MAX11044_12 [MAXIM]

4-/6-/8-Channel, 16-/14-Bit, Simultaneous-Sampling ADCs; 4- / 6 / 8通道, 16位/ 14位,同时采样ADC
MAX11044_12
型号: MAX11044_12
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

4-/6-/8-Channel, 16-/14-Bit, Simultaneous-Sampling ADCs
4- / 6 / 8通道, 16位/ 14位,同时采样ADC

文件: 总27页 (文件大小:1587K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
General Description  
Features  
The MAX11044/MAX11045/MAX11046 16-bit and  
MAX11054/MAX11055/MAX11056 14-bit ADCs offer 4, 6,  
or 8 independent input channels. Featuring independent  
track and hold (T/H) and SAR circuitry, these parts pro-  
vide simultaneous sampling at 250ksps for each channel.  
o 16-Bit ADC (MAX11044/MAX11045/MAX11046) and  
14-Bit ADC (MAX11054/MAX11055/MAX11056)  
8-Channel ADC (MAX11046/MAX11056)  
6-Channel ADC (MAX11045/MAX11055)  
4-Channel ADC (MAX11044/MAX11054)  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 accept a 5ꢀ input. All inputs  
are overrange protected with internal 20mA input  
clamps providing overrange protection with a simple  
external resistor. Other features include a 4MHz T/H  
input bandwidth, internal clock, and internal or external  
reference. A 20MHz, bidirectional, parallel interface  
provides the conversion results and accepts digital  
configuration inputs.  
o Single Analog and Digital Supply  
o High-Impedance Inputs Up to 1G  
o On-Chip T/H Circuit for Each Channel  
o Fast 3µs Conversion Time  
o High Throughput: 250ksps for Each Channel  
o 16-Bit/14-Bit, High-Speed, Parallel Interface  
o Internal Clocked Conversions  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 operate with a 4.75ꢀ to 5.25ꢀ  
analog supply and a separate flexible 2.7ꢀ to 5.25ꢀ  
digital supply for interfacing with the host without a level  
shifter. The MAX11044/MAX11045/MAX11046  
are available in a 56-pin TQFN and 64-pin TQFP pack-  
ages while the MAX11054/MAX11055/MAX11056 are  
available in TQFP only and operate over the extended  
-40°C to +85°C temperature range.  
o 10ns Aperture Delay  
o 100ps Channel-to-Channel T/H Matching  
o Low Drift, Accurate 4.096V Internal Reference  
Providing an Input Range of 5V  
o External Reference Range of 3.0V to 4.25V,  
Allowing Full-Scale Input Ranges of 4.0V to 5.2V  
Applications  
o 56-Pin (8mm x 8mm) TQFN and 64-Pin  
Automatic Test Equipment  
(10mm x 10mm) TQFP Packages  
Power-Factor Monitoring and Correction  
Power-Grid Protection  
Multiphase Motor Control  
o Evaluation Kit Available  
ꢀibration and Waveform Analysis  
Functional Diagram  
Ordering Information  
PART  
PIN-PACKAGE  
56 TQFN-EP*  
64 TQFP-EP*  
56 TQFN-EP*  
64 TQFP-EP*  
56 TQFN-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
64 TQFP-EP*  
CHANNELS  
AVDD  
CH0  
DVDD  
DB15**  
MAX11044ETN+  
MAX11044ECB+  
MAX11045ETN+  
MAX11045ECB+  
MAX11046ETN+  
MAX11046ECB+  
MAX11054ECB+  
MAX11055ECB+  
MAX11056ECB+  
4
4
6
6
8
8
4
6
8
16-/14-BIT ADC  
16-/14-BIT ADC  
CLAMP  
CLAMP  
S/H  
S/H  
DB4  
DB3/CR3  
DB0/CR0  
CH7  
CONFIGURATION  
REGISTERS  
WR  
AGNDS  
AGND  
RD  
CS  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOC  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
DGND  
RDC  
INT REF  
10k  
BANDGAP  
REFERENCE  
REF  
BUF  
EXT REF  
REFIO  
RDC_SENSE*  
Pin Configurations appear at end of data sheet.  
**MAX11044/MAX11045/MAX11046  
MAX11046/MAX11056  
*CONNECTED INTERNALLY TO RDC ON THE TQFN PARTS  
For pricing, delivery, and ordering information, please contact Maxim Direct  
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.  
19-5036; Rev 5; 1/11  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ABSOLUTE MAXIMUM RATINGS  
AꢀDD to AGND ........................................................-0.3ꢀ to +6ꢀ  
DꢀDD to AGND and DGND .....................................-0.3ꢀ to +6ꢀ  
DGND to AGND.....................................................-0.3ꢀ to +0.3ꢀ  
AGNDS to AGND...................................................-0.3ꢀ to +0.3ꢀ  
CH0–CH7 to AGND...............................................-7.5ꢀ to +7.5ꢀ  
REFIO, RDC to AGND ..................................-0.3ꢀ to the lower of  
Maximum Current into Any Pin Except AꢀDD, DꢀDD, AGND,  
DGND ........................................................................... 50mA  
Continuous Power Dissipation  
56-Pin TQFN (derate 47.6mW/°C above +70°C) ....3809.5mW  
64-Pin TQFP (derate 43.5mW/°C above +70°C)........3478mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
(ꢀ  
+ 0.3ꢀ) and +6ꢀ  
AꢀDD  
EOC, WR, RD, CS, CONꢀST to AGND.........-0.3ꢀ to the lower of  
(ꢀ + 0.3ꢀ) and +6ꢀ  
DꢀDD  
DB0–DB15 to AGND ....................................-0.3ꢀ to the lower of  
(ꢀ + 0.3ꢀ) and +6ꢀ  
DꢀDD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(ꢀ  
= +4.75ꢀ to +5.25ꢀ, ꢀ  
= +2.70ꢀ to +5.25ꢀ, ꢀ  
= ꢀ  
= ꢀ = 0ꢀ, ꢀ  
DGND  
= internal reference, C  
= 4 x  
AꢀDD  
DꢀDD  
AGNDS  
AGND  
REFIO  
RDC  
33µF, C  
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DꢀDD or DGND, unless otherwise  
REFIO  
AꢀDD  
DꢀDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
STATIC PERFORMANCE (Note 1)  
MAX11044/MAX11045/MAX11046  
MAX11054/MAX11055/MAX11056  
MAX11044/MAX11045/MAX11046  
MAX11054/MAX11055/MAX11056  
MAX11044/MAX11045/MAX11046  
MAX11054/MAX11055/MAX11056  
MAX11044/MAX11045/MAX11046  
MAX11054/MAX11055/MAX11056  
16  
14  
Resolution  
N
Bits  
LSB  
LSB  
Bits  
> -2  
-0.8  
> -1  
-0.6  
16  
0.4  
0.13  
0.4  
< +2  
+0.8  
< +1.2  
+0.6  
Integral Nonlinearity  
Differential Nonlinearity  
No Missing Codes  
INL  
DNL  
0.15  
14  
Offset Error  
0.001  
0.001  
0.8  
0.015  
0.015  
%FSR  
%FSR  
µꢀ/°C  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
%FSR  
ppm/°C  
Channel Offset Matching  
Offset Temperature Coefficient  
Gain Error  
0.015  
0.015  
0.015  
0.01  
Positive Full-Scale Error  
Negative Full-Scale Error  
Positive Full-Scale Error Matching  
Negative Full-Scale Error Matching  
Channel Gain-Error Matching  
Gain Temperature Coefficient  
DYNAMIC PERFORMANCE  
0.01  
Between all channels  
0.01  
0.5  
MAX11044/MAX11045/  
MAX11046  
91  
92.3  
85.2  
92  
f
= 10kHz,  
IN  
Signal-to-Noise Ratio  
SNR  
dB  
dB  
full-scale input  
MAX11054/MAX11055/  
MAX11056  
84.5  
90.5  
84.5  
MAX11044/MAX11045/  
MAX11046  
Signal-to-Noise and Distortion  
Ratio  
f
IN  
= 10kHz,  
SINAD  
full-scale input  
MAX11054/MAX11055/  
MAX11056  
85.2  
2
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(ꢀ  
= +4.75ꢀ to +5.25ꢀ, ꢀ  
= +2.70ꢀ to +5.25ꢀ, ꢀ  
= ꢀ  
= ꢀ = 0ꢀ, ꢀ  
DGND  
= internal reference, C  
= 4 x  
AꢀDD  
DꢀDD  
AGNDS  
AGND  
REFIO  
RDC  
33µF, C  
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DꢀDD or DGND, unless otherwise  
REFIO  
AꢀDD  
DꢀDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MAX11044/MAX11045/  
MIN  
TYP  
MAX  
UNITS  
98  
95  
104  
MAX11046  
f
= 10kHz,  
IN  
Spurious-Free Dynamic Range  
SFDR  
dB  
full-scale input  
MAX11054/MAX11055/  
MAX11056  
104  
-105  
-104  
MAX11044/MAX11045/  
MAX11046  
-98  
-95  
f
= 10kHz,  
IN  
Total Harmonic Distortion  
THD  
dB  
dB  
full-scale input  
MAX11054/MAX11055/  
MAX11056  
f
= 60Hz, full scale and ground on  
adjacent channel (Note 2)  
IN  
Channel-to-Channel Crosstalk  
-126  
-100  
ANALOG INPUTS (CH0–CH7)  
1.22 x  
Input ꢀoltage Range  
