MAX1066CCUP [MAXIM]

Low-Power, 14-Bit Analog-to-Digital Converters with Parallel Interface; 低功耗, 14位模数转换,并行接口转换器
MAX1066CCUP
型号: MAX1066CCUP
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Power, 14-Bit Analog-to-Digital Converters with Parallel Interface
低功耗, 14位模数转换,并行接口转换器

转换器
文件: 总14页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2466; Rev 0; 4/02  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
General Description  
Features  
The MAX1065/MAX1066 14-bit, low-power successive  
approximation analog-to-digital converters (ADCs) fea-  
ture automatic power-down, a factory-trimmed internal  
clock, and a high-speed, 14-bit-wide (MAX1065) or  
byte-wide (MAX1066) parallel interface. The devices  
operate from a single 4.75V to 5.25V analog supply and  
a 2.7V to 5.25V digital supply.  
14-Bit-Wide (MAX1065) and Byte-Wide (MAX1066)  
Parallel Interface  
High Speed: 165ksps Sample Rate  
Accurate: 1ꢀSB ꢁDꢀ (maꢂ)ꢃ 1ꢀSB IDꢀ (maꢂ)  
4.096Vꢃ 35ppm/°C Internal Reference  
Eꢂternal Reference Range 3.8V to 5.25V  
Single 4.75V to 5.25V Analog Supply Voltage  
2.7V to 5.25V ꢁigital Supply Voltage  
The MAX1065/MAX1066 use an internal 4.096V refer-  
ence or an external reference. The MAX1065/MAX1066  
consume only 1.8mA at a sampling rate of 165ksps with  
external reference and 2.7mA with internal reference.  
AutoShutdown™ reduces supply current to 0.1mA at  
10ksps.  
ꢀow Supply Current  
1.8mA (Eꢂternal Reference)  
2.7mA (Internal Reference)  
0.1mA AutoShutdown Mode (10kspsꢃ Eꢂternal  
Reference)  
The MAX1065/MAX1066 are ideal for high-performance,  
battery-powered, data-acquisition applications.  
Excellent dynamic performance and low-power con-  
sumption in a small package make the MAX1065/  
MAX1066 the best choice for circuits with demanding  
power consumption and space requirements.  
Small Footprint  
28-Pin TSSOP Package (14-Bit Wide)  
20-Pin TSSOP Package (Byte Wide)  
The 14-bit-wide MAX1065 is available in a 28-pin TSSOP  
package, and the byte-wide MAX1066 is available in a  
20-pin TSSOP package. Both devices are available in  
either the 0°C to +70°C commercial, or the -40°C to  
+85°C extended temperature range.  
Applications  
Ordering Information  
Temperature  
Cable/Harness Tester  
PIN-  
PACKAGE  
PART  
TEMP RANGE  
INL  
Sensor/Monitor  
Accelerometer  
Measurements  
Industrial Process  
Control  
MAX1065ACUI  
MAX1065BCUI  
MAX1065CCUI  
MAX1065AEUI  
MAX1065BEUI  
MAX1065CEUI  
MAX1066ACUP  
MAX1066BCUP  
MAX1066CCUP  
MAX1066AEUP  
MAX1066BEUP  
MAX1066CEUP  
0°C to 70°C  
0°C to 70°C  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
1
2
3
1
2
3
1
2
3
1
2
3
Digital Signal Processing  
I/O Boards  
0°C to 70°C  
Data-Acquisition  
Systems  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to 70°C  
Typical Operating Circuit  
5V ANALOG  
5V DIGITAL  
0°C to 70°C  
0°C to 70°C  
0.1µF  
0.1µF  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
µP DATA  
BUS  
AV  
DD  
DV  
DD  
D0–D13  
ANALOG INPUT  
AIN  
R/C  
CS  
EOC  
REF  
MAX1065  
Pin Configurations appear at end of data sheet.  
RESET  
REFADJ  
AGND DGND  
0.1µF  
1µF  
AutoShutdown is a registered trademark of Maxim Integrated  
Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
ABSOLUTE MAXIMUM RATINGS  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
to DGND.........................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
DD  
DD  
A
20-Pin TSSOP (derate 10.9mW/°C above +70°C) .......879mW  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW  
Operating Temperature Ranges  
AGND to DGND.....................................................-0.3V to +0.3V  
AIN, REF, REFADJ to AGND....................-0.3V to (AV + 0.3V)  
DD  
MAX106_ _CU_...................................................0°C to +70°C  
