MAX108CHC-D [MAXIM]

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, Bipolar, PBGA192, 25 X 25 MM, ESBGA-192;
MAX108CHC-D
型号: MAX108CHC-D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, Bipolar, PBGA192, 25 X 25 MM, ESBGA-192

转换器
文件: 总31页 (文件大小:1259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1492; Rev 1; 10/01  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
General Description  
Features  
The MAX108 PECL-compatible, 1.5Gsps, 8-bit analog-  
to-digital converter (ADC) allows accurate digitizing of  
analog signals with bandwidths to 2.2GHz. Fabricated  
on Maxim’s proprietary advanced GST-2 bipolar  
process, the MAX108 integrates a high-performance  
track/hold (T/H) amplifier and a quantizer on a single  
monolithic die.  
1.5Gsps Conversion Rate  
2.2GHz Full-Power Analog Input Bandwidth  
7.5 Effective Bits at f = 750MHz (Nyquist  
IN  
Frequency)  
0.25ꢀLB INꢀ and ꢁNꢀ  
50ꢁifferential Analog Inputs  
250ꢂm Input Lignal Range  
The innovative design of the internal T/H, which has an  
exceptionally wide 2.2GHz full-power input bandwidth,  
results in high performance (typically 7.5 effective bits)  
at the Nyquist frequency. A fully differential comparator  
design and decoding circuitry reduce out-of-sequence  
code errors (thermometer bubbles or sparkle codes)  
and provide excellent metastable performance. Unlike  
other ADCs that can have errors resulting in false full-  
or zero-scale outputs, the MAX108 limits the error mag-  
nitude to 1LSB.  
On-Chip, +2.5m Precision Bandgap moltage  
Reference  
ꢀatched, ꢁifferential PECꢀ ꢁigital Outputs  
Lelectable 8:16 ꢁeꢂultiplexer  
Internal ꢁeꢂux Reset Input with Reset Output  
192-Contact ELBGA Package  
The analog input is designed for either differential or  
single-ended use with a 250mꢀ input voltage range.  
Dual, differential, positive-referenced emitter-coupled  
logic (PECL)-compatible output data paths ensure easy  
interfacing and include an 8:16 demultiplexer feature  
that reduces output data rates to one-half the sampling  
clock rate. The PECL outputs can be operated from any  
supply between +3ꢀ to +5ꢀ for compatibility with +3.3ꢀ  
or +5ꢀ referenced systems. Control inputs are provided  
for interleaving additional MAX108 devices to increase  
the effective system sampling rate.  
Pin Coꢂpatible with MAX104 (1Gsps) and  
MAX106 (600Msps)  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
MAX108CHC  
0°C to +70°C  
192 ESBGA  
192-Contact ESBGA  
Ball Assignment Matrix  
The MAX108 is packaged in a 25mm x 25mm, 192-con-  
tact Enhanced Super Ball-Grid Array (ESBGA™) and is  
specified over the commercial (0°C to +70°C) tempera-  
ture range. For pin-compatible, lower speed versions of  
the MAX108, see the MAX104 (1Gsps) and the MAX106  
(600Msps) data sheets.  
TOP VIEW  
Applications  
Digital RF/IF Signal Processing  
Direct RF Downconversion  
High-Speed Data Acquisition  
Digital Oscilloscopes  
MAX108  
High-Energy Physics  
Radar/ECM Systems  
ATE Systems  
Typical Operating Circuit appears at end of data sheet.  
ELBGA  
PCB land pattern appears at end of data sheet.  
ESBGA is a trademark of Amkor/Anam.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
ABLOꢀUTE MAXIMUM RATINGL  
CC  
CC  
CC  
CC  
A to GNDA .........................................................-0.3ꢀ to +6ꢀ  
D to GNDD.........................................................-0.3ꢀ to +6ꢀ  
I to GNDI............................................................-0.3ꢀ to +6ꢀ  
RSTIN+, RSTIN- ......................................-0.3ꢀ to (ꢀ O + 0.3ꢀ)  
CC  
ꢀOSADJ Adjust Input ................................-0.3ꢀ to (ꢀ I + 0.3ꢀ)  
CC  
CLK+ to CLK- ꢀoltage Difference.......................................... 3ꢀ  
O to GNDD........................................-0.3ꢀ to (ꢀ D + 0.3ꢀ)  
CLK+, CLK-.....................................(ꢀ - 0.3ꢀ) to (GNDD + 1ꢀ)  
CC  
EE  
AUXEN1, AUXEN2 to GND .....................-0.3ꢀ to (ꢀ D + 0.3ꢀ)  
CLKCOM.........................................(ꢀ - 0.3ꢀ) to (GNDD + 1ꢀ)  
EE  
ꢀIN+ to ꢀIN- ꢀoltage Difference............................................ 2ꢀ  
ꢀIN+, ꢀIN- to GNDI................................................................ 2ꢀ  
CC  
to GNDI..............................................................-6ꢀ to +0.3ꢀ  
Between GNDs......................................................-0.3ꢀ to +0.3ꢀ  
EE  
A to ꢀ D .......................................................-0.3ꢀ to +0.3ꢀ  
Continuous Power Dissipation (T = +70°C)  
192-Contact ESBGA (derate 61mW/°C above +70°C)....4.88W  
(with heatsink and 200 LFM airflow,  
CC  
CC  
CC  
A
A to ꢀ I.........................................................-0.3ꢀ to +0.3ꢀ  
CC  
PECL Digital Output Current...............................................50mA  
REFIN to GNDR ........................................-0.3ꢀ to (ꢀ I + 0.3ꢀ)  
derate 106mW/°C above +70°C).....................................8.48W  
Operating Temperature Range  
MAX108CHC.........................................................0°C to +70°C  
Operating Junction Temperature.....................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
CC  
REFOUT Current ................................................+100µA to -5mA  
ICONST, IPTAT to GNDI .......................................-0.3ꢀ to +1.0ꢀ  
TTL/CMOS Control Inputs  
(DEMUXEN, DIꢀSELECT) ......................-0.3ꢀ to (ꢀ D + 0.3ꢀ)  
CC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ꢁC EꢀECTRICAꢀ CHARACTERILTICL  
(ꢀ A = ꢀ I = ꢀ D = +5.0ꢀ 5ꢁ, ꢀ = -5.0ꢀ 5ꢁ, ꢀ O = +3.0ꢀ to ꢀ D, REFIN connected to REFOUT, T = T  
to T  
,
MAX  
CC  
CC  
CC  
EE  
CC  
CC  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
ACCURACY  
LYMBOꢀ  
CONꢁITIONL  
MIN  
TYP  
MAX  
UNITL  
Resolution  
RES  
INL  
8
Bits  
LSB  
Integral Nonlinearity (Note 1)  
Differential Nonlinearity (Note 1)  
Missing Codes  
T
T
= +25°C  
-0.5  
-0.5  
0.25  
0.25  
0.5  
0.5  
A
DNL  
= +25°C  
LSB  
A
No missing codes guaranteed  
None  
Codes  
ANAꢀOG INPUTL  
Full-Scale Input Range  
Common-Mode Input Range  
Input Resistance  
Note 1  
475  
49  
500  
0.8  
50  
525  
51  
mꢀp-p  
FSR  
Signal + offset w.r.t. GNDI  
CM  
R
ꢀIN+ and ꢀIN- to GNDI, T = +25°C  
A
IN  
Input Resistance Temperature  
Coefficient  
TC  
150  
ppm/°C  
R
mOL AꢁJULT CONTROꢀ INPUT  
Input Resistance (Note 2)  
R
ꢀOS  
14  
4
25  
k  
Input ꢀ Adjust Range  
OS  
ꢀOSADJ = 0 to 2.5ꢀ  
5.5  
LSB  
REFERENCE INPUT ANꢁ OUTPUT  
Reference Output ꢀoltage  
REFOUT Driving REFIN input only  
2.475  
4
2.50  
5
2.525  
5
Reference Output Load  
Regulation  
REFOUT 0 < I < 2.5mA  
mꢀ  
kΩ  
SOURCE  
Reference Input Resistance  
R
REF  
Referenced to GNDR  
2
_______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
ꢁC EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(ꢀ A = ꢀ I = ꢀ D = +5.0ꢀ 5ꢁ, ꢀ = -5.0ꢀ 5ꢁ, ꢀ O = +3.0ꢀ to ꢀ D, REFIN connected to REFOUT, T = T  
to T  
,
MAX  
CC  
CC  
CC  
EE  
CC  
CC  
A
MIN  
unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
CꢀOCK INPUTL (Note 3)  
Clock Input Resistance  
LYMBOꢀ  
CONꢁITIONL  
MIN  
TYP  
MAX  
UNITL  
R
CLK+ and CLK- to CLKCOM, T = +25°C  
48  
50  
52  
CLK  
A
Input Resistance Temperature  
Coefficient  
TC  
150  
ppm/°C  
R
TTꢀ/CMOL CONTROꢀ INPUTL (ꢁEMUXEN, ꢁImLEꢀECT)  
High-Level Input ꢀoltage  
Low-Level Input ꢀoltage  
2.0  
IH  
0.8  
50  
1
IL  
High-Level Input Current  
I
IH  
= 2.4ꢀ  
= 0  
µA  
µA  
IH  
Low-Level Input Current  
I
IL  
-1  
IL  
ꢁEMUX RELET INPUT (Note 4)  
Digital Input High ꢀoltage  
Digital Input Low ꢀoltage  
-1.165  
IH  
-1.475  
IL  
PECꢀ ꢁIGITAꢀ OUTPUTL (Note 5)  
Digital Output High ꢀoltage  
Digital Output Low ꢀoltage  
POWER REQUIREMENTL  
Positive Analog Supply Current  
Positive Input Supply Current  
Negative Input Supply Current  
Digital Supply Current  
-1.025  
-1.810  
-0.880  
-1.620  
OH  
OL  
I
A
480  
108  
-210  
205  
75  
780  
150  
mA  
mA  
mA  
mA  
mA  
W
CC  
I
I
CC  
I
EE  
-290  
I
D
O
340  
115  
CC  
CC  
Output Supply Current (Note 6)  
Power Dissipation (Note 6)  
I
P
DISS  
5.25  
Common-Mode Rejection Ratio  
(Note 7)  
CMRR  
PSRR+  
PSRR-  
ꢀIN+ = ꢀIN- = 0.1ꢀ  
(Note 9)  
40  
40  
40  
68  
73  
68  
dB  
dB  
dB  
Positive Power-Supply Rejection  
Ratio (Note 8)  
Negative Power-Supply  
Rejection Ratio (Note 8)  
(Note 10)  
_______________________________________________________________________________________  
3
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
AC EꢀECTRICAꢀ CHARACTERILTICL  
(ꢀ A = ꢀ I = ꢀ D = +5.0ꢀ, ꢀ = -5.0ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, f at -1dBFS, T = +25°C,  
CC  
CC  
CC  
EE  
CC  
S
IN  
A
unless otherwise noted.)  
PARAMETER  
LYMBOꢀ  
CONꢁITIONL  
MIN  
TYP  
MAX  
UNITL  
ANAꢀOG INPUT  
Analog Input Full-Power  
Bandwidth  
BW  
2.2  
GHz  
-3dB  
Analog Input ꢀSWR  
ꢀSWR  
f
= 500MHz  
1.1:1  
0
ꢀ/ꢀ  
IN  
Transfer Curve Offset  
OS  
ꢀOSADJ control input open  
-2  
+2  
LSB  
ꢁYNAMIC LPECIFICATIONL  
Differential  
7.07  
7.07  
7.51  
7.53  
7.71  
7.71  
44.8  
44.9  
46.8  
46.9  
47.4  
47.4  
-44.5  
-44.2  
-52.1  
-52.8  
-60.2  
-61.3  
44.6  
45.5  
54.0  
54.1  
61.6  
61.7  
43.3  
43.4  
46.0  
46.1  
47.2  
47.2  
ENOB  
f
f
f
f
f
f
f
f
f
f
f
f
f
f
= 1500MHz  
= 750MHz  
= 250MHz  
= 1500MHz  
= 750MHz  
= 250MHz  
= 1500MHz  
= 750MHz  
= 250MHz  
= 1500MHz  
= 750MHz  
= 250MHz  
= 1500MHz  
= 750MHz  
= 250MHz  
1500  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
Single-ended  
Differential  
Effective Number of Bits  
(Note 11)  
ENOB  
ENOB  
Bits  
dB  
dB  
dB  
750  
Single-ended  
Differential  
7.3  
250  
Single-ended  
Differential  
SNR  
1500  
Single-ended  
Differential  
Signal-to-Noise Ratio  
(No Harmonics)  
SNR  
SNR  
750  
Single-ended  
Differential  
44.8  
250  
Single-ended  
Differential  
THD  
1500  
Single-ended  
Differential  
Total Harmonic Distortion  
(Note 12)  
THD  
THD  
750  
Single-ended  
Differential  
-55.5  
250  
Single-ended  
Differential  
SFDR  
1500  
Single-ended  
Differential  
Spurious-Free Dynamic Range  
SFDR  
SFDR  
SINAD  
750  
250  
1500  
Single-ended  
Differential  
55.0  
44.7  
Single-ended  
Differential  
Single-ended  
Differential  
Signal-to-Noise Ratio and  
Distortion  
SINAD  
SINAD  
dB  
dB  
750  
250  
Single-ended  
Differential  
f
f
IN  
Single-ended  
= 247MHz, f  
= 253MHz,  
at -7dB below full-scale  
IN1  
IN2  
Two-Tone Intermodulation  
IMD  
-66.8  
4
_______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
AC EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(ꢀ A = ꢀ I = ꢀ D = +5.0ꢀ, ꢀ = -5.0ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, f at -1dBFS, T = +25°C,  
CC  
CC  
CC  
EE  
CC  
S
IN  
A
unless otherwise noted.)  
PARAMETER  
LYMBOꢀ  
CONꢁITIONL  
MIN  
TYP  
MAX  
UNITL  
TIMING CHARACTERILTICL  
Maximum Sample Rate  
Clock Pulse Width Low  
Clock Pulse Width High  
Aperture Delay  
f
1.5  
0.3  
0.3  
Gsps  
ns  
MAX  
t
Figure 17  
PWL  
t
Figure 17  
Figure 4  
Figure 4  
5
ns  
PWH  
t
100  
ps  
AD  
Aperture Jitter  
t
AJ  
<0.5  
ps  
Reset Input Data Setup Time  
(Note 13)  
t
Figure 15  
Figure 15  
Figure 17  
Figure 17  
0
0
ps  
ps  
ns  
ps  
SU  
Reset Input Data Hold Time  
(Note 13)  
t
HD  
CLK to DREADY Propagation  
Delay  
t
2.2  
PD1  
PD2  
DREADY to DATA Propagation  
Delay (Note 14)  
t
-50  
150  
350  
DATA Rise Time  
DATA Fall Time  
t
20ꢁ to 80ꢁ, C = 3pF  
420  
360  
220  
180  
7.5  
ps  
ps  
ps  
ps  
RDATA  
L
t
20ꢁ to 80ꢁ, C = 3pF  
L
FDATA  
DREADY Rise Time  
DREADY Fall Time  
t
20ꢁ to 80ꢁ, C = 3pF  
L
RDREADY  
t
20ꢁ to 80ꢁ, C = 3pF  
L
FDREADY  
DIꢀ1, DIꢀ2 modes  
DIꢀ4 mode  
Primary Port Pipeline  
Delay  
Clock  
Cycles  
t
Figures 6, 7, 8  
Figures 6, 7, 8  
PDP  
7.5  
DIꢀ1, DIꢀ2 modes  
DIꢀ4 mode  
8.5  
Auxiliary Port Pipeline  
Delay  
Clock  
Cycles  
t
PDA  
9.5  
Note 1: Static linearity parameters are computed from a “best-fit” straight line through the code transition points. The full-scale  
range (FSR) is defined as 256 times the slope of the line.  
Note 2: The offset control input is a self-biased voltage divider from the internal +2.5ꢀ reference voltage. The nominal open-circuit  
voltage is +1.25ꢀ. It may be driven from an external potentiometer connected between REFOUT and GNDI.  
Note 3: The clock input’s termination voltage can be operated between -2.0ꢀ and GNDI. Observe the absolute maximum ratings  
on the CLK+ and CLK- inputs.  
Note 4: Input logic levels are measured with respect to the ꢀ O power-supply voltage.  
CC  
Note 5: All PECL digital outputs are loaded with 50to ꢀ O - 2.0ꢀ. Measurements are made with respect to the ꢀ O power-  
CC  
CC  
supply voltage.  
Note 6: The current in the ꢀ O power supply does not include the current in the digital output’s emitter followers, which is a func-  
CC  
tion of the load resistance and the ꢀ termination voltage.  
TT  
Note 7: Common-mode rejection ratio (CMRR) is defined as the ratio of the change in the transfer-curve offset voltage to the  
change in the common-mode voltage, expressed in dB.  
Note 8: Power-supply rejection ratio (PSRR) is defined as the ratio of the change in the transfer-curve offset voltage to the change  
in power-supply voltage, expressed in dB.  
Note 9: Measured with the positive supplies tied to the same potential; ꢀ A = ꢀ D = ꢀ I. ꢀ varies from +4.75ꢀ to +5.25ꢀ.  
CC  
CC  
CC  
CC  
Note 10: ꢀ varies from -5.25ꢀ to -4.75ꢀ.  
EE  
_______________________________________________________________________________________  
5
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Note 11: Effective number of bits (ENOB) are computed from a curve fit referenced to the theoretical full-scale range.  
Note 12: Total harmonic distortion (THD) is computed from the first five harmonics.  
Note 13: Guaranteed by design with a reset pulse width one clock period long or greater.  
Note 14: Guaranteed by design. The DREADY to DATA propagation delay is measured from the 50ꢁ point on the rising edge of the  
DREADY signal (when the output data changes) to the 50ꢁ point on a data output bit. This places the falling edge of the  
DREADY signal in the middle of the data output valid window, within the differences between the DREADY and DATA rise  
and fall times, which gives maximum setup and hold time for latching external data latches.  
Typical Operating Characteristics  
(ꢀ A = ꢀ I = ꢀ D = +5ꢀ, ꢀ = -5ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, T = +25°C, unless otherwise  
CC  
CC  
CC  
EE  
CC  
S
A
noted.)  
EFFECTIVE NUMBER OF BITS  
vs. ANALOG INPUT FREQUENCY  
(DIFFERENTIAL ANALOG INPUT DRIVE)  
EFFECTIVE NUMBER OF BITS  
vs. ANALOG INPUT FREQUENCY  
(SINGLE-ENDED ANALOG INPUT DRIVE)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
(SINGLE-ENDED ANALOG INPUT DRIVE)  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
6.25  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
6.25  
55  
50  
45  
40  
35  
30  
-12dB FS  
-12dB FS  
-1dB FS  
-6dB FS  
-1dB FS  
-6dB FS  
-1dB FS  
-6dB FS  
-12dB FS  
10  
100  
1000 2000  
ANALOG INPUT FREQUENCY (MHz)  
10  
100  
1000 2000  
ANALOG INPUT FREQUENCY (MHz)  
10  
100  
1000  
10,000  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
(DIFFERENTIAL ANALOG INPUT DRIVE)  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
(DIFFERENTIAL ANALOG INPUT DRIVE)  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
(SINGLE-ENDED ANALOG INPUT DRIVE)  
50  
46  
42  
38  
34  
55  
50  
45  
40  
35  
30  
50  
46  
42  
38  
34  
-1dB FS  
-1dB FS  
-1dB FS  
-6dB FS  
-6dB FS  
-6dB FS  
-12dB FS  
-12dB FS  
-12dB FS  
30  
30  
10  
100  
1000 2000  
10  
100  
1000 2000  
10  
100  
1000  
10,000  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Typical Operating Characteristics (continued)  
(ꢀ A = ꢀ I = ꢀ D = +5ꢀ, ꢀ = -5ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, T = +25°C, unless otherwise  
CC  
CC  
CC  
EE  
CC  
S
A
noted.)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
(DIFFERENTIAL ANALOG INPUT DRIVE)  
EFFECTIVE NUMBER OF BITS  
vs. CLOCK FREQUENCY  
(f = 250MHz, 1dB FS)  
IN  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
(SINGLE-ENDED ANALOG INPUT DRIVE)  
70  
65  
60  
55  
50  
45  
40  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
70  
65  
60  
55  
50  
45  
40  
-6dB FS  
-1dB FS  
-12dB FS  
-6dB FS  
-1dB FS  
-12dB FS  
35  
35  
10  
100  
1000 2000  
100  
1000  
1500  
10  
100  
1000 2000  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
CLOCK FREQUENCY (MHz )  
EFFECTIVE NUMBER OF BITS  
EFFECTIVE NUMBER OF BITS  
vs. CLOCK POWER  
(f = 250MHz, -1dB FS)  
IN  
vs. V I = V A = V D  
EFFECTIVE NUMBER OF BITS vs. V  
CC  
CC  
CC  
EE  
(f = 250MHz, -1dB FS)  
IN  
(f = 250MHz, -1dB FS)  
IN  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
8.00  
7.75  
7.50  
7.25  
7.00  
6.75  
6.50  
DIFFERENTIAL CLOCK DRIVE  
SINGLE-ENDED CLOCK DRIVE  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8
10  
4.5  
4.7  
4.9  
5.1  
(V)  
5.3  
5.5  
-5.5  
-5.3  
-5.1  
-4.9  
(V)  
-4.7  
-4.5  
CLOCK POWER (dBm) PER SIDE  
V
V
EE  
CC  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. V I = V A = V  
SPURIOUS-FREE DYNAMIC RANGE vs. V  
D
CC  
EE  
CC  
CC  
(f = 250MHz, -1dB FS)  
IN  
(f = 250MHz, -1dB FS)  
IN  
(f = 250MHz, -1dB FS)  
IN  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
67  
65  
63  
61  
59  
57  
55  
53  
51  
49  
47  
SINGLE-ENDED CLOCK DRIVE  
DIFFERENTIAL CLOCK DRIVE  
-12 -10 -8 -6 -4 -2  
0
2
4
6
8 10  
-5.5  
-5.3  
-5.1  
-4.9  
(V)  
-4.7  
-4.5  
4.5  
4.7  
4.9  
5.1  
(V)  
5.3  
5.5  
CLOCK POWER (dBm) PER SIDE  
V
V
EE  
CC  
_______________________________________________________________________________________  
7
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Typical Operating Characteristics (continued)  
(ꢀ A = ꢀ I = ꢀ D = +5ꢀ, ꢀ = -5ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, T = +25°C, unless otherwise  
CC  
CC  
CC  
EE  
CC  
S
A
noted.)  
TOTAL HARMONIC DISTORTION  
vs. V I = V A = V  
FFT PLOT  
(f = 250.9460449MHz,  
RECORD LENGTH 16,384)  
TOTAL HARMONIC DISTORTION vs. V  
EE  
D
CC  
CC  
CC  
IN  
(f = 250MHz, -1dB FS)  
IN  
(f = 250MHz, -1dB FS)  
IN  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
-64  
-54  
-55  
-56  
-57  
-58  
-59  
-60  
-61  
-62  
-63  
0
-25.6  
ENOB = 7.73  
SINAD = 48.3dB  
SNR = 47.3dB  
THD = -59.9dB  
SFDR = 61.5dB  
-51.2  
FUNDAMENTAL  
H2  
H3  
-76.8  
-102.4  
-128.0  
-64  
4.5  
-5.5  
-5.3  
-5.1  
-4.9  
(V)  
-4.7  
-4.5  
4.7  
4.9  
5.1  
(V)  
5.3  
5.5  
0
150  
300  
450  
600  
750  
V
EE  
V
ANALOG INPUT FREQUENCY (MHz)  
CC  
FFT PLOT  
(f = 747.1618562MHz,  
RECORD LENGTH 16,384)  
FFT PLOT  
(f = 1503.021240MHz,  
-3dB FS, RECORD LENGTH 16,384)  
FFT PLOT  
(f = 1503.021240MHz,  
-1dB FS, RECORD LENGTH 16,384)  
IN  
IN  
IN  
0
-25.6  
0
-25.6  
0
-25.6  
ENOB = 7.61  
ENOB = 7.60  
ENOB = 7.12  
FUNDAMENTAL  
SINAD = 47.6dB  
SNR = 46.7dB  
THD = -56.5dB  
SFDR = 59.4dB  
SINAD = 47.5dB  
SNR = 42.0dB  
THD = -51.3dB  
SFDR = 51.3dB  
SINAD = 44.6dB  
FUNDAMENTAL  
SNR = 44.7dB  
THD = -44.4dB  
SFDR = 44.4dB  
H3  
H3  
FUNDAMENTAL  
H3  
-51.2  
-51.2  
-51.2  
H2  
H2  
H2  
-76.8  
-76.8  
-76.8  
-102.4  
-128.0  
-102.4  
-128.0  
-102.4  
-128.0  
0
150  
300  
450  
600  
750  
0
150  
300  
450  
600  
750  
0
150  
300  
450  
600  
750  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
(LOW-FREQUENCY SERVO-LOOP DATA)  
ANALOG INPUT BANDWIDTH  
-6dB BELOW FULL SCALE  
ANALOG INPUT BANDWIDTH  
FULL POWER  
0.5  
0.4  
-5  
0
0.3  
-6  
-7  
-1  
-2  
-3  
-4  
-5  
0.2  
0.1  
0
-8  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-9  
SMALL-SIGNAL BANDWIDTH = 2.4GHz  
FULL-POWER BANDWIDTH = 2.2GHz  
-10  
0
32 64 96 128 160 192 224 256  
OUTPUT CODE  
500  
1500 2500  
500  
1500 2500  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
8
_______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Typical Operating Characteristics (continued)  
(ꢀ A = ꢀ I = ꢀ D = +5ꢀ, ꢀ = -5ꢀ, ꢀ O = +3.3ꢀ, REFIN connected to REFOUT, f = 1.5Gsps, T = +25°C, unless otherwise  
CC  
CC  
CC  
EE  
CC  
S
A
noted.)  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
(LOW-FREQUENCY SERVO-LOOP DATA)  
DREADY RISE/FALL TIME,  
DATA-OUTPUT RISE/FALL TIME  
0.5  
0.4  
0.3  
0.2  
DREADY  
200mV/div  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
DATA  
200mV/div  
0
32 64 96 128 160 192 224 256  
OUTPUT CODE  
500ps/div  
TWO-TONE INTERMODULATION FFT PLOT  
(f = 247.1008301MHz, f = 253.3264160MHz,  
IN1  
IN2  
7dB BELOW FULL SCALE, RECORD LENGTH 16,384)  
VSWR vs. ANALOG INPUT FREQUENCY  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0
f
1
IN  
-25.6  
-51.2  
f
2
IN  
-76.8  
-102.4  
-128.0  
0
150  
300  
450  
600  
750  
0
500  
1000  
1500  
2000  
2500  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
Pin Description  
CONTACT  
NAME  
FUNCTION  
A1–A4, A6, A7, B1, B2, C1, C2, D1–D3,  
G1, H1, J2, J3, K1–K3, L2, L3, M1, N1,  
T2, T3, U1, ꢀ1, ꢀ2, W1–W4  
Analog Ground. For T/H amplifier, clock distribution, bandgap  
reference, and reference amplifier.  
GNDI  
Analog Supply ꢀoltage, +5ꢀ. Supplies T/H amplifier, clock distri-  
bution, bandgap reference, and reference amplifier.  
A5, B5, C5, H2, H3, M2, M3, U5, ꢀ5, W5  
CC  
I
A8, B8, C8, U6, ꢀ6, W6  
A9, B9, C9, U7, ꢀ7, W7  
A10, E17, F2, P3, R17, R18  
GNDA  
Analog Ground. For comparator array.  
CC  
A
Analog Supply ꢀoltage, +5ꢀ. Supplies analog comparator array.  
Test Point. ꢁo not connect.  
TESTPOINT (T.P.)  
A11, B11, B16, B17, C11, C16, U9, U17,  
ꢀ9, ꢀ17, ꢀ18, W9  
GNDD  
Digital Ground  
_______________________________________________________________________________________  
9
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Pin Description (continued)  
CONTACT  
NAME  
FUNCTION  
A12–A19, B19, C19, D19, E19, F19,  
G19, H19, J19, K19, L19, M19, N19,  
P19, T19, U19, ꢀ19, W10–W19  
CC  
O
PECL Supply ꢀoltage, +3ꢀ to +5ꢀ  
B3, B4, C3, C4, E3, F3, G2, G3, N2, N3,  
U2–U4, ꢀ3, ꢀ4  
Analog Supply ꢀoltage, -5ꢀ. Supplies T/H amplifier, clock distribu-  
tion, bandgap reference, and reference amplifier.  
EE  
B6, B7  
GNDR  
Reference Ground. Must be connected to GNDI.  
B10, B18, C10, C17, C18, T17, T18, U8,  
U18, ꢀ8, W8  
CC  
D
Digital Supply ꢀoltage, +5ꢀ  
B12  
B13  
B14  
B15  
C6  
P0+  
A0+  
Primary Output Data Bit 0 (LSB)  
Auxiliary Output Data Bit 0 (LSB)  
Primary Output Data Bit 1  
P1+  
A1+  
Auxiliary Output Data Bit 1  
REFIN  
REFOUT  
P0-  
Reference Input  
C7  
Reference Output  
C12  
C13  
C14  
C15  
Complementary Primary Output Data Bit 0 (LSB)  
Complementary Auxiliary Output Data Bit 0 (LSB)  
Complementary Primary Output Data Bit 1  
Complementary Auxiliary Output Data Bit 1  
A0-  
P1-  
A1-  
TTL/CMOS Demux Divide Selection Input  
1: Decimation DIꢀ4 mode  
D17  
DIꢀSELECT  
0: Demultiplexed DIꢀ2 mode  
Connect to ꢀ O to power the auxiliary port, or connect to GNDD  
CC  
to power down.  
D18  
E1  
AUXEN2  
ICONST  
IPTAT  
Die Temperature Measurement Test Point. See Die Temperature  
Measurement section.  
Die Temperature Measurement Test Point. See Die Temperature  
Measurement section.  
E2  
TTL/CMOS Demux Enable Control  
1: Enable Demux  
E18  
DEMUXEN  
0: Disable Demux  
F1  
ꢀOSADJ  
P2-  
Offset Adjust Input  
F17  
F18  
G17  
G18  
H17  
H18  
Complementary Primary Output Data Bit 2  
Primary Output Data Bit 2  
P2+  
A2-  
Complementary Auxiliary Output Data Bit 2  
Auxiliary Output Data Bit 2  
A2+  
P3-  
Complementary Primary Output Data Bit 3  
Primary Output Data Bit 3  
P3+  
10 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Pin Description (continued)  
CONTACT  
NAME  
FUNCTION  
Differential Input ꢀoltage (-)  
J1  
J17  
J18  
K17  
K18  
L1  
ꢀIN-  
A3-  
Complementary Auxiliary Output Data Bit 3  
Auxiliary Output Data Bit 3  
A3+  
DREADY-  
DREADY+  
ꢀIN+  
Complementary Data-Ready Clock  
Data-Ready Clock  
Differential Input ꢀoltage (+)  
L17  
L18  
M17  
M18  
N17  
N18  
P1  
P4-  
Complementary Primary Output Data Bit 4  
Primary Output Data Bit 4  
P4+  
A4-  
Complementary Auxiliary Output Data Bit 4  
Auxiliary Output Data Bit 4  
A4+  
P5-  
Complementary Primary Output Data Bit 5  
Primary Output Data Bit 5  
P5+  
CLK-  
Complementary Sampling Clock Input  
This contact ꢂust be connected to GNDI.  
Complementary Auxiliary Output Data Bit 5  
Auxiliary Output Data Bit 5  
P2  
TESTPOINT (T.P.)  
A5-  
P17  
P18  
R1–R3  
A5+  
CLKCOM  
50Clock Termination Return  
Connect to ꢀ O to power the auxiliary port, or connect to  
CC  
GNDD to power down.  
R19  
AUXEN1  
T1  
CLK+  
RSTIN-  
RSTOUT-  
OR-  
Sampling Clock Input  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
ꢀ10  
ꢀ11  
ꢀ12  
ꢀ13  
ꢀ14  
ꢀ15  
ꢀ16  
Complementary PECL Demux Reset Input  
Complementary PECL Reset Output  
Complementary PECL Overrange Bit  
Complementary Auxiliary Output Data Bit 7 (MSB)  
Complementary Primary Output Data Bit 7 (MSB)  
Complementary Auxiliary Output Data Bit 6  
Complementary Primary Output Data Bit 6  
PECL Demux Reset Input  
A7-  
P7-  
A6-  
P6-  
RSTIN+  
RSTOUT+  
OR+  
PECL Reset Output  
PECL Overrange Bit  
A7+  
Auxiliary Output Data Bit 7 (MSB)  
Primary Output Data Bit 7 (MSB)  
Auxiliary Output Data Bit 6  
P7+  
A6+  
P6+  
Primary Output Data Bit 6  
______________________________________________________________________________________ 11  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
REF REF  
OUT IN  
REFERENCE  
AMPLIFIER  
