MAX11150EVKIT [MAXIM]

High-Speed USB Connector, FMC Connector, and PMOD-Style Connector;
MAX11150EVKIT
型号: MAX11150EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Speed USB Connector, FMC Connector, and PMOD-Style Connector

文件: 总33页 (文件大小:6197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Evaluates: MAX11150/MAX11152/MAX11158/  
MAX11160/MAX11161/MAX11162/MAX11163/  
MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
General Description  
Features  
The evaluation kit (EV kit) demonstrates the MAX1115X/  
MAX1116X family of 18-/16-bit SAR ADCs. The EV kit  
includes a graphical user interface (GUI) that provides  
communication from the target device to the PC. The EV  
kit can operate in multiple modes:  
High-Speed USB Connector, FMC Connector, and  
PMOD-Style Connector  
75MHz SPI Clock Capability through FMC Connector  
10MHz SPI Clock Capability in Standalone Mode  
Various Sample Sizes and Sample Rates (Up to  
500ksps)  
Collects Up to 1 Million samples (with FPGA  
Platform)  
1) Standalone Mode: In “standalone” mode, the EV kit  
is connected to the PC via a USB cable and performs  
a subset of the complete EV kit functions with limita-  
tion for sample rate, sample size, and no support for  
coherent sampling.  
Time Domain, Frequency Domain, and Histogram  
Plotting  
2) FPGA Mode: In “FPGA” mode, the EV kit is connect-  
ed to an Avnet ZedBoardthrough a low-pin-count  
FMC connector. The ZedBoard features a Xilinx®  
Zynq® -7000 SoC, that connects to the PC through  
an Ethernet port, which allows the GUI to perform  
different operations with full control over mezzanine  
card functions. The EV kit with FPGA platform per-  
forms the complete suite of evaluation tests for the  
target IC.  
3) User-Supplied SPI Mode: In addition to the USB and  
FMC interfaces, the EV kit provides a 12-pin PMOD-  
style header for user-supplied SPI interface to connect  
the signals for SCLKx, DINx, DOUTx, and CNVSTx.  
Sync In/Out for Coherent Sampling (with FPGA plat-  
form)  
On-Board Input Buffers (MAX9632 and MAX44242)  
On-Board Voltage References (MAX6126 and  
MAX6070)  
Proven PCB Layout  
Fully Assembled and Tested  
Windows XP-, Windows 7-, and Windows  
8.1-Compatible Software  
Ordering Information appears at end of data sheet.  
EV Kit Photo  
The EV kit includes Windows XP®-, Windows® 7, and  
Windows 8.1-compatible software for exercising the fea-  
tures of the IC. The EV kit GUI allows different sample  
sizes, adjustable sampling rates, internal or external ref-  
erence options (depending upon target device selected),  
and graphing software that includes the FFT and histo-  
gram of the sampled signals.  
The ZedBoard board accepts a +12V AC-DC wall adapter.  
The EV kit can be powered by a local +20V supply. The  
EV kit has on-board transformers and digital isolators to  
separate the IC from the ZedBoard/on-board processor.  
The MAX1115X/MAX1116X EV kit comes installed with  
a MAX1115XEUB+/MAX1116XEUB+ in a 10-pin µMAX®  
package, but can also evaluate other pin-compatible parts  
in the family. For a full list of products supported by this  
EV kit, see Table 4.  
ZedBoard is a trademark of Avnet, Inc.  
Xilinx and Zynq are registered trademarks of Xilinx, Inc.  
Windows XP and Windows are registered trademarks and reg-  
istered service marks of Microsoft Corporation.  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
19-7582; Rev 0; 5/15  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
System Block Diagram  
SYNC IN,  
SYNC OUT  
ISOLATED  
DC-DC  
MAX9632  
-
+
FPGA -  
-
+
ZedBoard  
SCLK1  
CNVST1  
DOUT1  
DIN1  
F
M
C
MAX9632  
U10  
ADC # 1  
MAX44242  
DOUT_DAISY  
-
+
-
+
I
ADC_EXT_REF  
S
O
L
A
T
I
H
E
A
D
E
R
MAX44242  
USER-SUPPLIED  
SPI  
VREF1_ADC  
+3.3V/  
+2.5V  
MAX6126  
MAX6070  
VREF2_ADC  
MAX9632  
-
+
-
+
DOUT  
SCLK  
O
N
DOUT2  
MAX9632  
SCLK1  
U14  
PC - USB  
ADC # 2  
CNVST1  
SCLK2  
CNVST  
DIN  
MAX44242  
-
+
-
+
USB  
FTDI  
CNVST2  
MAX44242  
+3.3V/+2.5V  
GND  
MAX1115X/MAX1116X EV Kit Files  
FILE  
MAX1115X_6XEVKitSetupV1.0.exe  
Boot.bin  
DESCRIPTION  
Application Program (GUI)  
ZedBoard firmware (SD card to boot Zynq)  
Procedure  
Quick Start  
The EV kit is fully assembled and tested. Follow the steps  
below to verify board operation:  
Required Equipment  
MAX1115X/MAX1116X EV kit  
+20V (500mA) power supply  
Micro-USB cable  
1) Visit http://www.maxim-ic.com/evkitsoftware to  
download the latest version of the EV kit software,  
MAX1115X_6XEVK.ZIP. Save the EV kit software to  
a temporary folder and uncompress the ZIP file.  
2) Install the EV kit software and USB driver on your com-  
puter by running the MAX1115X_6XEVKitSetupV1.0.exe  
program inside the temporary folder. The program  
files are copied to your PC and icons are created in  
the Windows Start | Programs menu. At the end of  
the installation process, the installer will launch the  
installer for the FTDIChip CDM drivers.  
ZedBoard development board  
Function generator (optional)  
DMM (for calibration – optional)  
Windows XP, Windows 7, or Windows 8.1 PC with a  
spare USB port  
Note: In the following section(s), software-related items  
are identified by bolding. Text in bold refers to items direct-  
ly from the EV system software. Text in bold and under-  
line refers to items from the Windows operating system.  
Maxim Integrated  
2  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
For Standalone Mode:  
5) Connect the 12V power supply to the ZedBoard.  
Leave the Zedboard powered off.  
1) Verify that all jumpers are in their default positions for  
the EV kit board (Table 2).  
6) Enable the ZedBoard power supply by sliding SW8 to  
ON and connect the +20V adapter to the EV kit.  
7) Start the EV kit software by opening its icon in the  
Start | Programs menu. The EV kit software appears  
as shown in Figure 1. From the Device menu select  
FPGA. Verify that the lower right status bar indicates  
the EV Kit hardware is Connected.  
2) Connect the PC to the EV kit using a micro USB cable.  
3) Connect the +20V adapter to the EV kit.  
4) Start the EV kit software by opening its icon in the  
Start | Programs menu. The EV kit software appears  
in Figure 1.  
5) The software should automatically connect to the  
hardware and display EV kit Hardware Connected  
in the Status bar. If it does not connect, then from the  
Device menu, select Standalone and click Search  
for USB Device. Then select Standalone again and  
select a device in the list. Verify that the lower right  
status bar indicates the EV kit hardware is Connect-  
ed.  
For Either Standalone or FPGA Mode:  
1) Connect the positive terminal of the function genera-  
tor to the AIN0+ (TP2) test point on the EV kit. Con-  
nect the negative terminal of the function generator to  
the AIN0- (TP1) test point on the EV kit.  
2) Configure the signal source to generate a 1kHz,  
1V  
sinusoidal wave with +500mV offset.  
P-P  
For FPGA Mode (When Connected to a Zedboard):  
3) Turn on the function generator.  
4) In the Configuration group, select Device to match  
IC type, select Channel 1 and then click Capture.  
5) Click on the Scope tab.  
6) Check the Remove DC Offset checkbox to remove  
the DC component of the sampled data.  
7) Click the Capture button to start the data analysis.  
The default sample size is 8192.  
8) The EV kit software appears as shown in Figure 1.  
9) Verify the frequency is approximately 1kHz is dis-  
played on the right. The scope image has buttons in  
the upper right corner that allow zooming in to detail.  
1) Connect the Ethernet cable from the PC to the Zed-  
Board and configure the Internet Protocol Version  
4 (TCP/Ipv4) properties in the local area connec-  
tion to IP address 192.168.1.2 and subnet mask to  
255.255.255.0.  
2) Verify that the ZedBoard SD card contains the Boot.  
bin file for the MAX1115X/MAX1116X EV kit.  
3) Connect the EV kit FMC connector to the ZedBoard  
FMC connector. Gently press them together.  
4) Verify that all jumpers are in their default positions for  
the ZedBoard (Table 1) and EV kit board (Table 2).  
Table 1. ZedBoard Jumper Settings  
JUMPER  
SHUNT POSITION  
DESCRIPTION  
J18  
1-2  
VDDIO set for 3.3V.  
Boot from SD card  
SD card installed  
JP11  
JP10  
JP9  
JP8  
JP7  
2-3  
1-2  
1-2  
2-3  
2-3  
JP10  
J12  
J20  
Connected to 12V wall adapter  
SW8  
OFF  
ZedBoard power switch, OFF while connecting boards  
Maxim Integrated  
3  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 2. EV kit Jumper Settings†  
JUMPER  
JUMPER  
DESCRIPTION  
POSITION  
OPEN*  
1-2  
Set output of U5 to 3.3V  
Set output of U5 to 2.5V  
J3 (Red)  
J4 (Red)  
1-2  
Power U23 with 12V for 5V FPGA power (Do not populate 1-2 and 3-4 at same time)  
Power U23 with 20V for 5V FPGA power (Do not populate 1-2 and 3-4 at same time)  
Connect BIN0- to AGND  
3-4*  
1-2*  
3-4  
J5 (Black)  
J6 (Black)  
J7 (Black)  
J8 (Red)  
Connect BIN0+ to AGND  
1-2*  
3-4  
Connect BIN2- to AGND  
Connect BIN2+ to AGND  
1-2*  
3-4  
Connect BIN3- to AGND  
Connect BIN3+ to AGND  
1-2  
Power U20 with +12V from FPGA  
3-4*  
1-2*  
3-4  
Power U20 with 5V from USB  
Connect BIN1- to AGND  
J9 (Black)  
Connect BIN1+ to AGND  
1-2  
Connects output of U27 (BIN0) to inverting input of U28  
Connects BIN1- to inverting input of U28  
Connects output of U27 (BIN0) to noninverting input of U28  
Connects BIN1+ to noninverting input of U28  
Connects output of U26A (BIN2) to inverting input of U26B  
Connects BIN3- to inverting input of U26B  
Connects output of U26A (BIN2) to noninverting input of U28  
Connects BIN3+ to noninverting input of U28  
Disable on-board power supplies  
3-4*  
5-6*  
7-8  
J10 (Black)  
J11 (Black)  
1-2  
3-4*  
5-6*  
7-8  
OPEN  
1-2*  
J12 (Black)  
J13 (Black)  
Enable on-board power supplies  
User connect external reference to TP12 – ADC_EXT_REF (If the target device has an internal  
reference J13 should be left open)  
OPEN*  
1-2  
2-3**  
OPEN  
1-2*  
1-2  
MAX6070 is VREF source  
MAX6126 is VREF source  
Disable +3V3_USB power for FTDI chip  
Enable +3V3_USB power for FTDI chip  
Power U2 from EXTERNAL +18V source  
Power U2 from T1 +18V output  
J14 (Red)  
J15 (Red)  
J16 (Red)  
J17 (Red)  
J19 (Black)  
3-4*  
1-2  
Power U3 from EXTERNAL -18V source  
Power U3 from T2 -18V output  
3-4*  
1-2  
Use external +10V applied at TP9  
Use U2 output for +10V, 100mA supply  
Connect U10 SDI to DVDD (CS mode)  
Connect U10 SDI to U14 SDO (daisy-chain mode)  
3-4*  
1-2*  
3-4  
Maxim Integrated  
4  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 2. EV kit Jumper Settings(continued)  
JUMPER  
JUMPER  
DESCRIPTION  
POSITION  
1-2  
OPEN*  
Connects U10 SDO to DVDD (enable busy bit)  
No pullup on U10 SDO  
J20 (Black)  
J21  
J22  
J23  
ADC2 SPI Port Test Points (header – no jumpers)  
ADC1 SPI Port Test Points (header – no jumpers)  
Serial EEPROM Test Points (header – no jumpers)  
Changes the -10V supply to ground  
-10V supplied by external test point (TP23)  
-10V supplied by U3  
1-2  
J24 (Red)  
3-4  
5-6*  
J25  
PMOD-style connector. Connects to ADC1 and ADC2 SPI ports, 12 pins (no jumpers).  
+15V supplied from external test point (TP38)  
+15V supplied by U6  
1-2  
J26 (Red)  
3-4*  
1-2  
Changes the -15V supply to ground  
-15V supplied by external test point (TP37)  
-15V supplied by U13  
J27 (Red)  
3-4  
5-6*  
1-2*  
3-4  
Connect AIN0- to AGND  
J28 (Black)  
J29 (Black)  
J31 (Black)  
Connect AIN0+ to AGND  
1-2*  
3-4  
Connect AIN1- to AGND  
Connect AIN1+ to AGND  
1-2*  
3-4  
Connect AIN3- to AGND  
Connect AIN3+ to AGND  
1-2  
Connect U7 output (AIN0) to U8 inverting input  
Connect AIN1- to U8 inverting input  
Connect U7 output (AIN0) to U8 noninverting input  
Connect AIN1+ to U8 noninverting input  
Connect AIN2- to AGND  
3-4*  
5-6*  
7-8  
J32 (Black)  
J33 (Black)  
J34 (Black)  
1-2*  
3-4  
Connect AIN2+ to AGND  
1-2*  
3-4  
Connect U8 output to U10 AIN+  
Connect U9B output to U10 AIN+  
Connect GND_SENSE (TP26) to U10 AIN-  
Connect U10 AIN- to AGND  
5-6  
7-8*  
1-2  
Connect U14 CVNST to CNVST1_ADC  
Connect U14 CVNST to CNVST2_ADC  
Connect U14 SCLK to SCLK1_ADC  
Connect U14 SCLK to SCLK2_ADC  
Connect U14 SDI to AGND  
3-4*  
5-6  
J35 (Black)  
7-8*  
9-10  
11-12*  
Connect U14 SDI to DVDD  
Maxim Integrated  
5  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 2. EV kit Jumper Settings(continued)  
JUMPER  
JUMPER  
DESCRIPTION  
POSITION  
1-2  
3-4*  
5-6*  
7-8  
Connect U9A output (AIN2) to U9B inverting input  
Connect AIN3- to U9B inverting input  
J36 (Black)  
J37 (Black)  
Connect U9A output (AIN2) to U9B noninverting input  
Connect AIN3+ to U9B noninverting input  
Connect ADC_EXT_REF to U10 REF (ADC1)  
Connect ADC_EXT_REF to U9 VREF2  
Connect ADC_EXT_REF to U8 VREF1  
Connect ADC_EXT_REF to U26 VREF4  
Connect ADC_EXT_REF to U28 VREF3  
Connect ADC_EXT_REF to U14 REF (ADC2)  
Connect U14 SDO to DOUT2_ADC  
Connect U14 SDO to DOUT_DAISY  
Connect U28 output to U14 AIN+  
1-2**  
3-4  
5-6  
7-8  
9-10  
11-12**  
1-2*  
3-4  
J38 (Bue)  
1-2*  
3-4  
Connect U26B output to U14 AIN+  
J39 (Black)  
5-6  
Connect GND_SENSE to U14 AIN-  
7-8*  
Connect AGND to U14 AIN-  
Red test points and red jumpers are used for power settings. Black test points are used for ground points, white test points are used  
for all signal points, black jumper for I/O settings.  
*Default positions  
**If the target ADC requires an external reference this should be populated (MAX11152 and MAX11162)  
Maxim Integrated  
6  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
CS Mode (Single ADC Mode)  
General Description of Software  
The factory-default jumper settings have the ADCs on the  
EV kit configured for CS mode, using the Channel 1 device  
(U10) and Channel 2 device (U14). In the Configuration  
tab the correct selection must be made for CS Mode. If  
the busy bit is desired, select CS Mode with Busy and  
populate J20.  
The main window of the EV kit software contains five  
tabs: Configuration, Scope, DMM, Histogram, and FFT.  
The Configuration tab provides control for the two ADCs  
configuration during data capture. The other four tabs are  
used for evaluating the data captured by the ADCs. In  
addition, the sample data can be saved to a file.  
Daisy-Chain Mode  
Configuration Tab  
To use the ADCs in daisy-chain mode, move the shunts  
described in Table 3 for J19 and J38 so the SDO of U14  
(DOUT2_DAISY) connects to the SDI of U10. The SDO  
of U10 connects to the SPI MISO for the GUI to read  
the data. In the Configuration tab, the correct selection  
must be made for Interface Mode set as Daisy-chain.  
The channel selection automatically changes to Both  
Channels in daisy-chain mode.  
The Configuration tab provides an interface for selecting  
and configuring the ADC from a functional perspective.  
Select the desired Device in the drop-down list and the  
corresponding properties of the device are displayed  
including Resolution, Input Range, Reference Voltage,  
and Max Sample Rate. If the selected ADC uses an  
external reference, then use the Reference Voltage  
numeric box to enter the measured reference value. The  
on-board reference is 5V.  
Dual ADC Mode (Sequential or Simultaneous)  
The sampling settings are available on the left, which  
allow the user to select the Channel, Sample Rate,  
Number of Samples, and SCLK Frequency. The SCLK  
Frequency selection is required prior to adjusting to the  
desired sampling rate.  
There are two ADCs on the EV kit. In standalone mode,  
the two ADCs are read sequentially, while in FPGA mode  
they can be read simultaneously. To use the ADCs in  
multichannel mode, move the shunts described in Table 3  
for CS Mode. In the Configuration tab, the correct selec-  
tion must be made for Both Channels and the Interface  
Mode must be in CS mode.  
The two ADCs on the EV kit have a variety of interface  
modes to the master. The modes include CS mode and  
daisy-chain mode.  
Table 3. Interface Mode Jumper Settings  
INTERFACE MODE  
CS Mode, No Busy  
CS Mode, With Busy  
Daisy Chain  
J35  
J38  
J19  
J20  
CNVST2 (3-4), SCLK2 (7-8), DVDD (11-12)  
CNVST2 (3-4), SCLK2 (7-8), DVDD (11-12)  
CNVST1 (1-2), SCLK1 (5-6), AGND (9-10)  
DOUT2 (1-2)  
DVDD (1-2)  
OPEN  
SHORT  
OPEN  
DOUT2 (1-2)  
DVDD (1-2)  
DOUT_DAISY (3-4)  
DOUT_DAISY (3-4)  
Maxim Integrated  
7  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
4) Enter the Data (V) value into the ADC Data Read  
(V) Min numeric box.  
5) Apply a full-scale signal (+5V or +10V depending  
upon ADC device on the EV kit) to the ADC inputs  
and click Read Data.  
6) Enter the Data (V) value into the ADC Data Read  
(V) Max numeric box.  
7) Click Calculate.  
8) The GUI will adjust the Gain Coefficient value and  
Offset (mV) value.  
9) Software calibration is enabled by checking the En-  
able Calibration checkbox. This calibration is used  
for measurements taken with the Scope, DMM,  
Histogram, and FFT tabs.  
System Calibration  
The purpose of this procedure is to calculate coefficients  
to compensate gain and offset error. This procedure  
allows the calibration using any two points that fit the input  
voltage range. A DC supply and DMM is required for this  
procedure.  
1) Measure the zero-scale and full-scale signal applied  
at the input of the EV kit.  
2) Enter the voltage values into the Input Measured  
(V) Min and Max numeric boxes (±5V or ±10V de-  
pending upon the ADC device on the EV kit).  
3) Apply a zero-scale signal (-5V or -10V depending  
upon ADC device on the EV kit) to the ADC inputs  
and click Read Data.  
Figure 1. EV Kit Software (Configuration Tab)  
Maxim Integrated  
8  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
allows counts and voltages. Once the desired configuration  
is set, click on the Capture button. The right side of the tab  
sheet displays details of the waveform, such as average,  
standard deviation, maximum, minimum, and fundamental  
frequency. Figure 2 displays the ADC data when a  
sinusoidal signal is applied to the inputs on the EV kit.  
Scope Tab  
The Scope tab sheet is used to capture data and display it  
in the time domain. Sampling rate and number of samples  
can also be set in this tab if they were not appropriately  
adjusted in other tabs. The Display Unit drop-down list  
Figure 2. EV Kit Software (Scope Tab)  
Maxim Integrated  
9  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
DMM Tab  
The DMM tab sheet provides the typical information as a digital multimeter. Once the desired configuration is set, click  
on the Capture button.  
Figure 3. EV Kit Software (DMM Tab)  
Maxim Integrated  
10  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
sheet displays details of the histogram such as average,  
standard deviation, maximum, minimum, peak-to-peak  
noise, effective resolution, and noise-free resolution.  
Figure 4 shows data when inputs AIN0+ and AIN0- are  
connected to GND.  
Histogram Tab  
The Histogram tab sheet is used to capture the histogram  
of the data. Sampling rate and number of samples can  
also be set in this tab if they were not appropriately  
adjusted in other tabs. Once the desired configuration is  
set, click on the Capture button. The right side of the tab  
Figure 4. EV Kit Software (Histogram Tab)  
Maxim Integrated  
11  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
When coherent sampling is needed, this tab allows the  
user to calculate the input frequency or the master clock  
coming into the board. Either adjust the input frequency  
applied to the signal generator or adjust the master  
applied to the SYNC_IN SMA connector. See the Sync  
Input and Sync Output section before using this feature.  
Figure 13 shows the setup Maxim Integrated uses to cap-  
ture data for coherent sampling.  
FFT Tab  
The FFT tab sheet is used to display the FFT of the data.  
Sampling rate and number of samples can also be set in  
this tab if they were not appropriately adjusted in other tabs.  
Once the desired configuration is set, click on the Capture  
button. The right side of the tab displays the performance  
based on the FFT, such as fundamental frequency, SNR,  
SINAD, THD, SFDR, ENOB, and noise floor.  
Figure 5. EV Kit Software (FFT Tab)  
Maxim Integrated  
12  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
kit can be used with a FPGA to achieve full speed and a  
larger sample depth.  
Detailed Description of Hardware  
The MAX1115X/MAX1116X EV kit provides a proven  
signal path to demonstrate the performance of the  
MAX1115X/MAX1116X 18-/16-bit SAR ADCs. Included in  
the EV kit are digital isolators, isolated DC-DC converters,  
ultra-low-noise LDOs to all supply pins of the IC, on-board  
references (MAX6126 and MAX6070), precision ampli-  
fiers (MAX9632 for bipolar and MAX44242 for unipolar)  
for analog inputs, and sync-in and sync-out signals for  
coherent sampling. Two ADCs are on the board to allow  
daisy-chain mode operation if desired.  
The EV kit supports a number of different devices with a  
10-pin µMAX package as listed in Table 4.  
For the MAX11156 and MAX11154 in a 12-pin TDFN  
package, please refer to the MAX11156EVSYS#  
and for the MAX11166, MAX11167, MAX11164, and  
MAX11165 in a 12-pin TDFN package, please refer to the  
MAX11166EVSYS#. A full 18-bit data acquisition system  
featuring the MAX11156 ADC and the MAX5318 DAC  
is available as the MAXREFDES74# reference design,  
which includes an FMC interface to the FPGA and stand-  
alone USB.  
An on-board FTDI controller is provided to allow for  
evaluation in standalone mode, which has limitations on  
maximum sample speed and on sample depth. The EV  
Table 4. Products Supported with MAX1115X/MAX1116X EV Kit  
RESOLUTION  
(BITS)  
MAX. SAMPLE RATE  
(ksps)  
INPUT RANGE  
(V)  
VOLTAGE  
REFERENCE  
PART NO.  
MAX11150  
MAX11152  
18  
18  
18  
16  
16  
16  
500  
500  
0 to +5  
0 to +5  
±5  
Internal REF  
External REF  
Internal REF  
Internal REF  
External REF  
Internal REF  
MAX11158  
500  
MAX11160 (MAX11161)  
MAX11162 (MAX11163)  
MAX11168 (MAX11169)  
500 (250)  
500 (250)  
500 (250)  
0 to +5  
0 to +5  
±5  
Maxim Integrated  
13  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
USB Interface  
Reference  
The maximum sample rate is 250ksps and the maximum  
sample size is 16384.  
Depending upon the target IC on the EV kit, there are  
different sources for the voltage reference. As listed in  
Table 4, some ADCs have the option to use an internal  
reference. In addition, there are two voltage references  
on the board and the option to provide a user-supplied  
external reference signal.  
FMC Interface  
The user should confirm compatibility of pin usage  
between their own FMC implementation and that of the  
MAX1115X/MAX1116X EV kit before connecting the  
MAX1115X/MAX1116X EV kit to a different system with  
FMC connectors.  
For ADCs that require an external reference, the EV kit  
includes two on-board references plus the option for a  
user-supplied reference. The MAX6126 (U11) is an ultra-  
high-precision, ultra-low-noise, series voltage reference  
with 3ppm/°C maximum temperature coefficient and the  
MAX6070 (U12) low-noise, high-precision series voltage  
reference offers the highest performance SOT23 voltage  
references with 6ppm/°C maximum temperature coefficient.  
User-Supplied SPI Interface  
In addition to the USB and FMC interfaces, the EV kit pro-  
vides a 12-pin PMOD-style header (J25) for user-supplied  
SPI interface. To evaluate the EV kit with a user-supplied  
SPI bus, disconnect from the FMC bus and remove  
jumper J14. Apply the user-supplied SPI signals to SCLK,  
CNVST, DIN, and DOUT at the PMOD header. Make sure  
the return ground is connected to the PMOD ground.  
To use these voltage reference sources, populate jump-  
ers J13 and J37. See Table 5 for jumper settings.  
For a user-supplied external reference, remove the  
jumper on J13 and connect a reference voltage to  
ADC_EXT_REF at TP12. Measure and enter the value  
of the external reference voltage into the Reference  
Voltage edit box on the Configuration tab of the GUI.  
When using devices with an internal reference, remove  
all jumpers from J13 and J37.  
The on-board FTDI chip used for standalone mode does  
not conflict with the user-supplied SPI if it is powered off  
by removing jumper J14.  
WARNING: DO NOT PLUG THIS HEADER INTO A  
STANDARD PMOD INTERFACE FOUND ON OTHER  
FPGA OR MICROCONTROLLER PRODUCTS. THE  
SIGNAL DEFINITION IS UNIQUE TO THIS EV KIT.  
Table 5. Reference Source Options  
REF SOURCE  
JUMPER  
CONNECTION  
FUNCTION  
Select U12 MAX6070  
J13  
1-2  
1-2 and 11-12  
2-3  
MAX6070  
J37  
VREF1_ADC, VREF2_ADC  
Select U11 MAX6126  
J13  
MAX6126  
J37  
1-2 and 11-12  
OPEN  
VREF1_ADC, VREF2_ADC  
Select ADC_EXT_REF  
J13  
EXT_REF (TP12)  
INT_REF  
J37  
1-2 and 11-12  
OPEN  
VREF1_ADC, VREF2_ADC  
J13  
J37  
OPEN  
MAX11150/MAX11158/MAX11160/MAX11168 only  
Maxim Integrated  
14  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
for the MAX9632 op amps, as well +10V and -10V sup-  
plies for the MAX44242 op amps. Additional supplies are  
generated for +5V, +5.33V, and +3.3V/+2.5 for the ADCs  
User-Supplied Power Supply  
The EV kit receives power from a single DC source of  
20V, 500mA through a J1 power jack. The MAX13256,  
H-bridge driver and transformer create an additional  
negative rail for +18V and -18V. The power is then recti-  
fied and regulated down to a +15V and -15V supplies  
and V  
. See the EV kit schematics for details. Specific  
REF  
voltages can be connected to the board for each rail, see  
Table 6 for corresponding jumper positions.  
Table 6. Power Supply to the Board  
POWER  
INPUT CONNECTORS  
JUMPERS  
J12: 1-2  
J15: 3-4  
J16: 3-4  
J26: 3-4  
J27: 5-6  
J17: 3-4  
J24: 5-6  
Single +20V input from a wall adapter  
(default)  
J1  
J12: Open  
J15: 1-2  
J16: 1-2  
J26: 3-4  
J27: 5-6  
J17: 3-4  
J24: 5-6  
TP35 (+18V)  
TP30 (-18V)  
An external ±18V  
An external ±15V  
An external ±10V  
J12: Open  
J15: Open  
J16: Open  
J26: 1-2  
J27: 3-4  
J17: 3-4  
TP38 (+15V)  
TP37 (-15V)  
J24: 5-6  
J12: Open  
J15: Open  
J16: Open  
J26: 3-4  
TP9 (+10V)  
TP23 (-10V)  
J27: 5-6  
J17: 1-2  
J24: 3-4  
Maxim Integrated  
15  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
for gain control. Each ADC channel can be configured  
as single-ended bipolar, differential bipolar, single-ended  
unipolar, and differential unipolar. See Tables 8 and 9 for  
these analog input configurations for channels A and B,  
respectively.  
Analog Input Voltage Ranges  
The MAX1115X/MAX1116X are 18-/16-bit, single-chan-  
nel, pseudo-differential ADCs. The ADCs convert input  
signals on the ADC pin AIN+ (ADx_INP) in the range of  
(±5V + AIN-) for bipolar or (5V + AIN-) to AIN- for unipolar.  
For accurate conversions, the ADC pin AIN+ should also  
The analog front-end consists of two channels (A and B,  
one for each ADC) and for each channel there are four  
user-selectable input pairs (for example AINx+ and AINx-  
where x is 0, 1, 2, or 3) allowing selection between one of  
two op amp solutions. The MAX9632, which is a 36V, pre-  
cision, low-noise, wide-band amplifier or the MAX44242,  
which is a 20V, low input-bias-current, low-noise, dual  
op amp. The op amps can be configured as inverting or  
noninverting amplifiers by jumper selectors. Both op amps  
work as anti-aliasing lowpass filters (LPF) and can be  
daisy-chained to create a second-order LPF.  
be limited to ±(V  
+ 0.1V) for bipolar and (V  
+ 0.1V)  
DD  
DD  
to -0.1V for unipolar. The ADC pin AIN- (ADx_INM) has an  
input range of -0.1V to +0.1V and is typically connected  
to the analog ground plane (AGND) of the EV kit. The  
MAX1115X/MAX1116X perform a true differential sample  
on inputs between AIN+ and AIN- with good common-  
mode rejection and by connecting the EV kit input signal  
GND_SENSE to the ground reference of the input signal  
source. This allows for improved sampling of remote  
transducer inputs. See the jumper settings in Table 2 for  
J34 and J39.  
The range of possible configurations for Channels A and  
B are listed in Tables 8 and 9, and the jumper connections  
are shown in Figures 6 to 12.  
ADC Input Amplifiers  
The input amplifiers allow for significant flexibility, support-  
ing bipolar or unipolar input paths, as well as the option  
Table 7. Analog Input Voltage Ranges  
ADC INPUT  
RANGE  
MAX9632 INPUT  
RANGE  
MAX44242 INPUT  
COMMENTS  
RANGE  
ADC  
MAX11158,  
MAX11168  
Beyond-the-Rail ADCs work from  
unipolar supply  
±5V  
±10V  
±10V  
V
REF  
is used to bias the op amp  
common mode to support 0 to +5V  
input to the ADC.  
±5V  
±5V  
VREF2 bias’s  
common mode for U9  
(MAX44242) at 2.5V.  
VREF4 bias’s common  
mode for U26  
VREF1 bias’s common  
mode for U8 (MAX9632)  
at 2.5V.  
VREF3 bias’s common  
mode for U28  
MAX11150,  
MAX11152,  
MAX11160,  
MAX11162  
The first ADC (U10) Common Mode  
(CM) bias is set with VREF1 and  
VREF2 depending upon the op amp  
selected, and the second ADC (U14)  
CM bias is set with VREF3 and  
VREF4 depending upon the op amp  
selected.  
0 to +5V  
(MAX9632) at 2.5V  
(MAX44242) at 2.5V  
Maxim Integrated  
16  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 8. Analog Input Configurations (Channel A0–A3)  
CONFIGURATION  
SIGNAL-PATH INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
NO.  
DESCRIPTION  
J28: 1-2  
Noninverting, single-ended,  
second-order LPF (default)  
CON3: AIN0+ (or TP2)  
and AGND (or TP8)  
J29: 1-2  
J32: 5-6 and 3-4  
J34: 1-2 and 7-8  
1
MAX9632, Channel A0  
MAX9632, Channel A0  
MAX9632, Channel A0  
MAX9632, Channel A0  
MAX9632, Channel A1  
MAX9632, Channel A1  
MAX9632, Channel A1  
MAX44242, Channel A2  
MAX44242, Channel A2  
MAX44242, Channel A2  
J28: Open  
J29: 1-2  
J32: 5-6 and 3-4  
J34: 1-2 and 7-8  
Noninverting, differential, second-  
order LPF  
CON3 (TP2): AIN0+  
CON2 (TP1): AIN0-  
2
3
J28: 1-2  
J29: 3-4  
J32: 1-2 and 7-8  
J34: 1-2 and 7-8  
CON3: AIN0+  
or (TP2) and AGND (or  
TP8)  
Inverting, single-ended, second-  
order LPF  
J28: Open  
J29: 3-4  
J32: 1-2 and 7-8  
J34: 1-2 and 7-8  
Inverting, differential, second-order CON2 (TP1): AIN0-  
LPF  
4
CON3 (TP2): AIN0+  
J28: Open  
J29: 1-2  
J32: 3-4 and 7-8  
J34: 1-2 and 7-8  
Noninverting, single-ended, first-  
order LPF  
CON5: AIN1+ (or TP7)  
and AGND (or TP15)  
5
J28: Open  
J29: Open  
J32: 3-4 and 7-8  
J34: 1-2 and 7-8  
CON5 (TP7): AIN1+  
CON4 (TP10): AIN1-  
6
Differential, first-order LPF  
J28: Open  
J29: 3-4  
J32: 3-4 and 7-8  
J34: 1-2 and 7-8  
Inverting, single-ended, first-order  
LPF  
CON4: AIN1- (or TP10)  
and AGND (or TP15)  
7
J33: 1-2  
J31: 1-2  
J36: 5-6 and 3-4  
J34: 3-4 and 7-8  
Noninverting, single-ended,  
second-order LPF (default)  
TP19: AIN2+ and AGND  
(or TP11)  
8
J33: Open  
J31: 1-2  
J36: 5-6 and 3-4  
J34: 3-4 and 7-8  
Noninverting, differential, second-  
order LPF  
TP19: AIN2+  
TP18: AIN2-  
9
J33: 1-2  
J31: 3-4  
J36: 1-2 and 7-8  
J34: 3-4 and 7-8  
Inverting, single-ended, second-  
order LPF  
TP19: AIN2+ and AGND  
(or TP11)  
10  
Maxim Integrated  
17  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 8. Analog Input Configurations (Channel A0–A3) (continued)  
CONFIGURATION  
SIGNAL-PATH INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
NO.  
DESCRIPTION  
J33: Open  
Inverting, differential, second-order TP18: AIN2-  
J31: 3-4  
J36: 1-2 and 7-8  
J34: 3-4 and 7-8  
11  
MAX44242, Channel A2  
LPF  
TP19: AIN2+  
J31: 1-2  
J36: 3-4 and 7-8  
J34: 3-4 and 7-8  
Noninverting, single-ended, first-  
order LPF  
TP14: AIN3+ and AGND  
(or TP17)  
12  
13  
14  
MAX44242, Channel A3  
MAX44242, Channel A3  
MAX44242, Channel A3  
J31: Open  
J36: 3-4 and 7-8  
J34: 3-4 and 7-8  
TP14: AIN3+  
TP16: AIN3-  
Differential, first-order LPF  
J31: 3-4  
J36: 3-4 and 7-8  
J34: 3-4 and 7-8  
Inverting, single-ended, first-order  
LPF  
TP16: AIN3- and AGND  
(or TP17)  
AIN0-  
J28  
-
1
3
2
4
J32  
1
3
2
4
-
MAX9632  
J34  
1
ADC_INP  
2
+
5
7
6
8
AIN0+  
MAX9632  
3
4
6
8
V
IN  
MAX1115X/  
MAX1116X  
+
5
7
SAR ADC  
ADC_INM  
VREF  
AIN1-  
AIN1+  
J29  
1
3
2
4
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 6. Noninverting, Single-Ended, Second-Order LPF  
Maxim Integrated  
18  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
AIN0-  
-
J28  
2
4
1
3
J32  
1
2
4
V
IN  
MAX9632  
-
3
5
7
J34  
+
ADC_INP  
ADC_INM  
2
1
3
6
8
MAX9632  
AIN0+  
4
6
8
MAX1115X/  
MAX1116X  
SAR ADC  
+
5
7
VREF  
AIN1-  
AIN1+  
J29  
1
3
2
4
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 7. Noninverting, Differential, Second-Order LPF  
AIN0-  
-
J28  
1
3
2
4
J32  
1
3
2
-
MAX9632  
4
6
8
J34  
ADC_INP  
ADC_INM  
+
2
1
AIN0+  
5
7
MAX9632  
+
3
5
7
4
6
8
V
IN  
MAX1115X/  
MAX1116X  
SAR ADC  
VREF  
AIN1-  
AIN1+  
J29  
1
3
2
4
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 8. Inverting, Single-Ended, Second-Order LPF  
Maxim Integrated  
19  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
AIN0-  
-
J28  
1
3
2
4
J32  
1
3
2
4
V
IN  
-
MAX9632  
J34  
+
ADC_INP  
ADC_INM  
2
1
AIN0+  
5
7
6
8
MAX9632  
3
5
7
4
6
8
MAX1115X/  
MAX1116X  
SAR ADC  
+
VREF  
AIN1-  
J29  
1
3
2
4
AIN1+  
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 9. Inverting, Differential, Second-Order LPF  
AIN0-  
-
J28  
1
3
2
4
J32  
1
3
2
-
MAX9632  
4
J34  
+
ADC_INP  
ADC_INM  
1
3
2
4
AIN0+  
5
7
6
8
MAX9632  
+
MAX1115X/  
MAX1116X  
SAR ADC  
5
7
6
8
VREF  
AIN1-  
AIN1+  
J29  
1
3
2
4
V
IN  
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 10. Noninverting, Single-Ended, First-Order LPF  
Maxim Integrated  
20  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
AIN0-  
-
J28  
1
3
2
4
J32  
1
3
2
4
-
MAX9632  
J34  
+
ADC_INP  
ADC_INM  
2
1
AIN0+  
5
7
6
8
MAX9632  
3
5
7
4
6
8
MAX1115X/  
MAX1116X  
SAR ADC  
+
VREF  
AIN1-  
J29  
1
3
2
4
V
IN  
AIN1+  
INPUT FROM MAX44242 Amps  
GND_SENSE  
Figure 11. Differential, First-Order LPF  
AIN0-  
J28  
-
2
4
1
3
J32  
1
3
2
4
MAX9632  
-
J34  
+
ADC_INP  
ADC_INM  
1
3
2
4
AIN0+  
5
7
6
8
MAX9632  
MAX1115X/  
MAX1116X  
SAR ADC  
+
5
7
6
8
VREF  
AIN1-  
AIN1+  
J29  
2
4
1
3
V
IN  
INPUT FROM MAX44242 AMPS  
GND_SENSE  
Figure 12. Inverting, Single-Ended, First-Order LPF  
Maxim Integrated  
21  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 9. Analog Input Configurations (Channel B0–B3)  
CONFIGURATION  
SIGNAL-PATH INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
J5: 1-2  
No.  
DESCRIPTION  
Noninverting, single-ended,  
second-order LPF (default)  
CON11: BIN0+ (or TP54):  
and AGND (or TP39)  
J9: 1-2  
J10: 5-6 and 3-4  
J39: 1-2 and 7-8  
1
MAX9632, Channel B0  
MAX9632, Channel B0  
MAX9632, Channel B0  
MAX9632, Channel B0  
J5: Open  
J9: 1-2  
J10: 5-6 and 3-4  
J39: 1-2 and 7-8  
Noninverting, differential,  
second-order LPF  
CON11 (TP54): BIN0+  
CON10 (TP53): BIN0-  
2
3
4
J5: 1-2  
J9: 3-4  
J10: 1-2 and 7-8  
J39: 1-2 and 7-8  
CON11: BIN0+  
or (TP54): and AGND (or  
TP39)  
Inverting, single-ended, second-  
order LPF  
J5: Open  
J9: 3-4  
J10: 1-2 and 7-8  
J39: 1-2 and 7-8  
Inverting, differential, second-  
order LPF  
CON10 (TP53): BIN0-  
CON11 (TP54): BIN0+  
CON13: BIN1+  
or (TP56): and AGND (or  
TP41)  
J9: 1-2  
J10: 3-4 and 7-8  
J39: 1-2 and 7-8  
Noninverting, single-ended, first-  
order LPF  
5
6
7
MAX9632, Channel B1  
MAX9632, Channel B1  
MAX9632, Channel B1  
J9: Open  
J10: 3-4 and 7-8  
J39: 1-2 and 7-8  
CON13 (TP56): BIN1+  
CON12 (TP55): BIN1-  
Differential, first-order LPF  
J9: 3-4  
J10: 3-4 and 7-8  
J39: 1-2 and 7-8  
Inverting, single-ended, first-  
order LPF  
CON12: BIN1- or (TP55):  
and AGND (or TP41)  
J6: 1-2  
Noninverting, single-ended,  
second-order LPF (default)  
TP58: BIN2+ and AGND (or  
TP40)  
J7: 1-2  
J11: 5-6 and 3-4  
J39: 3-4 and 7-8  
8
9
MAX44242, Channel B2  
MAX44242, Channel B2  
MAX44242, Channel B2  
J6: Open  
J7: 1-2  
J11: 5-6 and 3-4  
J39: 3-4 and 7-8  
Noninverting, differential,  
second-order LPF  
TP58: BIN2+  
TP57: BIN2-  
J5: 1-2  
J7: 3-4  
J11: 1-2 and 7-8  
J39: 3-4 and 7-8  
Inverting, single-ended, second-  
order LPF  
TP58: BIN2+ and AGND (or  
TP40)  
10  
Maxim Integrated  
22  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Table 9. Analog Input Configurations (Channel B0–B3) (continued)  
CONFIGURATION  
SIGNAL-PATH INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
No.  
DESCRIPTION  
J6: Open  
Inverting, differential, second-  
order LPF  
TP57: BIN2-  
TP58: BIN2+  
J7: 3-4  
J11: 1-2 and 7-8  
J39: 3-4 and 7-8  
11  
MAX44242, Channel B2  
J7: 1-2  
J11: 3-4 and 7-8  
J39: 3-4 and 7-8  
Noninverting, single-ended, first-  
order LPF  
TP60: BIN3+ and AGND (or  
TP42)  
12  
13  
14  
MAX44242, Channel B3  
MAX44242, Channel B3  
MAX44242, Channel B3  
J7: Open  
J11: 3-4 and 7-8  
J39: 3-4 and 7-8  
TP60: BIN3+  
TP59: BIN3-  
Differential, first-order LPF  
J7: 3-4  
J11: 3-4 and 7-8  
J39: 3-4 and 7-8  
Inverting, single-ended, first-  
order LPF  
TP59: BIN3- and AGND (or  
TP42)  
Note: Alternate connections are shown in parentheses.  
one option should be used at a time. The relationship  
between f , f , N , and M is given as  
follows:  
Sync Input and Sync Output  
IN  
S
CYCLES  
SAMPLES  
Sync input and sync output is applicable to the FPGA  
(ZedBoard) and is not used in standalone mode. The  
SYNC_IN SMA accepts an approximate 100MHz wave-  
form signal to generate the system clock of the ZedBoard.  
For maximum performance, use a low-jitter clock that  
syncs to the user’s analog function generator. The  
SYNC_OUT SMA outputs a 10MHz square waveform  
that syncs to the user’s analog function generator. Both  
options are used for coherent sampling of the IC. Only  
f /f = N  
/M  
IN S  
CYCLES SAMPLES  
where:  
f
= Input frequency  
IN  
f = Sampling frequency  
S
N
= Prime number of cycles in the sampled set  
CYCLES  
M
= Total number of samples  
SAMPLES  
LOW-JITTER CLOCK  
REF_OUT  
~100MHz  
ZedBoard/FPGA Board  
OUT  
10MHz  
SIGNAL GENERATOR  
_
MASTER_CLOCK  
INV-  
10kHz  
SYNC _IN  
FPGA  
PC  
REF_IN  
+
INV+  
MAX1115X/MAX1116X EV KIT  
ETHERNET CABLE  
Figure 13. EV Kit Coherent Sampling Setup  
Maxim Integrated  
23  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 14. MAX1115X/MAX1116X EV Kit Component Placement Guide—Top Side  
Maxim Integrated  
24  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 15. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 1  
Maxim Integrated  
25  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 16. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 2  
Maxim Integrated  
26  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 17. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 3  
Maxim Integrated  
27  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 18. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 4  
Maxim Integrated  
28  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 19. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 5  
Maxim Integrated  
29  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 20. MAX1115X/MAX1116X EV Kit PCB Layout—Layer 6  
Maxim Integrated  
30  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Figure 21. MAX1115X/MAX1116X EV Kit Component Placement Guide—Bottom Side  
Maxim Integrated  
31  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Component List and Schematic Diagrams  
Refer to files “evkit_bom_max1115x6x_evkit_revA.csv” and “MAX1115X6X_EVKIT_Reva.SCH.pdf” attached to this data  
sheet for component information and schematics diagrams.  
Contact Avnet to purchase a ZedBoard (AES-Z7EV-7Z020-G) to communicate with the MAX1115X/MAX1116X EV kit.  
Ordering Information  
PART  
TYPE  
EVKIT  
EVKIT  
EVKIT  
EVKIT  
EVKIT  
EVKIT  
MAX11150EVKIT#  
MAX11152EVKIT#  
MAX11158EVKIT#  
MAX11160EVKIT#  
MAX11162EVKIT#  
MAX11168EVKIT#  
#Denotes RoHS compliant.  
Maxim Integrated  
32  
www.maximintegrated.com  
Evaluates: MAX11150/MAX11152/  
MAX11158/MAX11160/MAX11161/MAX11162/  
MAX11163/MAX11168/MAX11169  
MAX1115X/MAX1116X Family  
Evaluation Kit  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
5/15  
Initial release  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2015 Maxim Integrated Products, Inc.  
33  

相关型号:

MAX11152

500ksps Throughput Rates Without Pipeline
MAXIM

MAX11154

500ksps Throughput Rates Without Pipeline
MAXIM

MAX11154ETC+T

ADC, Successive Approximation, 18-Bit, 1 Func, 1 Channel, Serial Access, PDSO12, 3 X 3 MM, ROHS COMPLIANT, TDFN-12
MAXIM

MAX11156

18-Bit, 500ksps, ±5V SAR ADC with Internal Reference in TDFN
MAXIM

MAX11156ETC+

ADC, Successive Approximation, 18-Bit, 1 Func, 1 Channel, Serial Access, PDSO12, 3 X 3 MM, ROHS COMPLIANT, TDFN-12
MAXIM

MAX11156ETC+T

ADC, Successive Approximation, 18-Bit, 1 Func, 1 Channel, Serial Access, PDSO12, 3 X 3 MM, ROHS COMPLIANT, TDFN-12
MAXIM

MAX11158

500ksps Throughput Rates Without Pipeline
MAXIM

MAX11158EUB+T

A/D Converter, 18-Bit, 1 Func, PDSO10,
MAXIM

MAX1115EKA

Single-Supply, Low-Power, Serial 8-Bit ADCs
MAXIM

MAX1115EKA+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX1115EKA+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX1116

Single-Supply.Low-Power.Serial 8-Bit ADCs
MAXIM