CURRENT  
vs. POWER-SUPPLY CURRENT  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.6  
2
10.0  
8.0  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
51.84  
51.84  
12.8  
51.84  
6.0  
4.0  
12.8  
12.8  
2.0  
-0.1  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
3.0  
3.1  
3.2  
3.3  
(V)  
3.4  
3.5  
3.6  
V
V
V
OSC  
CCD  
CC  
FREQUENCY vs. FTUNE  
PHASE NOISE (TYP)  
FREQUENCY vs. TEMPERATURE  
20  
15  
20  
18  
15  
13  
10  
8
5
3
0
-3  
-5  
-8  
-10  
-13  
-5.0  
-30.0  
DCOMP = 1  
51.84  
10  
5
-55.0  
51.84MHz  
12.8  
0
19.44MHz  
-80.0  
-5  
DCOMP = 0  
-105.0  
-130.0  
-155.0  
-180.0  
-10  
-15  
-20  
-25  
-30  
38.88MHz  
12.8MHz  
100  
-15  
4000h  
000h  
3FFFh  
10  
1000  
10,000 100,000 1,000,000  
-20  
40  
TEMPERATURE (°C)  
60  
80  
-40  
0
20  
VC (V)  
OFFSET (Hz)  
_______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
Pin Description  
PIN  
1
NAME  
FUNCTION  
GNDA  
Ground for DAC  
2
V
REF  
Voltage Reference Output. This pin must be decoupled with a 100μF ceramic capacitor to ground.  
Power Supply for Digital Control and Temperature Sensor. This pin must be decoupled with a  
100nF capacitor to ground.  
3
V
CC  
4
5
V
Power Supply for Oscillator Circuit. This pin must be decoupled with a 0.1μF capacitor to ground.  
Ground for Oscillator Circuit  
OSC  
GNDOSC  
N.C.  
6–10  
11  
No Connection. Must be connected to ground.  
GND  
Ground for Digital Control, Temperature Sensor, and Controller Substrate  
2
Serial Data Input/Output. SDA is the data input/output for the I C interface. This open-drain pin  
requires an external pullup resistor.  
12  
13  
SDA  
SCL  
2
Serial Clock Input. SCL is the clock input for the I C Interface and is used to synchronize data  
movement on the serial interface.  
14  
15  
GNDD  
FOUT  
Ground for Oscillator Output Driver  
Frequency Output, CMOS Push-Pull  
Power Supply for Oscillator Output Driver. This pin must be decoupled with a 0.1μF capacitor to  
16  
V
CCD  
ground. A 20resistor must be placed in series between the power supply and V  
.
CCD  
20Ω  
GNDA  
V
CCD  
100μF 20%  
CERAMIC  
0.1μF  
3.3V 5%  
FOUT  
V
GNDD  
REF  
CC  
DS4026  
V
SCL  
SDA  
0.1μF  
3.3V  
V
OSC  
0.1μF  
3.3V  
GNDOSC  
N.C.  
GND  
N.C.  
N.C.  
N.C.  
N.C.  
Figure ±. Typical Operating Circuit  
_______________________________________________________________________________________  
7
10MHz to 51.84MHz TCXO  
V
CC  
V
CC  
EEPROM  
ARRAY  
TEMP  
SENSOR  
A/D  
DS4026  
GND  
GND  
V
CC  
V
CC  
V
REF  
SCL  
SDA  
2
I C  
CONTROLLER  
DAC  
INTERFACE  
DS4026  
GNDA  
GND  
GND  
V
CCD  
V
OSC  
CMOS  
BUFFER  
FOUT  
GNDOSC  
GNDD  
Figure 2. Functional Diagram  
• Controller to read the temperature, control lookup  
taꢂle, and adjust the DAC input  
Detailed Description  
The DS4026 is a TCXO capaꢂle oꢀ operating at 3.3V  
±5%, and it allows digital tuning oꢀ the ꢀundamental ꢀre-  
ꢁuency. The device is caliꢂrated in the ꢀactory to  
achieve an accuracy oꢀ ±±ppm over the industrial tem-  
perature range, and its minimum pullaꢂility is ±8ppm  
with a typical resolution oꢀ ±ppꢂ (typ) per LSB.  
• DAC output to adjust the capacitive load  
2
• I C interꢀace to communicate with the chip  
The oscillator ꢂlock consists oꢀ an ampliꢀier and variaꢂle  
capacitor in a Pierce crystal oscillator with a crystal res-  
onator oꢀ ꢀundamental mode. The oscillator ampliꢀier is a  
single transistor ampliꢀier and its transconductance is  
temperature compensated. The variaꢂle capacitor is  
adjusted ꢂy the DAC to provide temperature compensa-  
tion. With the FTUNEH and FTUNEL registers, a minimum  
pullaꢂility oꢀ ±8ppm (±5ppm ꢀor ±0MHz) is achieved with  
a typical resolution oꢀ ±ppꢂ (typ) per LSB.  
The DS4026 contains the ꢀollowing ꢂlocks:  
• Oscillator ꢂlock with variaꢂle capacitor ꢀor compen-  
sation  
• Output driver ꢂlock  
• Temperature sensor  
+
_______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
The output driver is a CMOS sꢁuare-wave output with  
symmetrical rise and ꢀall time.  
Address Map  
Disable Compensation Update (DCOMP)  
DCOMP is ꢂit 7 oꢀ the ꢀreꢁuency tuning register (see  
the Freꢁuency Tuning Register (00h–0±h), POR = 00h  
taꢂle). When set to logic ±, this ꢂit’s temperature-com-  
pensation ꢀunction is disaꢂled. This disaꢂling prevents  
the variaꢂle capacitor in the oscillator ꢂlock ꢀrom  
changing. However, the temperature register still per-  
ꢀorms temperature conversions. The temperature trim  
code ꢀrom the last temperature conversion ꢂeꢀore  
DCOMP is enaꢂled is used ꢀor temperature compensa-  
tion. The FTUNE registers are still ꢀunctional when  
DCOMP is disaꢂled.  
The temperature sensor provides a ±2-ꢂit temperature  
reading with a resolution oꢀ 0.0625°C. The sensor is in  
continuous conversion mode. Iꢀ DCOMP is set, conver-  
sions continue ꢂut temperature updates are inhiꢂited.  
The controller coordinates the conversion oꢀ tempera-  
ture into digital codes. When the temperature reading is  
diꢀꢀerent ꢀrom the previous one or the ꢀreꢁuency tuning  
register is changed, the controller looks up the two cor-  
responding capacitance trim codes ꢀrom the lookup  
taꢂle at a 0.5°C increment. The trim codes are interpo-  
lated to 0.0625°C resolution.  
The result is added with the tuning value ꢀrom the ꢀre-  
ꢁuency tuning register and loaded into the DAC regis-  
ters to adjust voltage output. The monotonic DAC  
provides an analog voltage ꢂased on temperature  
compensation to drive the variaꢂle capacitor.  
The ꢀreꢁuency tuning registers adjust the ꢂase ꢀreꢁuen-  
cy. The ꢀreꢁuency tuning value is represented in two’s  
complement data. Bit 6 oꢀ FTUNEH is the sign, ꢂit 5 is  
the MSB, and ꢂit 0 oꢀ FTUNEL is the LSB (see Taꢂle ±).  
When the tuning register low (0±h) is programmed with  
a value, the next temperature update cycle sums the  
programmed value with the ꢀactory compensated  
value. This allows the user to digitally control the ꢂase  
The DS4026 operates as a slave device on the serial  
ꢂus. Access is oꢂtained ꢂy implementing a START  
condition and providing a device identiꢀication code ꢀol-  
lowed ꢂy data. Suꢂseꢁuent registers can ꢂe accessed  
seꢁuentially until a STOP condition is executed.  
2
ꢀreꢁuency using the I C protocol.  
These ꢀreꢁuency tuning register ꢂits allow the tuning oꢀ  
the ꢂase ꢀreꢁuency. Each ꢂit typically represents  
aꢂout ±ppꢂ (typ). For FTUNEH = 3Fh and FTUNEL =  
FFh, the device pushes the ꢂase ꢀreꢁuency ꢂy approx-  