BANDGAP  
REFERENCE  
+2.5V  
DIFFERENTIAL  
PECL OUTPUTS  
GNDR  
MAX108  
VOSADJ  
BIAS CURRENTS  
OVERRANGE  
BIT  
OR  
2
GNDI  
50  
50Ω  
AUXILIARY  
DATA PORT  
T/H AMPLIFIER  
VIN+  
VIN-  
2
A0–A7  
P0–P7  
8-BIT  
FLASH ADC  
16  
16  
16  
PRIMARY  
DATA PORT  
GNDI  
DATA  
DREADY  
READY CLOCK  
2
CLK+  
CLKCOM  
CLK-  
LOGIC  
CLOCK  
DRIVER  
50Ω  
50Ω  
DEMUX  
CLOCK  
DRIVER  
ADC  
CLOCK  
DRIVER  
T/H  
CLOCK  
DRIVER  
DELAYED  
RESET  
DEMUX  
CLOCK  
GENERATOR  
RSTIN+  
RSTIN-  
RESET  
PIPELINE  
RESET  
INPUT DUAL LATCH  
DEMUX  
RESET OUTPUT  
RSTOUT  
2
DIVSELECT  
DEMUXEN  
Figure 1. Simplified Functional Diagram  
has internal reset capability that allows multiple  
MAX108s to be time-interleaved to achieve higher  
effective sampling rates.  
_______________Detailed Description  
The MAX108 is an 8-bit, 1.5Gsps flash analog-to-digital  
converter (ADC) with on-chip T/H amplifier and differ-  
ential PECL-compatible outputs. The ADC (Figure 1)  
employs a fully differential 8-bit quantizer and a unique  
encoding scheme to limit metastable states, with no  
error exceeding 1LSB max.  
When clocked at 1.5Gsps, the MAX108 provides a typi-  
cal ENOB of 7.5 bits at an analog input frequency of  
750MHz. The analog input of the MAX108 is designed  
for differential or single-ended use with a 250mꢀ full-  
scale input range. In addition, this fast ADC features an  
on-chip +2.5ꢀ precision bandgap reference. If desired,  
an external reference can also be used.  
An integrated 8:16 output demultiplexer simplifies inter-  
facing to the part by reducing the output data rate to  
one-half the sampling clock rate. This demultiplexer  
12 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Principle of Operation  
The MAX108’s flash or parallel architecture provides  
OVERRANGE +  
255  
255  
254  
the fastest multibit conversion of all common integrated  
ADC designs. The key to this high-speed flash archi-  
tecture is the use of an innovative, high-performance  
comparator design. The flash converter and down-  
stream logic translate the comparator outputs into a  
parallel 8-bit output code and pass this binary code on  
to the optional 8:16 demultiplexer, where primary and  
auxiliary ports output PECL-compatible data at up to  
750Msps per port (depending on how the demultiplex-  
er section is set on the MAX108).  
129  
128  
127  
126  
3
2
1
0
The ideal transfer function appears in Figure 2.  
0
On-Chip Track/Hold Amplifier  
As with all ADCs, if the input waveform is changing  
rapidly during conversion, ENOB and signal-to-noise  
ratio (SNR) specifications will degrade. The MAX108’s  
on-chip, wide-bandwidth (2.2GHz) T/H amplifier  
reduces this effect and increases the ENOB perfor-  
mance significantly, allowing precise capture of fast  
analog data at high conversion rates.  
ANALOG INPUT  
Figure 2. Transfer Function  
ALL INPUTS ARE ESD PROTECTED  
(NOT SHOWN IN THIS  
SIMPLIFIED DRAWING).  
AMPLIFIER  
INPUT  
SAMPLING  
BRIDGE  
BUFFER  
AMPLIFIER  
The T/H amplifier buffers the input signal and allows a  
full-scale signal input range of 250mꢀ. The T/H ampli-  
fier’s differential 50input termination simplifies inter-  
facing to the MAX108 with controlled impedance lines.  
Figure 3 shows a simplified diagram of the T/H amplifier  
stage internal to the MAX108.  
VIN+  
VIN-  
TO  
COMPARATORS  
50Ω  
50Ω  
50Ω  
C
HOLD  
GNDI  
GNDI  
Aperture width, delay, and jitter (or uncertainty) are  
parameters that affect the dynamic performance of  
high-speed converters. Aperture jitter, in particular,  
directly influences SNR and limits the maximum slew  
rate (dꢀ/dt) that can be digitized without contributing  
significant errors. The MAX108’s innovative T/H amplifier  
design limits aperture jitter typically to less than 0.5ps.  
CLK+  
CLK-  
CLOCK  
SPLITTER  
TO  
COMPARATORS  
50Ω  
CLKCOM  
Figure 3. Internal Structure of the 2.2GHz T/H Amplifier  
Aperture Width  
Aperture width (t ) is the time the T/H circuit requires  
AW  
CLK  
CLK  
(Figure 4) to disconnect the hold capacitor from the  
input circuit (for instance, to turn off the sampling  
bridge and put the T/H unit in hold mode).  
t
AW  
ANALOG  
INPUT  
Aperture Jitter  
t
AD  
Aperture jitter (t ) is the sample-to-sample variation  
AJ  
t
AJ  
(Figure 4) in the time between the samples.  
SAMPLED  
DATA (T/H)  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken (Figure 4).  
HOLD  
TRACK  
TRACK  
T/H  
APERTURE DELAY (t  
)
AW  
)
AD  
APERTURE WIDTH (t  
)
Internal Reference  
The MAX108 features an on-chip +2.5ꢀ precision  
bandgap reference that can be used by connecting  
APERTURE JITTER (t  
AJ  
Figure 4. T/H Aperture Timing  
______________________________________________________________________________________ 13  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
REFOUT to REFIN. This connects the reference output  
to the positive input of the reference buffer. The buffer’s  
negative input is internally connected to GNDR. GNDR  
must be connected to GNDI on the user’s application  
board. If required, REFOUT can source up to 2.5mA to  
supply external devices.  
V
O
CC  
500Ω  
500Ω  
A_+/P_+  
A_-/P_-  
An adjustable external reference can be used to adjust  
the ADC’s full-scale range. To use an external refer-  
ence supply, connect a high-precision reference to the  
REFIN pin and leave the REFOUT pin floating. In this  
configuration, REFOUT ꢂust not be simultaneously  
connected, to avoid conflicts between the two refer-  
ences. REFIN has a typical input resistance of 5kand  
accepts input voltages of +2.5ꢀ 200mꢀ. For best per-  
formance, Maxim recommends using the MAX108’s  
internal reference.  
DIFF.  
PAIR  
GNDD  
1.8mA  
GNDD  
GNDD  
Digital Outputs  
The MAX108 provides data in offset binary format to  
differential PECL outputs. A simplified circuit schematic  
of the PECL output cell is shown in Figure 5. All PECL  
Figure 5. Simplified PECL Output Structure  
following sections on Demultiplexed DIV2 Mode, Non-  
Demultiplexed DIV1 Mode, and Decimation DIV4  
Mode) controlled by two TTL/CMOS-compatible inputs:  
DEMUXEN and DIꢀSELECT.  
outputs are powered from ꢀ O, which may be operat-  
CC  
ed from any voltage between +3.0ꢀ to ꢀ D for flexible  
CC  
interfacing with either +3.3ꢀ or +5ꢀ systems. The nomi-  
nal ꢀ O supply voltage is +3.3ꢀ.  
CC  
DEMUXEN enables or disables operation of the internal  
1:2 demultiplexer. A logic high on DEMUXEN activates  
the internal demultiplexer, and a logic low deactivates  
it. With the internal demultiplexer enabled, DIꢀSELECT  
controls the selection of the operational mode. DIꢀSE-  
LECT low selects demultiplexed DIꢀ2 mode, and DIꢀ-  
SELECT high selects decimation DIꢀ4 mode (Table 2).  
All PECL outputs on the MAX108 are open-emitter  
types and must be terminated at the far end of each  
transmission line with 50to ꢀ O - 2ꢀ. Table 1 lists all  
CC  
MAX108 PECL outputs and their functions.  
Demultiplexer Operation  
The MAX108 features an internal demultiplexer that  
provides for three different modes of operation (see the  
Table 1. PECꢀ Output Functions  
PECꢀ OUTPUT LIGNAꢀL  
FUNCTIONAꢀ ꢁELCRIPTION  
Primary-Port Differential Outputs from LSB to MSB. A “+” indicates the true outputs; a “-”  
denotes the complementary outputs.  
P0+ to P7+, P0- to P7-  
A0+ to A7+, A0- to A7-  
Auxiliary-Port Differential Outputs from LSB to MSB. A “+” indicates the true outputs; a “-”  
denotes the complementary outputs.  
Data-Ready Clock True and Complementary Outputs. These signal lines are used to latch  
the output data from the primary to the auxiliary output ports. Data changes on the rising  
edge of the DREADY clock.  
DREADY+, DREADY-  
OR+, OR-  
Overrange True and Complementary Outputs  
Reset Output True and Complementary Outputs  
RSTOUT+, RSTOUT-  
14 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Non-Demultiplexed DIV1 Mode  
The MAX108 may be operated at up to 750Msps in  
non-demultiplexed DIꢀ1 mode (Table 2). In this mode,  
the internal demultiplexer is disabled and sampled  
data is presented to the primary port only, with the  
data repeated at the auxiliary port but delayed by one  
clock cycle (Figure 6). Since the auxiliary output port  
contains the same data stream as the primary output  
port, the auxiliary port can be shut down to save  
power by connecting AUXEN1 and AUXEN2 to digital  
ground (GNDD). This powers down the internal bias  
cells and causes both outputs (true and complemen-  
