MAX1067AEEE [MAXIM]

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters; 多通道, 14位, 200ksps的模拟 - 数字转换器
MAX1067AEEE
型号: MAX1067AEEE
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Multichannel, 14-Bit, 200ksps Analog-to-Digital Converters
多通道, 14位, 200ksps的模拟 - 数字转换器

转换器 模数转换器 光电二极管 信息通信管理
文件: 总30页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2955; Rev 1; 8/07  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
General Description  
Features  
The MAX1067/MAX1068 low-power, multichannel, 14-  
bit analog-to-digital converters (ADCs) feature a suc-  
cessive-approximation ADC, integrated +4.096V  
reference, a reference buffer, an internal oscillator,  
automatic power-down, and a high-speed SPI™/  
QSPI™/MICROWIRE™-compatible interface. The  
MAX1067/MAX1068 operate with a single +5V analog  
supply and feature a separate digital supply, allowing  
direct interfacing with +2.7V to +5.5V digital logic.  
14-Bit Resolution, ±±0. ꢀLB ꢁIꢀ ꢂnꢃ  
±1 ꢀLB ꢄIꢀ ꢅ(ꢂax  
+.V Lingle-Lupply Operꢂtion  
Aꢃjustꢂble ꢀogic ꢀevel ꢅ+207V to +.02.Vx  
ꢁnput Voltꢂge Rꢂnge: ± to V  
REF  
ꢁnternꢂl ꢅ+40±96Vx or Eaternꢂl ꢅ+308V to AV  
x
ꢄꢄ  
Reference  
The MAX1067/MAX1068 consume only 3.6mA (AV  
=
DD  
ꢁnternꢂl Trꢂck/Holꢃ, 4MHz ꢁnput Bꢂnꢃwiꢃth  
ꢁnternꢂl or Eaternꢂl Clock  
DV  
= +5V) at 200ksps when using an external refer-  
DD  
ence. AutoShutdown™ reduces the supply current to  
185µA at 10ksps and to less than 10µA at reduced sam-  
pling rates.  
LPꢁ/QLPꢁ/MꢁCROWꢁRE-Co(pꢂtible Leriꢂl  
ꢁnterfꢂce, MAX1±68 Perfor(s ꢄLP-ꢁnitiꢂteꢃ  
Conversions  
The MAX1067 includes a 4-channel input multiplexer, and  
the MAX1068 accepts up to eight analog inputs.  
In addition, digital signal processor (DSP)-initiated con-  
versions are simplified with the DSP frame-sync input and  
output featured in the MAX1068. The MAX1068 includes a  
data-bit transfer input to select between 8-bit-wide or 16-  
bit-wide data-transfer modes. Both devices feature a scan  
mode that converts each channel sequentially or one  
channel continuously.  
8-Bit-Wiꢃe or 16-Bit-Wiꢃe ꢄꢂtꢂ-Trꢂnsfer Moꢃe  
ꢅMAX1±68 Onlyx  
4-Chꢂnnel ꢅMAX1±67x or 8-Chꢂnnel ꢅMAX1±68x  
ꢁnput Mua  
Lcꢂn Moꢃe Lequentiꢂlly Converts Multiple  
Chꢂnnels or One Chꢂnnel Continuously  
Excellent dynamic performance and low power, com-  
bined with ease of use and an integrated reference,  
make the MAX1067/MAX1068 ideal for control and data-  
acquisition operations or for other applications with  
demanding power consumption and space require-  
ments. The MAX1067 is available in a 16-pin QSOP  
package, and the MAX1068 is available in a 24-pin  
QSOP package. Both devices are guaranteed over the  
commercial (0°C to +70°C) and extended (-40°C to  
+85°C) temperature ranges. Use the MAX1168 evalua-  
tion kit to evaluate the MAX1068.  
ꢀow Power  
306(A ꢂt 2±±ksps  
108.(A ꢂt 1±±ksps  
18.µA ꢂt 1±ksps  
±06µA in Full Power-ꢄown Moꢃe  
L(ꢂll Pꢂckꢂge Lize  
16-Pin QLOP ꢅMAX1±67x  
24-Pin QLOP ꢅMAX1±68x  
Ordering Information  
Applications  
PꢁI-  
ꢁIꢀ  
PART  
TEMP RAIGE  
Motor Control  
PACKAGE ꢅꢀLBx  
Industrial Process Control  
Industrial I/O Modules  
MAX1±67ACEE  
MAX1067BCEE  
MAX1067CCEE  
MAX1067AEEE  
MAX1067BEEE  
MAX1067CEEE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
16 QSOP  
0.5  
1
2
Data-Acquisition Systems  
Thermocouple Measurements  
Accelerometer Measurements  
0.5  
1
2
Ordering Information continued at end of data sheet.  
Pin Configurations appear at end of data sheet.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
ABLOꢀUTE MAXꢁMUM RATꢁIGL  
AV  
DV  
to AGND .........................................................-0.3V to +6V  
to DGND.........................................................-0.3V to +6V  
DGND to AGND.....................................................-0.3V to +0.3V  
AIN_, REF, REFCAP to AGND..................-0.3V to (AV + 0.3V)  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
24-Pin QSOP (derate 9.5mW/°C above +70°C)...........762mW  
Operating Temperature Ranges  
DD  
SCLK, CS, DSEL, DSPR, DIN to DGND ...................-0.3V to +6V  
MAX106_ _ CE_ ..................................................0°C to +70°C  
MAX106_ _ EE_ ...............................................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DOUT, DSPX, EOC to DGND...................-0.3V to (DV + 0.3V)  
DD  
Maximum Current into Any Pin............................................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
ꢄC ACCURACY (Note 1)  
Resolution  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
MꢁI  
TYP  
MAX  
UIꢁTL  
14  
Bits  
LSB  
MAX106_A  
MAX106_B  
MAX106_C  
0.5  
1.0  
1.5  
1
2
3
1
Relative Accuracy (Note 2)  
INL  
MAX106_A  
+1.5  
-1.0  
MAX106_B  
MAX106_C  
No missing codes  
over temperature  
Differential Nonlinearity  
Transition Noise  
DNL  
LSB  
+1.5  
-1.0  
External reference  
Internal reference  
0.33  
0.35  
0.1  
RMS noise  
LSB  
RMS  
Offset Error  
Gain Error  
Offset Drift  
Gain Drift  
10  
mV  
(Note 3)  
(Note 3)  
0.01  
1
0.2  
%FSR  
ppm/°C  
ppm/°C  
1.2  
ꢄYIAMꢁC LPECꢁFꢁCATꢁOIL ꢅ1kHz sine wꢂve, 40±96V ) (Note 1)  
P-P  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
81  
82  
84  
84  
-98  
99  
4
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Full-Power Bandwidth  
THD  
-86  
dB  
SFDR  
86  
dB  
-3dB point  
SINAD > 81dB  
(Note 4)  
MHz  
kHz  
dB  
Full-Linear Bandwidth  
10  
85  
Channel-to-Channel Isolation  
COIVERLꢁOI RATE  
Internal clock, no data transfer,  
single conversion (Note 5)  
5.52  
3.75  
7.07  
Conversion Time  
t
µs  
CONV  
External clock  
2
_______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL ꢅcontinueꢃx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
Acquisition Time  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
MꢁI  
729  
0.1  
TYP  
MAX  
UIꢁTL  
t
(Note 6)  
ns  
ACQ  
External clock, data transfer and conversion  
External clock, data transfer only  
Internal clock  
4.8  
9
Serial Clock Frequency  
f
MHz  
SCLK  
Internal Clock Frequency  
Aperture Delay  
f
3.2  
4.0  
15  
MHz  
ns  
INTCLK  
t
AD  
Aperture Jitter  
t
<50  
ps  
AJ  
8-bit-wide data-transfer mode  
16-bit-wide data-transfer mode  
4.17  
200.00  
3.125  
150.000  
Internal clock, single conversion, 8-bit-wide  
data-transfer mode  
89  
68  
Internal clock, single conversion, 16-bit-  
wide data-transfer mode  
Sample Rate (Note 7)  
f
ksps  
S
Internal clock, scan mode, 8-bit-wide data-  
transfer mode (four conversions)  
103  
82  
External clock, scan mode, 16-bit-wide  
data-transfer mode (four conversions)  
Duty Cycle  
45  
0
55  
%
AIAꢀOG ꢁIPUT ꢅAꢁI_x  
Input Range  
V
_
V
V
AIN  
REF  
Input Capacitance  
C
_
45  
pF  
AIN  
EXTERIAꢀ REFEREICE  
Input Voltage Range  
V
I
(Note 8)  
3.8  
AV – 0.2  
V
REF  
DD  
V
_ = 0  
34  
0.1  
0.1  
AIN  
Input Current  
µA  
SCLK idle  
CS = DV , SCLK idle  
REF  
DD  
ꢁITERIAꢀ REFEREICE  
Reference Voltage  
V
4.042  
4.096  
13  
4.136  
V
REFIN  
Reference Short-Circuit Current  
I
mA  
REFSC  
Reference Temperature  
Coefficient  
25  
5
ppm/°C  
ms  
Reference Wake-Up Time  
t
V
= 0  
REF  
RWAKE  
_______________________________________________________________________________________  
3
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL ꢅcontinueꢃx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
MꢁI  
TYP  
MAX  
UIꢁTL  
ꢄꢁGꢁTAꢀ ꢁIPUTL ꢅLCꢀK, CS, ꢄLEꢀ, ꢄLPR, ꢄꢁIx ꢅꢄV  
= +207V to +.02.Vx  
ꢄꢄ  
0.7 ×  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
I
Digital inputs = 0 to DV  
0.1  
0.2  
15  
1
µA  
V
IN  
DD  
V
HYST  
Input Capacitance  
C
pF  
IN  
ꢄꢁGꢁTAꢀ OUTPUT ꢅꢄOUT, ꢄLPX, EOCx ꢅꢄV  
= +207V to +.02.Vx  
ꢄꢄ  
DV  
0.4  
-
DD  
Output High Voltage  
Output Low Voltage  
V
I
= 0.5mA  
V
V
OH  
SOURCE  
I
I
= 10mA, DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
0.8  
SINK  
DD  
V
OL  
= 1.6mA, DV  
0.4  
10  
SINK  
DD  
Tri-State Output Leakage Current  
Tri-State Output Capacitance  
POWER LUPPꢀꢁEL  
I
CS = DV  
CS = DV  
0.1  
15  
µA  
pF  
L
DD  
DD  
C
OUT  
Analog Supply  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
3.3  
V
V
DD  
Digital Supply  
DD  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
External reference  
Internal reference  
200ksps  
2.7  
3.6  