imately +±5ppm.  
Frequency Tuning Register (00h–01h), POR = 00h  
ADDRESS  
00h  
BIT 7  
DCOMP  
0
BIT 6  
Sign  
0
BIT 5  
Data  
0
BIT 4  
Data  
0
BIT 3  
Data  
0
BIT 2  
Data  
0
BIT 1  
Data  
0
BIT 0  
Data  
0
POR  
01h  
Data  
0
Data  
0
Data  
0
Data  
0
Data  
0
Data  
0
Data  
0
Data  
0
POR  
Temperature Register (02h–03h)  
ADDRESS  
02h  
BIT 7  
Sign  
0
BIT 6  
Data  
0
BIT 5  
Data  
0
BIT 4  
Data  
0
BIT 3  
BIT 2  
BIT 1  
BIT 0  
Data  
Data  
Data  
Data  
POR  
0
0
0
0
0
0
0
0
0
0
0
0
03h  
Data  
0
Data  
0
Data  
0
Data  
0
POR  
_______________________________________________________________________________________  
9
10MHz to 51.84MHz TCXO  
Tꢂbꢍrm±.mRrDisꢅrFmMꢂ1  
ADDRESS  
BIT 7  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
FTUNEH  
FTUNEL  
TREGH  
TREGL  
BIT 2  
BIT 1  
BIT 0  
FUNCTION  
00  
01  
02  
03  
DCOMP  
SIGN  
Frequency Tuning High  
Frequency Tuning Low  
Temperature MSB  
SIGN  
DS4026  
Temperature LSB  
2
Read Mode  
I C Serial Data Bus  
In the temperature register (see the Temperature  
Register (02h–03h) taꢂle), temperature is represented  
as a ±2-ꢂit code and is accessiꢂle at location 02h and  
03h. The upper 8 ꢂits are at location 02h and the lower  
4 ꢂits are in the upper niꢂꢂle oꢀ the ꢂyte at location  
03h. Upon power reset, the registers are set to a +25°C  
deꢀault temperature and the controller starts a tempera-  
ture conversion. The temperature register stores new  
temperature readings.  
2
The DS4026 supports a ꢂidirectional I C ꢂus and data  
transmission protocol. A device that sends data onto  
the ꢂus is deꢀined as a transmitter and a device receiv-  
ing data is deꢀined as a receiver. The device that con-  
trols the message is called a master. The devices that  
are controlled ꢂy the master are slaves. The ꢂus must  
ꢂe controlled ꢂy a master device that generates the  
serial clock (SCL), controls the ꢂus access, and gener-  
ates the START and STOP conditions. The DS4026  
2
The current temperature is loaded into the (user) tem-  
perature registers when a valid I C slave address and  
write is received and when a word address is received.  
Conseꢁuently, iꢀ the two temperature registers are read  
in individual I C transactions, it is possiꢂle ꢀor a tem-  
operates as a slave on the I C ꢂus. Connections to the  
2
ꢂus are made through the open-drain I/O lines SDA  
and SCL. Within the ꢂus speciꢀications, a standard  
mode (±00kHz maximum clock rate) and a ꢀast mode  
(400kHz maximum clock rate) are deꢀined. The DS4026  
works in ꢂoth modes.  
2
perature conversion to occur ꢂetween reads, and the  
results can ꢂe inaccurate. To prevent this ꢀrom occur-  
ring, the registers should ꢂe read using a single, multi-  
The ꢀollowing ꢂus protocol has ꢂeen deꢀined (Figure 3):  
2
• Data transꢀer can ꢂe initiated only when the ꢂus is  
not ꢂusy.  
ꢂyte read operation (Figure 5). I C reads do not aꢀꢀect  
the internal temperature registers.  
SDA  
MSB  
SLAVE ADDRESS  
R/W  
ACKNOWLEDGEMENT  
SIGNAL FROM RECEIVER  
DIRECTION  
BIT  
ACKNOWLEDGEMENT  
SIGNAL FROM RECEIVER  
SCL  
1
2
6
7
8
9
1
2
3–7  
8
9
ACK  
ACK  
START  
CONDITION  
STOP  
CONDITION  
OR REPEATED  
START  
REPEATED IF MORE BYTES  
ARE TRANSFERED  
CONDITION  
2
Figure 3. I C Data Transꢀer Overview  
±4 ______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
• During data transꢀer, the data line must remain staꢂle  
A device that acknowledges must pull down the SDA  
line during the acknowledge clock pulse in such a  
way that the SDA line is staꢂle low during the high  
period oꢀ the acknowledge-related clock pulse. Oꢀ  
course, setup and hold times must ꢂe taken into  
account. A master must signal an end oꢀ data to the  
slave ꢂy not generating an acknowledge ꢂit on the  
last ꢂyte that has ꢂeen clocked out oꢀ the slave. In  
this case, the slave must leave the data line high to  
enaꢂle the master to generate the STOP condition.  
whenever the clock line is high. Changes in the data  
line while the clock line is high are interpreted as  
control signals.  
Accordingly, the ꢀollowing ꢂus conditions have ꢂeen  
deꢀined:  
Bqsmꢀtꢅmbqsc: Both data and clock lines remain  
high.  
STꢁRTmdꢂꢅꢂmꢅFꢂꢀsꢋrF: A change in the state oꢀ the  
data line ꢀrom high to low, while the clock line is high,  
deꢀines a START condition.  
Figures 4 and 5 detail how data transꢀer is accom-  
2
plished on the I C ꢂus. Depending upon the state oꢀ  
STꢃPmdꢂꢅꢂmꢅFꢂꢀsꢋrF: A change in the state oꢀ the  
data line ꢀrom low to high, while the clock line is high,  
deꢀines a STOP condition.  
the R/W ꢂit, two types oꢀ data transꢀer are possiꢂle:  
ꢈꢂꢅꢂmꢅFꢂꢀsꢋrFmꢋFtpmꢂmpꢂsꢅrFmꢅFꢂꢀspiꢅꢅrFmꢅtmꢂmsꢍꢂOr  
FrnriOrF.mThe ꢀirst ꢂyte transmitted ꢂy the master is  
the slave address. Next ꢀollows a numꢂer oꢀ data  
ꢂytes. The slave returns an acknowledge (ACK) ꢂit  
aꢀter each received ꢂyte.  
ꢈꢂꢅꢂmOꢂꢍid: The state oꢀ the data line represents valid  
data when, aꢀter a START condition, the data line is  
staꢂle ꢀor the duration oꢀ the high period oꢀ the clock  
signal. The data on the line must ꢂe changed during  
the low period oꢀ the clock signal. There is one clock  
pulse per ꢂit oꢀ data.  
ꢈꢂꢅꢂmꢅFꢂꢀsꢋrFmꢋFtpmꢂmsꢍꢂOrmꢅFꢂꢀspiꢅꢅrFmꢅtmꢂmpꢂsꢅrF  
FrnriOrF.mThe ꢀirst ꢂyte (the slave address) is trans-  
mitted ꢂy the master. The slave then returns an  
acknowledge ꢂit. Next ꢀollows a numꢂer oꢀ data  
ꢂytes transmitted ꢂy the slave to the master. The  
master returns an acknowledge ꢂit aꢀter all received  
ꢂytes other than the last ꢂyte. At the end oꢀ the last  
received ꢂyte, a not acknowledge (NACK) is  
returned.  
Each data transꢀer is initiated with a START condition  
and terminated with a STOP condition. The numꢂer  
oꢀ data ꢂytes transꢀerred ꢂetween the START and the  
STOP conditions is not limited, and is determined ꢂy  
the master device. The inꢀormation is transꢀerred  
ꢂyte-wise and each receiver acknowledges with a  
ninth ꢂit.  
The master device generates all the serial clock  
pulses and the START and STOP conditions. A trans-  
ꢀer is ended with a STOP condition or with a repeat-  
ed START condition. Because a repeated START  
condition is also the ꢂeginning oꢀ the next serial  
transꢀer, the ꢂus is not released.  
ꢁnkꢀtwꢍrdDr:m Each receiving device, when  
addressed, is oꢂliged to generate an acknowledge  
(ACK) aꢀter the reception oꢀ each ꢂyte. The master  
device must generate an extra clock pulse that is  
associated with this acknowledge ꢂit.  
