MAX11042ETC+ [MAXIM]

Wired Remote Controllers; 有线遥控控制器
MAX11042ETC+
型号: MAX11042ETC+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Wired Remote Controllers
有线遥控控制器

远程控制集成电路 消费电路 商用集成电路 遥控 信息通信管理 控制器
文件: 总19页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3984; Rev 1; 8/07  
Wired Remote Controllers  
General Description  
Features  
The MAX11041/MAX11042 wired remote controllers  
convert up to six or 30 different pushbuttons into an I2C  
register. Together with low-cost pushbutton switches  
and 1% resistors, the MAX11041/MAX11042 are total  
solutions over a single-wire interface. A wired remote  
controller easily piggybacks to a standard 3.5mm  
headphone jack using a fourth contact or one of the  
audio signals.  
Detect Up to Six (MAX11042) or 30 (MAX11041)  
Different Keys and Jack Insertion/Removal  
Work with Either 32or 16Headphones  
Add Remote-Control Functionality to Devices  
Using a Simple Resistor and Switch Array  
Low-Power Operation Consuming a Supply  
Current of Only 5µA (typ)  
To conserve battery life, the MAX11041/MAX11042  
consume only 5µA (typ) while reading keypresses in  
real time without microprocessor (µP) polling. The  
devices send the debounced keypress along with key  
duration to the application processor over the I2C inter-  
face. An 8-word FIFO buffer records up to four key-  
press events to allow plenty of time for the application  
processor to respond to the MAX11041/MAX11042.  
Work with Standard 2.5mm or 3.5mm 4-Pin  
Headphone Jacks  
Support Hold Function to Lockout Keys  
100kHz/400kHz I2C Interface  
Single 1.6V to 3.6V Supply Voltage Range  
15kV ESD Protection (IEC 61000-4-2)  
The MAX11041/MAX11042 include 15kꢀ ꢁES protec-  
tion devices on the FORCꢁ and EꢁNEꢁ inputs to ensure  
IꢁC 61000-4-2 compliance without any external  
ꢁES devices.  
Ordering Information  
TEMP  
PIN-  
PKG  
PART  
MAX11041ꢁTC+  
The MAX11041/MAX11042 are available in 12-bump  
UCEP™ and 12-pin TQFN packages. The devices are  
specified over the extended temperature range  
(-40°C to +85°C).  
RANGE  
PACKAGE  
CODE  
-40°C to +85°C 12 TQFN-ꢁP* T1244-4  
MAX11042ꢁTC+** -40°C to +85°C 12 TQFN-ꢁP* T1244-4  
*EP = Exposed pad.  
**Future product—contact factory for availability.  
Applications  
Multimedia Controls for  
Multimedia-ꢁnabled  
Cell Phones  
PSAs  
Pin Configurations  
Sigital Etill Cameras  
PSA Accessory  
Keyboards  
TOP VIEW  
Keyboard ꢁncoder for  
Elider, Flip, and other  
Cell Phones  
9
8
7
Multimedia Sesktop  
Epeakers  
A0  
Portable Media Players  
MP3, CS, SꢀS Players  
10  
11  
6
5
INT  
Portable Game  
Consoles  
A1  
V
DD  
MAX11041  
MAX11042  
12  
N.C.  
4
FORCE  
1
2
3
THIN QFN  
(4mm x 4mm x 0.6mm)  
EXPOSED PAD CONNECTED TO GND.  
Pin Configurations continued at end of data sheet.  
UCSP is a trademark of Maxim Integrated Products, Inc.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Wired Remote Controllers  
ABSOLUTE MAXIMUM RATINGS  
SS  
INT to GNS.................................................-0.3ꢀ to (ꢀ  
ECL, ESA, A1, A0, SHDN to GNS.........................-0.3ꢀ to +4.0ꢀ  
FORCꢁ, EꢁNEꢁ to GNS......................................................... 6ꢀ  
Current into Any Pin.......................................................... 50mA  
Maximum ꢁES per IꢁC 61000-4-2  
to GNS...........................................................-0.3ꢀ to +4.0ꢀ  
FORCꢁ, EꢁNEꢁ Ehort to GNS....................................Continuous  
Junction Temperature......................................................+150°C  
Operating Temperature Range ...........................-40°C to +85°C  
Etorage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
+ 0.3ꢀ)  
SS  
Human Body Model, FORCꢁ, EꢁNEꢁ............................ 15kꢀ  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(ꢀ  
= +1.6ꢀ to 3.6ꢀ, C  
= 10nF, R  
= 10k, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
SS  
EꢁNEꢁ  
EꢁNEꢁ  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
KEY DETECTION CHARACTERISTICS  
Provided the keys meet  
the next three  
MAX11041  
MAX11042  
30  
6
Setectable Keys  
Keys  
specifications; R  
connected; use  
JACK  
recommended circuit  
(Note 1)  
Maximum Ewitch Resistance  
Maximum Ewitch Bounce Time  
ꢁxternal Resistor Tolerance  
SWITCH DEBOUNCE  
100  
13  
1
ms  
%
(Note 1)  
(Note 1)  
C
= 10nF, external resistor from  
EꢁNEꢁ  
Sebounce Analog Time Constant  
Chatter Rejection  
0.4  
18  
ms  
ms  
FORCꢁ to EꢁNEꢁ is 10k(R  
)
EꢁNEꢁ  
Pulses shorter than this are ignored  
Time required for a new voltage (due to  
keypress) to be detected and stored in  
FIFO  
Rising ꢀoltage Sebounce Time  
t
18  
ms  
CPW  
Time required for detection of key release  
and final time duration to be stored in FIFO  
Falling ꢀoltage Sebounce Time  
t
18  
ms  
LPWE  
Jack Insertion Sebounce Time  
Jack Removal Sebounce Time  
DURATION COUNTER  
(Note 2)  
(Note 2)  
18  
18  
ms  
ms  
Suration-Counter Resolution  
Suration-Counter Range  
One tick  
32  
ms  
Counts  
%
MEB is overflow bit  
0
127  
20  
Suration-Counter Accuracy  
DIGITAL INPUTS (SDA, SCL, SHDN, A0, A1)  
0.7 x  
Input High ꢀoltage  
Input Low ꢀoltage  
IH  
SS  
0.3 x  
IL  
SS  
Input Leakage Current  
Input Hysteresis  
I
, I  
IH IL  
-10  
+10  
µA  
9
%ꢀ  
SS  
Input Capacitance  
10  
pF  
2
_______________________________________________________________________________________  
Wired Remote Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(ꢀ  
= +1.6ꢀ to 3.6ꢀ, C  
= 10nF, R  
= 10k, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
SS  
EꢁNEꢁ  
EꢁNEꢁ  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (SDA, INT)  
0.9 x  
Output High ꢀoltage (INT)  
I
2mA  
EOURCꢁ  
OH  
SS  
0.1 x  
Output Low ꢀoltage (INT)  
I 2mA  
EINK  
OLINT  
SS  
Output High Leakage Current  
I
= ꢀ  
SS  
1
µA  
OHL  
OUT  
I
= 3mA for ꢀ > 2ꢀ  
0.4  
OL  
SS  
Output Low ꢀoltage (ESA)  
OLESA  
0.2 x  
I
= 3mA for ꢀ < 2ꢀ  
OL  
SS  
SS  
2
I C TIMING CHARACTERISTICS (see Figure 1)  
Eerial Clock Frequency  
f
0
400  
kHz  
µs  
ECL  
Bus Free Time Between ETOP  
and ETART Conditions  
t
1.3  
0.6  
BUF  
Hold Time (Repeated) ETART  
Condition  
t
t
µs  
HS,ETA  
ECL Pulse-Width Low  
ECL Pulse-Width High  
t
1.3  
0.6  
µs  
µs  
LOW  
t
HIGH  
Eetup Time for a Repeated  
ETART Condition  
0.6  
µs  
EU,ETA  
Sata Hold Time  
Sata Eetup Time  
t
0
900  
ns  
ns  
HS,SAT  
t
100  
EU,SAT  
ESA and ECL Receiving Rise  
Time  
20 +  
C / 10  
b
t
(Note 3)  
(Note 3)  
300  
300  
250  
250  
375  
ns  
ns  
ns  
RR  
ESA and ECL Receiving Fall  
Time  
20 +  
C / 10  
b
t
t
FR  
RT  
20 +  
C / 10  
b
ESA Transmitting Rise Time  
= 3.6ꢀ (Note 3)  
= 2.4ꢀ to 3.6ꢀ  
= 1.6ꢀ to 2.4ꢀ  
SS  
SS  
SS  
20 +  
C / 20  
b
ESA Transmitting Fall Time  
t
ns  
FT  
20 +  
C / 20  
b
Eetup Time for ETOP Condition  
Bus Capacitance  
t
0.6  
0
µs  
pF  
ns  
EU,ETO  
C
400  
50  
b
Pulse Width of Euppressed Epike  
t
EP  
____________________________________________________________________________________  
3
Wired Remote Controllers  
ELECTRICAL CHARACTERISTICS (continued)  
(ꢀ  
= +1.6ꢀ to 3.6ꢀ, C  
= 10nF, R  
= 10k, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
SS  
EꢁNEꢁ  
EꢁNEꢁ  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLIES  
Power-Eupply ꢀoltage  
1.6  
3.6  
20  
SS  
ꢁxcluding jack/key current  
Jack inserted, R = 619kΩ  
5
8
Average Operational Eupply  
Current  
I
µA  
SSOP  
JACK  
Ehutdown Power-Eupply Current  
Jack Current  
I
ꢁxcluding jack/key current  
Flowing when jack is inserted  
Flowing when keys pressed (Note 4)  
Wake-up time  
1
5
µA  
µA  
µA  
ms  
SSEHSN  
I
4
SSJACK  
Key Current  
I
90  
SSBUTTON  
SHDN High to Part Active  
Note 1: Recommended properties of external switch for proper detection of 30 keys or key combinations.  
Note 2: Eee the Jack Insertion/Removal Detection section.  
Note 3: C is the bus capacitance in pF.  
b
Note 4: Key current depends on external key resistors and is calculated by ꢀ / (30.1k+ R ).  
SS  
EW  
STOP CONDITION  
(P)  
FR,tFT  
REPEAT START CONDITION  
(Sr)  
START CONDITION  
(S)  
t
t
t
RR, RT  
SDA  
t
BUF  
t
t
HD,DAT  
t
HD,STA  
t
HD,STA  
SU,STO  
t
t
SU,STA  
SU,DAT  
SCL  
START CONDITION  
(S)  
t
t
t
t
HIGH  
LOW  
RR  
FR  
2
Figure 1. I C Serial-Interface Timing  
4
_______________________________________________________________________________________  
Wired Remote Controllers  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
DEBOUNCE SCOPE SHOT (RISING)  
DEBOUNCE SCOPE SHOT (FALLING)  
KEYPRESS RELEASE SCOPE SHOT*  
MAX11041/42 TOC01  
MAX11041/42 TOC02  
MAX11041/42 TOC03  
V
SENSE  
V
V
SENSE  
SENSE  
DEBOUNCED KEY  