MAX106_ _EU_................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CS, HBEN, R/C, RESET to DGND ............................-0.3V to +6V  
Digital Output (D13D0, EOC)  
to DGND ..................................................-0.3V to (DV  
+ 0.3V)  
DD  
Maximum Continuous Current Into Any Pin ........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= 5V, external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
Resolution  
SYMBOL  
N
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Bits  
14  
1
2
3
1
MAX106_A  
MAX106_B  
MAX106_C  
Relative Accuracy (Note 1)  
INL  
LSB  
Differential Nonlinearity  
Transition Noise  
DNL  
No missing codes over temperature  
LSB  
RMS noise, includes quantization  
noise  
LSB  
RMS  
0.32  
Offset Error  
Gain Error  
Offset Drift  
Gain Drift  
0.2  
0.002  
0.6  
1
mV  
(Note 2)  
0.02  
%FSR  
ppm/°C  
ppm/°C  
0.2  
DYNAMIC PERFORMANCE (f  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Sample Rate  
= 1kHz, V = 4.096V , 165ksps)  
IN(SINE-WAVE)  
SINAD  
SNR  
IN  
P-P  
81  
82  
84  
84  
-99  
102  
4
dB  
dB  
THD  
-86  
dB  
SFDR  
87  
dB  
-3dB point  
MHz  
kHz  
SINAD > 81dB  
20  
f
165  
ksps  
ns  
SAMPLE  
Aperture Delay  
40  
Aperture Jitter  
100  
ps  
ANALOG INPUT  
Input Range  
V
0
V
V
AIN  
REF  
Input Capacitance  
C
40  
pF  
AIN  
2
_______________________________________________________________________________________  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 5V, external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
INTERNAL REFERENCE  
REF Output Voltage  
V
4.056  
4.096  
35  
4.136  
V
ppm/°C  
mA  
REF  
REF Output Tempco  
TC  
REF  
REF Short-Circuit Current  
Capacitive Bypass at REFADJ  
Capacitive Bypass at REF  
REFADJ Input Leakage Current  
EXTERNAL REFERENCE  
I
10  
REFSC  
C
0.1  
1
µF  
REFADJ  
C
µF  
REF  
REFADJ  
I
20  
µA  
REFADJ Buffer Disable  
Threshold  
AV  
0.4  
-
AV  
0.1  
-
DD  
DD  
To power-down the internal reference  
Internal reference disabled  
V
V
REF Input Voltage Range  
3.8  
AV  
DD  
V
= 4.096V, f  
= 165ksps  
SAMPLE  
62  
120  
REF  
REF Input Current  
I
µA  
REF  
Shutdown mode  
0.1  
DIGITAL INPUTS/OUTPUTS (CS, R/C, EOC, D0D13, RESET, HBEN)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
IH  
DV  
DD  
V
0.3 x  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
I
V
= 0 or DV  
DD  
0.1  
0.1  
15  
1
µA  
V
IN  
IH  
V
HYST  
Input Capacitance  
C
pF  
IN  
I
= 0.5mA,  
= 2.7V to 5.25V,  
= 5.25V  
SOURCE  
D
-
VDD  
0.4  
DV  
AV  
Output High Voltage  
V
V
V
DD  
DD  
OH  
I
= 1.6mA,  
SINK  
DV  
AV  
= 2.7V to 5.25V,  
Output Low Voltage  
V
0.4  
10  
DD  
OL  
= 5.25V  
DD  
Three-State Leakage Current  
I
D0D13  
0.1  
15  
µA  
pF  
OZ  
Three-State Output  
Capacitance  
C
OZ  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.7  
5.25  
V
V
DD  
AV  
DD  
DD  
165ksps  
100ksps  
10ksps  
1ksps  
2.7  
2.0  
1.0  
1.0  
1.8  
1.1  
0.1  
0.01  
3.2  
Internal reference  
External reference  
Analog Supply Current  
I
mA  
AVDD  
165ksps  
100ksps  
10ksps  
1ksps  
2.3  
_______________________________________________________________________________________  
3
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 5V, external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, T = T  
to T  
, unless otherwise noted.  
MAX  
DD  
DD  
REF  
REFADJ  
A
MIN  
Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
165ksps  
MIN  
TYP  
MAX  
UNITS  
0.5  
0.3  
0.7  
100ksps  
10ksps  
1ksps  
Digital Supply Current  
I
I
D0D13 = all zeros  
mA  
DVDD  
SHDN  
0.03  
0.003  
0.05  
0.5  
I
5
5
mA  
µA  
AVDD  
DVDD  
Full power-down  
I
Shutdown Supply Current  
(Note 3)  
REF and REF  
buffer enabled  
(standby mode)  
I
1.0  
0.5  
1.2  
5
mA  
µA  
AVDD  
DVDD  
I
Power-Supply Rejection Ratio  
(Note 4)  
PSRR  
AV  
= 5V, 5%, full-scale input  
68  
dB  
DD  