<SLAVE  
ADDRESS>  
<SLAVE  
ADDRESS>  
<WORD  
<DATA (n)>  
<DATA (n + 1)> <DATA (n + 2)> <DATA (n + X)>  
ADDRESS (n)> <DATA (n)> <DATA (n + 1)> <DATA (n + X)>  
S 1000001 1 A XXXXXXXX A XXXXXXXX A XXXXXXXX A XXXXXXXX A P  
S 1000001 0 A XXXXXXXX A XXXXXXXX A XXXXXXXX A XXXXXXXX A P  
S = START  
DATA TRANSFERRED  
S = START  
DATA TRANSFERRED  
A = ACKNOWLEDGE  
(X + 1 BYTES + ACKNOWLEDGE)  
P = STOP  
(X + 1 BYTES + ACKNOWLEDGE)  
A = ACKNOWLEDGE  
NOTE: LAST DATA BYTE IS FOLLOWED BY  
P = STOP  
R/W = READ/WRITE OR DIRECTION BIT ADDRESS = 82h  
A NOT ACKNOWLEDGE (A) SIGNAL  
A = NOT ACKNOWLEDGE  
R/W = READ/WRITE OR DIRECTION BIT ADDRESS = 83h  
Figure 4. Slave Receiver Mode (Write Mode)  
Figure 5. Slave Transmitter Mode (Read Mode)  
______________________________________________________________________________________ ±±  
10MHz to 51.84MHz TCXO  
The DS4026 can operate in the ꢀollowing two modes:  
SꢍꢂOrmꢅFꢂꢀspiꢅꢅrFmptdrmꢊFrꢂdmptdrꢌ: The ꢀirst ꢂyte  
is received and handled as in the slave receiver  
mode. However, in this mode, the direction ꢂit indi-  
cates that the transꢀer direction is reversed. Serial  
data is transmitted on SDA ꢂy the DS4026 while the  
serial clock is input on SCL. START and STOP condi-  
tions are recognized as the ꢂeginning and end oꢀ a  
serial transꢀer. Address recognition is perꢀormed ꢂy  
hardware aꢀter reception oꢀ the slave address and  
direction ꢂit. The slave address ꢂyte is the ꢀirst ꢂyte  
received aꢀter the master generates a START condi-  
tion. The slave address ꢂyte contains the 7-ꢂit  
DS4026 address, which is ±00000±, ꢀollowed ꢂy the  
direction ꢂit (R/W), which is ± ꢀor a read. Aꢀter receiv-  
ing and decoding the slave address ꢂyte, the  
DS4026 outputs an acknowledge on SDA. The  
DS4026 then ꢂegins to transmit data starting with the  
register address pointed to ꢂy the register pointer. Iꢀ  
the register pointer is not written to ꢂeꢀore the initia-  
tion oꢀ a read mode, the ꢀirst address that is read is  
the last one stored in the register pointer. The  
DS4026 must receive a not acknowledge to end a  
read.  
SꢍꢂOrmFrnriOrFmptdrmꢊwFiꢅrmptdrꢌ: Serial data and  
clock are received through SDA and SCL. Aꢀter each  
ꢂyte is received, an acknowledge ꢂit is transmitted.  
START and STOP conditions are recognized as the  
ꢂeginning and end oꢀ a serial transꢀer. Address  
recognition is perꢀormed ꢂy hardware aꢀter reception  
oꢀ the slave address and direction ꢂit. The slave  
address ꢂyte is the ꢀirst ꢂyte received aꢀter the mas-  
ter generates a START condition. The slave address  
ꢂyte contains the 7-ꢂit DS4026 address, which is  
±00000±, ꢀollowed ꢂy the direction ꢂit (R/W), which is  
0 ꢀor a write. Aꢀter receiving and decoding the slave  
address ꢂyte, the DS4026 outputs an acknowledge  
on SDA. Aꢀter the DS4026 acknowledges the slave  
address and write ꢂit, the master transmits a word  
address to the DS4026. This sets the register pointer  
on the DS4026, with the DS4026 acknowledging the  
transꢀer. The master can then transmit zero or more  
ꢂytes oꢀ data, with the DS4026 acknowledging each  
ꢂyte received. The register pointer increments aꢀter  
each data ꢂyte is transꢀerred. The master generates  
a STOP condition to terminate the data write.  