(Note 3)  
REFIO  
Input Leakage Current  
Input Capacitance  
-1  
+1  
µA  
pF  
15  
Input-Clamp Protection Current  
TRACK AND HOLD  
Throughput Rate  
Each input simultaneously  
Per channel  
-20  
+20  
mA  
1
1
250  
ksps  
µs  
Acquisition Time  
t
1000  
ACQ  
-3dB point  
4
> 0.2  
10  
Full-Power Bandwidth  
MHz  
-0.1dB point  
Aperture Delay  
ns  
ps  
Aperture-Delay Matching  
Aperture Jitter  
100  
50  
ps  
RMS  
INTERNAL REFERENCE  
REFIO ꢀoltage  
4.08  
4.096  
5
4.112  
REF  
REF  
REFIO Temperature Coefficient  
EXTERNAL REFERENCE  
Input Current  
ppm/°C  
-10  
+10  
4.25  
µA  
REF ꢀoltage-Input Range  
REF Input Capacitance  
3.00  
15  
10  
pF  
DIGITAL INPUTS (CR0–CR3, RD, WR, CS, CONVST)  
Input ꢀoltage High  
Input ꢀoltage Low  
Input Capacitance  
Input Current  
= 2.7ꢀ to 5.25ꢀ  
= 2.7ꢀ to 5.25ꢀ  
2
IH  
DꢀDD  
DꢀDD  
0.8  
10  
IL  
C
pF  
µA  
IN  
I
= 0ꢀ or ꢀ  
DꢀDD  
IN  
IN  
Maxim Integrated  
3
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(ꢀ  
= +4.75ꢀ to +5.25ꢀ, ꢀ  
= +2.70ꢀ to +5.25ꢀ, ꢀ  
= ꢀ  
= ꢀ = 0ꢀ, ꢀ  
DGND  
= internal reference, C  
= 4 x  
AꢀDD  
DꢀDD  
AGNDS  
AGND  
REFIO  
RDC  
33µF, C  
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DꢀDD or DGND, unless otherwise  
REFIO  
AꢀDD  
DꢀDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL OUTPUTS (DB0–DB15, EOC)  
-
DꢀDD  
0.4  
Output ꢀoltage High  
I = 1.2mA  
SOURCE  
OH  
Output ꢀoltage Low  
I
= 1mA  
SINK  
0.25  
15  
0.4  
10  
µA  
pF  
OL  
Three-State Leakage Current  
Three-State Output Capacitance  
Analog Supply ꢀoltage  
DB0–DB15, ꢀ ꢀ or ꢀ  
RD IH CS  
IH  
IH  
DB0–DB15, ꢀ ꢀ or ꢀ  
RD  
IH  
CS  
AꢀDD  
DꢀDD  
4.75  
2.70  
5.25  
5.25  
48  
Digital Supply ꢀoltage  
MAX11046/MAX11056, ꢀ  
MAX11045/MAX11055, ꢀ  
= 5ꢀ  
= 5ꢀ  
AꢀDD  
AꢀDD  
Analog Supply Current  
I
mA  
39  
AꢀDD  
MAX11044/MAX11054, ꢀ  
= 5ꢀ  
AꢀDD  
30  
MAX11046/MAX11056, ꢀ  
MAX11045/MAX11055, ꢀ  
MAX11044/MAX11054, ꢀ  
= 3.3ꢀ  
= 3.3ꢀ  
= 3.3ꢀ  
7.0  
6.5  
5.5  
10  
DꢀDD  
DꢀDD  
DꢀDD  
Digital Supply Current (Note 9)  
Shutdown Current  
I
mA  
µA  
DꢀDD  
I
DꢀDD  
I
10  
AꢀDD  
MAX11044/MAX11045/  
MAX11046  
1
= 4.9ꢀ  
AꢀDD  
to 5.1ꢀ  
(Note 5)  
Power-Supply Rejection  
PSR  
LSB  
MAX11054/MAX11055/  
MAX11056  
0.25  
TIMING CHARACTERISTICS (Note 4)  
CONꢀST Rise to EOC  
Acquisition Time  
t
Conversion time (Note 6)  
Sample quiet time (Note 6)  
3
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CON  
t
1
1000  
ACQ  
CS Rise to CONꢀST Rise  
CONꢀST Rise to EOC Rise  
EOC Fall to CONꢀST Fall  
CONꢀST Low Time  
t
500  
Q
t
47  
140  
0
1
2
3
4
5
6
7
8
9
t
CONꢀST mode B0 = 0 only (Note 7)  
CONꢀST mode B0 = 1 only  
0
20  
0
t
t
t
t
t
t
t
t
CS Fall to WR Fall  
WR Low Time  
20  
0
CS Rise to WR Rise  
Input Data Setup Time  
Input Data Hold Time  
CS Fall to RD Fall  
10  
1
0
RD Low Time  
30  
4
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(ꢀ  
= +4.75ꢀ to +5.25ꢀ, ꢀ  
= +2.70ꢀ to +5.25ꢀ, ꢀ  
= ꢀ  
= ꢀ = 0ꢀ, ꢀ  
DGND  
= internal reference, C  
= 4 x  
AꢀDD  
DꢀDD  
AGNDS  
AGND  
REFIO  
RDC  
33µF, C  
= 0.1µF, C  
= 4 x 0.1µF || 10µF, C  
= 3 x 0.1µF || 10µF; all digital inputs at DꢀDD or DGND, unless otherwise  
REFIO  
AꢀDD  
DꢀDD  
noted, f  
= 250ksps. T = -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
SAMPLE  
A
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
ns  
RD Rise to CS Rise  
RD High Time  
t
t
t
t
10  
11  
12  
13  
10  
ns  
RD Fall to Data ꢀalid  
RD Rise to Data Hold Time  
35  
ns  
(Note 7)  
5
ns  
Note 1: See the Definitions section at the end of the data sheet.  
Note 2: Tested with alternating channels modulated at full scale and ground.  
Note 3: See the Input Range and Protection section for more details.  
Note 4:  
C
LOAD  
= 30pF on DB0–DB15 and EOC. Inputs (CH0–CH7) alternate between full scale and zero scale. f  
= 250ksps.  
CONꢀ  
All data is read out.  
Note 5: Defined as the change in positive full scale caused by a 2% variation in the nominal supply voltage.  
Note 6: It is recommended that RD, WR, and CS are kept high for the quiet time (t ) and conversion time (t  
).  
CON  
Q
Note 7: Guaranteed by design.  
Typical Operating Characteristics  
(ꢀ  
= 5ꢀ, ꢀ  
= 3.3ꢀ, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AꢀDD  
DꢀDD  
A
SAMPLE  
DIFFERENTIAL NONLINEARITY vs. CODE  
(MAX1104_)  
INL AND DNL vs. ANALOG SUPPLY VOLTAGE  
(MAX1104_)  
1.0  
INTEGRAL NONLINEARITY vs. CODE  
(MAX1104_)  
1.000  
1.0  
0.8  
0.800  
0.600  
0.400  
0.200  
0
MAX INL  
= 3.3V  
0.6  
0.2  
0.6  
0.4  
V
f
DVDD  
MAX DNL  
MIN INL  
0.2  
= 250ksps  
SAMPLE  
T
A
= +25°C  
= 4.096V  
0
V
RDC  
-0.2  
-0.6  
-1.0  
-0.200  
-0.400  
-0.600  
-0.800  
-1.000  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
V
V
f
= 5.0V  
= 3.3V  
V
V
= 5.0V  
= 3.3V  
= 250ksps  
= +25°C  
= 4.096V  
AVDD  
DVDD  
AVDD  
DVDD  
= 250ksps  
f
SAMPLE  
SAMPLE  
MIN DNL  
T
A
= +25°C  
= 4.096V  
T
A
V
V
RDC  
RDC  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
AVDD  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
Maxim Integrated  
5
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(ꢀ  
= 5ꢀ, ꢀ  
= 3.3ꢀ, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AꢀDD  
DꢀDD  
A
SAMPLE  
INL AND DNL vs. TEMPERATURE  
(MAX1104_)  
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
45  
40  
35  
30  
25  
20  
1.5  
1.0  
0.5  
0
MAX11046 CONVERTING  
MAX INL  
MAX11045 CONVERTING  
MAX11046 STATIC  
MIN INL  
MAX DNL  
T
A
= +25°C  
-0.5  
-1.0  
-1.5  
f
= 250ksps  
SAMPLE  
MAX11045 STATIC  
V
V
f
= 5.0V  
= 3.3V  
AVDD  
DVDD  
MIN DNL  
= 250ksps  
SAMPLE  
MAX11044 CONVERTING  
V
= 4.096V  
RDC  
MAX11044 STATIC  
5.05 5.15 5.25  
(V)  
4.75  
4.85  
4.95  
V
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
AVDD  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
45  
40  
35  
30  
25  
20  
12  
10  
8
MAX11046 CONVERTING  
T
f
= +25°C  
A
= 250ksps  
SAMPLE  
MAX11046 CONVERTING  
MAX11045 CONVERTING  
MAX11046 STATIC  
MAX11045 STATIC  
6
MAX11045 CONVERTING  
V
f
= 5.0V  
AVDD  
4
= 250ksps  
SAMPLE  
MAX11044 CONVERTING  
2
MAX11044/MAX11045/MAX11046 STATIC  
MAX11044 CONVERTING  
MAX11044 STATIC  
0
-40  
-15  
10  
35  
60  
85  
2.75  
3.25  
3.75  
4.25  
(V)  
4.75  
5.25  
TEMPERATURE (°C)  
V
DVDD  
6
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(ꢀ  
= 5ꢀ, ꢀ  
= 3.3ꢀ, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AꢀDD  
DꢀDD  
A
SAMPLE  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. SUPPLY VOLTAGE  
DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
ANALOG AND DIGITAL SHUTDOWN  
CURRENT vs. TEMPERATURE  
5
4
3
2
1
0
5
4
3
2
1
0
7.2  
6.0  
4.8  
3.6  
2.4  
1.2  
0
MAX11046 CONVERTING  
MAX11045 CONVERTING  
V
AVDD  
V
DVDD  
= 5.0V  
= 3.3V  
T = +25°C  
A
I
I
AVDD  
AVDD  
MAX11044 CONVERTING  
V
f
C
= 3.3V  
DVDD  
= 250ksps  
SAMPLE  
I
DVDD  
= 15pF  
I
DBxx  
DVDD  
MAX11044/MAX11045/MAX11046 STATIC  
2.75  
3.25  
3.75  
4.25  
4.75  
5.25  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
AVDD  
OR V  
(V)  
TEMPERATURE (°C)  
DVDD  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGES  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
4.09630  
4.09625  
4.09620  
4.09615  
4.09610  
4.09605  
4.09600  
4.09595  
4.09590  