tary) of the auxiliary port to pull up to a logic-high  
level. To save additional power, the external 50ter-  
mination resistors connected to the PECL termination  
power supply (ꢀ O - 2ꢀ) may be removed from all  
CC  
auxiliary output ports.  
Demultiplexed DIV2 Mode  
The MAX108 features an internally selectable DIꢀ2  
mode (Table 2) that reduces the output data rate to  
one-half of the sample clock rate. The demultiplexed  
outputs are presented in dual 8-bit format with two con-  
secutive samples appearing in the primary and auxil-  
iary output ports on the rising edge of the data-ready  
clock (Figure 7). The auxiliary data port contains the  
previous sample, and the primary output contains the  
most recent data sample. AUXEN1 and AUXEN2 must  
be connected to ꢀ O to power up the auxiliary port  
CC  
PECL output drives.  
ADC SAMPLE NUMBER  
ADC SAMPLES ON THE RISING EDGE OF CLK+  
n+4 n+5 n+6 n+7 n+8  
CLK-  
CLK  
n
n+1  
n+2  
n+3  
n+9  
n+10  
n+11  
n+12  
n+13  
CLK+  
DREADY+  
DREADY  
DREADY-  
AUXILIARY  
n
n+1  
n+2  
n+2  
n+3  
n+3  
n+4  
n+4  
n+5  
DATA PORT  
PRIMARY  
DATA PORT  
n+1  
NOTE: THE AUXILIARY PORT DATA IS DELAYED ONE ADDITIONAL CLOCK CYCLE FROM THE PRIMARY PORT DATA.  
GROUNDING AUXEN1 AND AUXEN2 WILL POWER DOWN THE AUXILIARY PORT TO SAVE POWER.  
Figure 6. Non-Demuxed, DIV1-Mode Timing Diagram  
ADC SAMPLE NUMBER  
ADC SAMPLES ON THE RISING EDGE OF CLK+  
CLK-  
CLK  
n
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
n+8  
n+9  
n+10  
n+11  
n+12  
n+13  
CLK+  
DREADY+  
DREADY  
DREADY-  
AUXILIARY  
n-1  
n
n+1  
n+2  
n+3  
n+4  
DATA PORT  
PRIMARY  
DATA PORT  
NOTE: THE LATENCY TO THE PRIMARY PORT IS 7.5 CLOCK CYCLES, AND THE LATENCY TO THE AUXILIARY PORT IS 8.5 CLOCK CYCLES.  
BOTH THE PRIMARY AND AUXILIARY DATA PORTS ARE UPDATED ON THE RISING EDGE OF THE DREADY+ CLOCK.  
Figure 7. Demuxed DIV2-Mode Timing Diagram  
______________________________________________________________________________________ 15  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Decimation DIV4 Mode  
The MAX108 also offers a special decimated, demulti-  
plexed output (Figure 8) that discards every other input  
sample and outputs data at one-quarter the input sam-  
pling rate for system debugging at slower output data  
rates. With an input clock of 1.5GHz, the effective output  
data rate will be reduced to 375MHz per output port in  
the DIꢀ4 mode (Table 2). Since every other sample is  
discarded, the effective sampling rate is 750Msps.  
the OR bit will flag an overrange condition if either the  
primary or auxiliary port contains an overranged sam-  
ple (Table 2). In non-demultiplexed DIꢀ1 mode, the OR  
port will flag an overrange condition only when the pri-  
mary output port contains an overranged sample.  
Applications Information  
Single-Ended Analog Inputs  
The MAX108 T/H amplifier is designed to work at full  
speed for both single-ended and differential analog  
inputs (Figure 9). Inputs ꢀIN+ and ꢀIN- feature on-chip,  
laser-trimmed 50termination resistors to provide  
excellent voltage standing-wave ratio (ꢀSWR) perfor-  
mance.  
Overrange Operation  
A single differential PECL overrange output bit (OR+,  
OR-) is provided for both primary and auxiliary demulti-  
plexed outputs. The operation of the overrange bit  
depends on the status of the internal demultiplexer. In  
demultiplexed DIꢀ2 mode and decimation DIꢀ4 mode,  
ADC SAMPLE NUMBER  
ADC SAMPLES ON THE RISING EDGE OF CLK+  
n+4 n+5 n+6 n+7 n+8  
CLK-  
CLK  
n
n+1  
n+2  
n+3  
n+9  
n+10  
n+11  
n+12  
n+13  
CLK+  
DREADY+  
DREADY  
DREADY-  
AUXILIARY  
n-2  
n
n+2  
DATA PORT  
PRIMARY  
DATA PORT  
n+4  
NOTE: THE LATENCY TO THE PRIMARY PORT REMAINS 7.5 CLOCK CYCLES, WHILE THE LATENCY OF THE AUXILIARY PORT INCREASES TO 9.5 CLOCK CYCLES.  
THIS EFFECTIVELY DISCARDS EVERY OTHER SAMPLE AND REDUCES THE OUTPUT DATA RATE TO 1/4 THE SAMPLE CLOCK RATE.  
Figure 8. Decimation DIV4-Mode Timing Diagram  
Table 2. ꢁeꢂultiplexer Operation  
ꢁEMUXEN  
ꢁImLEꢀECT  
ꢁEMUX MOꢁE  
OmERRANGE BIT OPERATION  
DIꢀ1  
750Msps (max)  
Flags overrange data appearing in primary  
port only.  
Low  
X
DIꢀ2  
750Msps/port  
High  
High  
Low  
Flags overrange data appearing in either  
the primary or auxiliary port.  
DIꢀ4  
375Msps/port  
High  
X = Don’t care  
16 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
ANALOG INPUTS ARE ESD PROTECTED  
(NOT SHOWN IN THIS SIMPLIFIED DRAWING).  
V
IN+  
+2.8V  
+250mV  
500mV  
P-P  
FS ANALOG  
VIN+  
500mV  
0V  
INPUT RANGE  
50Ω  
V
IN-  
-250mV  
GNDI  
t
V
= 250mV  
IN  
50Ω  
VIN-  
Figure 10a. Single-Ended Analog Input Signals  
V
EE  
Figure 9. Simplified Analog Input Structure (Single-Ended/  
Differential)  
V
IN+  
V
+125mV  
IN-  
250mV  
FS ANALOG  
In a typical single-ended configuration, the analog  
input signal (Figure 10a) enters the T/H amplifier stage  
at the in-phase input (ꢀIN+), while the inverted phase  
input (ꢀIN-) is reverse-terminated to GNDI with an  
external 50resistor. Single-ended operation allows for  
an input amplitude of 250mꢀ. Table 3 shows a selec-  
tion of input voltages and their corresponding output  
codes for single-ended operation.  
250mV  
-250mV  
0V  
INPUT RANGE  
-125mV  
t
Figure 10b. Differential Analog Input Signals  
Differential Analog Inputs  
To obtain a full-scale digital output with differential input  
drive (Figure 10b), 250mꢀp-p must be applied between  
ꢀIN+ and ꢀIN- (ꢀIN+ = +125mꢀ, and ꢀIN- = -125mꢀ).  
Midscale digital output codes (01111111 or 10000000)  
occur when there is no voltage difference between  
ꢀIN+ and ꢀIN-. For a zero-scale digital output code, the  
in-phase (ꢀIN+) input must see -125mꢀ and the invert-  
ed input (ꢀIN-) must see +125mꢀ. A differential input  
drive is recommended for best performance. Table 4  
represents a selection of differential input voltages and  
their corresponding output codes.  
Table 3. Ideal Input moltage and Output Code Results for Lingle-Ended Operation  
mIN+  
mIN-  
0ꢀ  
OmERRANGE BIT  
OUTPUT COꢁE  
11111111 (full scale)  
11111111  
+250mꢀ  
1
0
+250mꢀ - 1LSB  
0ꢀ  
01111111  
toggles  
0ꢀ  
0ꢀ  
0
10000000  
-250mꢀ + 1LSB  
-250mꢀ  
0ꢀ  
0ꢀ  
0
0
0000001  
00000000 (zero scale)  
______________________________________________________________________________________ 17  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Table 4. Ideal Input moltage and Output Code Results for ꢁifferential Operation  
mIN+  
mIN-  
-125mꢀ  
OmERRANGE BIT  
OUTPUT COꢁE  
11111111 (full scale)  
11111111  
+125mꢀ  
1
0
+125mꢀ - 0.5LSB  
-125mꢀ + 0.5LSB  
01111111  
toggles  
0ꢀ  
0ꢀ  
0
10000000  
-125mꢀ + 0.5LSB  
-125mꢀ  
+125mꢀ - 0.5LSB  
+125mꢀ  
0
0
00000001  
00000000 (zero scale)  
Offset Adjust  
The MAX108 provides a control input (ꢀOSADJ) to com-  
pensate for system offsets. The offset adjust input is a  
self-biased voltage divider from the internal +2.5ꢀ preci-  
sion reference. The nominal open-circuit voltage is one-  
half the reference voltage. With an input resistance of  
typically 25k, this pin may be driven by an external  
10kpotentiometer (Figure 11) connected between  
REFOUT and GNDI to correct for offset errors. This con-  
trol provides a typical 5.5LSB offset adjustment range.  
REFOUT  
MAX108  
POT  
10kΩ  
VOSADJ  
GNDI  
Clock Operation  
The MAX108 clock inputs are designed for either sin-  
gle-ended or differential operation (Figure 12) with flexi-  
ble input drive requirements. Each clock input is  
terminated with an on-chip, laser-trimmed 50resistor  
to CLKCOM (clock-termination return). The CLKCOM  
termination voltage can be connected anywhere  
between ground and -2ꢀ for compatibility with standard  
ECL drive levels.  
Figure 11. Offset Adjust with External 10kPotentiometer  
CLK+  
50Ω  
50Ω  
+0.8V  
The clock inputs are internally buffered with a preampli-  
fier to ensure proper operation of the data converter,  
even with small-amplitude sine-wave sources. The  
MAX108 was designed for single-ended, low-phase-  
noise sine-wave clock signals with as little as 100mꢀ  
amplitude (-10dBm). This eliminates the need for an  
external ECL clock buffer and its added jitter.  
CLKCOM  
CLK-  
GNDI  
Single-Ended Clock Inputs (Sine-Wave Drive)  
Excellent performance is obtained by AC- or DC-cou-  
pling a low-phase-noise sine-wave source into a single  
clock input (Figure 13a, Table 5). For proper DC bal-  
ance, the undriven clock input should be externally  
50reverse-terminated to GNDI.  
CLOCK INPUTS ARE  
ESD PROTECTED  
(NOT SHOWN IN THIS  
SIMPLIFIED DRAWING).  
The dynamic performance of the data converter is  
essentially unaffected by clock-drive power levels from  
-10dBm (100mꢀ clock signal amplitude) to +10dBm  
(1ꢀ clock signal amplitude). The MAX108 dynamic per-  
V
EE  
Figure 12. Simplified Clock Input Structure (Single-Ended/  
Differential)  
18 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
formance specifications are determined by a single-  
Single-Ended Clock Inputs (ECL Drive)  
Configure the MAX108 for single-ended ECL clock  
drive by connecting the clock inputs as shown in Figure  
ended clock drive of +4dBm (500mꢀ clock signal  
amplitude). To avoid saturation of the input amplifier  
stage, limit the clock power level to a maximum of  
+10dBm.  
13c (Table 5). A well-bypassed ꢀ  
supply (-1.3ꢀ) is  
BB  
essential to avoid coupling noise into the undriven  
clock input, which would degrade dynamic perfor-  
mance.  
Differential Clock Inputs (Sine-Wave Drive)  
The advantages of differential clock drive (Figure 13b,  
Table 5) can be obtained by using an appropriate  
balun or transformer to convert single-ended sine-wave  
sources into differential drives. The precision on-chip,  
laser-trimmed 50clock-termination resistors ensure  
excellent amplitude matching. See Single-Ended Clock  
Inputs (Sine-Wave Drive) for proper input amplitude  
requirements.  
Differential Clock Inputs (ECL Drive)  
Drive the MAX108 from a standard differential (Figure  
13d, Table 5) ECL clock source by setting the clock ter-  
mination voltage at CLKCOM to -2ꢀ. Bypass the clock-  
termination return (CLKCOM) as close to the ADC as  
possible with a 0.01µF capacitor connected to GNDI.  
CLK+  
CLK+  
+0.5V  
CLK-  
+0.5V  
CLK- = 0V  
-0.5V  
-0.5V  
t
t
NOTE: CLKCOM = 0V  
NOTE: CLKCOM = 0V  
Figure 13b. Differential Clock Input Signals  
Figure 13a. Single-Ended Clock Input Signals  
CLK+  
CLK+  
-0.8V  
CLK-  
-0.8V  
CLK- = -1.3V  
-1.8V  
t
-1.8V  
t
NOTE: CLKCOM = -2V  
NOTE: CLKCOM = -2V  
Figure 13d. Differential ECL Clock Drive  
Figure 13c. Single-Ended ECL Clock Drive  
______________________________________________________________________________________ 19  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Table 5. ꢁC-Coupled Clock ꢁrive Options  
CꢀOCK ꢁRImE  
Single-Ended Sine Wave  
Differential Sine Wave  
Single-Ended ECL  
CꢀK+  
CꢀK-  
External 50to GNDI  
-10dBm to +4dBm  
-1.3ꢀ  
CꢀKCOM  
GNDI  
GNDI  
-2ꢀ  
REFERENCE  
Figure 13a  
-10dBm to +4dBm  
-10dBm to +4dBm  
ECL Drive  
Figure 13b  
Figure 13c  
Differential ECL  
ECL Drive  
-2ꢀ  
Figure 13d  
ECL Drive  
AC-Coupling Clock Inputs  
The clock inputs CLK+ and CLK- can be driven with  
PECL logic if the clock inputs are AC-coupled. Under  
this condition, connect CLKCOM to GNDI. Single-  
ended ECL/PECL/sine-wave drive is also possible if the  
undriven clock input is reverse-terminated to GNDI  
through a 50resistor in series with a capacitor whose  
value is identical to that used to couple the driven  
input.  
V
O
CC  
50kΩ  
50kΩ  
RSTIN+  
Demux Reset Operation  
The MAX108 features an internal 1:2 demultiplexer that  
reduces the data rate of the output digital data to one-  
half the sample clock rate. Demux reset is necessary  
when interleaving multiple MAX108s and/or synchroniz-  
ing external demultiplexers. The simplified block dia-  
gram of Figure 1 shows that the demux reset signal path  
consists of four main circuit blocks. From input to out-  
put, they are the reset input dual latch, the reset  
pipeline, the demux clock generator, and the reset out-  
put. The signals associated with the demux reset opera-  
tion and the control of this section are listed in Table 6.  
RSTIN-  
20µA  
RESET INPUTS ARE  
ESD PROTECTED  
GNDD  
(NOT SHOWN IN THIS  
SIMPLIFIED DRAWING).  
Reset Input Dual Latch  
The reset input dual-latch circuit block accepts differ-  
ential PECL reset inputs referenced to the same ꢀ  
O
CC  
Figure 14. Simplified Reset Input Structure  
power supply that powers the MAX108 PECL outputs.  
For applications that do not require a synchronizing  
reset, the reset inputs can be left open. In this case,  
they will self-bias to a proper level with internal 50kΩ  
resistors and 20µA current source. This combination  
creates a -1ꢀ difference between RSTIN+ and RSTIN-  
to disable the internal reset circuitry. When driven with  
RSTIN+  
50%  
50%  
RSTIN-  
PECL logic levels terminated with 50to (ꢀ O - 2ꢀ),  
CC  
the internal biasing network can easily be overdriven.  
Figure 14 shows a simplified schematic of the reset  
input structure.  
t
t
HD  
SU  
CLK+  
CLK-  
To properly latch the reset input data, the setup time  
50%  
(t ) and the data-hold time (t ) must be met with  
SU  
HD  
respect to the rising edge of the sample clock. The tim-  
ing diagram of Figure 15 shows the timing relationship  
of the reset input and sampling clock.  
Figure 15. Reset Input Timing Definitions  
20 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Table 6. ꢁeꢂux Operating and Reset Control Lignals  
LIGNAꢀ NAME  
TYPE  
FUNCTION  
CLK+, CLK-  
Sampling clock inputs  
Master ADC timing signal. The ADC samples on the rising edge of CLK+.  
Data-Ready PECL Output. Output data changes on the rising edge of  
DREADY+.  
DREADY+, DREADY-  
Differential PECL outputs  
RSTIN+, RSTIN-  
Differential PECL inputs  
Differential PECL outputs  
Demux reset input signals. Resets the internal demux when asserted.  
Reset outputs for resetting additional external demux devices.  
RSTOUT+, RSTOUT-  
Reset Pipeline  
The phase relationship between the sampling clock at  
the CLK+/CLK- inputs and the data-ready clock at the  
Dready+/Dready- outputs will be random at device  
power-up. As with all divide-by-two circuits, two possi-  
ble phase relationships exist between these clocks.  
The difference between the phases is simply the inver-  
sion of the DIꢀ2-Dready clock. The timing diagram in  
Figure 16 shows this relationship.  
The next section in the reset signal path is the reset  
pipeline. This block adds clock cycles of latency to the  
reset signal to match the latency of the converted ana-  
log data through the ADC. In this way, when reset data  
arrives at the RSTOUT+/RSTOUT- PECL output it will be  
time-aligned with the analog data present in the prima-  
ry and auxiliary ports at the time the reset input was  
deasserted at RSTIN+/RSTIN-.  
Reset all MAX108 devices to a known DREADY phase  
after initial power-up for applications such as interleav-  
ing, where two or more MAX108 devices are used to  
achieve higher effective sampling rates. This synchro-  
nization is necessary to set the order of output samples  
between the devices. Resetting the converters accom-  
plishes this synchronization. The reset signal is used to  
force the internal counter in the demux clock-generator  
block to a known phase state.  
Demux Clock Generator  
The demux clock generator creates the DIꢀ1, DIꢀ2, or  
DIꢀ4 clocks required for the different modes of demux  
and non-demultiplexed operation. The TTL/CMOS con-  
trol inputs DEMUXEN and DIꢀSELECT control the  
demuxed mode selection, as described in Table 2. The  
timing diagrams in Figures 16 and 17 show the output  
timing and data alignment in DIꢀ1, DIꢀ2, and DIꢀ4  
modes, respectively.  
t
t
PWL  
PWH  
CLK+  
CLK+  
50%  
CLK-  
CLK-  
t
PD1  
t
PD1  
DREADY +  
DREADY -  
DREADY-  
"PHASE 1"  
50%  
t
PD2  
DREADY+  
DREADY +  
t
t
FDREADY  
RDREADY  
AUXILIARY PORT DATA  
PRIMARY PORT DATA  
80%  
80%  
"PHASE 2"  
DREADY -  
20%  
20%  
Figure 17. Output Timing for All Modes (DIV1, DIV2, DIV4)  
Figure 16. CLK and DREADY Timing in Demuxed DIV2 Mode  
Showing Two Possible DREADY Phases  
______________________________________________________________________________________ 21  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Reset Output  
Finally, the reset signal is presented in differential PECL  
format to the last block of the reset signal path.  
RSTOUT+/RSTOUT- output the time-aligned reset sig-  
nal, used for resetting additional external demuxes in  
applications that need further output data-rate reduc-  
tion. Many demux devices require their reset signal to  
be asserted for several clock cycles while they are  
clocked. To accomplish this, the MAX108 DREADY  
clock will continue to toggle while RSTOUT is asserted.  
port. The reduced latency of RSTOUT serves to mark  
the start of synchronized data in the primary and auxil-  
iary ports. When the RSTOUT signal returns to a zero,  
the DREADY clock phase is reset.  
Since there are two possible phases of the DREADY  
clock with respect to the input clock, there are two pos-  
sible timing diagrams to consider. The first timing dia-  
gram (Figure 18) shows the RSTOUT timing and data  
alignment of the auxiliary and primary output ports  
when the DREADY clock phase is already reset. For  
this example, the RSTIN pulse is two clock cycles long.  
Under this condition, the DREADY clock continues  
uninterrupted, as does the data stream in the auxiliary  
and primary ports.  
When a single MAX108 device is used, no synchroniz-  
ing reset is required because the order of the samples  
in the output ports is unchanged, regardless of the  
phase of the DREADY clock. In DIꢀ2 mode, the data in  
the auxiliary port is delayed by 8.5 clock cycles, while  
the data in the primary port is delayed by 7.5 clock  
cycles. The older data is always in the auxiliary port,  
regardless of the phase of the DREADY clock.  
The second timing diagram (Figure 19) shows the  
results when the DREADY phase is opposite from the  
reset phase. In this case, the DREADY clock “swallows”  
a clock cycle of the sample clock, resynchronizing to  
the reset phase. Note that the data stream in the auxil-  
iary and primary ports has reversed. Before reset was  
The reset output signal, RSTOUT, is delayed by one  
fewer clock cycles (6.5 clock cycles) than the primary  
ADC SAMPLE NUMBER  
ADC SAMPLES ON THE RISING EDGE OF CLK+  
n+4 n+5 n+6 n+7 n+8  
CLK-  
CLK  
CLK+  
n
n+1  
n+2  
n+3  
n+9  
n+10  
n+11  
n+12  
n+13  
t
SU  
t
HD  
RSTIN-  
RESET  
INPUT  
RSTIN+  
DREADY-  
DREADY+  
DREADY  
AUXILIARY  
DATA PORT  
n-1  
n
n+1  
n+2  
n+3  
n+4  
PRIMARY  
DATA PORT  
RSTOUT-  
RSTOUT+  
RESET OUT  
DATA PORT  
NOTE: THE LATENCY TO THE RESET OUTPUT IS 6.5 CLOCK CYCLES. THE LATENCY TO THE PRIMARY PORT IS 7.5 CLOCK CYCLES, AND  
THE LATENCY TO THE AUXILIARY PORT IS 8.5 CLOCK CYCLES. ALL DATA PORTS ARE UPDATED ON THE RISING EDGE OF THE DREADY+ CLOCK.  
Figure 18. Reset Output Timing in Demuxed DIV2 Mode (DREADY Aligned)  
22 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
ADC SAMPLE NUMBER  
n+1 n+2  
ADC SAMPLES ON THE RISING EDGE OF CLK+  
n+4 n+5 n+6 n+7 n+8  
CLK-  
CLK  
CLK+  
n
n+3  
n+9  
n+10  
n+11  
n+12  
n+13  
t
SU  
t
HD  
RSTIN-  
RESET  
INPUT  
RSTIN+  
CLOCK PULSE SWALLOWED”  
DREADY+  
DREADY-  
DREADY  
OUT-OF-SEQUENCE SAMPLE  
n
AUXILIARY  
DATA PORT  
n-2  
n-1  
n+2  
n+4  
PRIMARY  
DATA PORT  
n+1  
RSTOUT-  
RSTOUT+  
RESET OUT  
DATA PORT  
NOTE: DREADY PHASE WAS ADJUSTED TO MATCH THE RESET PHASE BY SWALLOWINGONE INPUT CLOCK CYCLE.  
THE AUXILIARY PORT CONTAINS AN OUT-OF-SEQUENCE SAMPLE AS A RESULT OF THE DELAY.  
Figure 19. Reset Output Timing in Demuxed DIV2 Mode (DREADY Realigned)  
asserted, the auxiliary port contained “even” samples  
while the primary port contained “odd” samples. After  
the RSTOUT is deasserted (which marks the start of the  
DREADY clock’s reset phase), note that the order of the  
samples in the ports has been reversed. The auxiliary  
port also contains an out-of-sequence sample. This is a  
consequence of the “swallowed” clock cycle that was  
needed to resynchronize DREADY to the reset phase.  
Also note that the older sample data is always in the  
auxiliary port, regardless of the DREADY phase.  
no reset output will occur at all. In effect, the RSTOUT  
signal will be “swallowed” with the clock pulse. The  
best method to ensure complete system reset is to  
assert RSTIN for the appropriate number of DREADY  
clock cycles required to complete reset of the external  
demuxes.  
Die Temperature Measurement  
For applications that require monitoring of the die tem-  
perature, it is possible to determine the die temperature  
of the MAX108 under normal operating conditions by  
These examples illustrate the combinations that result  
with a reset input signal of two clock cycles. It is also  
possible to reset the internal MAX108 demux success-  
fully with a reset pulse of only one clock cycle, provid-  
ed that the setup time and hold-time requirements are  
met with respect to the sample clock. However, this is  
not recommended when additional external demuxes  
are used.  
observing the currents I  
and I  
, at contacts  
PTAT  
CONST  
ICONST and IPTAT. I  
and I  
are two 100µA  
PTAT  
CONST  
(nominal) currents that are designed to be equal at  
+27°C. These currents are derived from the MAX108’s  
internal precision +2.5ꢀ bandgap reference. I  
designed to be temperature independent, while I  
is  
is  
CONST  
PTAT  
directly proportional to the absolute temperature. These  
currents are derived from PNP current sources refer-  
enced from ꢀ I and driven into two series diodes con-  
CC  
nected to GNDI. The contacts ICONST and IPTAT may  
be left open because internal catch diodes prevent sat-  
uration of the current sources. The simplest method of  
determining the die temperature is to measure each  
Note that many external demuxes require their reset  
signals to be asserted while they are clocked, and may  
require more than one clock cycle of reset. More impor-  
tantly, if the phase of the DREADY clock is such that a  
clock pulse will be “swallowed” to resynchronize, then  
______________________________________________________________________________________ 23  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
current with an ammeter (which shuts off the internal  
catch diodes) referenced to GNDI. The die temperature  
in °C is then calculated by the expression:  
To calibrate the circuit, first connect pins 2 and 3 on  
JU1 to zero the input of the PTAT path. With the  
MAX108 powered up, adjust potentiometer R3 until the  
voltage at the ꢀ  
output is -2.728ꢀ. Connecting  
TEMP  
pins 1 and 2 on JU1 restores normal operation to the  
I
PTAT  
T
= 300 ×  
273  
DIE  
circuit after the calibration is complete. The voltage at  
I  
CONST  
the ꢀ  
node will then be proportional to the actual  
TEMP  
MAX108 die temperature according to the equation:  
Another method of determining the die temperature  
uses the operational amplifier circuit shown in Figure  
20. The circuit produces a voltage that is proportional  
to the die temperature. A possible application for this  
signal is speed control for a cooling fan to maintain  
constant MAX108 die temperature. The circuit operates  
T
DIE  
(°C) = 100 x ꢀ  
TEMP  
The overall accuracy of the die temperature measure-  
ment using the operational-amplifier scaling circuitry is  
limited mainly by the accuracy and matching of the  
resistors in the circuit.  
by converting the I  
and I  
currents to volt-  
PTAT  
CONST  
ages ꢀ  
and ꢀ  
, with appropriate scaling to  
CONST  
PTAT  
Thermal Management  
Depending on the application environment for the  
ESBGA-packaged MAX108, the customer may have to  
apply an external heatsink to the package after board  
assembly. Existing open-tooled heatsinks are available  
from standard heatsink suppliers (see Heatsink  
Manufacturers). The heatsinks are available with preap-  
plied adhesive for easy package mounting.  
account for their equal values at +27°C. This voltage  
difference is then amplified by two amplifiers in an  
instrumentation-amplifier configuration with adjustable  
gain. The nominal value of the circuit gain is 4.5092ꢀ/ꢀ.  
The gain of the instrumentation amplifier is given by the  
expression:  
TEMP  
A
=
ꢀ  
PTAT  
CONST  
R1  
R1  
A
= 1 +  
+ 2 ×  
R2  
R3  
5kΩ  
3.32kΩ  
10-TURN  
6.65kΩ  
R2  
15kΩ  
R1  
7.5kΩ  
R2  
15kΩ  
I
PTAT  
JU1  
1
3
12.1kΩ  
12.1kΩ  
2
R1  
7.5kΩ  
V
1/4 MAX479  
PTAT  
1/4 MAX479  
6.65kΩ  
I
CONST  
V
TEMP  
V
CONST  
1/4 MAX479  
1/4 MAX479  
6.05kΩ  
Figure 20. Die Temperature Acquisition Circuit with the MAX479  
24 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Table 7. Therꢂal Perforꢂance for  
MAX108 With or Without Heatsink  
THERMAL RESISTANCE vs. AIRFLOW  
18  
16  
14  
12  
10  
8
MAX108 θ (°C/W)  
JA  
AIRFꢀOW  
(linear ft/ꢂin)  
WITHOUT  
WITH HEATLINK  
HEATLINK  
WITHOUT  
HEATSINK  
0
16.5  
12.5  
9.4  
8.3  
7.4  
200  
400  
800  
14.3  
13  
12.5  
WITH HEATSINK  
Thermal Performance  
6
The MAX108 has been modeled to determine the ther-  
mal resistance from junction to ambient. Table 7 lists  
the ADC’s thermal performance parameters:  
0
100 200 300 400 500 600 700 800  
AIRFLOW (linear ft./min.)  