DS4026  
±2 ______________________________________________________________________________________  
10MHz to 51.84MHz TCXO  
DS4026  
Ordering Information (continued)  
OUTPUT (f )  
C
(MHz, CMOS)  
PART  
TEMP RANGE  
PIN-PACKAGE  
TOP MARK*  
DS4026S+HCC  
DS4026S+HCN  
DS4026S+JCC  
DS4026S+JCN  
DS4026S+MCC  
DS4026S+MCN  
DS4026S+PCC  
DS4026S+PCN  
DS4026S+QCC  
DS4026S+QCN  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
-40°C to +85°C  
19.44  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
16 SO  
DS4026-HCC  
DS4026-HCN  
DS4026-JCC  
DS4026-JCN  
DS4026-MCC  
DS4026-MCN  
DS4026-PCC  
DS4026-PCN  
DS4026-QCC  
DS4026-QCN  
19.44  
20.00  
20.00  
38.88  
38.88  
40.00  
40.00  
51.84  
51.84  
DS4026S+RCC  
0°C to +70°C  
24.00  
24.00  
16 SO  
16 SO  
DS4026-RCC  
DS4026-RCN  
DS4026S+RCN  
-40°C to +85°C  
+Denotes a lead-ꢀree package.  
*The top mark will include a “+” ꢀor a lead-ꢀree/RoHS-compliant device.  
Ordering Information—Stratum 3  
OUTPUT (f )  
(MHz, CMOS)  
C
PART  
TEMP RANGE  
PIN-PACKAGE  
TOP MARK*  
DS4026S3+ACN  
DS4026S3+BCN  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
10.00  
12.80  
19.20  
20.00  
16 SO  
16 SO  
16 SO  
16 SO  
DS4026S3-ACN  
DS4026S3-BCN  
DS4026S3-GCN  
DS4026S3-JCN  
DS4026S3+GCN  
DS4026S3+JCN  
+Denotes a lead-ꢀree package.  
*The top mark will include a “+” ꢀor a lead-ꢀree/RoHS-compliant device.  
Chip Information  
TRANSISTOR COUNT: 77, 7±2  
Package Information  
For the latest package outline inꢀormation, go to  
www.pꢂxipꢄin.ntp/ꢈꢂꢍꢍꢂsPꢂnkIꢀꢋt.  
SUBSTRATE CONNECTED TO GROUND  
PROCESS: CMOS  
Pꢁ°KꢁGEmTꢉPE Pꢁ°KꢁGEm°ꢃꢈE ꢈꢃ°UMENTmNꢃ.  
±6 SO (300 mils)  
8ꢇꢄG-449ꢄ44±  
______________________________________________________________________________________ ±3  
10MHz to 51.84MHz TCXO  
Revision History  
REVISION REVISION  
DESCRIPTION  
PAGES  
CHANGED  
NUMBER  
DATE  
0
2/07  
Initial release.  
Changed device from 12.8MHz to 51.84MHz to 10MHz to 51.84MHz; added  
5ppm (min, typ) digital frequency tuning for the 10MHz option; added new  
ordering information and phase noise data; changed capacitor value  
designators from 10nF to 0.1μF; changed push-pull value from 15ppm (typ) to  
8ppm (min).  
DS4026  
1
2
9/07  
4/08  
1–12  
Changed maximum frequency deviation from over 10 years to over 20 years;  
Added Stratum 3 electrical characteristics table; added ordering information for  
Stratum 3 parts.  
1, 5, 13  
Maxim cannot assume responsiꢂility ꢀor use oꢀ any circuitry other than circuitry entirely emꢂodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and speciꢀications without notice at any time.  
±- ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2008 Maxim Integrated Products  
is a registered trademark oꢀ Maxim Integrated Products, Inc.  

相关型号:

DS4026_0709

10MHz to 51.84MHz TCXO
MAXIM

DS402ST

Rectifier Diode
DYNEX

DS402ST

STANDARD RECOVERY DIODE
IRI

DS402ST09

Rectifier Diode
DYNEX

DS402ST10

Rectifier Diode
DYNEX

DS402ST11

Rectifier Diode
DYNEX

DS402ST12

Rectifier Diode
DYNEX

DS402ST1212

STANDARD RECOVERY DIODE
IRI

DS402ST13

Rectifier Diode
DYNEX

DS402ST14

Rectifier Diode
DYNEX

DS402ST1414

STANDARD RECOVERY DIODE
IRI

DS402ST1616

STANDARD RECOVERY DIODE
IRI