4.112  
4.108  
4.104  
4.100  
4.096  
4.092  
4.088  
4.084  
4.080  
T
= +25°C  
V
= 5.0V  
A
AVDD  
UPPER TYPICAL LIMIT  
LOWER TYPICAL LIMIT  
V
RDC  
V
REFIO  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
AVDD  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. TEMPERATURE  
OFFSET ERROR AND OFFSET ERROR  
MATCHING vs. SUPPLY VOLTAGE  
0.010  
0.006  
0.010  
0.006  
f
= 250ksps  
= 5.0V  
f
= 250ksps  
SAMPLE  
V
SAMPLE  
T
= +25°C  
AVDD  
A
V
REFIO  
= 4.096V  
V
RDC  
= 4.096V  
OFFSET ERROR MATCHING  
OFFSET ERROR MATCHING  
OFFSET ERROR  
0.002  
0.002  
-0.002  
-0.006  
-0.010  
-0.002  
-0.006  
-0.010  
OFFSET ERROR  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
Maxim Integrated  
7
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(ꢀ  
= 5ꢀ, ꢀ  
= 3.3ꢀ, T = +25°C, f = 250ksps, internal reference, unless otherwise noted.)  
SAMPLE  
AꢀDD  
DꢀDD  
A
GAIN ERROR AND GAIN ERROR  
MATCHING vs. TEMPERATURE  
GAIN ERROR AND GAIN ERROR  
MATCHING vs. SUPPLY VOLTAGE  
FFT PLOT (MAX1104_)  
0.010  
0
-20  
0.010  
0.006  
f
V
V
= 250ksps  
f
= 250ksps  
SAMPLE  
f = 10kHz  
IN  
SAMPLE  
= 5.0V  
= 4.096V  
T
= +25°C  
AVDD  
REFIO  
f
= 250ksps  
A
SAMPLE  
V
RDC  
= 4.096V  
0.006  
0.002  
T
= +25°C  
= 5.0V  
A
GAIN ERROR  
V
AVDD  
-40  
GAIN ERROR  
0.002  
-60  
-80  
-0.002  
-0.006  
-0.010  
GAIN ERROR MATCHING  
-0.002  
-0.006  
-0.010  
GAIN ERROR MATCHING  
-100  
-120  
-140  
-40  
-15  
10  
35  
60  
85  
0
25  
50  
75  
100  
125  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
FREQUENCY (kHz)  
V
AVDD  
SIGNAL-TO-NOISE RATIO AND  
SIGNAL-TO-NOISE AND DISTORTION  
RATIO vs. TEMPERATURE (MAX1104_)  
TWO-TONE IMD PLOT (MAX1104_)  
0
95  
f
= 9838Hz  
f
f
T
V
V
V
= 10kHz  
IN1  
IN  
f
= 10235Hz  
= 250ksps  
= 250ksps  
= +25°C  
-20  
-40  
IN2  
SAMPLE  
f
SAMPLE  
94  
93  
92  
91  
90  
A
T
A
= +25°C  
= 5.0V  
AVDD  
V
= 5.0V  
= 4.096V  
RDC  
AVDD  
V
IN  
= 4.096V  
= -0.025dB FROM FS  
RDC  
IN  
SNR  
-60  
V
= -0.01dBFS  
-80  
SINAD  
-100  
-120  
-140  
7.2 8.0 8.8 9.6 10.4 11.2 12.0 12.8  
FREQUENCY (kHz)  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE (MAX1104_)  
SNR AND SINAD vs. ANALOG SUPPLY  
VOLTAGE (MAX1104_)  
-103.5  
-104.0  
-104.5  
-105.0  
-105.5  
-106.0  
-106.5  
93.0  
92.5  
92.0  
91.5  
91.0  
f
f
T
V
V
V
= 10kHz  
IN  
= 250ksps  
= +25°C  
SAMPLE  
SNR  
A
= 5.0V  
AVDD  
= 4.096V  
RDC  
= -0.025dB FROM FS  
IN  
SINAD  
f
f
T
V
V
= 10kHz  
IN  
= 250ksps  
= +25°C  
SAMPLE  
A
= 4.096V  
RDC  
= -0.025dB FROM FS  
IN  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
V
AVDD  
8
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Typical Operating Characteristics (continued)  
(ꢀ  
= 5ꢀ, ꢀ  
= 3.3ꢀ, T = +25°C, f  
= 250ksps, internal reference, unless otherwise noted.)  
AꢀDD  
DꢀDD  
A
SAMPLE  
SIGNAL-TO-NOISE AND DISTORTION RATIO  
vs. FREQUENCY (MAX1104_)  
THD vs. INPUT FREQUENCY  
THD vs. ANALOG SUPPLY VOLTAGE  
(MAX1104_)  
(MAX1104_)  
94  
-85  
-90  
-102  
-103  
-104  
-105  
-106  
-107  
f
f
T
= 10kHz  
= 250ksps  
SAMPLE  
= +25°C  
IN  
f
T
V
V
V
= 250ksps  
SAMPLE  
= +25°C  
A
92  
90  
88  
86  
84  
82  
A
= 5.0V  
AVDD  
V
V
= 4.096V  
= -0.025dB FROM FS  
RDC  
= 4.096V  
RDC  
IN  
= -0.025dB from FS  
IN  
-95  
-100  
-105  
-110  
f
= 250ksps  
SAMPLE  
T
A
= +25°C  
V
V
V
= 5.0V  
= 4.096V  
= -0.025dB from FS  
AVDD  
RDC  
IN  
0.1  
1
10  
100  
0.1  
1
10  
100  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
V
AVDD  
OUTPUT NOISE HISTOGRAM WITH INPUT  
CONNECTED TO AGNDS (MAX1104_)  
CROSSTALK vs. FREQUENCY  
200,000  
150,000  
100,000  
50,000  
0
-90  
-100  
-110  
-120  
-130  
-140  
V
V
V
= 0V  
CH_  
f
f
T
V
V
V
= 60Hz  
IN  
= 5.0V  
AVDD  
= 250ksps  
SAMPLE  
= 4.096V  
= 250ksps  
RDC  
= +25°C  
A
f
SAMPLE  
= 5.0V  
AVDD  
= 4.096V  
RDC  
= -0.025dB FROM FS  
IN  
INACTIVE CHANNEL AT AGNDS  
0.1  
1
10  
100  
FREQUENCY (kHz)  
OUTPUT CODE (DECIMAL)  
CONVERSION TIME  
vs. ANALOG SUPPLY VOLATAGE  
CONVERSION TIME vs. TEMPERATURE  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
3.00  
2.99  
2.98  
2.97  
2.96  
2.95  
2.94  
2.93  
2.92  
T
= +25°C  
V
= 5.0V  
A
AVDD  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
AVDD  
TEMPERATURE (°C)  
Maxim Integrated  
9
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX11044  
(TQFN-EP)  
MAX11045  
(TQFN-EP)  
MAX11046  
(TQFN-EP)  
1
1
1
DB13  
DB12  
DB11  
DB10  
DB9  
16-Bit Parallel Data Bus Digital Output Bit 13  
16-Bit Parallel Data Bus Digital Output Bit 12  
16-Bit Parallel Data Bus Digital Output Bit 11  
16-Bit Parallel Data Bus Digital Output Bit 10  
16-Bit Parallel Data Bus Digital Output Bit 9  
16-Bit Parallel Data Bus Digital Output Bit 8  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
6
5
6
5
6
DB8  
7, 21, 50  
7, 21, 50  
7, 21, 50  
DGND  
Digital Supply. Bypass to DGND with a 0.1µF capacitor  
at each DꢀDD input.  
8, 20, 51  
8, 20, 51  
8, 20, 51  
DꢀDD  
9
9
9
DB7  
DB6  
DB5  
DB4  
16-Bit Parallel Data Bus Digital Output Bit 7  
16-Bit Parallel Data Bus Digital Output Bit 6  
16-Bit Parallel Data Bus Digital Output Bit 5  
16-Bit Parallel Data Bus Digital Output Bit 4  
10  
11  
12  
10  
11  
12  
10  
11  
12  
16-Bit Parallel Data Bus Digital Output Bit 3/  
Configuration Register Input Bit 3  
13  
14  
15  
16  
13  
14  
15  
16  
13  
14  
15  
16  
DB3/CR3  
DB2/CR2  
DB1/CR1  
DB0/CR0  
16-Bit Parallel Data Bus Digital Output Bit 2/  
Configuration Register Input Bit 2  
16-Bit Parallel Data Bus Digital Output Bit 1/  
Configuration Register Input Bit 1  
16-Bit Parallel Data Bus Digital Output Bit 0/  
Configuration Register Input Bit 0  
Active-Low End-of-Conversion Output. EOC goes low  
when conversion is completed. EOC goes high when a  
conversion is initiated.  
17  
18  
17  
18  
17  
18  
EOC  
Convert Start Input. Rising edge of CONꢀST ends  
sample and starts a conversion on the captured sample.  
The ADC is in acquisition mode when CONꢀST is low  
and CONꢀST mode = 0.  
CONꢀST  
Shutdown Input. If SHDN is held high, the entire device  
will enter and stay in a low-current state. Contents of  
the configuration register are not lost when in the  
shutdown mode.  
19  
19  
19  
SHDN  
Reference Buffer Decoupling. Connect all RDC outputs  
together. Bypass to AGND with at least an 80µF total  
capacitance. See the Layout, Grounding, and Bypassing  
section.  
22, 28, 35, 43,  
49  
22, 28, 35, 43,  
49  
22, 28, 35, 43,  
49  
RDC  
23, 27, 33, 38,  
44, 48  
23, 27, 33, 38,  
44, 48  
23, 27, 33, 38,  
44, 48  
Signal Ground. Connect all AGND and AGNDS inputs  
together on PCB.  
AGNDS  
10  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11044  
(TQFN-EP)  
MAX11045  
(TQFN-EP)  
MAX11046  
(TQFN-EP)  
Analog Supply Input. Bypass AꢀDD to AGND with a  
0.1µF capacitor at each AꢀDD input.  
24, 30, 41, 47  
24, 30, 41, 47  
24, 30, 41, 47  
AꢀDD  
25, 31, 40, 46  
25, 31, 40, 46  
25, 31, 40, 46  
AGND  
CH0  
CH1  
CH2  
CH3  
Analog Ground. Connect all AGND inputs together.  
Channel 0 Analog Input  
32  
34  
37  
39  
29  
32  
34  
37  
26  
29  
32  
34  
Channel 1 Analog Input  
Channel 2 Analog Input  
Channel 3 Analog Input  
External Reference Input/Internal Reference Output.  