Figure 21. MAX108 Thermal Performance  
Ambient Temperature:  
Heatsink Dimensions:  
PC Board Size and Layout:  
T = +70°C  
A
25mm x 25mm x 10mm  
Maxim strongly recommends using a multilayer printed  
circuit board (PCB) with separate ground and power-  
supply planes. Since the MAX108 has separate analog  
and digital ground connections (GNDA, GNDI, GNDR,  
and GNDD, respectively), the PCB should feature sep-  
arate analog and digital ground sections connected at  
only one point (star ground at the power supply). Digital  
signals should run above the digital ground plane, and  
analog signals should run above the analog ground  
plane. Keep digital signals far away from the sensitive  
analog inputs, reference inputs, and clock inputs. High-  
speed signals, including clocks, analog inputs, and  
digital outputs, should be routed on 50microstrip  
lines, such as those employed on the MAX108 evalua-  
tion kit.  
4 in. x 4 in.  
2 Signal Layers  
2 Power Layers  
Heatsink Manufacturers  
Aavid Engineering and IERC provide open-tooled, low-  
profile heatsinks, fitting the 25mm x 25mm ESBGA  
package.  
Aavid Engineering, Inc.  
Phone: 714-556-2665  
Heatsink Catalog No.: 335224B00032  
Heatsink Dimensions: 25mm x 25mm x 10mm  
International Electronic Research Corporation (IERC)  
Phone: 818-842-7277  
Heatsink Catalog No.: BDN09-3CB/A01  
Heatsink Dimensions: 23.1mm x 23.1mm x 9mm  
The MAX108 has separate analog and digital power-  
supply inputs: ꢀ  
(-5ꢀ analog and substrate supply)  
EE  
and ꢀ I (+5ꢀ) to power the T/H amplifier, clock distri-  
CC  
bution, bandgap reference, and reference amplifier;  
A (+5ꢀ) to supply the ADC’s comparator array;  
CC  
CC  
Bypassing/Layout/Power Supply  
Grounding and power-supply decoupling strongly influ-  
ence the MAX108’s performance. At a 1.5GHz clock  
frequency and 8-bit resolution, unwanted digital  
crosstalk may couple through the input, reference,  
power-supply, and ground connections and adversely  
influence the dynamic performance of the ADC.  
Therefore, closely follow the grounding and power-sup-  
ply decoupling guidelines (Figure 22).  
O (+3ꢀ to ꢀ D) to establish power for all PECL-  
CC  
based circuit sections; and ꢀ D (+5ꢀ) to supply all  
CC  
logic circuits of the data converter.  
The MAX108 ꢀ  
open while the part is being powered up. To avoid this  
condition, add a high-speed Schottky diode (such as a  
Motorola 1N5817) between ꢀ and GNDI. This diode  
EE  
prevents the device substrate from forward biasing,  
which could cause latchup.  
supply contacts ꢂust not be left  
EE  
______________________________________________________________________________________ 25  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
All supplies should be decoupled with large tantalum or  
electrolytic capacitors at the point they enter the PCB.  
For best performance, bypass all power supplies to the  
appropriate ground with a 10µF tantalum capacitor to  
filter power-supply noise, in parallel with a 0.1µF  
capacitor and a high-quality 47pF ceramic chip capaci-  
tor located very close to the MAX108 device to filter  
very high-frequency noise.  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX108 are mea-  
sured using the best-straight-line fit method.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
Static Parameter Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
V
O
CC  
NOTE:  
10µF  
10nF  
10nF  
47pF  
47pF  
47pF  
47pF  
LOCATE ALL 47pF CAPACITORS AS CLOSE  
AS POSSIBLE TO THE MAX108 DEVICE.  
GNDD  
V
CC  
I
10µF  
10nF  
10nF  
47pF  
47pF  
47pF  
47pF  
GNDI  
V
EE  
V
A
CC  
10µF  
1N5817  
10nF  
10nF  
47pF  
47pF  
47pF  
47pF  
GNDI  
10µF  
10nF  
10nF  
47pF  
47pF  
GNDA  
V
V
V
V
V
A = +4.75V TO +5.25V  
D = +4.75V TO +5.25V  
I = +4.75V TO +5.25V  
CC  
CC  
CC  
CC  
EE  
V
D
CC  
O = +3.0V TO V  
D
CC  
= -4.75V TO -5.25V  
10µF  
10nF  
10nF  
47pF  
47pF  
47pF  
47pF  
GNDD  
Figure 22. MAX108 Bypassing and Grounding  
26 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Bit Error Rates  
Errors resulting from metastable states may occur when  
the analog input voltage (at the time the sample is  
taken) falls close to the decision point of any one of the  
input comparators. Here, the magnitude of the error  
depends on the location of the comparator in the com-  
parator network. If it is the comparator for the MSB, the  
error will reach full scale. The MAX108’s unique encod-  
ing scheme solves this problem by limiting the magni-  
tude of these errors to 1LSB.  
Effective Number of Bits  
ENOB indicates the global accuracy of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB  
is calculated from a curve fit referenced to the theoreti-  
cal full-scale range.  
Signal-to-Noise Plus Distortion  
Signal-to-Noise plus distortion (SINAD) is calculated  
from the ENOB as follows:  
SINAD = (6.02 x ENOB) + 1.76  
Dynamic Parameter Definitions  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first four harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
2
2
2
2
THD = 20 × log  
+ + + ꢀ  
/ ꢀ  
1
2
3
4
5
SNR  
= (6.02 x N + 1.76)dB  
(MAX)  
where ꢀ is the fundamental amplitude, and ꢀ through  
5
harmonics.  
1
2
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is calculated by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
are the amplitudes of the 2nd- through 5th-order  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio,  
expressed in decibels, of the RMS amplitude of the fun-  
damental (maximum signal component) to the RMS  
value of the next largest spurious component, excluding  
DC offset.  
Intermodulation Distortion  
The two-tone intermodulation distortion (IMD) is the  
ratio, expressed in decibels, of either input tone to the  
worst 3rd-order (or higher) intermodulation products.  
The input tone levels are at -7dB full scale.  
Chip Information  
TRANSISTOR COUNT: 20,486  
SUBSTRATE CONNECTED TO ꢀ  
EE  
______________________________________________________________________________________ 27  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Typical Operating Circuit  
Z = 50Ω  
0
50Ω  
ALL PECL OUTPUTS  
MUST BE TERMINATED  
LIKE THIS.  
+5V ANALOG  
-5V ANALOG +5V DIGITAL  
+3.3V DIGITAL  
V
O - 2V  
CC  
V
V
A
V
I
V D AUXEN1 V O AUXEN2  
CC CC  
EE  
CC  
CC  
DIVSELECT  
2
2
OR+/OR-  
DEMUXEN  
VOSADJ  
+5V DIGITAL  
P7+/P7-  
2
2
2
2
2
2
2
2
2
P6+/P6-  
P5+/P5-  
2
2
2
DIFFERENTIAL  
ANALOG  
VIN+  
VIN-  
Z = 50Ω  
0
PRIMARY  
PECL  
P4+/P4-  
P3+/P3-  
INPUT  
Z = 50Ω  
0
500mVp-p FS  
OUTPUTS  
P2+/P2-  
P1+/P1-  
MAX108  
SAMPLE  
CLOCK  
1.5GHz  
+4dBm  
CLK+  
CLK-  
Z = 50Ω  
0
P0+/P0-  
A7+/A7-  
2
2
2
2
2
50Ω  
A6+/A6-  
A5+/A5-  
GNDI  
GNDI  
CLKCOM  
AUXILARY  
PECL  
OUTPUTS  
A4+/A4-  
A3+/A3-  
A2+/A2-  
A1+/A1-  
RSTIN+  
RSTIN-  
A0+/A0-  
DREADY+/DREADY-  
RSTOUT+/RSTOUT-  
GNDA GNDR GNDI GNDD REFOUT REFIN  
28 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
192-Contact ESBGA PCB Land Pattern  
TOP VIEW  
MAX108 192 Ball ESBGA  
Printed Circuit Board (PCB) Land Pattern  
MAX108  
+5V Track/Hold Analog VCCI  
+5V Comparator Analog VCCA  
+5V Logic Digital VCCD  
-5V Track/Hold Analog VEE  
+3.3V PECL Supply VCCO  
T/H Ground GNDI  
Comparator Ground GNDA  
Logic Ground GNDD  
______________________________________________________________________________________ 29  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
30 ______________________________________________________________________________________  
±±5, 1.±Gsps, 8-Bit ADC with  
On-Chip 2.2GHz Track/Hold Amplifier  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 31  
© 2001 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX108EVKIT

Evaluation Kits for the MAX104/MAX106/MAX108
MAXIM

MAX108K00B

MAX108K00B 5 PPM
VISHAY

MAX109

8-Bit, 2.2Gsps ADC with Track/Hold Amplifier and 1:4 Demultiplexed LVDS Outputs
MAXIM

MAX1090

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090ACEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090ACEI+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090ACEI+T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090ACEI-T

暂无描述
MAXIM

MAX1090AEEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM

MAX1090AEEI+

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, LEAD FREE, QSOP-28
MAXIM

MAX1090AEEI-T

ADC, Successive Approximation, 10-Bit, 1 Func, 8 Channel, Parallel, 8 Bits Access, PDSO28, QSOP-28
MAXIM

MAX1090BCEI

400ksps, +5V, 8-/4-Channel, 10-Bit ADCs with +2.5V Reference and Parallel Interface
MAXIM