200ksps  
100ksps  
10ksps  
1ksps  
4.2  
1.4  
2.7  
Analog Supply Current (Note 9)  
I
mA  
AVDD  
0.14  
1.8  
0.014  
1.7  
0.87  
0.45  
0.045  
0.005  
1.3  
100ksps  
DOUT =  
all zeros  
Digital Supply Current  
I
mA  
mA  
DVDD  
10ksps  
1ksps  
Internal reference and  
reference buffer on  
between conversions  
0.66  
0.20  
CS = DV  
SCLK = 0,  
DIN = 0,  
,
DD  
I
+
AVDD  
Power-Down Supply Current  
I
DVDD  
Internal reference on,  
reference buffer off  
between conversions  
DSPR = DV  
DD  
4
_______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL ꢅcontinueꢃx  
(AV  
= DV  
= +4.75V to +5.25V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
DD  
DD  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
CS = DV , SCLK = 0, DIN = 0,  
MꢁI  
TYP  
MAX  
UIꢁTL  
I
+
AVDD  
DD  
10  
Shutdown Supply Current  
0.6  
µA  
dB  
I
DSPR = DV , full power-down  
DD  
DVDD  
AV  
= DV  
= 4.75V to 5.25V, full-scale  
DD  
DD  
Power-Supply Rejection Ratio  
PSRR  
63  
input (Note 10)  
TꢁMꢁIG CHARACTERꢁLTꢁCL ꢅFigures 1, 2, 8, ꢂnꢃ 16x  
(AV  
= ꢄV  
= +407.V to +.02.V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion (200ksps), external V  
ꢄꢄ  
ꢄꢄ  
A
SCLK REF  
= +4.096V, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
MIN  
PARAMETER  
Acquisition Time  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
External clock (Note 6)  
MꢁI  
TYP  
MAX  
UIꢁTL  
t
729  
ns  
ns  
ns  
ns  
ns  
ACQ  
SCLK to DOUT Valid  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
50  
80  
80  
DO  
DOUT  
DOUT  
DOUT  
CS Fall to DOUT Enable  
t
DV  
CS Rise to DOUT Disable  
CS Pulse Width  
t
TR  
t
100  
100  
CSW  
SCLK rise  
CS to SCLK Setup  
CS to SCLK Hold  
t
ns  
ns  
ns  
CSS  
SCLK fall (DSP)  
SCLK rise  
t
0
CSH  
SCLK fall (DSP)  
Conversion  
Data transfer  
Conversion  
Data transfer  
93  
50  
SCLK High Pulse Width  
t
Duty cycle 45% to 55%  
Duty cycle 45% to 55%  
CH  
93  
SCLK Low Pulse Width  
SCLK Period  
t
ns  
ns  
ns  
CL  
CP  
DS  
50  
t
t
209  
SCLK rise  
DIN to SCLK Setup  
50  
0
SCLK fall (DSP)  
SCLK rise  
DIN to SCLK Hold  
t
ns  
DH  
SCLK fall (DSP)  
CS Falling to DSPR Rising  
DSPR to SCLK Falling Setup  
DSPR to SCLK Falling Hold  
t
100  
100  
0
ns  
ns  
ns  
DF  
t
FSS  
FSH  
t
_______________________________________________________________________________________  
.
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
TꢁMꢁIG CHARACTERꢁLTꢁCL ꢅFigures 1, 2, 8, ꢂnꢃ 16x  
(AV  
= +4.75V to +5.25V, ꢄV  
= +207V to +.02.V, f  
= 4.8MHz external clock (50% duty cycle), 24 clocks/conversion  
, unless otherwise noted. Typical values are at T = +25°C.)  
DD  
ꢄꢄ  
SCLK  
(200ksps), external V  
= +4.096V, T = T  
to T  
REF  
A
MIN  
MAX A  
PARAMETER  
Acquisition Time  
LYMBOꢀ  
COIꢄꢁTꢁOIL  
External clock (Note 6)  
MꢁI  
TYP  
MAX  
UIꢁTL  
ns  
t
729  
ACQ  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS Pulse Width  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
100  
100  
80  
ns  
DO  
DOUT  
DOUT  
DOUT  
t
ns  
DV  
t
ns  
TR  
t
100  
100  
ns  
CSW  
SCLK rise  
CS to SCLK Setup  
CS to SCLK Hold  
t
ns  
ns  
ns  
CSS  
SCLK fall (DSP)  
SCLK rise  
t
0
CSH  
SCLK fall (DSP)  
Conversion  
Data transfer  
Conversion  
Data transfer  
93  
93  
SCLK High Pulse Width  
t
Duty cycle 45% to 55%  
Duty cycle 45% to 55%  
CH  
93  
SCLK Low Pulse Width  
SCLK Period  
t
ns  
ns  
ns  
CL  
CP  
DS  
93  
t
t
209  
SCLK rise  
DIN to SCLK Setup  
100  
0
SCLK fall (DSP)  
SCLK rise  
DIN to SCLK Hold  
t
ns  
DH  
SCLK fall (DSP)  
CS Falling to DSPR Rising  
DSPR to SCLK Falling Setup  
DSPR to SCLK Falling Hold  
t
100  
100  
0
ns  
ns  
ns  
DF  
t
FSS  
FSH  
t
Iote 1: AV  
= DV  
= +5.0V.  
DD  
DD  
Iote 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after full-scale range has been  
calibrated.  
Iote 3: Offset and reference errors nulled.  
Iote 4: DC voltage applied to on channel, and a full-scale 1kHz sine wave applied to off channels.  
Iote .: Conversion time is measured from the rising edge of the 8th external SCLK pulse to EOC transition minus t  
in 8-bit  
ACQ  
data-transfer mode.  
Iote 6: See Figures 10 and 17.  
-1  
) where: n  
1
Iote 7: f  
= 4.8MHz, f  
= 4.0MHz. Sample rate is calculated with the formula f = n (n / f  
+ n / f  
s
1
2
3
SCLK  
INTCLK  
SCLK  
INTCLK  
= number of scans, n = number of SCLK cycles, and n = number of internal clock cycles (see Figures 11–14).  
2
3
Iote 8: Guaranteed by design, not production tested.  
Iote 9: Internal reference and buffer are left on between conversions.  
Iote 1±: Defined as the change in the positive full scale caused by a 5% variation in the nominal supply voltage.  
6
_______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
INL vs. CODE  
DNL vs. CODE  
FFT AT f = 1kHz  
AIN  
20  
1.0  
0.8  
1.0  
0.8  
0
0.6  
0.4  
0.2  
0
0.6  
0.4  
0.2  
0
-20  
-40  
-60  
-80  
-0.2  
-0.4  
-0.2  
-0.4  
-100  
-120  
-140  
-160  
-0.6  
-0.8  
-1.0  
-0.6  
-0.8  
-1.0  
0
4096  
8192  
12,288  
16,384  
0
4096  
8192  
12,288  
16,384  
0
20  
40  
60  
80  
100  
CODE  
CODE  
FREQUENCY (kHz)  
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
THD vs. FREQUENCY  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0
f
= 200kbps  
SAMPLE  
-20  
-40  
-60  
-80  
f
= 200ksps  
-100  
-120  
SAMPLE  
10  
f
= 200kbps  
SAMPLE  
10  
0.1  
1
100  
0.1  
1
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
(INTERNAL REFERENCE)  
ANALOG SUPPLY CURRENT  
vs. ANALOG SUPPLY VOLTAGE  
(EXTERNAL REFERENCE)  
SUPPLY CURRENT vs. CONVERSION RATE  
(EXTERNAL CLOCK)  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.95  
2.90  
2.85  
2.80  
2.75  
2.70  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
DV = AV = +5V  
DD  
DD  
T
= +85°C  
= +70°C  
DV = +5V  
DD  
A
DV = +5V  
= 200ksps  
DD  
D
= ALL ZEROS  
OUT  
f
= 200ksps  
T
= +70°C  
S
A
f
S
EXTERNAL CLOCK  
SPI MODE  
T
A
T
= +85°C  
A
T
= +25°C  
T
A
= +25°C  
= 0°C  
A
I
, INT REF  
AVDD  
T
= 0°C  
T
A
A
I
, EXT REF  
AVDD  
I
DVDD  
T
= -40°C  
T
A
= -40°C  
A
-0.5  
0
20 40 60 80 100 120 140 160 180 200  
CONVERSION RATE (ksps)  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
AV (V)  
DD  
AV (V)  
DD  
_______________________________________________________________________________________  
7
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
POWER-DOWN SUPPLY CURRENT  
POWER-DOWN SUPPLY CURRENT  
vs. DV SUPPLY VOLTAGE  
vs. AV SUPPLY VOLTAGE  
DD  
DIGITAL SUPPLY CURRENT  
DD  
(INTERNAL REFERENCE)  
(INTERNAL REFERENCE)  
vs. DIGITAL SUPPLY VOLTAGE  
MAX1067/68 toc12  
MAX1067/68 toc11  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
1.03  
1.02  
1.01  
1.00  
0.99  
2.6  
2.2  
1.8  
1.4  
1.0  
0.6  
0.2  
AV = +5V  
DD  
DV = +5V  
DD  
AV = +5V  
DD  
V
= 0  
= 200ksps  
IL  
f
S
I
DOUT = 1010...1010  
DOUT = 0000...0000  
AVDD  
I
AVDD  
I
DVDD  
4.85  
I
DVDD  
4.75  
4.95  
5.05  
5.15  
5.25  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
2.70  
3.21  
3.72  
4.23  
4.74  
5.25  
AV (V)  
DD  
DV (V)  
DD  
DV (V)  
DD  
SHUTDOWN SUPPLY CURRENT  
SHUTDOWN SUPPLY CURRENT  
vs. DV SUPPLY VOLTAGE  
vs. AV SUPPLY VOLTAGE  
DD  
DD  
(EXTERNAL REFERENCE)  
(EXTERNAL REFERENCE)  
MAX1067/68 toc14  
MAX1067/68 toc13  
0.7  
0.43  
0.42  
0.41  
0.40  
0.39  
0.38  
0.37  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.54  
0.50  
0.46  
0.42  
0.38  
0.34  
0.30  
AV = +5V  
DD  
DV = +5V  
DD  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
I
AVDD  
I
DVDD  
I
AVDD  
4.74  
I
DVDD  
2.70  
3.21  
3.72  
4.23  
5.25  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
DV (V)  
DD  
AV (V)  
DD  
POWER-DOWN SUPPLY CURRENT  
vs. TEMPERATURE (INTERNAL REFERENCE)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE (EXTERNAL REFERENCE)  
MAX1067/68 toc15  
MAX1067/68 toc16  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.58  
0.57  
0.56  
0.55  
0.54  
0.53  
0.52  
0.45  
0.43  
0.41  
0.39  
0.37  
0.35  
DV = AV = +5V  
DV = AV = +5V  
DD DD  
DD  
DD  
I
AVDD  
I
AVDD  
I
I
DVDD  
DVDD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Typical Operating Characteristics (continued)  
(AV  
= DV  
= +5V, f  
= 4.8MHz, C  
= 30pF, external V  
= +4.096V, T = +25°C, unless otherwise noted.)  