Place a 0.1µF capacitor from REFIO to AGND.  
36  
36  
36  
REFIO  
39  
42  
37  
39  
42  
45  
CH4  
CH5  
CH6  
CH7  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the  
ADC. Configuration registers are loaded on the rising  
edge of WR.  
52  
53  
54  
52  
53  
54  
52  
54  
54  
WR  
CS  
RD  
Active-Low Chip-Select Input. Drive CS low when  
reading from or writing to the ADC.  
Active-Low Read Input. Drive RD low to read from the  
ADC. Each rising edge of RD advances the channel  
output on the data bus.  
55  
56  
55  
56  
55  
56  
DB15  
DB14  
I.C.  
16-Bit Parallel Data Bus Digital Output Bit 15  
16-Bit Parallel Data Bus Digital Output Bit 14  
Internally Connected. Connect to AGND.  
26, 29, 42, 45  
26, 45  
Exposed Pad. Internally connected to AGND. Connect to  
a large ground plane to maximize thermal performance.  
Not intended as an electrical connection point.  
EP  
Maxim Integrated  
11  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11044  
(TQFP-EP)  
MAX11045  
(TQFP-EP)  
MAX11046  
(TQFP-EP)  
1
1
1
DB14  
DB13  
DB12  
DB11  
DB10  
DB9  
16-Bit Parallel Data Bus Digital Output Bit 14  
16-Bit Parallel Data Bus Digital Output Bit 13  
16-Bit Parallel Data Bus Digital Output Bit 12  
16-Bit Parallel Data Bus Digital Output Bit 11  
16-Bit Parallel Data Bus Digital Output Bit 10  
16-Bit Parallel Data Bus Digital Output Bit 9  
16-Bit Parallel Data Bus Digital Output Bit 8  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
5
5
6
7
6
7
6
7
DB8  
8, 22, 59  
8, 22, 59  
8, 22, 59  
DGND  
Digital Supply. Bypass to DGND with a 0.1µF capacitor  
at each DꢀDD input.  
9, 21, 60  
9, 21, 60  
9, 21, 60  
DꢀDD  
10  
11  
12  
13  
10  
11  
12  
13  
10  
11  
12  
13  
DB7  
DB6  
DB5  
DB4  
16-Bit Parallel Data Bus Digital Output Bit 7  
16-Bit Parallel Data Bus Digital Output Bit 6  
16-Bit Parallel Data Bus Digital Output Bit 5  
16-Bit Parallel Data Bus Digital Output Bit 4  
16-Bit Parallel Data Bus Digital Output Bit 3/  
Configuration Register Input Bit 3  
14  
15  
16  
17  
14  
15  
16  
17  
14  
15  
16  
17  
DB3/CR3  
DB2/CR2  
DB1/CR1  
DB0/CR0  
16-Bit Parallel Data Bus Digital Output Bit 2/  
Configuration Register Input Bit 2  
16-Bit Parallel Data Bus Digital Output Bit 1/  
Configuration Register Input Bit 1  
16-Bit Parallel Data Bus Digital Output Bit 0/  
Configuration Register Input Bit 0  
Active-Low End-of-Conversion Output. EOC goes low  
when conversion is completed. EOC goes high when a  
conversion is initiated.  
18  
19  
18  
19  
18  
19  
EOC  
Convert Start Input. Rising edge of CONꢀST ends  
sample and starts a conversion on the captured sample.  
The ADC is in acquisition mode when CONꢀST is low  
and CONꢀST mode = 0.  
CONꢀST  
Shutdown Input. If SHDN is held high, the entire device  
will enter and stay in a low-current state. Contents of  
the configuration register are not lost when in the  
shutdown mode.  
20  
20  
20  
SHDN  
23, 28, 32, 38,  
43, 49, 53, 58  
23, 28, 32, 38,  
43, 49, 53, 58  
23, 28, 32, 38,  
43, 49, 53, 58  
Signal Ground. Connect all AGND and AGNDS inputs  
together on PCB.  
AGNDS  
AꢀDD  
24, 29, 35, 46,  
52, 57  
24, 29, 35, 46,  
52, 57  
24, 29, 35, 46,  
52, 57  
Analog Supply Input. Bypass AꢀDD to AGND with a  
0.1µF capacitor at each AꢀDD input.  
25, 30, 36, 45,  
51, 56  
25, 30, 36, 45,  
51, 56  
25, 30, 36, 45,  
51, 56  
AGND  
Analog Ground. Connect all AGND inputs together.  
Maxim Integrated  
12  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11044  
(TQFP-EP)  
MAX11045  
(TQFP-EP)  
MAX11046  
(TQFP-EP)  
Reference Buffer Sense Feedback. Connect to RDC  
plane.  
26, 55  
26, 55  
26, 55  
RDC_SENSE  
Reference Buffer Decoupling. Connect all RDC outputs  
together. Bypass to AGND with at least an 80µF total  
capacitance. See the Layout, Grounding, and Bypassing  
section.  
27, 33, 40, 48,  
54  
27, 33, 40, 48,  
54  
27, 33, 40, 48,  
54  
RDC  
37  
39  
34  
37  
31  
34  
CH0  
CH1  
Channel 0 Analog Input  
Channel 1 Analog Input  
42  
44  
39  
42  
37  
39  
CH2  
CH3  
Channel 2 Analog Input  
Channel 3 Analog Input  
External Reference Input/Internal Reference Output.  
Place a 0.1µF capacitor from REFIO to AGND.  
41  
41  
41  
REFIO  
44  
47  
42  
44  
47  
50  
CH4  
CH5  
CH6  
CH7  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the  
ADC. Configuration registers are loaded on the rising  
edge of WR.  
61  
62  
63  
61  
62  
63  
61  
62  
63  
WR  
CS  
RD  
Active-Low Chip-Select Input. Drive CS low when  
reading from or writing to the ADC.  
Active-Low Read Input. Drive RD low to read from the  
ADC. Each rising edge of RD advances the channel  
output on the data bus.  
64  
64  
64  
DB15  
I.C.  
16-Bit Parallel Data Bus Digital Output Bit 15  
Internally Connected. Connect to AGND.  
31, 34, 47, 50  
31, 50  
Exposed Pad. Internally connected to AGND. Connect to  
a large ground plane to maximize thermal performance.  
Not intended as an electrical connection point.  
EP  
Maxim Integrated  
13  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11054  
(TQFP-EP)  
MAX11055  
(TQFP-EP)  
MAX11056  
(TQFP-EP)  
1
1
1
DB12  
DB11  
DB10  
DB9  
14-Bit Parallel Data Bus Digital Output Bit 12  
14-Bit Parallel Data Bus Digital Output Bit 11  
14-Bit Parallel Data Bus Digital Output Bit 10  
14-Bit Parallel Data Bus Digital Output Bit 9  
14-Bit Parallel Data Bus Digital Output Bit 8  
14-Bit Parallel Data Bus Digital Output Bit 7  
14-Bit Parallel Data Bus Digital Output Bit 6  
Digital Ground  
2
2
2
3
3
3
4
4
4
5
5
5
DB8  
6
7
6
7
6
7
DB7  
DB6  
8, 22, 59  
8, 22, 59  
8, 22, 59  
DGND  
Digital Supply. Bypass to DGND with a 0.1µF capacitor  
at each DꢀDD input.  
9, 21, 60  
9, 21, 60  
9, 21, 60  
DꢀDD  
10  
11  
12  
13  
10  
11  
12  
13  
10  
11  
12  
13  
DB5  
DB4  
DB3  
DB2  
14-Bit Parallel Data Bus Digital Output Bit 5  
14-Bit Parallel Data Bus Digital Output Bit 4  
14-Bit Parallel Data Bus Digital Output Bit 3  
14-Bit Parallel Data Bus Digital Output Bit 2  
14-Bit Parallel Data Bus Digital Output Bit 1/  
Configuration Register Input Bit 3  
14  
15  
14  
15  
14  
15  
DB1/CR3  
DB0/CR2  
14-Bit Parallel Data Bus Digital Output Bit 0/  
Configuration Register Input Bit 2  
16  
17  
16  
17  
16  
17  
CR1  
CR0  
Configuration Register Input Bit 1  
Configuration Register Input Bit 0  
Active-Low End-of-Conversion Output. EOC goes low  
when conversion is completed. EOC goes high when a  
conversion is initiated.  
18  
18  
18  
EOC  
Convert Start Input. Rising edge of CONꢀST ends  
sample and starts a conversion on the captured sample.  
The ADC is in acquisition mode when CONꢀST is low  
and CONꢀST mode = 0.  
19  
19  
19  
CONꢀST  
Shutdown Input. If SHDN is held high, the entire device  
will enter and stay in a low-current state. Contents of  
the configuration register are not lost when in the  
shutdown mode.  
20  
20  
20  
SHDN  
23, 28, 32, 38,  
43, 49, 53, 58  
23, 28, 32, 38,  
43, 49, 53, 58  
23, 28, 32, 38,  
43, 49, 53, 58  
Signal Ground. Connect all AGND and AGNDS inputs  
together on PCB.  
AGNDS  
AꢀDD  
24, 29, 35, 46,  
52, 57  
24, 29, 35, 46,  
52, 57  
24, 29, 35, 46,  
52, 57  
Analog Supply Input. Bypass AꢀDD to AGND with a  
0.1µF capacitor at each AꢀDD input.  
