M24308-2-13 [MAXIM]

3V to 5V Regulating Charge Pumps for SIM Cards; 3V至5V调节电荷泵,用于SIM卡
M24308-2-13
型号: M24308-2-13
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

3V to 5V Regulating Charge Pumps for SIM Cards
3V至5V调节电荷泵,用于SIM卡

文件: 总8页 (文件大小:157K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1376; Rev 1; 12/98  
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
/MAX186H  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1686 provides power for dual-voltage sub-  
scriber ID module (SIM) cards in portable applications  
such as GSM cellular phones. Designed to reside in the  
portable unit (cellular phone handset), the 1MHz charge  
pump converts a 2.7V to 4.2V input to regulated 5V out-  
put. The MAX1686H has a nominal output voltage of  
5.0V, while the MAX1686 is set to 4.75V to reduce SIM-  
card current drain. The charge pump has only 45µA qui-  
escent supply current, which reduces to 3µA when a  
3V-capable SIM card is being powered and the charge  
pump is disabled. An internal input/output shorting  
switch provides power for 3V SIM cards.  
2.7V to 4.2V Input Range  
12mA min Charge-Pump Output Current  
45µA Quiescent Supply Current  
0.1µA Supply Current in Shutdown Mode  
5.0V Regulated Charge-Pump Output (MAX1686H)  
4.75V Regulated Charge-Pump Output (MAX1686)  
Input-Output Shorting Switch for 3V Cards  
Small External Components  
(Uses a 0.047µF, 0.1µF, and a 2.2µF Capacitor)  
The MAX1686/MAX1686H require only three external  
capacitors around their space-saving, thin (1mm) 8-pin  
µMAX packages.  
Output Driven to Ground in Shutdown Mode  
Super-Small 8-Pin µMAX Package  
Soft-Start and Short-Circuit Protection  
Ap p lic a t io n s  
GSM Cellular Phones  
PCS Phones  
Ord e rin g In fo rm a t io n  
Portable POS Terminals  
PART  
TEMP. RANGE  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
8 µMAX  
Personal Communicators  
MAX1686EUA  
MAX1686HEUA  
8 µMAX  
Typ ic a l Op e ra t in g Circ u it  
P in Co n fig u ra t io n  
TOP VIEW  
C
X
INPUT  
2.7V TO 4.2V  
OUTPUT  
V OR 5V/20mA  
CXN  
CXP  
OUT  
IN  
IN  
3/5  
1
2
3
4
8
7
6
5
OUT  
CXP  
C
IN  
C
OUT  
MAX1686  
MAX1686H  
SHDN  
IN  
MAX1686  
MAX1686H  
SHDN  
3/5  
CXN  
PGND  
GND  
µMAX  
GND  
PGND  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
ABSOLUTE MAXIMUM RATINGS  
Continuous Power Dissipation (T = +70°C )  
8-Pin µMAX (derate 4.1mW/°C above +70°C) .............330mW  
IN, OUT, SHDN, 3/5 to GND.....................................-0.3V to +6V  
CXP to GND..............................................-0.3V to (V + 0.3V)  
A
OUT  
Operating Temperature Range  
CXN to GND ................................................-0.3V to (V + 0.3V)  
IN  
MAX1686EUA/MAX1686HEUA........................-40°C to +85°C  
Junction Temperature ......................................................+150°C  
Storage Temperature Range .............................-65°C to +165°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
PGND to GND ......................................................-0.3V to + 0.3V  
OUT Short Circuit to GND ..........................................Continuous  
IN-to-OUT Current...............................................................50mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = V  
= 3.3V, 3/5 = GND, C = 0.22µF, C  
= 10µF (see Applications Information section to use smaller capacitors),  
OUT  
X
IN  
SHDN  
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MIN  
MAX  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Voltage Range  
2.7  
4.2  
V
Input Undervoltage-Lockout  
Threshold Voltage  
0.8  
1.2  
45  
1.6  
V
/MAX186H  
T
= +25°C  
100  
150  
10  
A
Charge pump enabled,  
no load, 3/5 = GND  
Quiescent Supply Current  
Shutdown Supply Current  
OUT Output Voltage  
T
A
= -40°C to +85°C  
µA  
µA  
V
3
Charge pump disabled, no load, 3/5 = IN  
0.1  
5
V
IN  
= 3.6V, SHDN = GND  
MAX1686  
4.55  
4.75  
4.75  
5.00  
5.25  
5.25  
V
IN  
= 2.7V to 4.2V,  
load = 0 to 12mA  
MAX1686H  
V
IN  
3/5 = IN  
IN-to-OUT Switch On-Resistance  
OUT Discharge Switch On-Resistance  
OUT Short-Circuit Current  
V
= V = 3.0V  
2.5  
80  
5
IN  
3/5  
200  
200  
3/5 = GND or IN, SHDN = GND  
3/5 = GND or IN  
20  
100  
mA  
V
Logic Input Low Voltage  
0.5 · V 0.3 · V  
IN IN  
SHDN, 3/5  
Logic Input High Voltage  
0.7 · V 0.5 · V  
V
SHDN, 3/5  
IN  
IN  
Logic Input Leakage Current  
0.1  
1
µA  
SHDN, 3/5 = GND or IN  
T
= +25°C  
800  
700  
1000  
1200  
1300  
A
Charge-Pump Frequency  
kHz  
T
A
= -40°C to +85°C  
Note 1: Electrical specifications are measured by pulse testing and are guaranteed for a junction temperature within the operating  
temperature range, unless otherwise noted. Limits are 100% production tested at T = +25°C. Limits over the entire operat-  
A
ing temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods and are not pro-  
duction tested.  
2
_______________________________________________________________________________________  
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
/MAX186H  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
= 10µF, V = 3.3V, T = +25°C, unless otherwise noted.)  
IN  
A
(See Typical Operating Circuit, C = 0.47µF, C = 0.22µF, C  
IN  
X
OUT  
EFFICIENCY vs. INPUT VOLTAGE  
(5V MODE)  
EFFICIENCY vs. LOAD CURRENT  
(5V MODE)  
NO-LOAD INPUT CURRENT  
vs. INPUT VOLTAGE (3V MODE)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1000  
100  
10  
90  
80  
70  
60  
50  
40  
V = 3.3V  
IN  
I
= 10mA  
LOAD  
V = 2 .7V  
IN  
I
= 1mA  
LOAD  
V = 3.6V  
IN  
30  
20  
10  
1
0
0.1  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
0.1  
1
10  
100  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT (3V MODE)  
MAX1686 OUTPUT VOLTAGE  
vs. LOAD CURRENT (5V MODE)  
NO-LOAD INPUT CURRENT  
vs. INPUT VOLTAGE (5V MODE)  
4.80  
4.79  
4.78  
4.77  
4.76  
4.75  
4.74  
4.73  
4.72  
4.71  
4.70  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
10,000  
1000  
100  
V = 3.6V  
IN  
V = 3 .3V  
IN  
V = 2.7V  
IN  
10  
1
0
5
10  
15  
20  
25  
0
1
2
3
4
5
6
0.1  
1
10  
100  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
OUTPUT VOLTAGE  
OUTPUT WAVEFORM  
vs. INPUT VOLTAGE (5V MODE)  
vs. INPUT VOLTAGE (3V MODE)  
(I  
LOAD  
= 10mA)  
6
5
4
3
2
1
0
6
NO LOAD  
NO LOAD  
MAX1686H  
MAX1686  
5
4
3
2
1
0
V
OUT  
(20mV/div)  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
2.5µs/div  
5V MODE, AC COUPLED,  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
C
OUT  
= 10µF 0.1µF  
_______________________________________________________________________________________  
3
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(See Typical Operating Circuit, C = 0.47µF, C = 0.22µF, C  
= 10µF, V = 3.3V, T = +25°C, unless otherwise noted.)  
IN  
A
IN  
X
OUT  
OUTPUT WAVEFORM  
(I = 1mA)  
LINE-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
LOAD  
I
LOAD  
V
IN  
(10mA/div)  
(500mV/div)  
V
OUT  
(20mV/div)  
V
OUT  
V
OUT  
(50mV/div)  
(50mV/div)  
2.5ms/div  
25µs/div  
5V MODE, AC COUPLED,  
2.5ms/div  
V
= 2.8V to 3.3V, I  
= 10mA, 5V MODE,  
IN  
LOAD  
I
= 0 TO 10mA, 5V MODE, AC COUPLED  
LOAD  
AC COUPLED  
C
= 10µF 0.1µF  
OUT  
/MAX186H  
START-UP WAVEFORM  
3V MODE TO 5V MODE  
START-UP WAVEFORM  
(5V MODE, R = 500)  
WAVEFORM (R = 500)  
(3V MODE, R = 500)  
L
L
L
SHDN  
3/5  
SHDN  
(5V/div)  
(5V/div)  
(5V/div)  
V
OUT  
(1V/div)  
V
OUT  
V
OUT  
(1V/div)  
(1V/div)  
0V  
0V  
0V  
250µs/div  
250µs/div  
250µs/div  
SHUTDOWN WAVEFORM  
(3V MODE, NO LOAD)  
SHUTDOWN WAVEFORM  
(5V MODE, NO LOAD)  
5V MODE TO 3V MODE  
WAVEFORM (NO LOAD)  
SHDN  
SHDN  
3/5  
(5V/div)  
(5V/div)  
(5V/div)  
V
OUT  
(1V/div)  
V
OUT  
(1V/div)  
V
OUT  
(1V/div)  
0V  
0V  
0V  
1ms/div  
1ms/div  
500µs/div  
R = 500Ω  
L
4
_______________________________________________________________________________________  
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
/MAX186H  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
3V/5V Select Input. When low, the output is regulated at 4.75V for MAX1686, 5.00V for MAX1686H. When  
high, the output is shorted to the input.  
1
3/5  
2
3
4
5
6
7
8
SHDN  
IN  
Active-Low Shutdown Input. SHDN = GND is off. Output is actively pulled low in shutdown.  
Supply Input Pin. Can range from 2.7V to 4.2V. Bypass to ground with a ceramic capacitor.  
Ground Pin  
GND  
PGND  
CXN  
CXP  
Power Ground. Connect to GND through a short trace.  
Negative Terminal of the Charge-Pump Transfer Capacitor  
Positive Terminal of the Charge-Pump Transfer Capacitor  
Power Output. Bypass to GND with an output filter capacitor.  
OUT  
C
X
CXN  
CXP  
OUT  
IN  
S2  
S1  
PGND  
EN  
OSC  
1.23V  
PWROK  
SS  
MAX1686  
MAX1686H  
SHDN  
3/5  
POWER  
MANAGEMENT  
DIS  
GND  
Figure 1. Functional Diagram  
voltage is regulated at 4.75V (5.00V for the MAX1686H)  
with a 2.7V to 4.2V input and can deliver more than  
12mA of load current.  
_______________De t a ile d De s c rip t io n  
The MAX1686/MAX1686H charge pumps provide two  
modes of operation: 3V mode or 5V mode. The devices  
consist of an error amplifier, a 1.23V bandgap refer-  
ence, an internal resistive feedback network, a 1MHz  
oscillator, high-current MOSFET drivers and switches,  
a nd a p owe r-ma na g e me nt b loc k a s s hown in the  
Functional Diagram (Figure 1). In 3V mode (3/5 = IN),  
the input is connected to the output through a 2.5  
switch. In 5V mode (3/5 = GND), the MAX1686s output  
Designed specifically for compact applications, these  
regulators require only three small external capacitors.  
The Skip Mode control scheme provides high efficiency  
over a wide output current range. The devices offer a  
shutdown feature which actively discharges the output  
to ground and reduces the supply current to less than  
_______________________________________________________________________________________  
5
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
1µA. Other features include soft-start, undervoltage  
lockout, and short-circuit protection.  
In 3V mode (3/5 = IN), the start-up current is limited by  
the 50series P-channel MOSFET connected between  
IN and OUT until the output voltage reaches V / 2. For  
IN  
Ch a rg e -P u m p Co n t ro l  
Figure 2 shows an idealized, unregulated charge-pump  
volta g e d oub le r. The os c illa tor runs a t a 50% d uty  
cycle. During one half of the period, the transfer capac-  
V
OUT  
> V / 2, R  
is reduced to 2.5.  
IN  
ON  
With a 500load the device turns on in less than 1.5ms  
(see Typical Operating Characteristics for graphs of  
start-up waveforms).  
itor (C ) charges to the input voltage. During the other  
X
half, the doubler stacks the voltage across C and the  
input voltage, and transfers the sum of the two voltages  
X
S h u t d o w n Mo d e  
Driving SHDN low places the device in shutdown mode,  
which disables the oscillator, the control logic, and the  
re fe re nc e . Pla c ing the d e vic e in s hutd own mod e  
reduces the no-load supply current to less than 1µA; the  
output is actively discharged through the internal N-  
channel FET and disconnected from the input. In normal  
operation, SHDN is driven high or connected to IN.  
to the output filter capacitor (C  
). The MAX1686 uses  
OUT  
Skip Mode control to regulate its output voltage and to  
achieve good efficiency over a large output current  
range. When the comparator detects that the output  
voltage is too low, the 1MHz oscillator is enabled and  
C
is switched. When the output voltage is above regu-  
X
lation, the oscillator is disabled and C is connected at  
X
the input.  
Ap p lic a t io n s In fo rm a t io n  
S o ft -S t a rt  
In the 5V mode (3/5 = GND), the start-up current is lim-  
ited by the soft-start control to typically 200mA, inde-  
pendent of the load. Until the output voltage reaches  
Ca p a c it o r S e le c t io n  
The MAX1686 requires only three external capacitors.  
The capacitor values are closely linked to the output  
current capability, noise, and switching frequency. The  
1MHz oscillator frequency minimizes capacitor size  
compared to lower-frequency charge pumps.  
/MAX186H  
V
IN  
/ 2, the input is connected to the output through a  
50series P-channel MOSFET and the charge pump  
is disa ble d . For V / 2 < V < 4.75V (5.00V for  
IN  
OUT  
Ge ne ra lly, the tra ns fe r c a p a c itor (C ) will b e the  
X
MAX1686H) and for a maximum of 2ms the charge  
pump is active, but R of the switch S2 is limited to  
smallest, the input capacitor (C ) will be twice the size  
IN  
ON  
of C , and the output capacitor (C  
) can be from 10  
OUT  
X
50. This limits typical current surges associated with  
charge pumps at start-up. When soft-start is complete,  
to 50 times C . The suggested capacitor values are  
X
C
= 0.1µF, C = 0.047µF, a nd C  
= 2.2µF a s  
IN  
X
OUT  
V
OUT  
> 4.75V (5.00V for MAX1686H) or 2ms (whichever  
shown in Figure 3. For input voltages as low as 2.7V,  
the following values are recommended: C = 0.47µF,  
occurs first), switch S2s on-resistance is decreased to  
minimize losses.  
IN  
C
= 0.22µF, and C  
= 10µF. Table 1 lists the perfor-  
X
OUT  
C
X
C
X
0.047µF  
CXN  
CXP  
7
6
IN  
OUT  
INPUT  
2.85V TO 4.2V  
OUTPUT  
V OR 4.75V AT 20mA  
CXN  
CXP  
IN  
3
8
IN  
OUT  
C
C
OUT  
S2  
IN  
S1  
2.2µF  
(CERAMIC)  
0.1µF  
MAX1686  
2
1
C
IN  
SHDN  
3/5  
C
OUT  
3V  
5V  
OSC  
GND  
PGND  
4
5
GND  
Figure 2. Unregulated Voltage Doubler  
Figure 3. Standard Application Circuit  
6
_______________________________________________________________________________________  
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
/MAX186H  
mance with different input voltages and an additional  
La yo u t Co n s id e ra t io n s  
High switching frequencies and large peak currents  
make PC board layout an important part of design. All  
capacitors should be soldered close to the IC. Con-  
nect ground and power ground through a short, low-  
impedance trace. Keep the extra copper on the board  
and integrate it into ground as a pseudo-ground plane.  
On multilayer boards, route the star ground using com-  
ponent-side copper fill, then connect it to the internal  
ground plane using vias. Ensure that the load is con-  
nected directly across the output filter capacitor.  
small 0.1µF capacitor at the output. The extra 0.1µF  
capacitor improves start-up capability under full load  
and reduces output ripple for high input voltages. Table  
2 lists the re c omme nd e d c a p a c itor ma nufa c ture rs.  
Low-ESR capacitors, such as surface-mount ceramics,  
decrease noise and give the best efficiency. Capaci-  
tance and ESR variation over temperature need to be  
taken into consideration for best performance in applica-  
tions with large operating temperature ranges.  
For applications where the minimum input voltage is 3V  
or greater, the flying capacitor, C , can be decreased  
X
to 0.1µF. This provides two benefits: the inrush surge  
current at start-up is reduced, and the output ripple  
volta g e (e s p e c ia lly a t hig h inp ut volta g e s ) is a ls o  
reduced.  
Table 1. Ripple and Efficiency vs. Input  
Voltage and Load Current  
Table 2. Recommended Surface-Mount  
Capacitor Manufacturers  
INPUT  
VOLTAGE  
(V)  
LOAD  
CURRENT  
(mA)  
VALUE  
(µF)  
PHONE  
NUMBER  
V
OUT  
RIPPLE EFFICIENCY  
DESCRIPTION  
MFR.  
Sprague  
AVX  
(mV)  
(%)  
595D-series  
tantalum  
1 to 47  
4.7 to 47  
1 to10  
(603) 224-1961  
(803) 946-0690  
(714) 969-2491  
2.7  
2.7  
3.3  
3.3  
3.6  
3.6  
4.2  
4.2  
1
10  
1
30  
30  
60  
60  
80  
80  
84.3  
86.2  
69.5  
70.5  
63.2  
63.8  
52.3  
52.1  
TPS-series  
tantalum  
10  
1
267 series  
tantalum  
Matsuo  
10  
1
TDK  
AVX  
(847) 390-4373  
(803) 946-0690  
0.047 to 2.2  
X7R ceramic  
120  
120  
10  
Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 840  
_______________________________________________________________________________________  
7
3 V t o 5 V Re g u la t in g  
Ch a rg e P u m p s fo r S IM Ca rd s  
P a c k a g e In fo rm a t io n  
/MAX186H  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
8 _____________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY