MAX1115EKA [MAXIM]

Single-Supply, Low-Power, Serial 8-Bit ADCs; 单电源,低功耗,串行8位ADC
MAX1115EKA
型号: MAX1115EKA
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Single-Supply, Low-Power, Serial 8-Bit ADCs
单电源,低功耗,串行8位ADC

文件: 总12页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1822; Rev 1; 2/02  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
General Description  
Features  
The MAX1115/MAX1116 low-power, 8-bit, analog-to-  
digital converters (ADCs) feature an internal track/hold  
o Single Supply  
+2.7V to +3.6V (MAX1115)  
(T/H), voltage reference, V  
monitor, clock, and serial  
DD  
+4.5V to +5.5V (MAX1116)  
interface. The MAX1115 is specified from +2.7V to  
+5.5V, and the MAX1116 is specified from +4.5V to  
+5.5V. Both parts consume only 175µA at 100ksps.  
o Input Voltage Range: 0 to V  
REF  
o Internal Track/Hold; 100kHz Sampling Rate  
The full-scale analog input range is determined by the  
internal reference of +2.048V (MAX1115) or +4.096V  
(MAX1116). The MAX1115/MAX1116 also feature  
AutoShutdown™ power-down mode which reduces  
power consumption to <1µA when the device is not in  
use. The 3-wire serial interface directly connects to  
SPI™, QSPI™, and MICROWIRE™ devices without  
external logic. Conversions up to 100ksps are per-  
formed using an internal clock.  
o Internal Reference  
+2.048V (MAX1115)  
+4.096V (MAX1116)  
o SPI/QSPI/MICROWIRE-Compatible Serial Interface  
o Small 8-Pin SOT23 Package  
o Automatic Power-Down  
o Low Power  
The MAX1115/MAX1116 are available in an 8-pin  
SOT23 package with a footprint that is just 30% of an  
8-pin SO.  
175µA at 100ksps  
18µA at +3V and 10ksps  
1µA in Power-Down Mode  
Ordering Information  
________________________Applications  
Low-Power, Hand-Held Portable Devices  
PIN-  
PACKAGE  
TOP  
MARK  
PART  
TEMP RANGE  
System Diagnostics  
MAX1115EKA  
MAX1116EKA  
-40°C to +85°C 8 SOT23  
-40°C to +85°C 8 SOT23  
AADU  
AADV  
Battery-Powered Test Equipment  
Receive-Signal-Strength Indicators  
4mA to 20mA Powered Remote Data-Acquisition  
Systems  
Pin Configuration  
TOP VIEW  
V
1
2
3
4
8
7
6
5
SCLK  
DOUT  
CONVST  
I.C.  
DD  
CH0  
I.C.  
AutoShutdown is a trademark of Maxim Integrated Products.  
SPI/QSPI are trademarks of Motorola, Inc.  
MAX1115  
MAX1116  
GND  
MICROWIRE is a trademark of National Semiconductor, Corp.  
SOT23  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
ABSOLUTE MAXIMUM RATINGS  
DD  
V
to GND...........................................................-0.3V to +6.0V  
Operating Temperature Range  
CH0 to GND ...............................................-0.3V to (V  
Digital Output to GND ................................-0.3V to (V  
Digital Input to GND ..............................................-0.3V to +6.0V  
Maximum Current into Any Pin ......................................... 50mA  
+ 0.3V)  
+ 0.3V)  
MAX111_EKA ..................................................-40°C to + 85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= +2.7V to +3.6V (MAX1115), V  
= +4.5V to +5.5V (MAX1116), T = T  
to T  
, unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
8
Bits  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
INL  
(Note 1)  
1
1
DNL  
LSB  
0.5  
5
LSB  
Gain Error  
%FSR  
ppm/°C  
%
Gain Temperature Coefficient  
90  
2
V
/2 Sampling Error  
DD  
7
DYNAMIC PERFORMANCE (25kHz sine-wave input, V = V  
(
), f  
= 5MHz, f  
= 100ksps, R = 100)  
IN  
REF P-P SCLK  
SAMPLE  
IN  
Signal-to-Noise Plus Distortion  
SINAD  
48  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th Harmonic)  
THD  
-69  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
ANALOG INPUT  
SFDR  
66  
4
dB  
f
MHz  
-3dB  
Input Voltage Range  
0
V
V
REF  
10  
Input Leakage Current  
Input Capacitance  
V
= 0 or V  
0.7  
18  
µA  
pF  
CH  
DD  
C
IN  
INTERNAL REFERENCE  
MAX1115  
MAX1116  
2.048  
4.096  
Voltage  
V
V
V
REF  
POWER REQUIREMENTS  
Supply Voltage  
MAX1115  
MAX1116  
2.7  
4.5  
5.5  
5.5  
21  
V
DD  
f
f
f
f
= 10ksps  
14  
135  
19  
SAMPLE  
SAMPLE  
SAMPLE  
SAMPLE  
MAX1115  
= 100ksps  
= 10ksps  
= 100ksps  
190  
25  
Supply Current (Note 2)  
I
µA  
DD  
MAX1116  
Shutdown  
182  
0.8  
230  
10  
2
_______________________________________________________________________________________  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= +2.7V to +3.6V (MAX1115), V  
= +4.5V to +5.5V (MAX1116), T = T  
to T  
, unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Full-scale or zero input  
MIN  
TYP  
MAX  
UNITS  
Supply Rejection Ratio  
PSRR  
0.5  
1
LSB/V  
DIGITAL INPUTS (CNVST AND SCLK)  
Input High Voltage  
Input Low Voltage  
Input Hystersis  
V
2
V
V
IH  
V
0.8  
IL  
V
0.2  
2
V
HYST  
Input Current High  
Input Current Low  
Input Capacitance  
DIGITAL OUTPUT (DOUT)  
Output High Voltage  
I
10  
10  
µA  
µA  
pF  
IH  
I
IL  
C
IN  
V
I
I
I
= 2mA  
V
- 0.5  
V
V
OH  
SOURCE  
DD  
= 2mA  
0.4  
0.8  
10  
SINK  
SINK  
Output Low Voltage  
V
OL  
= 4mA  
Three-State Leakage Current  
I
0.01  
4
µA  
pF  
L
Three-State Output Capacitance  
C
OUT  
TIMING CHARACTERISTICS (Figures 6a6d)  
CNVST High Time  
CNVST Low Time  
t
100  
100  
ns  
ns  
µs  
ns  
ns  
ns  
csh  
t
csl  
Conversion Time  
t
7.5  
conv  
Serial Clock High Time  
Serial Clock Low Time  
Serial Clock Period  
t
t
75  
75  
ch  
t
cl  
200  
cp  
Falling of CNVST to DOUT  
Active  
t
C
C
C
= 100pF, Figure 1  
= 100pF  
100  
100  
500  
ns  
ns  
ns  
ns  
csd  
LOAD  
LOAD  
LOAD  
Serial Clock Falling Edge to  
DOUT  
t
10  
100  
50  
cd  
Serial Clock Rising Edge  
To DOUT High-Z  
t
t
= 100pF, Figure 2  
chz  
ccs  
Last Serial Clock to Next CNVST  
(successive conversions on CH0)  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the full-scale range and off-  
set have been calibrated.  
Note 2: Input = 0, with logic input levels of 0 and V  
.
DD  
_______________________________________________________________________________________  
3
Single-Supply, Low-Power, Serial 8-Bit ADCs  
Typical Operating Characteristics  
(V  
noted.)  
= +3V (MAX1115), V  
= +5V (MAX1116), f  
scu  
= 5MHz, f  
= 100ksps, CLOAD = 100pF, T = +25°C, unless otherwise  
sample A  
DD  
DD  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1.0  
1.0  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
3.5  
0
50  
100  
150  
200  
250  
300  
4.5  
0
50  
100  
150  
200  
250  
300  
2.5  
5.5  
OUTPUT CODE  
SUPPLY VOLTAGE (V)  
OUTPUT CODE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SUPPLY CURRENT vs.  
CONVERSION RATE  
200  
100.0  
10.0  
200  
150  
100  
50  
150  
100  
50  
MAX1116  
MAX1116  
V
= +5V  
DD  
MAX1116  
MAX1115  
V
= +5V  
MAX1115  
= +3V  
DD  
MAX1115  
V
DD  
V
= +3V  
DD  
1.0  
0
D
= 00000000  
DIGITAL INPUTS  
OUT  
DD  
V
= V  
D
V
= 00000000  
OUT  
= V = V  
REF  
DD  
DIGITAL INPUTS  
0
0
-40  
-15  
10  
35  
60  
85  
0.01  
0.1  
1
10  
100  
2.5  
3.5  
4.5  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
CONVERSION (ksps)  
CONVERSION TIME  
vs. SUPPLY VOLTAGE  
CONVERSION TIME  
vs. TEMPERATURE  
GAIN ERROR vs.  
SUPPLY VOLTAGE  
5.5  
5.4  
5.3  
5.2  
5.5  
5.4  
5.3  
5.2  
1.4  
1.2  
1.0  
0.8  
V
= +3V  
DD  
MAX1115  
= +3V  
V
DD  
MAX1116  
DD  
V
= +5V  
0.6  
0.4  