25, 30, 36, 45,  
51, 56  
25, 30, 36, 45,  
51, 56  
25, 30, 36, 45,  
51, 56  
AGND  
Analog Ground. Connect all AGND inputs together.  
Reference Buffer Sense Feedback. Connect to RDC plane.  
26, 55  
26, 55  
26, 55  
RDC_SENSE  
14  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX11054  
(TQFP-EP)  
MAX11055  
(TQFP-EP)  
MAX11056  
(TQFP-EP)  
Reference Buffer Decoupling. Connect all RDC outputs  
together. Bypass to AGND with at least an 80µF total  
capacitance. See the Layout, Grounding, and Bypassing  
section.  
27, 33, 40, 48,  
54  
27, 33, 40, 48,  
54  
27, 33, 40, 48,  
54  
RDC  
37  
39  
42  
44  
34  
37  
39  
42  
31  
34  
37  
39  
CH0  
CH1  
CH2  
CH3  
Channel 0 Analog Input  
Channel 1 Analog Input  
Channel 2 Analog Input  
Channel 3 Analog Input  
External Reference Input/Internal Reference Output.  
Place a 0.1µF capacitor from REFIO to AGND.  
41  
41  
41  
REFIO  
44  
47  
42  
44  
47  
50  
CH4  
CH5  
CH6  
CH7  
Channel 4 Analog Input  
Channel 5 Analog Input  
Channel 6 Analog Input  
Channel 7 Analog Input  
Active-Low Write Input. Drive WR low to write to the  
ADC. Configuration registers are loaded on the rising  
edge of WR.  
61  
62  
63  
61  
62  
63  
61  
62  
63  
WR  
CS  
RD  
Active-Low Chip-Select Input. Drive CS low when  
reading from or writing to the ADC.  
Active-Low Read Input. Drive RD low to read from the  
ADC. Each rising edge of RD advances the channel  
output on the data bus.  
64  
64  
64  
DB13  
I.C.  
14-Bit Parallel Data Bus Digital Output Bit 13  
Internally Connected. Connect to AGND.  
31, 34, 47, 50  
31, 50  
Exposed Pad. Internally connected to AGND. Connect to  
a large ground plane to maximize thermal performance.  
Not intended as an electrical connection point.  
EP  
and MAX11054/MAX11055/MAX11056 operate with a  
single 4.75ꢀ to 5.25ꢀ supply. A separate 2.7ꢀ to 5.25ꢀ  
supply for digital circuitry makes the devices compatible  
with low-voltage processors.  
Detailed Description  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 are fast, low-power ADCs that  
combine 4, 6, or 8 independent ADC channels in a sin-  
gle IC. Each channel includes simultaneously sampling  
independent T/H circuitry that preserves relative phase  
information between inputs making the MAX11044/  
MAX11045/MAX11046 and MAX11054/MAX11055/  
MAX11056 ideal for motor control and power monitor-  
ing. The MAX11044/MAX11045/MAX11046 and  
MAX11054/MAX11055/MAX11056 are available with  
5ꢀ input ranges that feature 20mA overrange, fault-  
tolerant inputs. The MAX11044/MAX11045/MAX11046  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 perform conversions for all chan-  
nels in parallel by activating independent ADCs. Results  
are available through a high-speed, 20MHz, parallel  
data bus after a conversion time of 3µs following the end  
of a sample. The data bus is bidirectional and allows for  
easy programming of the configuration register. The  
MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 feature a reference buffer, which  
Maxim Integrated  
15  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
is driven by an internal bandgap reference circuit (ꢀ  
FIO  
bypass with 0.1µF capacitor to ground when using the  
internal reference.  
When in external reference mode, drive ꢀ  
3.0ꢀ to 4.25ꢀ source, resulting in an input range of  
3.662ꢀ to 5.188ꢀ, respectively.  
with a  
RE-  
REFIO  
= 4.096ꢀ). Drive REFIO with an external reference or  
All analog inputs are fault-protected to up to 20mA.  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 include an input clamping circuit  
that activates when the input voltage at the analog input  
Analog Inputs  
Track and Hold (T/H)  
To preserve phase information across all channels,  
each input includes a dedicated T/H circuitry. The input  
tracking circuitry provides a 4MHz small-signal band-  
width, enabling the device to digitize high-speed tran-  
sient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Use anti-alias filtering  
to avoid high-frequency signals being aliased into the  
frequency band of interest.  
is above (ꢀ  
+ 300mꢀ) or below –(ꢀ  
+ 300mꢀ).  
AꢀDD  
AꢀDD  
The clamp circuit remains high impedance while the  
input signal is within the range of and draws lit-  
tle or almost no current. However, when the input signal  
exceeds , the clamps begin to turn on and  
AꢀDD  
AꢀDD  
shunt current to/from the AꢀDD supply. Consequently,  
to obtain the highest accuracy, ensure that the input  
voltage does not exceed (ꢀ  
+ 0.3ꢀ).  
AꢀDD  
To make use of the input clamps (see Figure 1), con-  
nect a resistor (R ) between the analog input and the  
S
Input Range and Protection  
The full-scale analog input voltage is a product of the ref-  
erence voltage. For the MAX11044/MAX11045/  
MAX11046 and MAX11054/MAX11055/MAX11056, the  
full-scale input is bipolar in the range of:  
voltage source to limit the voltage at the analog input so  
that the fault current into the MAX11044/MAX11045/  
MAX11046 and MAX11054/MAX11055/MAX11056 does  
not exceed 20mA. Note that the voltage at the analog  
input pin limits to approximately 7ꢀ during a fault condi-  
tion so the following equation can be used to calculate  
5
(ꢀ  
REFIO  
x
)
4.096  
the value of R :  
S
PIN  
VOLTAGE  
INPUT  
SIGNAL  
AVDD  
CH0  
DVDD  
DB15**  
R
S
16-/14-BIT ADC  
S/H  
S/H  
CLAMP  
CLAMP  
SOURCE  
DB4  
DB3/CR3  
DB0/CR0  
CH7  
16-/14-BIT ADC  
CONFIGURATION  
REGISTERS  
WR  
AGNDS  
AGND  
RD  
CS  
INTERFACE  
AND  
CONTROL  
CONVST  
SHDN  
EOC  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
INT REF  
DGND  
RDC  
10k  
BANDGAP  
REFERENCE  
REF  
BUF  
EXT REF  
REFIO  
RDC_SENSE*  
*CONNECTED INTERNALLY ON THE TQFN PARTS TO RDC  
**MAX11044/MAX11045/MAX11046  
MAX11046/MAX11056  
Figure 1. Required Setup for Clamp Circuit  
16  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
CR2 (Output Data Format)  
CR2 selects the output data format. The POR default = 0.  
- 7ꢀ  
FAULT_MAX  
R
S
=
0 = offset binary.  
20mA  
1 = two’s complement.  
where ꢀ  
is the maximum voltage that the  
FAULT_MAX  
source produces during a fault condition.  
CR1 (Reserved)  
Figures 2 and 3 illustrate the clamp circuit voltage-cur-  
CR1 must be set to 0.  
rent characteristics for a source impedance R  
=
+
S
CR0 (CONVST Mode)  
CR0 selects the acquisition mode. The POR default = 0.  
1280. While the input voltage is within the (ꢀ  
AꢀDD  
300mꢀ) range, no current flows in the input clamps.  
Once the input voltage goes beyond this voltage range,  
the clamps turn on and limit the voltage at the input pin.  
0 = CONꢀST controls the acquisition and conversion.  
Drive CONꢀST low to start acquisition. The rising edge  
of CONꢀST begins the conversion.  
Applications Information  
1 = acquisition mode starts as soon as the previous  
conversion is complete. The rising edge of CONꢀST  
begins the conversion.  
Digital Interface  
The bidirectional, parallel, digital interface, CR0–CR3,  
sets the 4-bit configuration register. This interface con-  
figures the following control signals: chip select (CS),  
read (RD), write (WR), end of conversion (EOC), and  
convert start (CONꢀST). Figures 6 and 7 and the  
Timing Characteristics in the Electrical Characteristics  