DD  
DD  
SCLK  
DOUT  
REF A  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
200  
150  
100  
50  
500  
400  
300  
200  
100  
0
0.020  
0.015  
0.010  
0.005  
0
V
= +4.096V  
REF  
V
= +4.096V  
V
= +4.096V  
REF  
REF  
-0.005  
-0.010  
-0.015  
-0.020  
-0.025  
0
-100  
-200  
-300  
-400  
-500  
-50  
-100  
-150  
-200  
-0.030  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
AV (V)  
DD  
TEMPERATURE (°C)  
AV (V)  
DD  
CHANNEL-TO-CHANNEL ISOLATION  
vs. FREQUENCY  
INTERNAL +4.096V REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0.015  
0.010  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
4.104  
4.100  
4.096  
4.092  
4.088  
V
= +4.096V  
DV = +5V  
DD  
REF  
V
= +4.096V  
REF  
T
= +85°C  
A
0.005  
0
T
= +70°C  
A
-0.005  
-0.010  
T
= +25°C  
= 0°C  
A
-0.015  
-0.020  
T
A
T
= -40°C  
A
-0.025  
-110  
-40  
-15  
10  
35  
60  
85  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
TEMPERATURE (°C)  
AV (V)  
DD  
INTERNAL CLOCK CONVERSION TIME  
(8th RISING SCLK TO FALLING EOC)  
INTERNAL REFERENCE VOLTAGE  
vs. REF LOAD  
EXTERNAL REFERENCE INPUT CURRENT  
vs. EXTERNAL REFERENCE VOLTAGE  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
8-BIT DATA-TRANSFER MODE  
60  
V
= 0  
AIN  
16-BIT DATA-TRANSFER MODE  
f
= 4.8MHz  
SCLK  
53  
AV = DV = +5V  
DD  
DD  
f
= 4.8MHz  
SCLK  
46  
44  
39  
38  
199ksps, EXTERNAL CLOCK  
33  
31  
28  
24  
60  
22  
87.19ksps, INTERNAL CLOCK  
17  
17  
f
= 0  
SCLK  
40  
INTERNAL REFERENCE MODE  
LOAD APPLIED TO REF  
12  
10  
6
20  
C
= 1µF  
REF  
0
1
2
3
4
5
6
7
8
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5  
(V)  
0
2
4
6
8
10  
12  
14  
NUMBER OF SCAN-MODE CONVERSIONS  
V
I
(mA)  
REF  
REF  
_______________________________________________________________________________________  
9
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Pin Description  
PꢁI  
IAME  
DOUT  
SCLK  
DIN  
FUICTꢁOI  
MAX1±67  
MAX1±68  
Serial Data Output. Data changes state on SCLK’s falling edge in SPI/QSPI/MICROWIRE  
mode and on SCLK’s rising edge in DSP mode (MAX1068 only). DOUT is high impedance  
when CS is high.  
1
3
Serial Clock Input. SCLK drives the conversion process in external clock mode and clocks  
data out.  
2
3
4
4
5
6
Serial Data Input. Use DIN to communicate with the command/configuration/control register.  
In SPI/QSPI/MICROWIRE mode, the rising edge of SCLK clocks in data at DIN. In DSP  
mode, the falling edge of SCLK clocks in data at DIN.  
End-of-Conversion Output. In internal clock mode, a logic low at EOC signals the end of a  
conversion with the result available at DOUT. In external clock mode, EOC remains high.  
EOC  
5
6
7
8
7
8
AIN0  
AIN1  
AIN2  
AIN3  
Analog Input 0  
Analog Input 1  
Analog Input 2  
Analog Input 3  
9
10  
Reference Voltage Input/Output. V  
a 10µF capacitor. Bypass with a 1µF (min) capacitor when using the internal reference.  
sets the analog voltage range. Bypass to AGND with  
REF  
9
15  
16  
REF  
Reference Bypass Capacitor Connection. Bypass to AGND with a 0.1µF capacitor when using  
internal reference. Internal reference and buffer shut down in external reference mode.  
10  
REFCAP  
11  
12  
13  
17  
18  
19  
AGND Analog Ground. Connect to pin 18 (MAX1068) or pin 12 (MAX1067).  
AGND Primary Analog Ground (Star Ground). Power return for AV  
.
DD  
AV  
Analog Supply Voltage. Bypass to AGND with a 0.1µF capacitor.  
DD  
Active-Low Chip-Select Input. Forcing CS high places the MAX1067/MAX1068 in shutdown  
with a typical supply current of 0.6µA. In SPI/QSPI/MICROWIRE mode, a high-to-low  
transition on CS activates normal operating mode. In DSP mode, after the initial CS transition  
from high to low, CS can remain low for the entire conversion process (see the Operating  
Modes section).  
14  
20  
CS  
15  
16  
21  
22  
DGND Digital Ground  
DV  
Digital Supply Voltage. Bypass to DGND with a 0.1µF capacitor.  
DD  
DSP Frame-Sync Receive Input. A frame-sync pulse received at DSPR initiates a  
conversion. Connect to logic high when using SPI/QSPI/MICROWIRE mode.  
1
2
DSPR  
DSEL  
Data-Bit Transfer-Select Input. Logic low on DSEL places the device in 8-bit-wide data-  
transfer mode. Logic high places the device in 16-bit-wide data-transfer mode. Do not leave  
DSEL unconnected.  
11  
12  
AIN4  
AIN5  
Analog Input 4  
Analog Input 5  
1± ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Pin Description (continued)  
PꢁI  
IAME  
FUICTꢁOI  
MAX1±67  
MAX1±68  
13  
AIN6  
AIN7  
Analog Input 6  
Analog Input 7  
14  
23  
24  
DSP Frame-Sync Transmit Output. A frame-sync pulse at DSPX notifies the DSP that the  
MSB data is available at DOUT. Leave DSPX unconnected when not in DSP mode.  
DSPX  
N.C.  
No Connection. Not internally connected.  
DV  
DD  
DV  
DD  
1mA  
1mA  
DOUT  
1mA  
DOUT  
DOUT  
DOUT  
C
LOAD  
= 30pF  
C
LOAD  
= 30pF  
C
LOAD  
= 30pF  
C
LOAD  
= 30pF  
1mA  
DGND  
a) V TO V  
DGND  
b) HIGH-Z TO V AND V TO V  
OL  
DGND  
a) V TO HIGH-Z  
DGND  
b) V TO HIGH-Z  
OL  
OH  
OH  
OL  
OH  
OL  
Figure 1. Load Circuits for DOUT Enable Time and SCLK-to-  
DOUT Delay Time  
Figure 2. Load Circuits for DOUT Disable Time  
data. Acquisition and conversion are initiated by SCLK.  
The conversion result is available at DOUT in unipolar  
serial format. DOUT is held low until data becomes  
available (MSB first) on the 8th falling edge of SCLK  
when in 8-bit transfer mode, and on the 16th falling  
edge when in 16-bit transfer mode. See the Operating  
Modes section. Figure 8 shows the detailed SPI/QSPI/  
MICROWIRE serial-interface timing diagram.  
Detailed Description  
The MAX1067/MAX1068 low-power, multichannel, 14-  
bit ADCs feature a successive-approximation ADC,  
automatic power-down, integrated +4.096V reference,  
and a high-speed SPI/QSPI/MICROWIRE-compatible  
interface. A DSPR input and DSPX output allow the  
MAX1068 to communicate with DSPs with no external  
glue logic. The MAX1067/MAX1068 operate with a sin-  
gle +5V analog supply and feature a separate digital  
supply allowing direct interfacing with +2.7V to +5.5V  
digital logic.  