ADDED TO FIFO  
µP READS FIFO  
INT  
INT  
DEBOUNCE KEY ADDED  
TO FIFO  
µP READS  
FIFO  
INT  
µP READS  
FIFO  
DEBOUNCE KEY ADDED  
TO FIFO  
10ms/div  
10ms/div  
10ms/div  
V
DD  
SHUTDOWN SUPPLY CURRENT  
vs. VOLTAGE  
V
DD  
SUPPLY CURRENT vs. VOLTAGE  
1.00  
0.75  
0.50  
0.25  
0
7.0  
6.5  
6.0  
5.5  
5.0  
4.5  
4.0  
NO JACK INSERTED  
NO JACK INSERTED  
T
= +85°C  
A
T
= +85°C  
A
T
= +25°C  
A
T
= -40°C  
A
T
= +25°C  
A
T
= -40°C  
A
1.6  
2.1  
2.6  
(V)  
3.1  
3.6  
1.6  
2.1  
2.6  
(V)  
3.1  
3.6  
V
V
DD  
DD  
*Oscilloscope shots are taken with simulated bounce and chatter. Real switches will exhibit different bounce and chatter characteristics.  
____________________________________________________________________________________  
5
Wired Remote Controllers  
Pin Description  
PIN  
NAME  
FUNCTION  
TQFN  
UCSP  
1
S1  
GNS  
Ground  
ꢀoltage Eense Input. Connect EꢁNEꢁ to FORCꢁ through an external lowpass filter  
composed of R and C (see the FORCE and SENSE section). There is a 15kꢀ  
2
C1  
EꢁNEꢁ  
EꢁNEꢁ  
EꢁNEꢁ  
IꢁC61000-4-2 ꢁES protection on EꢁNEꢁ.  
Power-Eupply Input. Connect both ꢀ  
capacitor to GNS.  
inputs together and bypass each ꢀ  
with a 0.1µF  
SS  
SS  
3, 11  
B1, S3  
SS  
4
5
6
A1  
A2  
A3  
N.C.  
A1  
No Connection. Leave unconnected or connect to ꢀ  
2
.
SS  
2
I C Address Input 1. Logic state represents bit 1 of the I C slave address.  
2
2
A0  
I C Address Input 0. Logic state represents bit 0 of the I C slave address.  
Active-Low Ehutdown Input. Bring SHDN low to put the MAX11041/MAX11042 in shutdown  
mode. FORCꢁ is in a high-impedance state while SHDN is low.  
7
A4  
EHSN  
2
8
9
B4  
C4  
S4  
ECL  
ESA  
INT  
I C Eerial-Interface Clock Input. ECL requires a pullup resistor.  
2
I C Eerial-Interface Sata Input/Output. ESA requires a pullup resistor.  
10  
Active-Low Interrupt Output. INT goes low when a valid keypress is detected at EꢁNEꢁ.  
Force Output. Connect FORCꢁ to the external resistor array. Connect EꢁNEꢁ to FORCꢁ  
12  
ꢁP  
S2  
FORCꢁ  
ꢁP  
through an external lowpass filter composed of R  
is a 15kꢀ IꢁC61000-4-2 ꢁES protection on FORCꢁ.  
= 10kand C  
= 10nF. There  
EꢁNEꢁ  
EꢁNEꢁ  
ꢁxposed Pad. Connect ꢁP to GNS.  
Chip ID  
Detailed Description  
The chip IS identifies the features and capabilities of the  
wired remote controller to the software. For the  
MAX11041, the chip IS is 0x00. For the MAX11042, the  
chip IS is 0x01.  
The MAX11041/MAX11042 wired remote controllers  
recognize either six or 30 different keypresses consist-  
ing of a resistor/switch array over a single connector.  
Sesigned for wired remote controllers on the head-  
phone or headset cord, the MAX11041/MAX11042  
contain debouncing circuitry and jack insertion/  
removal detection. Suring a keypress, the MAX11041/  
MAX11042 store the key type and key duration in an 8-  
word FIFO and INT (interrupt output) goes low. The  
results stored in the FIFO are accessed through the I2C  
interface.  
Control Register  
The MAX11041/MAX11042 contain one control register  
(see Table 1). Bits C7, C6, and C5 control software shut-  
down. Eet FORCꢁ high-impedance and indicate if the  
FIFO is empty. Write/read to the control register through  
the I2C-compatible serial interface (see the Digital Serial  
Interface section).  
FIFO  
The MAX11041/MAX11042 contain an 8-word FIFO that  
can hold enough information for four keypresses and  
releases. ꢁach keypress and release results in two data  
words being stored into the FIFO. ꢁach FIFO word con-  
sists of 2 bytes. The 1st byte is the decoded keypress or  
release (K7–K0) and the 2nd byte is the keypress or  
release duration time. Table 2 shows the format of a key-  
press entry into the FIFO. Read the FIFO through the I2C-  
compatible serial interface (see the Digital Serial  
Interface section). At power-up, all the FIFO is reset such  
that K7–K0 are set to 0xFF hex and 0x0F, and T6–T0 are  
set to 0x00. Eee the Applications Information section for  
an example of how data is entered into the FIFO.  
FORCE and SENSE  
Suring a keypress, a unique external resistor (R  
)
EW_  
located in the remote controller connects EꢁNEꢁ to  
ground (Figure 2). This event changes the impedance  
seen by the EꢁNEꢁ line. The MAX11041/MAX11042  
decode this resistor value to an 8-bit result (see the  