table show the operation of the interface.  
Programming the Configuration Register  
To program the configuration register, bring the CS and  
WR low and apply the required configuration data on  
CR3–CR0 of the bus and then raise WR once to save  
changes.  
CAUTION: When the configuration register is not  
being programmed, the host driving CR3–CR0 must  
relinquish the bus when the conversion results of  
the ADC are being read!  
DB0–DB15/DB13 output the 16-/14-bit conversion result.  
All bits are high impedance when RD = 1 or CS = 1.  
CR3 (Int/Ext Reference)  
CR3 selects the internal or external reference. The POR  
default = 0.  
Table 1. Configuration Register  
0 = internal reference, REFIO internally driven through a  
10kresistor, bypass with 0.1µF capacitor to AGND.  
1 = external reference, drive REFIO with a high-quality  
reference.  
CR3  
CR2  
CR1  
CR0  
Int/Ext  
Reference  
Output  
Data Format  
Must be set  
to 0  
CONꢀST  
Mode  
30  
20  
30  
R = 1280  
S
V = 5V  
AVDD  
R
V
= 1280Ω  
AVDD  
S
= 5V  
20  
10  
AT CH_ INPUT  
AT CH_ INPUT  
10  
AT SOURCE  
AT SOURCE  
0
0
-10  
-20  
-30  
-10  
-20  
-30  
-8 -6 -4 -2  
0
2
4
6
8
-50  
-30  
-10  
10  
30  
50  
SIGNAL VOLTAGE AT SOURCE AND PIN (V)  
SIGNAL VOLTAGE AT SOURCE AND PIN (V)  
Figure 2. Input Clamp Characteristics  
Maxim Integrated  
Figure 3. Input Clamp Characteristics (Zoom In)  
17  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Starting a Conversion  
Reading Conversion Results  
CONꢀST initiates conversions. The MAX11044/  
MAX11045/MAX11046 and MAX11054/MAX11055/  
MAX11056 provide two acquisition modes set through  
The CS and RD are active-low, digital inputs that con-  
trol the readout through the 16-/14-bit, parallel, 20MHz  
data bus (D0–D15/D13). After EOC transitions low, read  
the conversion data by driving CS and RD low. Each  
low period of RD presents the next channel’s result.  
When CS or RD are high, the data bus is high imped-  
ance. CS may be driven high between individual chan-  
nel readouts or left low during the entire 8-channel  
readout.  
the configuration register. Allow a quiet time (t ) of  
Q
500ns prior to the start of conversion to avoid any noise  
interference during readout or write operations from  
corrupting a sample.  
In default mode (CR0 = 0), drive CONꢀST low to place  
the MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 into acquisition mode. All the  
input switches are closed and the internal T/H circuits  
track the respective input voltage. Keep the CONꢀST  
Reference  
Internal Reference  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 feature a precision, low-drift,  
internal bandgap reference. Bypass REFIO with a 0.1µF  
capacitor to AGND to reduce noise. The REFIO output  
voltage may be used as a reference for other circuits. The  
output impedance of REFIO is 10k. Drive only high  
impedance circuits or buffer externally when using REFIO  
to drive external circuitry.  
signal low for at least 1µs (t  
) to enable proper set-  
ACQ  
tling of the sampled voltages. On the rising edge of  
CONꢀST, the switches are opened and the  
MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 begin the conversion on all the  
samples in parallel. EOC remains high until the conver-  
sion is completed.  
In the second mode (CR0 = 1), the MAX11044/  
MAX11045/MAX11046 and MAX11054/MAX11055/  
MAX11056 enter acquisition mode as soon as the previ-  
ous conversion is completed. CONꢀST rising edge initi-  
ates the next sample and conversion sequence.  
CONꢀST needs to be low for at least 20ns to be valid.  
External Reference  
Set the configuration register to disable the internal ref-  
erence and drive REFIO with a high-quality external ref-  
erence. To avoid signal degradation, ensure that the  
integrated reference noise applied to REFIO is less  
than 10µꢀ in the bandwidth of up to 50kHz.  
Provide adequate time for acquisition and the requisite  
quiet time in both modes to achieve accurate sampling  
and maximum performance of the MAX11044/  
MAX11045/MAX11046 and MAX11054/MAX11055/  
MAX11056.  
CS  
(USER SUPPLIED)  
CS  
t
5
(USER SUPPLIED)  
t
10  
t
t
t
8
9
11  
t
3
t
4
RD  
(USER SUPPLIED)  
WR  
(USER SUPPLIED)  
t
13  
t
12  
t
7
S
S
n + 1  
n
t
6
DB0–DB15/DB13  
CONFIGURATION  
REGISTER  
CR0–CR3  
(USER SUPPLIED)  
Figure 5. Readout Timing Requirements  
Figure 4. Programming Configuration-Register Timing  
Requirements  
18  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
SAMPLE  
t
t
CON  
ACQ  
CONVST  
EOC  
t
1
t
O
t
Q
CS  
RD  
DB0–DB15/DB13  
S
S
S
S
7
0
1
6
Figure 6. Conversion Timing Diagram (CR0 = 0)  
SAMPLE  
t
t
CON  
ACQ  
CONVST  
EOC  
t
2
t
O
t
Q
CS  
RD  
DB0–DB15/DB13  
S
S
S
S
7
0
1
6
Figure 7. Conversion Timing Diagram (CR0 = 1)  
Maxim Integrated  
19  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Reference Buffer  
The MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056 have a built-in reference buffer  
to provide a low-impedance reference source to the  
SAR converters. This buffer is used in both internal and  
external reference mode. The reference buffer output  
feeds five RDC pins. The RDC pins should be all con-  
nected together on the PCB. The reference buffer is  
externally compensated and requires at least 10µF on  
the RDC node. For best performance, provide a total of  
at least 80µF on the RDC outputs.  
Transfer Functions  
Figures 8 and 9 show the transfer functions for all the  
formats and devices. Code transitions occur halfway  
between successive-integer LSB values.  
V
= (10/4.096) x (V /65,536)  
REF  
LSB  
V
= (10/4.096) x (V /65,536)  
REF  
LSB  
FULL-SCALE  
TRANSITION  
7FFF  
7FFE  
+FS = 32,767 x V  
FULL-SCALE  
TRANSITION  
LSB  
+FS = 32,767 x V  
LSB  
FFFF  
FFFE  
-FS = -32,768 x V  
OUTPUT CODE =  
LSB  
-FS = -32,768 x V  
OUTPUT CODE =  
LSB  
V
V
IN  
IN  
0001  
0000  
FFFF  
FFFE  
+ 32,768  
8001  
8000  
7FFF  
7FFE  
V
V
LSB  
LSB  
8001  
8000  
0001  
0000  
-FS  
0
+FS  
-FS  
0
+FS  
-32,767.5 x V  
+32,766.5 x V  
LSB  
-32,767.5 x V  
LSB  
+32,766.5 x V  
LSB  
LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 8. Two’s Complement Transfer Function for 16-Bit Devices  
Figure 9. Offset-Binary Transfer Function for 16-Bit Devices  
V
= (10/4.096) x (V /16,384)  
REF  
V
= (10/4.096) x (V /16,384)  
REF  
LSB  
LSB  
FULL-SCALE  
TRANSITION  
1FFF  
1FFE  
+FS = 8191 x V  
LSB  
FULL-SCALE  
TRANSITION  
+FS = 8191 x V  
3FFF  
3FFE  
LSB  
-FS = -8192 x V  
LSB  
-FS = -8192 x V  
LSB  
V
IN  
V
0001  
0000  
3FFF  
3FFE  
IN  
OUTPUT CODE =  
+ 8192  
2001  
2000  
1FFF  
1FFE  
OUTPUT CODE =  
V
LSB  
V
LSB  
2001  
2000  
0001  
0000  
-FS  
0
+FS  
-FS  
0
+FS  
-8191.5 x V  
+8190.5 x V  
LSB  
LSB  
-8191.5 x V  
+8190.5 x V  
LSB  
LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 9b. Offset-Binary Transfer Function for 14-Bit Devices  
Figure 8b. Two’s Complement Transfer Function for 14-Bit Devices  
20  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
VOLTAGE  
TRANSFORMER  
PHASE 1  
OPT  
ADC  
OPT  
ADC  
CURRENT  
TRANSFORMER  
VN  
IN  
ADC  
ADC  
NEUTRAL  
LOAD 1  
MAX11046/  
MAX11056  
LOAD 2  
LOAD 3  
I3  
ADC  
V3  
ADC  
I2  
PHASE 2  
V2  
ADC  
ADC  
PHASE 3  
Figure 10. Power-Grid Protection  
Maxim Integrated  
21  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
MAX11044/  
MAX11045/  
MAX11046/  
MAX11054/  
MAX11055/  
MAX11056  
DSP-BASED DIGITAL  
PROCESSING ENGINE  
16-/14-BIT  
ADC  
IGBT CURRENT DRIVERS  
16-/14-BIT  
ADC  
16-/14-BIT  
ADC  
16-/14-BIT  
ADC  
16-/14-BIT  
ADC  
I
PHASE1  
I
PHASE3  
I
PHASE2  
3-PHASE ELECTRIC MOTOR  
POSITION  
ENCODER  
Figure 11. DSP Motor Control  
22  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
MAX11045/MAX11046 and MAX11054/MAX11055/  
MAX11056 and the DꢀDD power plane from the digital  
interface side of the device.  
Layout, Grounding, and Bypassing  
For best performance use PCBs with ground planes.  
Ensure that digital and analog signal lines are separated  
from each other. Do not run analog and digital lines paral-  
lel to one another (especially clock lines), and avoid run-  
ning digital lines underneath the ADC package. A single  
solid GND plane configuration with digital signals routed  
from one direction and analog signals from the other pro-  
vides the best performance. Connect DGND, AGND, and  
AGNDS pins on the MAX11044/MAX11045/MAX11046  
and MAX11054/MAX11055/MAX11056 to this ground  
plane. Keep the ground return to the power supply for this  
ground low impedance and as short as possible for noise-  
free operation.  
For acquisition periods near minimum (1µs) use a 1nF  
C0G ceramic chip capacitor between each of the chan-  
nel inputs to the ground plane as close as possible to  
the MAX11044/MAX11045/MAX11046 and MAX11054/  
MAX11055/MAX11056. This capacitor reduces the  
inductance seen by the sampling circuitry and reduces  
the voltage transient seen by the input source circuit.  
Typical Application Circuits  
Power-Grid Protection  
Figure 10 shows a typical power-grid protection application.  
To achieve the highest performance, connect all the  
RDC pins (22, 28, 35, 43, 49 for the TQFN package, or  
pins 27, 33, 40, 48, 54 for the TQFP package) to a local  
RDC plane on the PCB. In addition, on the TQFP pack-  
age, the RDC_SENSE pins 26 and 55 should be directly  
connected to this RDC plane as well. Bypass the RDC  
outputs with a total of at least 80µF of capacitance. If  
two capacitors are used, place each as close as possi-  
ble to pins 22 and 49 (TQFN) or pins 27 and 54 (TQFP).  
If four capacitors are used, place each as close as pos-  
sible to pins 22, 28, 43, and 49 (TQFN) or pins 27, 33,  
48, and 54 (TQFP). For example, two 47µF, 10ꢀ X5R  
capacitors in 1210 case size can be placed as close as  
possible to pins 22 and 49 (TQFN package) will provide  
excellent performance. Alternatively, four 22µF, 10ꢀ  
X5R capacitors in 1210 case size placed as close as  
possible to pins 22, 28, 43, and 49 (TQFN package) will  
also provide good performance. Ensure that each  
capacitor is connected directly into the AGND plane  
with an independent via.  
DSP Motor Control  
Figure 11 shows a typical DSP motor control application.  
Definitions  
Integral Nonlinearity (INL)  
INL is the deviation of the values on an actual transfer  
function from a straight line. For these devices, this  
straight line is a line drawn between the end points of  
the transfer function, once offset and gain errors have  
been nullified.  
Differential Nonlinearity (DNL)  
DNL is the difference between an actual step width and  
the ideal value of 1 LSB. For these devices, the DNL of  
each digital output code is measured and the worst-case  
value is reported in the Electrical Characteristics table. A  
DNL error specification of greater than -1 LSB guaran-  
tees no missing codes and a monotonic transfer func-  
tion. For example, -0.9 LSB guarantees no missing code  
while -1.1 LSB results in missing code.  
If Y5U or Z5U ceramics are used, be aware of the high-  
voltage coefficient these capacitors exhibit and select  
higher voltage rating capacitors to ensure that at least  
80µF of capacitance is on the RDC plane when the  
plane is driven to 4.096ꢀ by the built-in reference  
buffer. For example, a 22µF X5R with a 10ꢀ rating is  
approximately 20µF at 4.096ꢀ, whereas, the same  
capacitor in Y5U ceramic is just 13µF. However, a Y5U  
22µF capacitor with a 25ꢀ rating cap is approximately  
20µF at 4.096ꢀ.  
Offset Error  
The offset error is defined as the input voltage required  
to cause the MAX11044/MAX11045/MAX11046 digital  
output to be centered on code 0x8000 (offset binary) or  
0x0000 (two’s complement) and the MAX11054/  
MAX11055/MAX11056 digital output to be centered on  
code 0x0000 (offset binary) or 0x0000 (two’s comple-  
ment). Ideally, this input voltage should be 0ꢀ with  
respect to AGNDS.  
Bypass AꢀDD and DꢀDD to the ground plane with  
0.1µF ceramic chip capacitors on each pin as close as  
possible to the device to minimize parasitic inductance.  
Add at least one bulk 10µF decoupling capacitor to  
AꢀDD and DꢀDD per PCB. Interconnect all of the  
AꢀDD inputs and DꢀDD inputs using two solid power  
planes. For best performance, bring the AꢀDD power  
plane in on the analog interface side of the MAX11044/  
Gain Error  
Gain error is defined as the difference between the  
change in analog input voltage required to produce a top  
code transition minus a bottom code transition, subtract-  
ed from the ideal change in analog input voltage on  
(10/4.096) x ꢀ  
x (65,534/65,536) for 16-bit, or  
REF  
(10/4.096) x ꢀ  
x (16,382/16,384) for 14-bit devices.  
REF  
For the MAX11044/MAX11045/MAX11046, top code tran-  
Maxim Integrated  
23  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
sition is 0x7FFE to 0x7FFF in two’s complement mode  
Total Harmonic Distortion (THD)  
and 0xFFFE to 0xFFFF in offset binary mode. The bottom  
code transition is 0x8000 and 0x8001 in two’s comple-  
ment mode and 0x0000 and 0x0001 in offset binary  
mode. For the MAX11054/MAX11055/MAX11056, top  
code transition is 0x1FFE to 0x1FFF in two’s complement  
mode and 0x3FFE to 0x3FFF in offset binary mode. The  
bottom code transition is 0x2000 and 0x2001 in two’s  
complement mode and 0x0000 and 0x0001 in offset bina-  
ry mode. For the MAX11044/MAX11045/MAX11046 and  
MAX11054/MAX11055/MAX11056, the analog input volt-  
age to produce these code transitions is measured and  
the gain error is computed by subtracting (10/4.096) x  
THD is the ratio of the RMS of the first five harmonics of  
the input signal to the fundamental itself. This is:  
expressed as:  
2
2
2
2
+ + + ꢀ  
3 4 5  
2
THD = 20 × log  
1
where ꢀ is the fundamental amplitude and ꢀ through  
1
2
ꢀ are the 2nd- through 5th-order harmonics.  
5
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the RMS amplitude of the funda-  
mental (maximum signal component) to the RMS value  
of the next-largest frequency component.  
x (65,534/65,536) or (10/4.096) x ꢀ  
x
REF  
REF  
(16,382/16,384), respectively from this measurement.  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, SNR is the ratio of the full-scale analog input  
(RMS value) to the RMS quantization error (residual  
error). The ideal, theoretical minimum analog-to-digital  
noise is caused by quantization noise error only and  
results directly from the ADC’s resolution (N bits):  