0.2  
5.1  
5.0  
5.1  
5.0  
V
DD  
= +5V  
-15  
0
2.5  
3.5  
4.5  
5.5  
-40  
10  
35  
60  
85  
2.5  
3.5  
4.5  
5.5  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
4
_______________________________________________________________________________________  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
Typical Operating Characteristics (continued)  
(V  
noted.)  
= +3V (MAX1115), V  
= +5V (MAX1116), f  
= 5MHz, f  
= 100ksps, CLOAD = 100pF, T = +25°C, unless otherwise  
DD  
DD  
scu  
sample  
A
GAIN ERROR  
vs. TEMPERATURE  
FFT PLOT  
0
2.0  
1.5  
1.0  
0.5  
0
f
f
= 100kHz  
SAMPLE  
IN  
= 25.1kHz  
IN  
-20  
A
= 0.9xV p-p  
REF  
-40  
-60  
MAX1116  
= +5V  
MAX1115  
= +3V  
V
DD  
V
DD  
-0.5  
-1.0  
-80  
-100  
-120  
-1.5  
-2.0  
10k  
20k  
40k  
50k  
0
30k  
-40  
-15  
10  
35  
60  
85  
ANALOG INPUT FREQUENCY (Hz)  
TEMPERATURE (°C)  
OFFSET ERROR vs.  
TEMPERATURE  
OFFSET ERROR vs.  
SUPPLY VOLTAGE  
0.5  
0.4  
0.5  
0.4  
0.3  
0.3  
0.2  
0.1  
MAX1116  
DD  
MAX1116  
DD  
0.2  
V
= +3V  
V
= +3V  
0.1  
0
0
-0.1  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.3  
-0.4  
MAX1115  
DD  
MAX1115  
V
= +3V  
V
= +5V  
DD  
-0.5  
-40  
-15  
10  
35  
60  
85  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
MAX1116  
REFERENCE VOLTAGE  
vs. NUMBER OF PIECES  
MAX1115  
REFERENCE VOLTAGE  
vs. NUMBER OF PIECES  
21.0%  
17.5%  
14.0%  
10.5%  
7.0%  
3.5%  
0
21.0%  
17.5%  
14.0%  
10.5%  
7.0%  
3.5%  
0
3.980  
4.020  
4.060  
4.100  
4.140  
4.180  
1.982  
2.008  
2.034  
2.060  
2.086  
2.112  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
_______________________________________________________________________________________  
5
Single-Supply, Low-Power, Serial 8-Bit ADCs  
Pin Description  
PIN  
1
NAME  
FUNCTION  
V
Positive Supply Voltage  
Analog Voltage Input  
DD  
2
CH0  
I.C.  
3, 5  
4
Internally Connected. Connect to ground.  
Ground  
GND  
CNVST  
6
Convert/Start Input. CNVST initiates a power-up and starts a conversion on its falling edge.  
Serial Data Output. Data is clocked out on the falling edge of SCLK. DOUT goes low at the start of a  
conversion and presents the MSB at the completion of a conversion. DOUT goes high impedance  
once data has been fully clocked out.  
7
8
DOUT  
SCLK  
Serial Clock. Used for clocking out data on DOUT.  
V
V
DD  
DD  
3k  
3kΩ  
DOUT  
DOUT  
DOUT  
DOUT  
3kΩ  
3kΩ  
C
C
LOAD  
C
C
LOAD  
LOAD  
LOAD  
GND  
a) V TO V  
GND  
GND  
GND  
b) HIGH-Z TO V AND V TO V  
OL  
OL  
OH  
OL  
OH  
a) V TO HIGH-Z  
b) V TO HIGH-Z  
OL  
OH  
Figure 2. Load Circuits for Disable Time  
Figure 1. Load Circuits for Enable Time  
Sufficiently low source impedance is required to ensure  
an accurate sample. A source impedance of <1.5kis  
recommended for accurate sample settling. A 100pF  
capacitor at the ADC inputs also improves the accuracy  
of an input sample.  
Detailed Description  
The MAX1115/MAX1116 ADCs use a successive-  
approximation conversion technique and input  
track/hold (T/H) circuitry to convert an analog signal to  
an 8-bit digital output. The SPI/QSPI/MICROWIRE-  
compatible interface directly connects to microproces-  
sors (µPs) without additional circuitry (Figure 3).  
Conversion Process  
The MAX1115/MAX1116 conversion process is internal-  
ly timed. The total acquisition and conversion process  
takes <7.5µs. Once an input sample has been  
acquired, the comparators negative input is then con-  
nected to an auto-zero supply. Since the device  
requires only a single supply, the negative input of the  
Track/Hold  