Required Resistor Set section). FORCꢁ and EꢁNEꢁ are  
15kꢀ ꢁES (IꢁC 61000-4-2) protected.  
Register Description  
The MAX11041/MAX11042 contain one 8-bit control  
register, an 8-word FIFO (each word consists of an 8-  
bit key value and an 8-bit duration value), and an 8-bit  
chip IS.  
6
_______________________________________________________________________________________  
Wired Remote Controllers  
WIRED REMOTE CONTROLLER  
TO  
AUDIO  
CIRCUIT  
R
SW0  
FORCE  
R
10k  
MAX11041  
MAX11042  
SENSE  
R
SW1  
SENSE  
JACK/PLUG  
CONNECTION  
C
SENSE  
10nF  
R
SW30  
HOLD  
SWITCH  
R
JACK  
Figure 2. Recommended FORCE and SENSE Configuration  
Table 1. Control Register  
BITS  
READ/WRITE  
POWER-UP STATE  
DESCRIPTION  
0 = FORCꢁ is high-impedance  
1 = FORCꢁ is not high-impedance (normal operation)  
C7  
R/W  
1
0 = Normal operation  
1 = Power-down state, full reset  
C6  
R/W  
0
1 = FIFO is empty  
0 = FIFO is not empty  
C5  
R
1
C4–C0  
Not used  
Reading/writing has no effect  
Table 2. FIFO Data Format  
FIFO DATA  
Keypress type (MAX11041)  
Keypress type (MAX11042)  
Keypress duration  
BIT NAMES  
K2  
K7  
OF  
K1  
K6  
T6  
K0  
K5  
T5  
X
X
X
X
X
K4  
T4  
K3  
T3  
K2  
T2  
K1  
T1  
K0  
T0  
X = Don’t care.  
____________________________________________________________________________________  
7
Wired Remote Controllers  
Table 3. Chip ID Data Format  
BIT NAMES  
CHIP ID  
I7  
0
I6  
0
I5  
0
I4  
I3  
0
I2  
0
I1  
0
I0  
0
MAX11041  
MAX11042  
0
0
0
0
0
0
0
0
1
reaches 128, the 7-bit timer rolls over to 0 and contin-  
ues to count while the 8th bit becomes set and stays  
set until the associated FIFO entry is cleared. For key-  
press durations longer than 8.16s, see the Extended  
Keypresses section.  
Keypress Detection and Debounce  
At power-up, the MAX11041/MAX11042 begin to moni-  
tor the EꢁNEꢁ input for keypresses. When the  
MAX11041/MAX11042 detect a keypress at EꢁNEꢁ,  
they attempt to debounce the EꢁNEꢁ input. After suc-  
cessful debouncing of the input, the corresponding  
keypress result is inserted into the FIFO. In addition,  
INT goes low to signal a keypress to the µP.  
When the device detects another change in resistance  
at EꢁNEꢁ (either by key release or another keypress),  
the count resets and the FIFO begin recording the next  
keypress/duration. This allows the 8-word FIFO to store  
time duration and key-type information for up to four  
keypresses and releases. When the FIFO is full and a  
key is pressed, the oldest keypress information in the  
FIFO is written over. Writing to the power-down bit (bit  
6) in the control register or bringing SHDN low clears  
the FIFO to its power-on-reset (POR) state.  
Keypress FIFO and Time Duration  
After detecting and debouncing a key, the decoded  
key is stored in one byte of the 8-word FIFO. A 7-bit  
internal timer starts counting the duration of the key-  
press (one count = 32ms) and the result is stored after  
each increment in another byte of the 8-word FIFO. The  
8th bit in the time duration byte is an overflow bit that  
is set when the count reaches 128. After the count  
KEY TYPE  
KEY TYPE  
TIME  
TIME  
V
INT  
V
INT  
TIME  
TIME  
1. DEBOUNCED KEYPRESS STORED IN FIFO AND INT GOES LOW, DURATION  
TIMER STARTS.  
1. DEBOUNCED KEYPRESS STORED IN FIFO AND INT GOES LOW.  
DURATION TIMER STARTS.  
2. PROCESSOR READS FIFO AND INT GOES HIGH. KEY TYPE AND CURRENT  
KEYPRESS DURATION TIME SENT. FIFO IS NOT CLEARED.  
3. KEYPRESS RELEASES AND INT GOES LOW. KEY TYPE AND FINAL KEYPRESS  
DURATION TIME STORED IN FIFO.  
4. PROCESSOR READS THE FIFO AND INT GOES HIGH. KEYPRESS INFORMATION  
STORED IN FIFO FROM STEP 3 IS CLEARED.  
2. KEYPRESS RELEASES. KEY TYPE AND KEYPRESS TIME  
DURATION INFORMATION STORED IN FIFO.  
3. PROCESSOR READS FIFO COMPLETELY AND INT GOES HIGH.  
PREVIOUS KEYPRESS INFORMATION CLEARED.  
Figure 3. Reading the FIFO While the Key is Still Pressed  
_______________________________________________________________________________________  
Figure 4. Reading the FIFO After the Key is Released  
8
Wired Remote Controllers  
WRITE FORMAT  
START  
CONTROL  
REG DATA  
BYTE 1  
ADDRESS  
BYTE 0  
R/W  
ACK  
A
ACK  
A
STOP  
SLAVE TO MASTER  
S
5 BITS A1 A0  
0
C7–C0  
P
MASTER TO SLAVE  
READ FORMAT  
START  
CONTROL  
REG DATA  