In external clock mode, the MAX1068 also interfaces  
with DSPs. In DSP mode, a frame-sync pulse from the  
DSP initiates a conversion that is driven by SCLK. The  
MAX1068 formats a frame-sync pulse to notify the DSP  
that the conversion results are available at DOUT in  
MSB-first, unipolar, serial-data format. Figure 16 shows  
the detailed DSP serial-interface timing diagram (see the  
Operating Modes section).  
Figures 3 and 4 show the functional diagrams of the  
MAX1067/MAX1068, and Figures 5 and 6 show the  
MAX1067/MAX1068 in a typical operating circuit. The  
serial interface simplifies communication with micro-  
processors (µPs).  
Analog Input  
Figure 7 illustrates the input-sampling architecture of  
the ADC. The voltage applied at REF or the internal  
+4.096V reference sets the full-scale input voltage.  
In external reference mode, the MAX1067/MAX1068  
have two power modes: normal mode and shutdown  
mode. Driving CS high places the MAX1067/MAX1068  
in shutdown mode, reducing the supply current to  
0.6µA (typ). Pull CS low to place the MAX1067/  
MAX1068 in normal operating mode. The internal refer-  
ence mode offers software-programmable, power-down  
options as shown in Table 5.  
Track/Hold (T/H)  
In track mode, the analog signal is acquired on the  
internal hold capacitor. In hold mode, the T/H switches  
open and the capacitive digital-to-analog converter  
(DAC) samples the analog input.  
In SPI/QSPI/MICROWIRE mode, a falling edge on CS  
wakes the analog circuitry and allows SCLK to clock in  
______________________________________________________________________________________ 11  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
AV  
DV  
DD  
REFCAP  
DD  
REFERENCE  
BUFFER  
REF  
AGND  
MAX1067  
AIN0  
AIN1  
ANALOG-INPUT  
MULTIPLEXER  
COMPARATOR  
DAC  
AIN2  
AIN3  
AZ  
RAIL  
ANALOG-SWITCH FINE TIMING  
BIAS  
SCLK  
SUCCESSIVE-APPROXIMATION  
REGISTER  
MULTIPLEXER  
OUTPUT  
DOUT  
OSCILLATOR  
ACCUMULATOR  
CONTROL  
CS  
EOC  
MEMORY  
INPUT REGISTER  
DIN  
AGND  
DGND  
Figure 3. MAX1067 Functional Diagram  
During the acquisition, the analog input (AIN_) charges  
capacitor C . At the end of the acquisition interval  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time  
DAC  
the T/H switches open. The retained charge on C  
represents a sample of the input.  
DAC  
(t  
) is the maximum time the device takes to acquire  
ACQ  
the signal. Use the following formula to calculate acqui-  
sition time:  
In hold mode, the capacitive DAC adjusts during the  
remainder of the conversion cycle to restore node  
ZERO to zero within the limits of 14-bit resolution. At the  
end of the conversion, force CS  high and then low to  
reset the T/H switches back to track mode (AIN_),  
t
= 11(R + R + R  
) 45pF + 0.3µs  
DS(ON)  
ACQ  
S
IN  
where R = 340, R = the input signal’s source  
IN  
S
impedance, R  
= 60, and t  
is never less  
ACQ  
DS(ON)  
where C  
charges to the input signal again.  
DAC  
than 729ns. A source impedance less than 200does  
not significantly affect the ADC’s performance. The  
MAX1068 features a 16-bit-wide data-transfer mode  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
12 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
AV  
DV  
DD  
REFCAP  
DD  
REFERENCE  
BUFFER  
REF  
MAX1068  
AGND  
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
ANALOG-INPUT  
MULTIPLEXER  
COMPARATOR  
DAC  
AIN5  
AIN6  
AZ  
RAIL  
AIN7  
ANALOG-SWITCH FINE TIMING  
BIAS  
SCLK  
SUCCESSIVE-APPROXIMATION  
REGISTER  
MULTIPLEXER  
OUTPUT  
DOUT  
OSCILLATOR  
ACCUMULATOR  
CS  
DSEL  
DSPR  
EOC  
CONTROL  
DSPX  
MEMORY  
INPUT REGISTER  
DIN  
AGND  
DGND  
Figure 4. MAX1068 Functional Diagram  
that includes a longer acquisition time (11.5 clock  
cycles). Longer acquisition times are useful in applica-  
tions with input source resistances greater than 1k.  
Noise increases when using large source resistances. To  
improve the input signal bandwidth under AC conditions,  
drive AIN_ with a wideband buffer (>10MHz) that can  
drive the ADC’s input capacitance and settle quickly.  
avoid aliasing of unwanted, high-frequency signals into  
the frequency band of interest, use anti-alias filtering.  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
input to AV  
or AGND, allow the input to swing from  
DD  
(AGND - 0.3V) to (AV  
+ 0.3V) without damaging the  
DD  
device. If the analog input exceeds 300mV beyond the  
supplies, limit the input current to 10mA.  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 4MHz small-  
signal bandwidth, making possible the digitization of  
high-speed transient events and the measurement of  
periodic signals with bandwidths exceeding the ADC’s  
sampling rate by using undersampling techniques. To  
______________________________________________________________________________________ 13  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
SCLK  
DSPX  
CS  
AIN0  
AIN1  
AIN2  
AIN3  
SCLK  
DSPX  
CS  
SCLK  
DOUT  
CS  
AIN0  
AIN1  
AIN2  
AIN3  
ANALOG  
INPUTS  
SCLK  
DOUT  
EOC  
ANALOG  
INPUTS  
DOUT  
EOC  
DOUT  
EOC  
AIN4  
AIN5  
AIN6  
EOC  
DIN  
DIN  
MAX1067  
AIN7  
DIN  
DSEL  
DSPR  
REF  
DIN  
16  
MAX1068  
1µF  
8
AGND  
AGND  
AV  
DD  
+5V  
+5V  
REF  
0.1µF  
DGND  
1µF  
AGND  
AGND  
AV  
DD  
+5V  
+5V  
DV  
DD  
REFCAP  
0.1µF  
DGND  
0.1µF  
0.1µF  
DV  
DD  
REFCAP  
0.1µF  
0.1µF  
GND  
GND  
Figure 5. MAX1067 Typical Operating Circuit  
Figure 6. MAX1068 Typical Operating Circuit  
REF  
MUX  
In addition to the standard 3-wire serial interface modes,  
the MAX1068 includes a DSPR input and a DSPX output  
for communicating with DSPs in external clock mode  
and a DSEL input to determine 8-bit-wide or 16-bit-wide  
data-transfer mode. When not using the MAX1068 in the  
R
DSON  
CAPACITIVE  
DAC  
TRACK  
HOLD  
AIN_  
ZERO  
C
MUX  
C
DAC  
R
IN  
DSP interface mode, connect DSPR to DV  
DSPX unconnected.  
and leave  
DD  
AGND  
HOLD  
C
SWITCH  
TRACK  
Command/Configuration/Control Register  
Table 1 shows the contents of the command/configura-  
tion/control register and the state of each bit after initial  
power-up. Tables 2–6 define the control and configura-  
tion of the device for each bit. Cycling the power sup-  
plies resets the command/configuration/control register  
to the power-on-reset default state.  
AUTO-ZERO  
RAIL  
Figure 7. Equivalent Input Circuit  
Digital Interface  
The MAX1067/MAX1068 feature an SPI/QSPI/  
MICROWIRE-compatible 3-wire serial interface. The  
MAX1067 digital interface consists of digital inputs CS,  
SCLK, and DIN; and outputs DOUT and EOC. The  
MAX1067 operates in the following modes:  
Initialization After Power-Up  
A logic high on CS places the MAX1067/MAX1068 in the  
shutdown mode chosen by the power-down bits, and  
places DOUT in a high-impedance state. Drive CS low to  
power-up and enable the MAX1067/MAX1068 before  
starting a conversion. In internal reference mode, allow  
5ms for the shutdown internal reference and/or buffer to  
wake and stabilize before starting a conversion. In exter-  
nal reference mode (or if the internal reference is already  
on), no reference settling time is needed after power-up.  
• SPI interface with external clock  
• SPI interface with internal clock  
• SPI interface with internal clock and scan mode  
Tꢂble 10 Co((ꢂnꢃ/Configurꢂtion/Control Register  
BꢁT7 ꢅMLBx  
CH LEꢀ2  
BꢁT6  
BꢁT.  
BꢁT4  
BꢁT3  
BꢁT2  
BꢁT1  
BꢁT± ꢅꢀLBx  
COMMAIꢄ  
CH LEꢀ1 CH LEꢀ±  
LCAI1  
LCAI±  
REF/Pꢄ_LEꢀ1  
REF/Pꢄ LEꢀ±  
ꢁIT/EXT CꢀK  
POWER-UP  
STATE  
0
0
0
0
0
1
1
0
14 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Tꢂble 20 Chꢂnnel Lelect  
Tꢂble 30 MAX1±67 Lcꢂn Moꢃe, ꢁnternꢂl  
Clock Only  
BꢁT7  
BꢁT6  
BꢁT.  