The input architecture of the ADC is illustrated in the  
equivalent-input circuit shown in Figure 4 and is com-  
posed of the T/H, input multiplexer, input comparator,  
switched capacitor DAC, and auto-zero rail.  
comparator is set to equal V /2. The capacitive DAC  
DD  
The acquisition interval begins with the falling edge of  
CNVST. During the acquisition interval, the analog input  
restores the positive input to V /2 within the limits of 8-  
DD  
bit resolution. This action is equivalent to transferring a  
(CH0) is connected to the hold capacitor (C  
).  
HOLD  
charge Q = 16pF  
V
from C  
to the binary-  
HOLD  
IN  
IN  
Once the acquisition is complete, the T/H switch opens  
and C is connected to GND, which retains the  
weighted capacitive DAC, which forms a digital repre-  
sentation of the analog-input signal.  
HOLD  
charge on C  
log input.  
as a sample of the signal at the ana-  
HOLD  
6
_______________________________________________________________________________________  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
GND  
V
DD  
CAPACITIVE DAC  
V
V
CH0  
DD  
DD  
0.1µF  
1µF  
ANALOG  
INPUTS  
C
16pF  
HOLD  
GND  
CH0  
CPU  
COMPARATOR  
MAX1115  
MAX1116  
V
DD  
2
R
IN  
6.5kΩ  
I/O  
CONVST  
SCLK  
SCK (SK)  
HOLD  
TRACK  
DOUT  
MISO (SI)  
GND  
AUTO-ZERO  
RAIL  
Figure 3. Typical Operating Circuit  
Figure 4. Equivalent Input Circuit  
Input Voltage Range  
Internal protection diodes that clamp the analog input  
to V and GND allow the input pin (CH0) to swing  
I/O  
SCK  
CONVST  
SCLK  
DD  
MISO  
DOUT  
from (GND - 0.3V) to (V  
+ 0.3V) without damage.  
DD  
However, for accurate conversions, the inputs must not  
+3V  
MAX1115  
MAX1116  
exceed (V  
+ 50mV) or be less than (GND - 50mV).  
DD  
Input Bandwidth  
SS  
The ADCs input tracking circuitry has a 4MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADCs sampling rate by  
using undersampling techniques. Anti-alias filtering is  
recommended to avoid high-frequency signals being  
aliased into the frequency band of interest.  
a) SPI  
CS  
SCK  
CONVST  
SCLK  
DOUT  
MISO  
+3V  
MAX1115  
MAX1116  
Serial Interface  
The MAX1115/MAX1116 have a 3-wire serial interface.  
The CNVST and SCLK inputs are used to control the  
device, while the three-state DOUT pin is used to  
access the conversion results.  
SS  
b) QSPI  
CONVST  
I/O  
SK  
SI  
SCLK  
DOUT  
The serial interface provides connection to microcon-  
trollers (µCs) with SPI, QSPI, and MICROWIRE serial  
interfaces at clock rates up to 5MHz. The interface sup-  
ports either an idle high or low SCLK format. For SPI  
and QSPI, set CPOL = CPHA = 0 or CPOL = CPHA = 1  
in the SPI control registers of the µC. Figure 5 shows  
the MAX1115/MAX1116 common serial-interface con-  
nections. See Figures 6a6d for details on the serial-  
interface timing and protocol.  
MAX1115  
MAX1116  
c) MICROWIRE  
Figure 5. Common Serial-Interface Connections  
_______________________________________________________________________________________  
7
Single-Supply, Low-Power, Serial 8-Bit ADCs  
ACTIVE  
POWER-DOWN MODE  
t
CSH  
CH0  
CH0  
ccs  
CNVST  
t
t
t
cp  
t
CONV  
ch  
IDLE LOW  
IDLE LOW  
SCLK  
DOUT  
t
t
t
cl  
t
chz  
csd  
cd  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 6a. Conversion and Interface Timing, Conversion on CH0 with SCLK Idle Low  
ACTIVE  
POWER-DOWN MODE  
t
CSH  
CH0  
CH0  
CNVST  
SCLK  
t
t
t
t
ccs  
CONV  
ch  
cp  
IDLE HIGH  
IDLE HIGH  
t
t
cd  
t
cl  
t
chz  
csd  
DOUT  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 6b. Conversion and Interface Timing, Conversion on CH0 with SCLK Idle High  
The acquisition interval begins with the falling edge of  
CNVST. CNVST can idle between conversions in either  
a high or low state. If idled in a low state, CNVST must  
be brought high for at least 50ns, then brought low to  
Digital Inputs and Outputs  
The MAX1115/MAX1116 perform conversions by using  
an internal clock. This frees the µP from the burden of  
running the SAR conversion clock, and allows the con-  
version results to be read back at the µPs convenience  
at any clock rate up to 5MHz.  
initiate a conversion. To select V /2 for conversion,  
DD  
the CNVST pin must be brought high and low for a  
second time (Figures 6c and 6d).  
8
_______________________________________________________________________________________  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
ACTIVE  
POWER-DOWN MODE  
t
CSL  
t
CSH  
V
DD  
2
V
DD  
2
CH0  
CNVST  
CH0  
t
t
t
ccs  
t
ch  
cp  
CONV  
IDLE LOW  
IDLE LOW  
SCLK  
DOUT  
t
t
t
t
chz  
csd  
cd  
cl  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 6c. Conversion and Interface Timing, Conversion on V  
/ 2 with SCLK Idle Low  
DD  
ACTIVE  
POWER-DOWN MODE  
t
csl  
t
CSH  
V
DD  
2
V
DD  
2
CH0  
CNVST  
CH0  
t
t
t
ccs  
t
ch  
cp  
CONV  
SCLK  
IDLE HIGH  
IDLE HIGH  
t
t
cd  
t
t
chz  
csd  
cl  
DOUT  
D7 (MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Figure 6d. Conversion and Interface Timing, Conversion on V  
/ 2 with SCLK Idle High  
DD  
After CNVST is brought low, allow 7.5µs for the conver-  
sion to be completed. While the internal conversion is in  
progress, DOUT is low. The MSB is present at the  
DOUT pin immediately after conversion is completed.  
The conversion result is clocked out at the DOUT pin  
and is coded in straight binary (Figure 7). Data is  
clocked out at SCLKs falling edge in MSB-first format  
at rates up to 5MHz. Once all data bits are clocked out,  
DOUT goes high impedance (100ns to 500ns after the  
rising edge) of the eighth SCLK pulse.  
SCLK is ignored during the conversion process. Only  
after a conversion is complete will SCLK cause serial  
data to be output. Falling edges on CNVST during an  
_______________________________________________________________________________________  
9
Single-Supply, Low-Power, Serial 8-Bit ADCs  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
SYSTEM POWER SUPPLIES  
11111111  
11111110  
GND  
+3V/+5V  
11111101  
FS = V  
1LSB = V  
+ V  
IN-  
REFIN  
1µF  
10Ω  
REFIN  
256  
0.1µF  
00000011  
00000010  
GND  
IN-  
V
DGND  
V
DD  
DD  
00000001  
00000000  
DIGITAL  
CIRCUITRY  
MAX1115  
MAX1116  
0
1
2
3
FS  
FS - 1/2 LSB  
INPUT VOLTAGE (LSB)  
Figure 7. Input/Output Transfer Function  
Figure 8. Power-Supply Connections  
active conversion process interrupt the current conver-  
The power consumption consequence of this architec-  
ture is dramatic when relatively slow conversion rates  
are needed. For example, at a conversion rate of  
10ksps, the average supply current for the MAX1115 is  
15µA, while at 1ksps it drops to 15µA. At 0.1ksps it is  
just 0.3µA, or a miniscule 1µW of power consumption  
(see Average Supply Current vs. Conversion Rate plot  
in the Typical Operating Characteristics sections).  
sion and cause the input multiplexer to switch to V /2.  
DD  
To reinitiate a conversion on CH0, it is necessary to allow  
for a conversion to be complete and all of the data to be  
read out. Once a conversion has been completed, the  
MAX1115/MAX1116 goes into Autoshutdown mode  
(typically <1µA) until the next conversion is initiated.  
Applications Information  
Transfer Function  