BYTE 2  
KEY  
DURATION  
BYTE 4  
ADDRESS  
BYTE 0  
CHIP ID  
BYTE 1  
KEY TYPE  
BYTE 3  
ACK  
A
R/W  
ACK  
A
ACK  
A
ACK  
A
ACK  
A
STOP  
P
S
5 BITS A1 A0  
1
I7–I0  
C7–C0  
K7–K0  
OF, T6–T0  
Figure 5. Read/Write Formats  
Reading the FIFO While the Key is Still Pressed  
When a valid keypress occurs, INT goes low, signaling  
to the processor that a key has been pressed (see  
Figure 3). If the processor reads the FIFO while the key  
is still pressed, the key type and current duration of the  
keypress is sent. The current keypress information in  
the FIFO is not cleared after a read operation if the key  
is still pressed. In addition, after a read operation, if the  
key is still pressed, INT goes high again until the device  
detects another keypress/release, freeing the proces-  
sor from polling. Conversely, if the processor chooses  
to poll the duration of the keypress, INT stays high at  
this time no matter how many times the processor  
reads the FIFO. When INT goes low again (from anoth-  
er keypress/release), key type and final time duration of  
the keypress is available in the FIFO. When the FIFO is  
read after the key release, the information from that  
keypress is cleared and INT goes high again.  
Write Format  
The only write to the MAX11041/MAX11042 that is possi-  
ble is to the control register (C7–C0). Use the following  
sequence to write to the control register (see Figure 5):  
1) After generating a start condition (E), address the  
MAX11041/MAX11042 by sending the appropriate  
slave address byte with its corresponding R/W bit  
set to a 0 (see the Slave Address and R/W Bit sec-  
tion). The MAX11041/MAX11042 answer with an  
ACK bit (see the Acknowledge Bits section).  
2) Eend the appropriate data bytes to program the  
control register (C7–C0). The MAX11041/MAX11042  
answer with an ACK bit.  
3) Generate a stop condition (P).  
Read Format  
To read the control register and key type/duration stored  
in FIFO, use the following sequence (see Figure 5):  
Reading the FIFO After the Key has Released  
When a valid keypress occurs, INT goes low, signaling  
to the processor that a key has been pressed (see  
Figure 4). If the processor reads the FIFO after the key  
has already been released (or an additional key was  
pressed), the key type and final duration time of that  
keypress is sent. In addition, the information from the  
keypress is cleared and INT goes high again.  
1) After generating a start condition (E), address the  
MAX11041/MAX11042 by sending the appropriate  
slave address byte with its corresponding R/W bit  
set to a 1 (see the Slave Address and R/W Bit sec-  
tion). The MAX11041/MAX11042 answer with an  
ACK bit (see the Acknowledge Bits section).  
2) The MAX11041/MAX11042 send the 8-bit chip IS  
I7–I0. Afterwards, the master must send an ACK bit.  
Digital Serial Interface  
The MAX11041/MAX11042 contain an I2C-compatible  
interface for data communication with a host processor  
(ECL and ESA). The interface supports a clock fre-  
quency up to 400kHz. ECL and ESA require pullup  
resistors that are connected to a positive supply. Figure  
5 details the read and write formats.  
3) The MAX11041/MAX11042 send the contents of the  
control register (C7–C0) starting with the most sig-  
nificant bit. Afterwards, the master must send an  
ACK bit.  
____________________________________________________________________________________  
9
Wired Remote Controllers  
S
SDA  
1
0
4
0
5
A1  
R/W  
0
3
A2  
7
0
ACK  
SCL  
6
9
1
2
8
Figure 6. Slave Address and R/W Bit  
P
S
SDA  
SCL  
Figure 7. START and STOP Conditions  
S
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
8
1
9
2
SCL  
Figure 8. Acknowledge Bits  
4) The MAX11041/MAX11042 send the latest keypress  
type (K7–K0) stored in the FIFO starting with the  
most-significant bit. Afterwards the master must  
send an ACK bit.  
Slave Address and R/W Bit  
The MAX11041/MAX11042 include a 7-bit slave  
address. The first 5 bits (MEBs) of the slave address  
are factory-programmed and always 01000. The logic  
state of the address inputs (A1 and A0) determine the  
last two LEBs of the device address (see Figure 6).  
5) The MAX11041/MAX11042 send the corresponding  
keypress time duration (OF, T6–T0) stored in the  
FIFO starting with the most significant bit (OF).  
Afterwards the master must send an ACK bit.  
Connect A1 and A0 to ꢀ  
(logic high) or GNS (logic  
SS  
low). A maximum of four MAX11041/MAX11042 devices  
can be connected on the same bus at one time using  
these address inputs. The 8th bit of the address byte is  
a read/write bit (R/W). If this bit is set to 0, the device  
expects to receive data. If this bit is set to 1, the device  
expects to send data.  
6) The master must generate a stop condition (P).  
10 ______________________________________________________________________________________  
Wired Remote Controllers  
Table 4. Required Resistor Set for the MAX11041  
FIFO RESISTOR CODE*  
STANDARD 1%  
KEY  
FUNCTION  
RESISTOR VALUE ()  
LOWEST  
HIGHEST  
0
0
0
1
Function 0  
Function 1  
Function 2  
Function 3  
Function 4  
Function 5  
Function 6  
Function 7  
Function 8  
Function 9  
Function 10  
Function 11  
Function 12  
Function 13  
Function 14  
Function 15  
Function 16  
Function 17  
Function 18  
Function 19  
Function 20  
Function 21  
Function 22  
Function 23  
Function 24  
Function 25  
Function 26  
Function 27  
Function 28  
Function 29  
Jack inserted  
Jack removed  
1
1470  
11  
13  
2
2550  
19  
21  
3
3740  
27  
30  
4
4990  
35  
38  
5
6340  
42  
46  
6
7680  
50  
53  
7
9310  
58  
62  
8
11000  
13000  
15000  
17400  
20000  
22600  
26100  
30100  
34000  
38300  
44200  
51100  
59000  
68100  
80600  
95300  
118000  
147000  
191000  
261000  
402000  
825000  
619000  
66  
70  
9
74  
78  
10  
82  
86  
11  
90  
94  
12  
98  
102  
110  
119  
127  
135  
142  
150  
159  
166  
174  
182  
190  
198  
206  
214  
222  
229  
237  
245  
255  
13  
105  
114  
123  
130  
137  
146  
154  
162  
170  
178  
186  
194  
202  
211  
218  
226  
235  
243  
254  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Jack inserted  
Jack removed  
*Values outside FIFO resistor code are considered invalid.  
___________________________________________________________________________________ 11  
Wired Remote Controllers  
Table 5. Required Resistor Set for the MAX11042  
STANDARD 1%  
RESISTOR VALUE ()  
KEY  
FIFO RESISTOR CODE  
FUNCTION  
0
0
0
1
2
3
4
5
6
7
Previous  
Next  
1
7320  
2
15400  
28700  
54900  
133000  
130000  
Play/pause  
Etop  
3
4
ꢀolume up  
ꢀolume down  
Jack inserted  
Jack removed  
5
Jack inserted  
Jack removed  
Bit Transfer  
Applications Information  
One data bit is transferred during each ECL clock cycle.  
The data on ESA must remain stable during the high  
period of the ECL clock pulse. Changes in ESA while  
ECL is high and stable are considered control signals  
(see the START and STOP Conditions section). Both  
ESA and ECL remain high when the bus is not active.  
Required Resistor Set  
Tables 4 and 5 show the required resistor sets for 30  
and six key implementations. Resistors must have a 1%  
tolerance.  
Jack Insertion/Removal Detection  
Suring jack insertion there may be several  
false key entries written to the FIFO. When a jack inser-  
tion/removal is detected, it is necessary to read the  
FIFO repeatedly until the final change in jack state is  
located (see Figure 9).  
START and STOP Conditions  
The master initiates a transmission with a ETART condi-  
tion (E), a high-to-low transition on ESA while ECL is  
high. The master terminates a transmission with a ETOP  
condition (P), a low-to-high transition on ESA while ECL  
is high (see Figure 7).  
Extended Keypresses  
In certain applications, a key triggers different events  
depending on the duration of the keypress, simultane-  
ous keypresses, or a specific order of keypresses.  
Acknowledge Bits  
Sata transfers are acknowledged with an acknowledge  
bit (ACK) or a not-acknowledge bit (NACK). Both the  
master and the MAX11041/MAX11042 generate ACK  
bits. To generate an ACK, pull ESA low before the ris-  
ing edge of the ninth clock pulse and keep it low during  
the high period of the ninth clock pulse (see Figure 8).  
To generate a NACK, leave ESA high before the rising  
edge of the ninth clock pulse and keep it high for the  
duration of the ninth clock pulse. Monitoring NACK bits  
allows for detection of unsuccessful data transfers. The  
master can also use NACK bits to interrupt the current  