CHAIIEꢀ  
AꢁI_  
CH LEꢀ2  
CH LEꢀ1  
CH LEꢀ±  
BꢁT4  
BꢁT3  
ACTꢁOI  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
LCAI1 LCAI±  
Single channel, no scan  
0
0
Sequentially scan channels 0 through N  
(N 3)  
0
1
Sequentially scan channels 2 through N  
(2 N 3)  
1
1
0
1
Scan channel N 4 times  
Tꢂble 40 MAX1±68 Lcꢂn Moꢃe, ꢁnternꢂl  
Clock Only ꢅIot for ꢄLP Moꢃex  
BꢁT4  
BꢁT3  
ACTꢁOI  
LCAI1 LCAI±  
Single channel, no scan  
0
0
Sequentially scan channels 0 through N  
(N 7)  
0
1
Sequentially scan channels 4 through N  
(4 N 7)  
1
1
0
1
Scan channel N 8 times  
Tꢂble .0 Power-ꢄown Moꢃes  
BꢁT2  
BꢁT1  
TYPꢁCAꢀ  
LUPPꢀY  
CURREIT  
TYPꢁCAꢀ WAKE-  
UP TꢁME  
REFEREICE MOꢄE  
ꢅꢁITERIAꢀ REFEREICEx  
REFEREICE  
REF/Pꢄ_  
LEꢀ1  
REF/Pꢄ  
LEꢀ±  
ꢅC  
= 1µFx  
REF  
Internal reference and reference buffer stay  
on between conversions  
0
0
0
1
Internal  
Internal  
1mA  
NA  
Internal reference and reference buffer off  
between conversions  
0.6µA  
5ms  
Internal reference on, reference buffer off  
between conversions  
1
1
0
1
Internal  
External  
0.43mA  
0.6µA  
5ms  
NA  
Internal reference and buffer always off  
Tꢂble 60 Clock Moꢃes  
BꢁT±  
CꢀOCK MOꢄE  
ꢁIT/EXT  
CꢀK  
0
1
External clock  
Internal clock  
______________________________________________________________________________________ 1.  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
t
CSW  
CS  
• • •  
• • •  
t
t
t
CSS  
CP  
CSH  
t
CL  
t
CH  
SCLK  
t
DS  
t
DH  
DIN  
• • •  
• • •  
t
t
TR  
DO  
t
DV  
DOUT  
Figure 8. Detailed SPI Interface Timing  
ence and buffer wake up on the falling edge of CS  
when in SPI/QSPI/MICROWIRE mode and on the falling  
edge of DSPR when in DSP mode. Allow 5ms for the  
internal reference to rise and settle when powering up  
CS  
COMPLETE CONVERSION SEQUENCE  
from a complete shutdown (V  
= 0, C  
= 1µF).  
REF  
REF  
DOUT  
The internal reference stays on and the buffer is shut off  
on the rising edge of CS when bit 2 = 1 and bit 1 = 0.  
The MAX1067/MAX1068 enter this mode on the rising  
edge of CS. The buffer wakes up on the falling edge of  
CS when in SPI/QSPI/MICROWIRE mode and on the  
falling edge of DSPR when in DSP mode. Allow 5ms for  
CONVERSION 0  
CONVERSION 1  
POWERED UP  
POWERED UP  
POWERED DOWN  
Figure 9. Shutdown Sequence  
V
to settle when powering up from a complete shut-  
REF  
down (V  
= 0, C  
= 1µF). V  
is always equal  
REFCAP  
REF  
REF  
Power-Down Modes  
to +4.096V in this mode.  
Table 5 shows the MAX1067/MAX1068 power-down  
modes. Three internal reference modes and one exter-  
nal reference mode are available. Select power-down  
modes by writing to bits 2 and 1 in the command/con-  
figuration/control register. The MAX1067/MAX1068  
enter the selected power-down mode on the rising  
edge of CS.  
Set both bit 2 and bit 1 to 1 to turn off the reference and  
reference buffer to allow connection of an external ref-  
erence. Using an external reference requires no extra  
wake-up time.  
Operating Modes  
External Clock 8-Bit-Wide Data-Transfer Mode  
(MAX1067 and MAX1068)  
The internal reference stays on when CS is pulled high,  
if bits 2 and 1 are set to zero. This mode allows for the  
fastest turn-on time.  
Force DSPR high and DSEL low (MAX1068) for SPI/  
QSPI/MICROWIRE-interface mode. The falling edge of CS  
wakes the analog circuitry and allows SCLK to clock in  
data. Ensure the duty cycle on SCLK is between 45% and  
55% when operating at 4.8MHz (the maximum clock fre-  
quency). For lower clock frequencies, ensure the  
Setting bit 2 = 0 and bit 1 = 1 turns both the reference  
and reference buffer off when CS is brought high. This  
mode achieves the lowest supply current. The refer-  
16 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
16  
8
24  
SCLK  
DIN  
MSB  
LSB  
0
MSB  
LSB  
S1  
S0  
DOUT  
DSPR*  
DSEL*  
ADC  
STATE  
t
IDLE  
t
CONV  
ACQ  
*MAX1068 ONLY  
Figure 10. SPI External Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing  
minimum high and low times are at least 93ns. External  
clock-mode conversions with SCLK rates less than  
125kHz can reduce accuracy due to leakage of the sam-  
pling capacitor. DOUT changes from high-Z to logic low  
after CS is brought low. Input data latches on the rising  
edge of SCLK. The first SCLK rising edge begins loading  
data into the command/configuration/control register from  
DIN. The devices select the proper channel for conver-  
sion on the rising edge of the 3rd SCLK cycle. Acquisition  
begins immediately thereafter and ends on the falling  
edge of the 6th clock cycle. The MAX1067/MAX1068  
sample the input and begin conversion on the falling  
edge of the 6th clock cycle. Setup and configuration of  
the MAX1067/MAX1068 complete on the rising edge of  
the 8th clock cycle. The conversion result is available  
(MSB first) at DOUT on the falling edge of the 8th SCLK  
cycle. To read the entire conversion result, 16 SCLK  
cycles are needed. Extra clock pulses, occurring after the  
conversion result has been clocked out and prior to the  
rising edge of CS, cause zeros to be clocked out of  
DOUT. The MAX1067/MAX1068 external clock 8-bit-wide  
data-transfer mode requires 24 SCLK cycles for comple-  
tion (Figure 10).  
External Clock 16-Bit-Wide Data-Transfer Mode  
(MAX1068 Only)  
Force DSPR high and DSEL high for SPI/QSPI/  
MICROWIRE-interface mode. Logic high at DSEL allows  
the MAX1068 to transfer data in 16-bit-wide words. The  
acquisition time is extended an extra eight SCLK cycles  
in the 16-bit-wide data-transfer mode. The falling edge  
of CS wakes the analog circuitry and allows SCLK to  
clock in data. Ensure the duty cycle on SCLK is  
between 45% and 55% when operating at 4.8MHz (the  
maximum clock frequency). For lower clock frequen-  
cies, ensure that the minimum high and low times are at  
least 93ns. External-clock-mode conversions with SCLK  
rates less than 125kHz can reduce accuracy due to  
leakage of the sampling capacitor. DOUT changes from  
high-Z to logic low after CS is brought low. Input data  
latches on the rising edge of SCLK. The first SCLK rising  
edge begins loading data into the command/configura-  
tion/control register from DIN. The devices select the  
proper channel for conversion and begin acquisition on  
the rising edge of the 3rd SCLK cycle. Setup and con-  
figuration of the MAX1068 completes on the rising edge  
of the 8th clock cycle. Acquisition ends on the falling  
edge of the 14th SCLK cycle. The MAX1068 samples  
the input and begins conversion on the falling edge of  
the 14th clock cycle. The conversion result is available  
(MSB first) at DOUT on the falling edge of the 16th  
SCLK cycle. To read the entire conversion result, 16  
SCLK cycles are needed. Extra clock pulses, occurring  
after the conversion result has been clocked out and  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1067/MAX1068 in shutdown.  
______________________________________________________________________________________ 17  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
16  
24  
32  
8
SCLK  
DIN  
MSB  
LSB  
0
X
X
X
X
X
X
X
X
MSB  
LSB  
S1 S0  
DOUT  
DSPR  
DSEL  
ADC  
STATE  
t
t
IDLE  
ACQ  
CONV  
,
X = DON T CARE  
Figure 11. SPI External Clock Mode, 16-Bit Data-Transfer Mode, Conversion Timing (MAX1068 Only)  
CS  
1
9
16  
24  
8
SCLK  
2
6
25  
INTERNAL  
CLK  
• • •  
MSB  
LSB  
1
DIN  
MSB  
LSB  
DOUT  
EOC  
S1 S0  
X
ADC  
STATE  
t
POWER-DOWN  
,
t
CONV  
ACQ  
IDLE  
X = DON T CARE  
DSPR = DV , DSEL = GND (MAX1068 ONLY)  
DD  
Figure 12. SPI Internal Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing  
prior to the rising edge of CS, cause zeros to be  
clocked out of DOUT. The MAX1068 external clock 16-  
bit-wide data-transfer mode requires 32 SCLK cycles for  
completion (Figure 11).  
to logic low after CS is brought low. Input data latches  
on the rising edge of SCLK. The command/configura-  
tion/control register begins reading DIN on the first  
SCLK rising edge and ends on the rising edge of the  
8th SCLK cycle. The MAX1067/MAX1068 select the  
proper channel for conversion on the rising edge of the  
3rd SCLK cycle. The internal oscillator activates 125ns  
after the rising edge of the 8th SCLK cycle. Turn off the  
external clock while the internal clock is on. Turning off  
SCLK ensures the lowest noise performance during  
acquisition. Acquisition begins on the 2nd rising edge  
of the internal clock and ends on the falling edge of the  
6th internal clock cycle. Each bit of the conversion  
result shifts into memory as it becomes available. The  
conversion result is available (MSB first) at DOUT on  
the falling edge of EOC. The internal oscillator and ana-  
log circuitry are shut down on the high-to-low EOC tran-  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1068 in shutdown.  