TIMING CHARACTERISTICS (Figures 1 and 2)  
(AV  
= 4.75V to 5.25V, DV  
= 2.7V to AV , external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, C  
C
= 20pF,  
DD  
DD  
DD  
REF  
REFADJ  
13D0, EOC  
D
T
A
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
µs  
Acquisition Time  
Conversion Time  
CS Pulse Width High  
t
1.1  
ACQ  
t
4.7  
CONV  
t
(Note 5)  
(Note 5)  
40  
40  
60  
0
ns  
CSH  
V
V
= 4.75V to 5.25V  
DVDD  
DVDD  
CS Pulse Width Low  
t
ns  
CSL  
= 2.7V to 4.74V  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
ns  
DS  
V
V
V
V
= 4.75V to 5.25V  
= 2.7V to 5.25V  
= 4.75V to 5.25V  
= 2.7V to 4.74V  
40  
60  
DVDD  
DVDD  
DVDD  
DVDD  
t
ns  
DH  
40  
80  
CS to Output Data Valid  
t
ns  
ns  
DO  
HBEN Transition To  
Output Data Valid  
(MAX1066 only)  
V
V
= 4.75V to 5.25V  
= 2.7V to 4.74V  
40  
80  
DVDD  
DVDD  
t
DO1  
EOC Fall To CS Fall  
t
0
ns  
ns  
DV  
V
V
V
V
= 4.75V to 5.25V  
= 2.7V to 4.74V  
= 4.75V to 5.25V  
= 2.7V to 4.74V  
40  
80  
40  
80  
DVDD  
DVDD  
DVDD  
DVDD  
CS Rise To EOC Rise  
t
EOC  
Bus Relinquish Time  
(Note 5)  
t
ns  
BR  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 2: Offset nulled.  
Note 3: Maximum specification is limited by automated test equipment.  
Note 4: Defined as the change in positive full scale caused by a 5% variation in the nominal supply.  
Note 5: To ensure best performance, finish reading the data and wait t before starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Typical Operating Characteristics  
(AV  
= DV  
= 5V, external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
REFADJ  
A
DD  
DD  
REF  
I
+ I  
SUPPLY CURRENT  
AVDD DVDD  
DNL vs. OUTPUT CODE  
INL vs. OUTPUT CODE  
vs. SAMPLE RATE  
1.0  
0.8  
2.0  
1.5  
10  
1
0.6  
1.0  
0.4  
0.5  
0.2  
0.1  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0.01  
0.001  
0.0001  
-0.5  
-1.0  
-1.5  
-2.0  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
0.01  
0.1  
1
10  
100  
1000  
OUTPUT CODE  
OUTPUT CODE  
CONVERSION RATE (ksps)  
I
+ I  
SHUTDOWN CURRENT  
INTERNAL REFERENCE  
vs. TEMPERATURE  
I
+ I  
SUPPLY CURRENT  
AVDD DVDD  
AVDD DVDD  
vs. TEMPERATURE  
vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
SAMPLE RATE = 165ksps  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SINAD vs. FREQUENCY  
GAIN ERROR vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
1000  
800  
600  
400  
200  
0
0.020  
0.015  
0.010  
0.005  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
-200  
-400  
-600  
-800  
0
-0.005  
-0.010  
-0.015  
-0.020  
SAMPLE RATE = 165ksps  
10  
FREQUENCY (kHz)  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0.1  
1
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= 5V, external reference = 4.096V, C  
= 1µF, C  
= 0.1µF, T = +25°C, unless otherwise noted.)  
REFADJ  
A
DD  
DD  
REF  
SPURIOUS-FREE DYNAMIC RANGE  
vs. FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
FFT AT 1kHz  
0
-20  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
SAMPLE RATE = 165ksps  
SAMPLE RATE = 165ksps  
-40  
-60  
-80  
-100  
-120  
-140  
-100  
-110  
SAMPLE RATE = 165ksps  
0
20  
40  
60  
80  
0.1  
1.0  
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1065 MAX1066 MAX1065 MAX1066  
1
2
3
4
5
6
7
8
1
2
D6  
D7  
D4/D12  
D5/D13  
D6/0  
D7/0  
Three-State Digital Data Output  
Three-State Digital Data Output. D13 is the MSB.  
Three-State Digital Data Output  
3
D8  
4
D9  
Three-State Digital Data Output  
D10  
D11  
D12  
D13  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output (MSB)  
Read/Convert Input. Power up and put the MAX1065/MAX1066 in acquisition  
mode by holding R/C low during the first falling edge of CS. During the  
second falling edge of CS the level on R/C determines whether the reference  
and reference buffer power down or remain on after conversion. Set R/C high  
during the second falling edge of CS to power down the reference and buffer,  
or set R/C low to leave the reference and buffer powered up. Set R/C high  
during the third falling edge of CS to put valid data on the bus.  
9
5
R/C  
10  
11  
12  
13  
6
7
8
9
EOC  
End Of Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
AGND  
AIN  
Analog Ground. Connect Pin 14 to Pin 12 (MAX1065). Connect Pin 10 to Pin 8  
(MAX1066).  
14  
10  
AGND  
6
_______________________________________________________________________________________  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1065 MAX1066 MAX1065 MAX1066  
Reference Buffer Output. Bypass REFADJ with a 0.1µF capacitor to AGND for  
15  
11  
REFADJ  
internal reference mode. Connect REFADJ to AV  
reference mode.  
to select external  
DD  
Reference Input/Output. Bypass REF with a 1µF capacitor to AGND for internal  
reference mode. External reference input when in external reference mode.  
16  
17  
12  
REF  
RESET  
Reset Input. Logic high resets the device.  
High Byte-Enable Input. Used to multiplex the 14-bit conversion result.  
1: Most significant byte available on the data bus.  
13  
HBEN  
0: Least significant byte available on the data bus.  
Convert Start. The first falling edge of CS powers up the device and enables  
acquire mode when R/C is low. The second falling edge of CS starts  
conversion. The third falling edge of CS loads the result onto the bus when R/C  
is high.  
18  
14  
CS  
19  
20  
15  
16  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
DD  
No Connection. Do Not Connect (MAX1065).  
Three-State Digital Data Output (MAX1066).  
21  
22  
17  
18  
N.C.  
N.C.  
D0/D8  
D1/D9  
No Connection. Do Not Connect (MAX1065).  
Three-State Digital Data Output (MAX1066).  
23  
24  
25  
26  
27  
28  
19  
20  
D0  
D1  
D2  
D3  
D4  
D5  
D2/D10  
D3/D11  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Functional Diagram  
AV  
AGND DV  
DGND  
REFADJ  
HBEN*  
DD  
DD  
5k  
REFERENCE  
14 OR 8*  
14 OR 8*  
D0D13  
OUTPUT  
REGISTERS  
OR  
D0/D8D5/D13*  
REF  
AIN  
CAPACITIVE  
DAC  
MAX1065  
MAX1066  
AGND  
SUCCESSIVE-  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
RESET**  
CLOCK  
EOC  
CS  
R/C  
*BYTE WIDE (MAX1066 ONLY)  
**16-BIT WIDE (MAX1065 ONLY)  
_______________________________________________________________________________________  
7
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Analog Input  
The equivalent input circuit is shown in Figure 4. A  
Detailed Description  
switched capacitor digital-to-analog converter (DAC)  
provides an inherent track-and-hold function. The sin-  
gle-ended input is connected between AIN and AGND.  
Converter Operation  
The MAX1065/MAX1066 use a successive-approximation  
(SAR) conversion technique with an inherent track-and-  
hold (T/H) stage to convert an analog input into a 14-bit  
digital output. Parallel outputs provide a high-speed inter-  
face to most microprocessors (µPs). The Functional  
Diagram shows a simplified internal architecture of the  
MAX1065/MAX1066. Figure 3 shows a typical application  
circuit for the MAX1066.  
Input Bandwidth  
The ADCs input-tracking circuitry has a 4MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. To avoid aliasing of  
unwanted high-frequency signals into the frequency  
band of interest, use antialias filtering.  
DV  
DD  
Internal protection diodes, which clamp the analog  
1mA  
input to AV  
and/or AGND, allow the input to swing  
DD  
D0D13  
D0D13  
from AGND - 0.3V to AV  
the device.  
+ 0.3V, without damaging  
DD  
C
LOAD  
= 20pF  
C
= 20pF  
1mA  
LOAD  
If the analog input exceeds 300mV beyond the sup-  
plies, limit the input current to 10mA.  
DGND  
DGND  
Track and Hold (T/H)  
In track mode, the analog signal is acquired on the  
internal hold capacitor. In hold mode, the T/H switches  
open and the capacitive DAC samples the analog input.  
a) HIGH-Z TO V  
OH,  
b) HIGH-Z TO V  
OL,  
V
V
TO V AND  
OL  
OH  
OH,  
TO HIGH-Z  
V
OH  
V
OL  
TO V AND  
OL,  
TO HIGH-Z  
Figure 1. Load Circuits for D0–D13 Enable Time, CS to D0–D13  
Delay Time and Bus Relinquish Time  
t
t
CSH  
CSL  
CS  
R/C  
t
ACQ  
REF POWER-  
DOWN BIT  
t
t
DS  
t
DV  
DH  
t
EOC  
EOC  
t
BR  
t
t
DO  
CONV  
HIZ  
HI-Z  
D0D13  
DATA VALID  
HBEN*  
t
BR  
t
DO1  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
D7/D13D0/D8*  
*HBEN AND BYTE-WIDE DATA BUS AVAILABLE ON MAX1066 ONLY.  
Figure 2. MAX1065/MAX1066 Timing Diagram  
_______________________________________________________________________________________  
8
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
During the acquisition, the analog input (AIN) charges  
capacitor C . The acquisition ends on the second  
Internal Clock  
The MAX1065/MAX1066 generate an internal conver-  
sion clock. This frees the microprocessor from the bur-  
den of running the SAR conversion clock. Total  
conversion time after entering hold mode (second  
falling edge of CS) to end-of-conversion (EOC) falling is  
4.7µs (max).  
DAC  
falling edge of CS. At this instant, the T/H switches  
open. The retained charge on C  
sample of the input.  
represents a  
DAC  
In hold mode, the capacitive DAC adjusts during the  
remainder of the conversion time to restore node ZERO  
to zero within the limits of 14-bit resolution. At the end of  
the conversion, force CS low to put valid data on the bus.  
Applications Information  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signals source impedance is  
high, the acquisition time lengthens and more time  
must be allowed between conversions. The acquisition  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1065/MAX1066 (Figure 2). The first falling edge of  
CS powers up the device and puts it into acquisition  
mode if R/C is low. The convert start is ignored if R/C is  
high. When powering up from shutdown, the MAX1065/  
time (t  
) is the maximum time the device takes to  
ACQ  
acquire the signal. Use the following formula to calcu-  
late acquisition time:  
MAX1066 needs at least 10ms (C  
= 0.1µF, C  
REF  
REFADJ  
= 1µF) for the internal reference to wake up and settle  
before starting the conversion. The ADC may wake up  
from shutdown to an unknown state. Put the ADC in a  
known state by completing one dummyconversion.  
The MAX1065/ MAX1066 will be in a known state, ready  
for actual data acquisition, after the completion of the  
dummy conversion. A dummy conversion consists of one  
full conversion cycle.  
t
= 11(R + R ) x 35pF  
S IN  
ACQ  
where R = 800, R = the input signals source  
IN  
S
ACQ  
impedance, and t  
is never less than 1.1µs. A  
source impedance less than 1kdoes not significantly  
affect the ADCs performance.  
To improve the input-signal bandwidth under AC condi-  
tions, drive AIN with a wideband buffer (>4MHz) that can  
drive the ADCs input capacitance and settle quickly.  
The MAX1065 provides an alternative reset function to  
reset the device (see RESET section).  
Power-Down Modes  
Select standby mode or shutdown mode with the R/C  
bit during the second falling edge of CS (see Selecting  
Standby or Shutdown Mode section). The MAX1065/  
MAX1066 automatically enter either standby mode, ref-  
erence and buffer on, or shutdown, reference and  
buffer off, after each conversion depending on the sta-  
tus of R/C during the second falling edge of CS.  
Selecting Standby or Shutdown Mode  
The MAX1065/MAX1066 have a selectable standby or  
low-power shutdown mode. In standby mode, the  
ADCs internal reference and reference buffer do not  
power down between conversions, eliminating the need  
to wait for the reference to power up before performing  
the next conversion. Shutdown mode powers down the  
reference and reference buffer after completing a con-  
version. Supply current is greatly reduced when in  
shutdown mode. The reference and reference buffer  
5V ANALOG  
5V DIGITAL  
0.1µF  
0.1µF  
require a minimum of 10ms (C  
= 0.1µF, C  
=
REF  
REFADJ  
1µF) to power up and settle from shutdown.  
µP DATA  
BUS  
AV  
DD  
DV  
DD  
D0D7 OR  
D8D13  
The state of R/C at the second falling edge of CS  
selects which power-down mode the MAX1065/  
MAX1066 enters upon conversion completion. Holding  
R/C low causes the MAX1065/MAX1066 to enter stand-  
by mode. The reference and buffer are left on after the  
conversion completes. R/C high causes the  
MAX1065/MAX1066 to enter shutdown mode and shut  
down the reference and buffer after conversion  
(Figures 5 and 6).  
ANALOG INPUT  
AIN  
R/C  
CS  
EOC  
REF  
MAX1066  
HIGH  
BYTE  
REFADJ  
HBEN  
AGND DGND  
LOW  
BYTE  
0.1µF  
1µF  
When using an external reference, set the REF power-  
down bit high for lowest current operation.  
Figure 3. Typical Application Circuit for MAX1066  
_______________________________________________________________________________________  
9
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Internal and External Reference  
REF  
Internal Reference  
TRACK  
The internal reference of the MAX1065/MAX1066 is  
CAPACITIVE DAC  
AIN  
internally buffered to provide 4.096V (typ) output at  
ZERO  
C
SWITCH  
3pF  
REF. Bypass REF to AGND and REFADJ to AGND with  
1µF and 0.1µF respectively. Fine adjustments can be  
made to the internal reference voltage by sinking or  
sourcing current at REFADJ. The input impedance at  
REFADJ is nominally 5k. The internal reference volt-  
age is adjustable to 1.5% with the circuit of Figure 7.  
C
DAC  
= 32pF  
HOLD  
R
HOLD  
IN  
800  
AGND  
TRACK  
AUTO-ZERO  
RAIL  
External Reference  
An external reference can be placed at either the input  
(REFADJ) or the output (REF) of the MAX1065/  
MAX1066s internal buffer amplifier. When connecting  
an external reference to REFADJ, the input impedance  
is typically 5k. Using the buffered REFADJ input  
makes buffering the external reference unnecessary;  
however, the internal buffer output must be bypassed  
at REF with a 1µF capacitor.  
Figure 4. Equivalent Input Circuit  
Standby Mode  
While in standby mode, the supply current is reduced  
to less than 1mA (typ). The next falling edge of CS with  
R/C low causes the MAX1065/MAX1066 to exit standby  
mode and begin acquisition. The reference and refer-  
ence buffer remain active to allow quick turn-on time.  
Standby mode allows significant power savings while  
running at the maximum sample rate.  
Connect REFADJ to AV  
to disable the internal buffer.  
DD  
Directly drive REF using an external reference. During  
conversion, the external reference must be able to  
drive 100µA of DC load current and have an output  
impedance of 10or less. REFADJs impedance is typ-  
ically 5k. The DC input impedance of REF is 40kΩ  
minimum.  
Shutdown Mode  
In shutdown mode, the reference and reference buffer  
are shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately after  
the conversion. The falling edge of CS with R/C low  
causes the reference and buffer to wake up and enter  
acquisition mode. To achieve 14-bit accuracy, allow  
For optimal performance, buffer the reference through  
an op amp and bypass REF with a 1µF capacitor.  
Consider the MAX1065/MAX1066s equivalent input  
noise (80µV  
) when choosing a reference.  
RMS  
10ms (C  
= 0.1µF, C  
= 1µF) for the internal  
REF  
REFADJ  
reference to wake up. Increase wakeup time propor-  
tionally when using larger values of C  
and C  
.
REFADJ  
REF  
DATA  
OUT  
DATA  
OUT  
ACQUISITION  
CONVERSION  
ACQUISITION  
CONVERSION  
CS  
R/C  
REF POWER-  
DOWN BIT  
CS  
REF POWER-  
DOWN BIT  
R/C  
EOC  
EOC  
REF  
AND  
BUFFER  
REF  
AND  
BUFFER  
Figure 5. Selecting Standby Mode  
Figure 6. Selecting Shutdown Mode  
10 ______________________________________________________________________________________  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
OUTPUT CODE  
5V  
FULL-SCALE  
TRANSITION  
11...111  
11...110  
11...101  
MAX1065  
MAX1066  
68k  
100kΩ  
REFADJ  
0.22µF  
150kΩ  
FS = V  
REF  
V
REF  
1LSB =  
16384  
00...011  
00...010  
00...001  
00...000  
Figure 7. MAX1065/MAX1066 Reference Adjust Circuit  
0
1
2
3
FS  
FS - 3/2LSB  
Reading the Conversion Result  
EOC is provided to flag the microprocessor when a con-  
version is complete. The falling edge of EOC signals  
that the data is valid and ready to be output to the bus.  
INPUT VOLTAGE (LSB)  
Figure 8. MAX1065/MAX1066 Transfer Function  
the required output voltage change before the beginning  
of the acquisition time. At the beginning of acquisition, the  
internal sampling capacitor array connects to AIN (the  
amplifier output) causing some output disturbance.  
Ensure that the sampled voltage has settled to within the  
required limits before the end of the acquisition time. If  
the frequency of interest is low, AIN can be bypassed  
with a large enough capacitor to charge the internal sam-  
pling capacitor with very little ripple. However, for AC use,  
AIN must be driven by a wideband buffer (at least  
10MHz), which must be stable with the ADCs capacitive  
load (in parallel with any AIN bypass capacitor used) and  
also settle quickly. An example of this circuit using the  
MAX4434 is given in Figure 9.  
D0D13 are the parallel outputs of the MAX1065/  
MAX1066. These three-state outputs allow for direct  
connection to a microcontroller I/O bus. The outputs  
remain high-impedance during acquisition and conver-  
sion. Data is loaded onto the bus with the third falling  
edge of CS with R/C high after t ns. Bringing CS high  
DO  
forces the output bus back to high-impedance. The  
MAX1065/MAX1066 then waits for the next falling edge  
of CS to start the next conversion cycle (Figure 2).  
The MAX1065 loads the conversion result onto a 14-bit-  
wide data bus while the MAX1066 has a byte-wide out-  
put format. HBEN toggles the output between the  
most/least significant byte. The least significant byte is  
loaded onto the output bus when HBEN is low and the  
most significant byte is on the bus when HBEN is high  
(Figure 2).  
RESET  
Toggle RESET with CS high. The next falling edge of  
CS will begin acquisition. This reset is an alternative to  
the dummy conversion explained in the Starting a  
Conversion section.  
MAX1065/  
MAX1066  
Transfer Function  
Figure 8 shows the MAX1065/MAX1066 output transfer  
function. The output is coded in standard binary.  
AIN  
10  
ANALOG  
INPUT  
MAX4434  
40pF  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 14-bit accuracy. If the input signal is multiplexed,  
the input channel should be switched immediately after  
acquisition, rather than near the end of or after a conver-  
sion. This allows more time for the input buffer amplifier to  
respond to a large step-change in input signal. The input  
amplifier must have a high enough slew rate to complete  
Figure 9. MAX1065/MAX1066 Fast Settling Input Buffer  
______________________________________________________________________________________ 11  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards. Do not  
run analog and digital lines parallel to each other, and do  
not lay out digital signal paths underneath the ADC pack-  
age. Use separate analog and digital ground planes with  
only one point connecting the two ground systems (ana-  
log and digital) as close to the device as possible.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS equivalent of all the other ADC output signals.  
Route digital signals far away from sensitive analog and  
reference inputs. If digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
onto the analog lines. If the analog and digital sections  
share the same supply, then isolate the digital and ana-  
log supply by connecting them with a low-value (10)  
resistor or ferrite bead.  
Signal  
(Noise + Distortion)  
RMS  
SINAD(dB) = 20 × log  
RMS  
The ADC is sensitive to high-frequency noise on the AV  
DD  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
supply. Bypass AV  
to AGND with a 0.1µF capacitor in  
DD  
parallel with a 1µF to 10µF low-ESR capacitor and the  
smallest capacitor closest to the device. Keep capacitor  
leads short to minimize stray inductance.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1065/MAX1066  
are measured using the end-point method.  
SINAD 1.76  
=
ENOB  
6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of 1LSB guarantees no missing  
codes and a monotonic transfer function.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
Aperture Jitter and Delay  
Aperture jitter is the sample-to-sample variation in the  
time between samples. Aperture delay is the time  
between the rising edge of the sampling clock and the  
instant when the actual sample is taken.  
where V is the fundamental amplitude and V through  
V are the 2nd- through 5th-order harmonics.  
1
2
5
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly from the ADCs res-  
olution (N-bits):  
Chip Information  
TRANSISTOR COUNT: 15,140  
PROCESS: BiCMOS  
SNR = (6.02 x N + 1.76)dB  
where N = 14 bits.  
12 ______________________________________________________________________________________  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Pin Configurations  
TOP VIEW  
D4/D12  
D5/D13  
D6/0  
1
2
3
4
5
6
7
8
9
20 D3/D11  
19 D2/D10  
18 D1/D9  
17 D0/D8  
D6  
D7  
1
2
3
4
5
6
7
8
9
28 D5  
27 D4  
26 D3  
25 D2  
24 D1  
23 D0  
22 N.C.  
21 N.C.  
D8  
D7/0  
D9  
MAX1066  
R/C  
16 DV  
DD  
D10  
D11  
D12  
D13  
R/C  
MAX1065  
EOC  
15 DGND  
14  
AV  
DD  
CS  
AGND  
AIN  
13 HBEN  
12 REF  
20 DV  
DD  
AGND 10  
11 REFADJ  
EOC 10  
AV 11  
19 DGND  
18 CS  
DD  
TSSOP  
AGND 12  
AIN 13  
17 RESET  
16 REF  
AGND 14  
15 REFADJ  
TSSOP  
______________________________________________________________________________________ 13  
Low-Power, 14-Bit Analog-to-Digital Converters  
with Parallel Interface  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
14 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1066CEUP

Low-Power, 14-Bit Analog-to-Digital Converters with Parallel Interface
MAXIM

MAX1067

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
MAXIM

MAX1067ACEE

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
MAXIM

MAX1067AEEE

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
MAXIM

MAX1067AEEE+

ADC Single SAR 200ksps 14-bit Serial 16-Pin QSOP
MAXIM

MAX1067AEEE-T

ADC, Successive Approximation, 14-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 0.150 INCH, 0.250 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX1067BCEE

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
MAXIM

MAX1067BCEE+

ADC, Successive Approximation, 14-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 0.150 INCH, 0.250 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX1067BCEE+T

ADC, Successive Approximation, 14-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 0.150 INCH, 0.250 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX1067BCEE-T

ADC, Successive Approximation, 14-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, PDSO16, 0.150 INCH, 0.250 INCH PITCH, MO-137AB, QSOP-16
MAXIM

MAX1067BEEE

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
MAXIM

MAX1067BEEE+

MULTICHANNEL, 14-BIT, 200KSPS ANALOG-TO-DIGITAL CONVERTERS
MAXIM