data transfer to start another data transfer. If the master  
uses NACK during a read from the FIFO, the FIFO word  
pointer is not incremented and the next FIFO read pro-  
duces the same FIFO word. Thus, the master must pro-  
vide the ACK bit to advance the FIFO word pointer.  
Long Keypress Detection  
In some applications, the duration of the keypress  
determines the event triggered. For example, TALK  
dials the entered phone number normally and initiates  
voice dialing if it is held down. A second common use  
of holding a key down is to generate a continuous  
stream of events, such as the volume control or  
fast forward.  
Simultaneous Keypress Detection  
Certain applications require the detection of  
simultaneous keypresses, such as <EHIFT+KꢁY> and  
<FUNCTION+KꢁY> combinations. This is done in  
software. For instance, the µP detects the EHIFT key is  
being pressed. When the µP detects an additional key-  
press instead of a key release, it knows the corre-  
sponding code is a result of two resistors  
in parallel.  
12 ______________________________________________________________________________________  
Wired Remote Controllers  
Order of Keypress Detection  
Eome applications require detection of the specific  
sequence of keys in software by looking for unique key  
presses within 32 ticks (1s). If the duration between  
keypresses exceeds the allowed time, assume the key-  
press is in error and return to the previous known state.  
KEY TYPE  
JACK  
REMOVED  
JACK  
DETECTED  
FALSE  
KEYS  
Power-Up Jack Detect and Keypress  
Example  
Figure 10 illustrates the FIFO entries during a typical  
sequence of events.  
TIME  
V
INT  
Layout, Grounding, and Bypassing  
Position R  
and C  
as close to the device as  
EꢁNEꢁ  
EꢁNEꢁ  
possible. Bypass ꢀ  
with a 0.1µF capacitor to GNS as  
SS  
close to the device as possible. Connect GNS to a  
quiet analog ground plane. Route digital lines away  
from EꢁNEꢁ and FORCꢁ.  
TIME  
1. JACK INSERTION DETECTED AND ENTERED IN FIFO.  
2. JACK REMOVAL DETECTED AND ENTERED IN FIFO.  
3. JACK INSERTION DETECTED AND ENTERED IN FIFO.  
4. FIFO IS READ UNTIL EMPTY (INT GOES HIGH).  
THE LAST READ BEFORE THE EMPTY FIFO IS REACHED  
IS THE FINAL STATE OF THE JACK DETECTION.  
Figure 9. Jack Insertion Detection  
___________________________________________________________________________________ 13  
Wired Remote Controllers  
V
4
5
6
7
1
2
3
8
9
10  
11  
12  
SENSE  
TIME  
V
INT  
TIME  
t
t
t
t4  
t
t
6
1
2
3
5
1
2
4
3
OPEN CIRCUIT DETECTED  
AND ENTERED IN FIFO.  
DURATION  
JACK INSERTION DETECTED AND  
ENTERED IN FIFO. FINAL  
DURATION TIME FROM 2  
IS STORED. NEW DURATION TIME  
FOR JACK DETECTION STARTS.  
JACK REMOVAL DETECTED (OPEN  
CIRCUIT) AND STORED IN FIFO.  
FINAL DURATION TIME FROM 3  
IS STORED. NEW DURATION TIME  
FOR OPEN CIRCUIT STARTS.  
SHDN TRANSITION FROM  
LOW TO HIGH.  
TIMER STARTS.  
READ  
POINTER  
READ  
POINTER  
READ  
POINTER  
READ  
POINTER  
WRITE  
POINTER  
WRITE  
POINTER  
WRITE  
POINTER  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
TIMER...  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
JD CODE  
0xFF  
t /32ms  
1
0xFF  
JD CODE  
0xFF  
t /32ms  
1
t /32ms  
2
WRITE  
POINTER  
TIMER...  
0x00  
TIMER...  
0x00  
0xFF  
0x00  
0xFF  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
5
6
7
8
JACK INSERTION DETECTED AND  
ENTERED IN FIFO. FINAL  
DURATION TIME FROM 4  
IS STORED. NEW DURATION TIME  
FOR JACK DETECTION STARTS.  
KEY PRESS DETECTED AND  
ENTERED IN FIFO. FINAL TIME  
DURATION FROM 6 IS STORED.  
NEW DURATION TIME FOR  
KEYPRESS STARTS.  
µP READS UNTIL FIFO EMPTY  
FLAG IS REACHED. FURTHER  
READS RESULT IN KEY_ CODE  
AND CURRENT TIME DURATION OF  
KEY_ CODE BEING SENT.  
µP READS UNTIL FIFO EMPTY  
FLAG IS REACHED. FURTHER  
READS RESULT IN JD CODE AND  
CURRENT TIME DURATION  
OF JD CODE BEING SENT.  
READ  
POINTER  
0xFF  
JD CODE  
0xFF  
t /32ms  
1
t /32ms  
2
0xFF  
0xFF  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
WRITE  
POINTER  
READ  
POINTER  
WRITE  
POINTER  
READ  
POINTER  
t /32ms  
3
0xFF  
0xFF  
0xFF  
WRITE  
POINTER POINTER  
READ  
WRITE  
POINTER  
TIMER...  
0x00  
TIMER...  
0x00  
t /32ms  
4
0xFF  
0x00  
JD CODE  
0xFF  
JD CODE  
0xFF  
JD CODE  
KEY_ CODE  
0xFF  
TIMER...  
0x00  
KEY_ CODE  
0xFF  