Internal Clock 8-Bit-Wide Data-Transfer and  
Scan Mode (MAX1067 and MAX1068)  
Force DSPR high and DSEL low (MAX1068) for the SPI/  
QSPI/MICROWIRE-interface mode. The falling edge of  
CS wakes the analog circuitry and allows SCLK to  
clock in data (Figure 12). DOUT changes from high-Z  
18 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
CS  
1
8
9
16  
17  
24  
32  
• • •  
• • •  
SCLK  
2
13  
32  
INTERNAL  
CLK  
• • •  
• • •  
DIN  
DOUT  
EOC  
DATA  
X X X X X X X X  
MSB  
LSB  
S1 S0  
X
ADC  
STATE  
CONFIGURATION  
t
ACQ  
t
POWER-DOWN  
CONV  
,
X = DON T CARE  
DSPR = DSEL = DV  
DD  
Figure 13. SPI Internal Clock Mode,16-Bit Data-Transfer Mode, Conversion Timing (MAX1068 Only)  
CS  
1
8
9
40  
• • •  
SCLK  
26  
30  
2
6
24  
48  
INTERNAL  
CLK  
• • •  
• • •  
MSB  
LSB  
1
DIN  
DOUT  
EOC  
MSB  
LSB  
• • •  
S1 S0  
X
ADC  
STATE  
CONFIGURATION  
t
t
ACQ  
t
t
POWER-DOWN  
ACQ  
CONV  
CONV  
,
X = DON T CARE  
DSPR = DV , DSEL = GND (MAX1068 ONLY)  
DD  
Figure 14. SPI Internal Clock Mode, 8-Bit Data-Transfer Mode, Scan Mode for Two Conversions, Conversion Timing  
Scan mode allows multiple channels to be scanned  
consecutively or one channel to be scanned eight  
times. Scan mode can only be enabled when using the  
MAX1067/MAX1068 in the internal clock mode. Enable  
scanning by setting bits 4 and 3 in the command/con-  
figuration/control register (see Tables 3 and 4). In scan  
mode, conversion results are stored in memory until the  
completion of the last conversion in the sequence.  
Upon completion of the last conversion in the  
sequence, EOC transitions from high to low to indicate  
the end of the conversion and shuts down the internal  
oscillator. Use the EOC high-to-low transition as the sig-  
nal to restart the external clock (SCLK). DOUT provides  
the conversion results in the same order as the channel  
conversion process. The MSB of the first conversion is  
available at DOUT on the falling edge of EOC (Figure 14).  
sition. Use the EOC high-to-low transition as the signal  
to restart the external clock (SCLK). To read the entire  
conversion result, 16 SCLK cycles are needed. Extra  
clock pulses, occurring after the conversion result has  
been clocked out and prior to the rising edge of CS,  
cause the conversion result to be shifted out again. The  
MAX1067/MAX1068 internal clock 8-bit-wide data-  
transfer mode requires 24 external clock cycles and 25  
internal clock cycles for completion.  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1067/MAX1068 in shutdown.  
______________________________________________________________________________________ 19  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Internal Clock 16-Bit-Wide Data-Transfer and  
Scan Mode (MAX1068 Only)  
the conversion result to be shifted out again. The  
MAX1068 internal-clock 16-bit-wide data-transfer mode  
requires 32 external clock cycles and 32 internal clock  
cycles for completion.  
Force DSPR high and DSEL low for the SPI/QSPI/  
MICROWIRE-interface mode. The falling edge of CS  
wakes the analog circuitry and allows SCLK to clock in  
data (see Figure 13). DOUT changes from high-Z to logic  
low after CS is brought low. Input data latches on the ris-  
ing edge of SCLK. The command/configuration/control  
register begins reading DIN on the first SCLK rising  
edge and ends on the rising edge of the 8th SCLK  
cycle. The MAX1068 selects the proper channel for  
conversion on the rising edge of the 3rd SCLK cycle.  
The internal oscillator activates 125ns after the rising  
edge of the 16th SCLK cycle. Turn off the external  
clock while the internal clock is on. Turning off SCLK  
ensures lowest noise performance during acquisition.  
Acquisition begins on the 2nd rising edge of the inter-  
nal clock and ends on the falling edge of the 18th inter-  
nal clock cycle. Each bit of the conversion result shifts  
into memory as it becomes available. The conversion  
result is available (MSB first) at DOUT on the falling  
edge of EOC. The internal oscillator and analog circuit-  
ry are shut down on the EOC high-to-low transition. Use  
the EOC high-to-low transition as the signal to restart  
the external clock (SCLK). To read the entire conver-  
sion result, 16 SCLK cycles are needed. Extra clock  
pulses, occurring after the conversion result has been  
clocked out and prior to the rising edge of CS, cause  
Force CS high after the conversion result is read. For  
maximum throughput, force CS low again to initiate the  
next conversion immediately after the specified mini-  
mum time (t  
). Forcing CS high in the middle of a  
CSW  
conversion immediately aborts the conversion and  
places the MAX1068 in shutdown.  
Scan mode allows multiple channels to be scanned  
consecutively or one channel to be scanned eight  
times. Scan mode can only be enabled when using the  
MAX1068 in internal clock mode. Enable scanning by  
setting bits 4 and 3 in the command/configuration/con-  
trol register (see Tables 3 and 4). In scan mode, conver-  
sion results are stored in memory until the completion of  
the last conversion in the sequence. Upon completion of  
the last conversion in the sequence, EOC transitions  
from high to low to indicate the end of the conversion  
and shuts down the internal oscillator. Use the EOC  
high-to-low transition as the signal to restart the external  
clock (SCLK). DOUT provides the conversion results in  
the same order as the channel conversion process. The  
MSB of the first conversion is available at DOUT on the  
falling edge of EOC. Figure 15 shows the timing dia-  
gram for 16-bit-wide data transfer in scan mode.  
CS  
48  
17  
1
8
9
16  
• • •  
• • •  
• • •  
SCLK  
32  
34  
45  
64  
2
13  
INTERNAL  
CLK  
• • •  
• • •  
• • •  
• • •  
DATA  
X X X X X X X X  
DIN  
LSB  
MSB  
• • •  
S1 S0  
X
DOUT  
EOC  
ADC  
STATE  
t
t
t
t
POWER-DOWN  
ACQ  
ACQ  
CONV  
CONV  
,
X = DON T CARE  
Figure 15. SPI Internal Clock Mode, 16-Bit Data-Transfer Mode, Scan Mode for Two Conversions, Conversion Timing (MAX1068 Only)  
2± ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
DSP 8-Bit-Wide Data-Transfer Mode (External Clock  
Mode, MAX1068 Only)  
rising edge of the 9th clock pulse. To read the entire  
conversion results, 16 SCLK cycles are needed. Extra  
clock pulses, occuring after the conversion result has  
been clocked out, and prior to the next rising edge of  
DSPR, cause zeros to be clocked out of DOUT. The  
MAX1068 external-clock, DSP 8-bit-wide data-transfer  
mode requires 24 clock cycles to complete.  
Figure 16 shows the DSP-interface timing diagram.  
Logic low at DSPR on the falling edge of CS enables  
DSP interface mode. After the MAX1068 enters DSP  
mode, CS can remain low for the duration of the con-  
version process and each subsequent conversion.  
Drive DSEL low to select the 8-bit data-transfer mode.  
A sync pulse from the DSP at DSPR wakes the analog  
circuitry and allows SCLK to clock in data (Figure 17).  
The frame sync pulse alerts the MAX1068 that incom-  
ing data is about to be sent to DIN. Ensure the duty  
cycle on SCLK is between 45% and 55% when operat-  
ing at 4.8MHz (the maximum clock frequency). For  
lower clock frequencies, ensure the minimum high and  
low times are at least 93ns. External clock mode con-  
versions with SCLK rates less than 125kHz can reduce  
accuracy due to leakage of the sampling capacitor.  
The input data latches on the falling edge of SCLK. The  
command/configuration/control register starts reading  
data in on the falling edge of the first SCLK cycle imme-  
diately following the falling edge of the frame sync  
pulse and ends on the falling edge of the 8th SCLK  
cycle. The MAX1068 selects the proper channel for  
conversion on the falling edge of the 3rd clock cycle  
and begins acquisition. Acquisition continues until the  
rising edge of the 7th clock cycle. The MAX1068 sam-  
ples the input on the rising edge of the 7th clock cycle.  
On the rising edge of the 8th clock cycle, the MAX1068  
outputs a frame sync pulse at DSPX. The frame sync  
pulse alerts the DSP that the conversion results are  
about to be output at DOUT (MSB first) starting on the  
Begin a new conversion by sending a new frame sync  
pulse to DSPR followed by new configuration data.  
Send the new DSPR pulse immediately after reading  
the conversion result to realize maximum throughput.  
Sending a new frame sync pulse in the middle of a con-  
version immediately aborts the current conversion and  
begins a new one. A rising edge on CS in the middle of  
a conversion aborts the current conversion and places  
the MAX1068 in shutdown.  
DSP 16-Bit-Wide Data-Transfer Mode (External  
Clock Mode, MAX1068 Only)  
Figure 16 shows the DSP-interface timing diagram. Logic  
low at DSPR on the falling edge of CS enables DSP inter-  
face mode. After the MAX1068 enters DSP mode, CS  
can remain low for the duration of the conversion  
process and each subsequent conversion. The acquisi-  
tion time is extended an extra eight SCLK cycles in the  
16-bit-wide data-transfer mode. Drive DSEL high to  
select the 16-bit-wide data-transfer mode. A sync pulse  
from the DSP at DSPR wakes the analog circuitry and  
allows SCLK to clock in data (Figure 18). The frame  
sync pulse also alerts the MAX1068 that incoming data  
is about to be sent to DIN. Ensure the duty cycle on  
SCLK is between 45% and 55% when operating at  
t
CSW  
CS  
...  
...  
t
DF  
t
FSS  
DSPR  
t
FSH  
t
CSS  
t
CSH  
t
t
CH  
CL  
SCLK  
...  
t
t
DS  
CP  
t
DH  
...  