Figure 7 depicts the input/output transfer function.  
Output coding is binary with a +2.048V reference,  
1LSB = 8mV(VREF/256).  
Power-On Reset  
When power is first applied, the MAX1115/MAX1116  
are in AutoShutdown (typically <1µA). A conversion  
can be started by toggling CNVST high to low.  
Powering up the MAX1115/MAX1116 with CNVST low  
does not start a conversion.  
Layout, Grounding, and Bypassing  
For best performance, board layout should ensure that  
digital and analog signal lines are separated from each  
other. Do not run analog and digital (especially clock)  
lines parallel to one another or run digital lines under-  
neath the ADC package.  
AutoShutdown and Supply Current  
Requirements  
The MAX1115/MAX1116 are designed to automatically  
shutdown once a conversion is complete, without any  
external control. An input sample and conversion  
process typically takes 5µs to complete, during which  
time the supply current to the analog sections of the  
device are fully on. All analog circuitry is shutdown after  
a conversion completes, which results in a supply cur-  
rent of <1µA (see Shutdown Current vs. Supply Voltage  
plot in the Typical Operating Characteristics section).  
The digital conversion result is maintained in a static  
register and is available for access through the serial  
interface at any time.  
Figure 8 shows the recommended system-ground con-  
nections. A single-point analog ground (star-ground  
point) should be established at the ADC ground.  
Connect all analog grounds to the star-ground. The  
ground-return to the power supply for the star ground  
should be low impedance and as short as possible for  
noise-free operation.  
High-frequency noise in the V  
power supply can  
DD  
affect the comparator in the ADC. Bypass the supply to  
the star ground with a 0.1µF capacitor close to the V  
DD  
pin of the MAX1115/MAX1116. Minimize capacitor lead  
10 ______________________________________________________________________________________  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
Functional Diagram  
SCLK  
CNVST  
CONTROL  
LOGIC AND  
INTERNAL  
OCSILLATOR  
CH0  
INPUT  
TRACK  
AND HOLD  
8-BIT  
SAR  
ADC  
OUTPUT  
SHIFT  
REGISTER  
INPUT  
MULTIPLEXER  
DOUT  
INTERNAL  
REFERENCE  
2.096V  
MAX1115  
MAX1116  
SPLIT  
DD  
V
/2  
OR 4.096V  
lengths for best supply-noise rejection. If the power  
supply is noisy, a 0.1µF capacitor in conjunction with a  
10series resistor can be connected to form a low-  
pass filter.  
Chip Information  
TRANSISTOR COUNT: 2000  
PROCESS: BiCMOS  
______________________________________________________________________________________ 11  
Single-Supply, Low-Power, Serial 8-Bit ADCs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1115EKA+

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX1115EKA+T

ADC, Successive Approximation, 8-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO8, SOT-23, 8 PIN
MAXIM

MAX1116

Single-Supply.Low-Power.Serial 8-Bit ADCs
MAXIM

MAX11160

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11160EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11160EUB+T

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11161

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11161EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11161EUB+T

ADC, Successive Approximation, 16-Bit, 1 Func, PDSO10,
MAXIM

MAX11162

16-Bit, 500ksps/250ksps, ±5V SAR ADCs with Internal Reference in TDFN
MAXIM

MAX11162EUB+

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, PDSO10, UMAX-10
MAXIM

MAX11162EUB+T

4-/6-/8-CHANNEL, 16-/14-BIT, SIMULTANEOUS-SAMPLING ADCS
MAXIM