TIMER...  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
0x00  
9
10  
11  
12  
KEY RELEASE DETECTED (JD  
CODE) AND ENTERED IN FIFO.  
µP READS UNTIL FIFO EMPTY  
JACK REMOVAL DETECTED (OPEN CIRCUIT)  
AND STORED IN FIFO. FINAL  
DURATION TIME FROM 10  
IS STORED. NEW DURATION TIME  
FOR OPEN CIRCUIT STARTS.  
µP READS UNTIL FIFO EMPTY  
FLAG IS REACHED. FURTHER  
READS RESULT IN 0xFF AND  
CURRENT TIME DURATION  
BEING SENT.  
FLAG IS REACHED. FURTHER  
FINAL DURATION TIME FROM 8 IS  
STORED. NEW DURATION TIME  
FOR JD CODE STARTS.  
READS RESULT IN JD CODE AND  
CURRENT TIME DURATION  
OF JD CODE BEING SENT.  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0xFF  
0x00  
0x00  
0x00  
*
0xFF  
0xFF  
0xFF  
READ  
POINTER  
READ  
POINTER  
0xFF  
0xFF  
0x00  
0xFF  
0x00  
WRITE  
POINTER  
READ  
POINTER  
WRITE  
POINTER  
WRITE  
POINTER  
t /32ms  
5
KEY_ CODE  
JD CODE  
0xFF  
0xFF  
JD CODE  
0xFF  
0x00  
0xFF  
0x00  
0x00  
READ  
POINTER  
WRITE  
POINTER  
TIMER...  
0x00  
TIMER...  
0x00  
t /32ms  
6
JD CODE  
0xFF  
TIMER...  
0x00  
TIMER...  
0x00  
0xFF  
0x00  
0xFF  
0x00  
0xFF  
DATA ENTERED  
*BOTH POINTERS WRAP AROUND TO THE TOP WHEN THEY GET TO THE END OF FIFO.  
RESET DATA (POR)  
Figure 10. Power-Up, Jack Detect, and Keypress Example  
14 ______________________________________________________________________________________  
Wired Remote Controllers  
Functional Diagram  
V
DD  
8-WORD  
FIFO  
DURATION  
TIMER  
MAX11041  
MAX11042  
8-BIT  
DURATION  
8-BIT  
KEY  
A1  
A0  
2
I C  
SCL  
INTERFACE  
FORCE  
SDA  
INT  
CONTROL  
LOGIC  
KEY  
DETECTOR  
DEBOUNCE  
15kV ESD  
SENSE  
SHDN  
GND  
Pin Configurations (continued)  
BOTTOM VIEW  
D
C
B
A
GND  
FORCE  
V
INT  
SDA  
SCL  
DD  
SENSE  
MAX11041  
MAX11042  
V
DD  
N.C.  
1
A1  
2
A0  
SHDN  
3
4
UCSP  
(2mm x 2mm x 0.6mm)  
(B2, B3, C2, and C3 DEPOPULATED)  
___________________________________________________________________________________ 15  
Wired Remote Controllers  
Typical Operating Circuit  
R
SW0  
R
SW1  
R
SW30  
3.3V  
HOLD  
SWITCH  
R
JACK  
DAC  
2
I S  
VOLUME  
DAC  
MAX9850  
V
BUS  
3.3V  
V
µP  
0.01µF  
DD  
AO  
2
I C  
SDA  
MAX11041  
MAX11042  
SCL  
FORCE  
SENSE  
10kΩ  
10nF  
RESISTOR  
DETECTOR  
FIFO  
DEBOUNCE  
ESD  
OUTPUT  
INTERRUPT  
CONTROL  
LOGIC  
SHDN  
INT  
DURATION  
TIMER  
A1  
GND  
Chip Information  
PROCꢁEE: BiCMOE  
16 ______________________________________________________________________________________  
Wired Remote Controllers  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 4x4 UCSP  
1
21-0101  
H
1
___________________________________________________________________________________ 17  
Wired Remote Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
1
21-0139  
F
2
18 ______________________________________________________________________________________  
Wired Remote Controllers  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm  
2
21-0139  
F
2
Revision History  
Pages changed at Rev 1: 1, 18, 19  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 19  
© 2007 Maxim Integrated Products  
Boblet  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11043

4-Channel, 16-Bit, Simultaneous-Sampling ADCs with PGA, Filter, and 8-/12-Bit Dual-Stage DAC
MAXIM

MAX11043ATL+

ADC, Delta-Sigma, 16-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, 6 X 6 MM, ROHS COMPLIANT, TQFN-40
MAXIM

MAX11043ATL+T

ADC, Delta-Sigma, 16-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, TQFN-40
MAXIM

MAX11043ATL/V+

ADC, Delta-Sigma, 16-Bit, 1 Func, 4 Channel, Serial Access, BICMOS, 6 X 6 MM, ROHS COMPLIANT, TQFN-40
MAXIM

MAX11044

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11044BECB+

ADC, Successive Approximation, 16-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, PQFP64, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11044BETN+

ADC, Successive Approximation, 16-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11044ECB+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11044ECB+T

A/D Converter, 16-Bit, 1 Func, 4 Channel, Parallel, Word Access, BICMOS, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11044ETN+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11044_10

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11044_11

4-/6-/8-Channel, 16-/14-Bit, Simultaneous-Sampling ADCs
MAXIM