...  
DIN  
t
t
TR  
DO  
t
DV  
DOUT  
Figure 16. Detailed DSP-Interface Timing (MAX1068 Only)  
______________________________________________________________________________________ 21  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
4.8MHz (the maximum clock frequency). For lower  
clock frequencies, ensure the minimum high and low  
times are at least 93ns. External-clock-mode conver-  
sions with SCLK rates less than 125kHz can reduce  
accuracy due to leakage of the sampling capacitor.  
The input data latches on the falling edge of SCLK. The  
command/configuration/control register starts reading  
data in on the falling edge of the first SCLK cycle imme-  
diately following the falling edge of the frame sync  
pulse and ends on the falling edge of the 16th SCLK  
cycle. The MAX1068 selects the proper channel for  
conversion on the falling edge of the 3rd clock cycle  
and begins acquisition. Acquisition continues until the  
rising edge of the 15th clock cycle. The MAX1068 sam-  
ples the input on the rising edge of the 15th clock cycle.  
On the rising edge of the 16th clock cycle, the MAX1068  
outputs a frame sync pulse at DSPX. The frame sync  
pulse alerts the DSP that the conversion results are  
about to be output at DOUT (MSB first) starting on the  
rising edge of the 17th clock pulse. To read the entire  
conversion result, 16 SCLK cycles are needed. Extra  
clock pulses, occuring after the conversion result has  
been clocked out and prior to the next rising edge of  
DSPR, cause zeros to be clocked out of DOUT. The  
MAX1068 external clock, DSP 16-bit-wide data-transfer  
mode requires 32 clock cycles to complete.  
Begin a new conversion by sending a new frame sync  
pulse to DSPR followed by new configuration data.  
Send the new DSPR pulse immediately after reading  
the conversion result to realize maximum throughput.  
Sending a new frame sync pulse in the middle of a con-  
version immediately aborts the current conversion and  
begins a new one. A rising edge on CS in the middle of  
a conversion aborts the current conversion and places  
the MAX1068 in shutdown.  
CS  
DSPR  
16  
24  
1
8
SCLK  
DIN  
MSB  
LSB  
0
MSB  
LSB  
S1  
S0  
DOUT  
DSPX  
ADC  
STATE  
IDLE  
t
t
ACQ  
CONV  
Figure 17. DSP External Clock Mode, 8-Bit Data-Transfer Mode, Conversion Timing (MAX1068 Only)  
CS  
DSPR  
1
16  
24  
32  
8
SCLK  
DIN  
MSB  
LSB  
0
X
X
X
X
X
X
X
X
LSB  
MSB  
S1 S0  
DOUT  
DSPX  
ADC  
STATE  
t
t
IDLE  
ACQ  
CONV  
,
X = DON T CARE  
Figure 18. DSP External Clock Mode, 16-Bit Data-Transfer Mode, Conversion Timing (MAX1068 Only)  
22 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Output Coding and Transfer Function  
The data output from the MAX1067/MAX1068 is  
OUTPUT CODE  
straight binary. Figure 19 shows the nominal transfer  
FULL-SCALE  
TRANSITION  
function. Code transitions occur halfway between suc-  
11...111  
11...110  
11...101  
cessive integer LSB values (V  
= +4.096V, and  
REF  
1 LSB = +250µV or 4.096V / 16,384V).  
Applications Information  
Internal Reference  
The internal bandgap reference provides a buffered  
+4.096V. Bypass REFCAP with a 0.1µF capacitor to  
AGND and REF with a 1µF capacitor to AGND. For best  
results, use low-ESR, X5R/X7R ceramic capacitors.  
Allow 5ms for the reference and buffer to wake up from  
full power-down (see Table 5).  
FS = V  
REF  
V
REF  
1 LSB =  
16,384  
00...011  
00...010  
00...001  
00...000  
0
1
2
3
FS  
FS - 3/2 LSB  
External Reference  
INPUT VOLTAGE (LSB)  
The MAX1067/MAX1068 accept an external reference  
with a voltage range between +3.8V and AV  
.
DD  
Connect the external reference directly to REF. Bypass  
REF to AGND with a 10µF capacitor. When not using a  
low-ESR bypass capacitor, use a 0.1µF ceramic capac-  
itor in parallel with the 10µF capacitor. Noise on the ref-  
erence degrades conversion accuracy.  
Figure 19. Unipolar Transfer Function, Full Scale (FS) = V  
Zero Scale (ZS) = GND  
,
REF  
Input Buffer  
Most applications require an input-buffer amplifier to  
achieve 14-bit accuracy. The input amplifier must have  
a slew rate of at least 2V/µs and a unity-gain bandwidth  
of at least 10MHz to complete the required output-volt-  
age change before the end of the acquisition time.  
The input impedance at REF is 37kfor DC currents.  
During a conversion, the external reference at REF  
must deliver 118µA of DC load current and have an  
output impedance of 10or less.  
For optimal performance, buffer the reference through  
an op amp and bypass the REF input. Consider the  
At the beginning of the acquisition, the internal sam-  
pling capacitor array connects to AIN_ (the amplifier  
input), causing some disturbance on the output of the  
buffer. Ensure the sampled voltage has settled before  
the end of the acquisition time.  
equivalent input noise (82µV  
) of the MAX1067/  
RMS  
MAX1068 when choosing a reference.  
Internal/External Oscillator  
Select either an external (0.1MHz to 4.8MHz) or the  
internal 4MHz (typ) clock to perform conversions  
(Table 6). The external clock shifts data in and out of  
the MAX1067/MAX1068 in either clock mode.  
Digital Noise  
Digital noise can couple to AIN_ and REF. The conver-  
sion clock (SCLK) and other digital signals active during  
input acquisition contribute noise to the conversion  
result. Noise signals, synchronous with the sampling  
interval, result in an effective input offset. Asynchronous  
signals produce random noise on the input, whose high-  
frequency components can be aliased into the frequen-  
cy band of interest. Minimize noise by presenting a low  
impedance (at the frequencies contained in the noise  
signal) at the inputs. This requires bypassing AIN_ to  
AGND, or buffering the input with an amplifier that has a  
small-signal bandwidth of several megahertz (doing both  
is preferable). AIN has a typical bandwidth of 4MHz.  
When using the internal clock mode, the internal oscil-  
lator controls the acquisition and conversion process-  
es, while the external oscillator shifts data in and out of  
the MAX1067/MAX1068. Turn off the external clock  
(SCLK) when the internal clock is on to realize lowest  
noise performance. The internal clock remains off in  
external clock mode.  
______________________________________________________________________________________ 23  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Distortion  
Avoid degrading dynamic performance by choosing an  
amplifier with distortion much less than the total harmonic  
distortion of the MAX1067/MAX1068 at the frequencies of  
interest (THD = -98db at 1kHz). If the chosen amplifier  
has insufficient common-mode rejection, which results in  
degraded THD performance, use the inverting configura-  
tion (positive input grounded) to eliminate errors from this  
source. Low-temperature-coefficient, gain-setting resis-  
tors reduce linearity errors caused by resistance  
changes due to self-heating. To reduce linearity errors  
due to finite amplifier gain, use amplifier circuits with suf-  
ficient loop gain at the frequencies of interest..  
max for +5V supply), or whose offset can be trimmed  
while maintaining stability over the required tempera-  
ture range.  
Serial Interfaces  
SPI and MICROWIRE Interfaces  
When using the SPI (Figure 20a) or MICROWIRE (Figure  
20b) interfaces, set CPOL = 0 and CPHA = 0. Drive CS  
low to power on the MAX1067/MAX1068 before starting a  
conversion (Figure 20c). Three consecutive 8-bit-wide  
readings are necessary to obtain the entire 14-bit result  
from the ADC. DOUT data transitions on the serial clock’s  
falling edge. The first 8-bit-wide data stream contains all  
leading zeros. The 2nd 8-bit-wide data stream contains  
the MSB through D6. The 3rd 8-bit-wide data stream con-  
tains D5 through D0 followed by S1 and S0.  
DC Accuracy  
To improve DC accuracy, choose a buffer with an offset  
much less than the MAX1067/MAX1068s’ offset ( 10mV  
I/O  
SCK  
CS  
I/O  
SK  
SI  
CS  
SCLK  
DOUT  
SCLK  
DOUT  
MISO  
V
SPI  
DD  
MICROWIRE  
MAX1067  
MAX1068  
MAX1067  
MAX1068  
SS  
Figure 20a. SPI Connections  
Figure 20b. MICROWIRE Connections  
1ST BYTE READ  
4
2ND BYTE READ  
12  
1
6
8
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
DOUT*  
MSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
3RD BYTE READ  
20  
24  
HIGH-Z  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
LSB  
Figure 20c. SPI/MICROWIRE Interface Timing Sequence (CPOL = CPHA = 0)  
24 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
QSPI Interface  
Using the high-speed QSPI interface with CPOL = 0  
and CPHA = 0, the MAX1067/MAX1068 support a  
PIC16 with SSP Module and PIC17  
Interface  
The MAX1067/MAX1068 are compatible with a PIC16/  
PIC17 controller (µC), using the synchronous serial-port  
(SSP) module.  
maximum f  
of 4.8MHz. Figure 21a shows the  
SCLK  
MAX1067/MAX1068 connected to a QSPI master and  
Figure 21b shows the associated interface timing.  
To establish SPI communication, connect the controller  
as shown in Figure 22a and configure the PIC16/PIC17  
as system master by initializing its synchronous serial-  
port control register (SSPCON) and synchronous serial-  
port status register (SSPSTAT) to the bit patterns shown  
in Tables 7 and 8.  