Aperture Delay  
Aperture delay (t ) is the time delay from the sampling  
AD  
clock edge to the instant when an actual sample is  
taken.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
aperture delay.  
SNR = (6.02 x N + 1.76)dB  
Channel-to-Channel Isolation  
Channel-to-channel isolation indicates how well each  
analog input is isolated from the other channels.  
Channel-to-channel isolation is measured by applying  
DC to channels 1 to 7, while a -0.4dBFS sine wave at  
60Hz is applied to channel 0. A 10ksps FFT is taken for  
channel 0 and channel 1. Channel-to-channel isolation  
is expressed in dB as the power ratio of the two 60Hz  
magnitudes.  
where N = 16/14 bits. In reality, there are other noise  
sources besides quantization noise: thermal noise, ref-  
erence noise, clock jitter, etc. SNR is computed by tak-  
ing the ratio of the RMS signal to the RMS noise, which  
includes all spectral components not including the fun-  
damental, the first five harmonics, and the DC offset.  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is the ratio of the fundamental input frequency’s  
RMS amplitude to the RMS equivalent of all the other  
ADC output signals:  
Small-Signal Bandwidth  
A small -20dBFS analog input signal is applied to an  
ADC in a manner that ensures that the signal’s slew  
rate does not limit the ADC’s performance. The input  
frequency is then swept up to the point where the  
amplitude of the digitized conversion result has  
decreased 3dB.  
Signal  
(Noise +Distortion)  
RMS  
SINAD(dB) = 10 ×log  
RMS  
Effective Number of Bits (ENOB)  
The ENOB indicates the global accuracy of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. With an  
input range equal to the full-scale range of the ADC,  
calculate the ENOB as follows:  
Full-Power Bandwidth  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by 3dB. This point is defined as full-  
power input bandwidth frequency.  
SINAD 1.76  
ENOB =  
6.02  
24  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Positive Full-Scale Error  
Negative Full-Scale Error  
The error in the input voltage that causes the first code  
transition of 0000 to 0001 (hex) (in default offset binary  
mode) or 8000 to 8001 (hex) for 16-bit or 2000 to 2001  
(hex) for 14-bit devices (in two’s complement mode) from  
the ideal input voltage of -32,767.5 x (10/4.096) x  
The error in the input voltage that causes the last code  
transition of FFFE to FFFF (hex) for 16-bit or 3FFE to 3FFF  
(hex) for 14-bit devices (in default offset binary mode) or  
7FFE to 7FFF (hex) for 16-bit or 1FFE to 1FFF (hex) for 14-  
bit devices (in two’s complement mode) from the ideal  
input voltage of 32,766.5 x (10/4.096) x (ꢀ  
/65,536) for  
(ꢀ  
/65,536) for 16-bit or -8191.5 x (10/4.096) x  
REF  
REF  
16-bit or 8190.5 x (10/4.096) x (ꢀ  
/16,384) for 14-bit  
(ꢀ /16,384) for 14-bit devices after correction for offset  
REF  
REF  
devices after correction for offset error.  
error.  
Chip Information  
PROCESS: BiCMOS  
Pin Configurations  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
TOP VIEW  
AGNDS  
CH0*/I.C.  
AGND  
32  
31  
30  
AGNDS  
49  
50  
42 41 40 39 38 37 36 35 34 33 32 31 30 29  
†‡  
†‡  
I.C. /CH7*  
28  
27  
26  
25  
24  
23  
22  
21  
RDC  
RDC  
43  
44  
AGND 51  
AVDD 52  
AGNDS  
AGNDS  
CH0*/I.C.  
AGND  
AVDD  
AGNDS  
RDC  
29 AVDD  
†‡  
†‡  
I.C. /CH7* 45  
AGND 46  
AVDD 47  
AGNDS 48  
RDC 49  
AGNDS  
RDC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AGNDS 53  
RDC 54  
RDC_SENSE  
AGND  
RDC_SENSE 55  
AGND 56  
MAX11044  
MAX11045  
MAX11046  
MAX11044  
MAX11045  
MAX11046  
AVDD  
AVDD 57  
DGND 50  
DVDD 51  
WR 52  
DGND  
AGNDS  
58  
AGNDS  
DGND  
20 DVDD  
DGND  
DVDD  
WR  
59  
60  
61  
62  
63  
19 SHDN  
DVDD  
CS 53  
18 CONVST  
17 EOC  
SHDN  
RD 54  
CONVST  
EOC  
CS  
*EP  
DB15 55  
DB14 56  
16 DB0/CR0  
15 DB1/CR1  
+
*EP  
RD  
+
DB15 64  
17 DB0/CR0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
TQFN  
8mm x 8mm  
MAX11044  
MAX11045  
TQFP  
10mm x 10mm  
*MAX11046  
Maxim Integrated  
25  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Pin Configurations (continued)  
48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33  
AGNDS  
CH0*/I.C.  
AGND  
32  
31  
30  
AGNDS  
49  
50  
51  
52  
†‡  
†‡  
I.C. /CH7*  
AGND  
29 AVDD  
AVDD  
AGNDS  
RDC  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
AGNDS 53  
RDC 54  
RDC_SENSE  
AGND  
RDC_SENSE 55  
AGND 56  
MAX11054  
MAX11055  
MAX11056  
AVDD  
AVDD 57  
AGNDS  
58  
AGNDS  
DGND  
DGND  
59  
DVDD  
60  
DVDD  
SHDN  
61  
62  
63  
WR  
CS  
RD  
CONVST  
EOC  
*EP  
+
DB13 64  
17 CR0  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16  
TQFP  
10mm x 10mm  
MAX11054  
MAX11055  
*MAX11056  
Package Information  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the  
package regardless of RoHS status.  
PACKAGE TYPE  
56 TQFN-EP  
PACKAGE CODE  
T5688+3  
OUTLINE NO.  
21-0135  
LAND PATTERN NO.  
90-0047  
64 TQFP-EP  
C64E+6  
21-0084  
90-0328  
26  
Maxim Integrated  
MAX11044/MAX11045/MAX11046/  
MAX11054/MAX11055/MAX11056  
4-/6-/8-Channel, 16-/14-Bit,  
Simultaneous-Sampling ADCs  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
DESCRIPTION  
CHANGED  
0
1
2
10/09  
3/10  
5/10  
Initial release  
Added TQFP package to data sheet  
1, 2, 8, 9, 19  
1–4, 7, 9–26  
Added 14-bit MAX11054/MAX11055/MAX11056  
Style edits, specified part numbers in Typical Operating Characteristics, corrected  
pin names, clarified layout  
1, 3–8,  
13–18, 22  
3
4
5
9/10  
10/10  
1/11  
Released the TQFP versions of MAX11044, MAX11045, and MAX11046. Revised  
the Electrical Characteristics, Typical Operating Characteristics, and the Input  
Range and Protection section.  
1–8, 15  
Released MAX11054, MAX11055, MAX11056. Revised the Electrical  
Characteristics and Figures 8b and 9b.  
1, 2, 4, 20  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent  
licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and  
max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000 ________________________________ 27  
© 2011 Maxim Integrated Products, Inc.  
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  

相关型号:

MAX11045

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11045BECB+T

暂无描述
MAXIM

MAX11045BETN+T

ADC, Successive Approximation, 16-Bit, 1 Func, 6 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11045ECB+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11045ECB+T

A/D Converter, 16-Bit, 1 Func, 6 Channel, Parallel, Word Access, BICMOS, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11045ETN+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11046

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM

MAX11046BECB+

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP64, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11046BECB+T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, PQFP64, 10 X 10 MM, ROHS COMPLIANT, TQFP-64
MAXIM

MAX11046BETN+

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11046BETN+T

ADC, Successive Approximation, 16-Bit, 1 Func, 8 Channel, Parallel, Word Access, BICMOS, 8 X 8 MM, ROHS COMPLIANT, TQFN-56
MAXIM

MAX11046ECB+

4-/6-/8-Channel, 16-Bit, Simultaneous-Sampling ADCs
MAXIM