CS  
SCK  
CS  
SCLK  
DOUT  
MISO  
In SPI mode, the PIC16/PIC17 µCs allow 8 bits of data to  
be synchronously transmitted and received simultane-  
ously. Three consecutive 8-bit-wide readings (Figure  
22b) are necessary to obtain the entire 14-bit result from  
the ADC. DOUT data transitions on the serial clock’s  
falling edge and is clocked into the µC on SCLK’s rising  
edge. The first 8-bit-wide data stream contains all zeros.  
The 2nd 8-bit-wide data stream contains the MSB  
through D6. The 3rd 8-bit-wide data stream contains bits  
D5 through D0 followed by S1 and S0.  
V
QSPI  
DD  
MAX1067  
MAX1068  
SS  
Figure 21a. QSPI Connections  
24  
1
4
6
8
12  
16  
20  
SCLK  
CS  
HIGH-Z  
D2  
D1  
D0  
S1  
D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
S0  
DOUT*  
D13 D12 D11  
MSB  
SAMPLING INSTANT  
LSB  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
Figure 21b. QSPI Interface Timing Sequence (External Clock, 8-Bit Data Transfer, CPOL = CPHA = 0)  
Tꢂble 70 ꢄetꢂileꢃ LLPCOI Register Contents  
COITROꢀ BꢁT  
LETTꢁIGL  
LYICHROIOUL LERꢁAꢀ-PORT COITROꢀ REGꢁLTER ꢅLLPCOIx  
Write Collision Detection Bit  
WCOL  
BIT7  
BIT6  
X
X
SSPOV  
Receive Overflow Detection Bit  
Synchronous Serial-Port Enable Bit:  
0: Disables serial port and configures these pins as I/O port pins.  
1: Enables serial port and configures SCK, SDO, and SCI pins as serial  
port pins.  
SSPEN  
BIT5  
1
CKP  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
0
0
0
0
1
Clock Polarity Select Bit. CKP = 0 for SPI master-mode selection.  
SSPM3  
SSPM2  
SSPM1  
SSPM0  
Synchronous Serial-Port Mode Select Bit. Sets SPI master-mode and  
selects f  
= f  
/ 16.  
CLK  
OSC  
X = Don’t care.  
______________________________________________________________________________________ 2.  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Tꢂble 80 ꢄetꢂileꢃ LLPLTAT Register Contents  
COITROꢀ BꢁT  
LETTꢁIGL  
LYICHROIOUL LERꢁAꢀ-PORT LTATUL REGꢁLTER ꢅLLPLTATx  
SPI Data-Input Sample Phase. Input data is sampled at the middle of  
the data output time.  
SMP  
BIT7  
BIT6  
0
1
SPI Clock Edge-Select Bit. Data is transmitted on the rising edge of the  
serial clock.  
CKE  
D/A  
P
BIT5  
BIT4  
BIT3  
BIT2  
BIT1  
BIT0  
X
X
X
X
X
X
Data Address Bit  
Stop Bit  
S
Start Bit  
R/W  
UA  
BF  
Read/Write Bit Information  
Update Address  
Buffer-Full Status Bit  
X = Don’t care.  
DSP Interface  
The DSP mode of the MAX1068 only operates in exter-  
nal clock mode. Figure 23 shows a typical DSP interface  
connection to the MAX1068. Use the same oscillator as  
the DSP to provide the clock signal for the MAX1068.  
The DSP provides the falling edge at CS to wake the  
MAX1068. The MAX1068 detects the state of DSPR on  
the falling edge of CS (Figure 17). Logic low at DSPR  
places the MAX1068 in DSP mode. After the MAX1068  
enters DSP mode, CS can be left low. A frame sync  
pulse from the DSP to DSPR initiates a conversion. The  
MAX1068 sends a frame sync pulse from DSPX to the  
DSP signaling that the MSB is available at DOUT. Send  
another frame sync pulse from the DSP to DSPR to  
begin the next conversion. The MAX1068 does not  
operate in scan mode when using DSP mode.  
V
V
DD  
DD  
SCLK  
DOUT  
CS  
SCK  
SDI  
I/O  
PIC16/17  
MAX1067  
MAX1068  
GND  
Figure 22a. SPI Interface Connection for a PIC16/PIC17  
1ST BYTE READ  
2ND BYTE READ  
1
4
6
8
12  
16  
SCLK  
CS  
0
0
0
0
0
0
0
0
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D13  
DOUT*  
*WHEN CS IS HIGH, DOUT = HIGH-Z  
MSB  
3RD BYTE READ  
20  
24  
HIGH-Z  
D5  
D4  
D3  
D2  
D1  
D0  
S1  
S0  
LSB  
Figure 22b. SPI Interface Timing with PIC16/PIC17 in Master Mode (CKE = 1, CKP = 0, SMP = 0, SSPM3 - SSPM0 = 0001)  
26 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
EFFECTIVE NUMBER OF BITS (ENOB)  
16  
EXTERNAL  
CLOCK  
14  
12  
SCLK  
SCLK  
10  
TFS  
RFS  
8
6
4
2
0
DSPR  
DSPX  
DIN  
DSP  
MAX1068  
DT  
DR  
DOUT  
f
= 200ksps  
1
SAMPLE  
FL1  
CS  
0.1  
10  
100  
FREQUENCY (kHz)  
Figure 23. DSP Interface Connection  
Figure 24. Effective Bits vs. Frequency  
noise error only and results directly from the ADC’s res-  
olution (N bits):  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1067/MAX1068  
are measured using the end-point method.  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all the other ADC output signals:  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step-width and the ideal value of 1 LSB. A  
DNL error specification of 1 LSB guarantees no miss-  
ing codes and a monotonic transfer function.  
SINAD (dB) = 20 log [Signal  
/ (Noise +  
RMS  
Distortion)  
]
RMS  
Aperture Definitions  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
the time between samples. Aperture delay (t ) is the  
AD  
time between the falling edge of the sampling clock  
and the instant when the actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
ENOB = (SINAD - 1.76) / 6.02  
Figure 24 shows the ENOB as a function of the MAX1067/  
MAX1068s’ input frequency.  
______________________________________________________________________________________ 27  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
AIN_  
+5V  
CS  
SCLK  
DOUT  
CS  
AIN_  
REF  
fundamental itself. This is expressed as:  
SCLK  
DOUT  
2
2
2
2
V
+V +V +V  
5
1µF  
2
3
4
AV  
DD  
THD = 20 × log  
MAX1067  
MAX1068  
V
1
0.1µF  
10Ω  
where V is the fundamental amplitude and V through  
5
1
2
AGND  
AGND  
DGND  
DV  
DD  
V are the 2nd- through 5th-order harmonics.  
0.1µF  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next-largest fre-  
quency component.  
GND  
Supplies, Layout, Grounding, and  
Bypassing  
Figure 25. Powering AV  
and DV  
from a Single Supply  
DD  
DD  
Use printed circuit (PC) boards with separate analog  
and digital ground planes. Do not use wire-wrap  
boards. Connect the two ground planes together at the  
MAX1067/MAX1068 AGND terminal. Isolate the digital  
supply from the analog with a low-value resistor (10)  
or ferrite bead when the analog and digital supplies  
come from the same source (Figure 25).  
impedance. A 5mA current flowing through a PC board  
ground trace impedance of only 0.05creates an error  
voltage of about 250µV and a 1 LSB error with a +4.096V  
full-scale system.  
The board layout should ensure that digital and analog  
signal lines are kept separate. Do not run analog and dig-  
ital lines (especially the SCLK and DOUT) parallel to one  
another. If one must cross another, do so at right angles.  
Constraints on sequencing the power supplies and  
inputs are as follows:  
The ADC’s high-speed comparator is sensitive to high-  
• Apply AGND before DGND.  
frequency noise on the AV  
power supply. Bypass an  
DD  
• Apply AIN_ and REF after AV  
present.  
and AGND are  
DD  
excessively noisy supply to the analog ground plane  
with a 0.1µF capacitor in parallel with a 1µF to 10µF  
low-ESR capacitor. Keep capacitor leads short for best  
supply-noise rejection.  
• DV  
is independent of the supply sequencing.  
DD  
Ensure that digital return currents do not pass through  
the analog ground and that return-current paths are low  
28 ______________________________________________________________________________________  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Ordering Information (continued)  
Chip Information  
TRANSISTOR COUNT: 20,760  
PꢁI-  
ꢁIꢀ  
PART  
TEMP RAIGE  
PACKAGE ꢅꢀLBx  
PROCESS: BiCMOS  
MAX1±68ACEG  
MAX1068BCEG  
MAX1068CCEG  
MAX1068AEEG*  
MAX1068BEEG*  
MAX1068CEEG*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
0.5  
1
2
0.5  
1
2
*Future product—contact factory for availability.  
Pin Configurations  
TOP VIEW  
DOUT  
1
DSPR  
DSEL  
DOUT  
SCLK  
DIN  
1
2
3
4
5
6
7
8
9
24 N.C.  
16 DV  
DD  
23 DSPX  
SCLK  
DIN  
2
3
4
5
6
7
8
15 DGND  
14 CS  
22 DV  
DD  
21 DGND  
20 CS  
EOC  
AIN0  
AIN1  
AIN2  
AIN3  
MAX1067  
13 AV  
DD  
MAX1068  
12 AGND  
11 AGND  
10 REFCAP  
EOC  
19 AV  
DD  
AIN0  
AIN1  
AIN2  
18 AGND  
17 AGND  
16 REFCAP  
15 REF  
9
REF  
QLOP  
AIN3 10  
AIN4 11  
AIN5 12  
14 AIN7  
13 AIN6  
QLOP  
______________________________________________________________________________________ 29  
Multichannel, 14-Bit, 200ksps Analog-to-Digital  
Converters  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www0(ꢂai(-ic0co(/pꢂckꢂges.)  
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH  
1
21-0055  
F
1
Revision History  
Pages changed at Rev 1: 1–6, 30  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY