MAX11253EVKIT [MAXIM]

High-Speed USB Connector, FMC Connector, and Pmod-Style Connector;
MAX11253EVKIT
型号: MAX11253EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Speed USB Connector, FMC Connector, and Pmod-Style Connector

文件: 总36页 (文件大小:4919K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
General Description  
Features  
The MAX11253/MAX11254 evaluation kit (EV kit) pro-  
vides a proven design to evaluate the MAX11253/  
MAX11254 family of 16-bit/24-bit, 6-channel, 64ksps,  
integrated PGA delta-sigma ADCs. The EV kit includes  
a graphical user interface (GUI) that provides communi-  
cation from the target device to the PC. The EV kit can  
operate in multiple modes:  
High-Speed USB Connector, FMC Connector, and  
Pmod-Style Connector  
8MHz SPI Clock Capability through FMC Connector  
8MHz SPI Clock Capability in Standalone Mode  
Various Sample Sizes and Sample Rates  
Collects Up to 1 Million Samples  
(with FPGA Platform)  
1) Standalone Mode: in “standalone” mode, the EV  
kit is connected to the PC via a USB cable and  
performs a subset of the complete EV kit functions  
with limitations for sample rate, sample size, and no  
support for coherent sampling.  
Time Domain, Frequency Domain, and Histogram  
Plotting  
Sync In and Sync Out for Coherent Sampling  
(with FPGA Platform)  
2) FPGA Mode: in “FPGA” mode, the EV kit is  
connected to an Avnet ZedBoard™ through a low-  
pin-count FMC connector. ZedBoard features a  
On-Board Input Buffers: MAX9632 and MAX44205  
(Fully Differential)  
®
®
On-Board Voltage References  
Xilinx Zynq -7000 SoC, which connects to the  
PC through an Ethernet port, allowing the GUI to  
perform different operations with full control over  
mezzanine card functions. The EV kit with FPGA  
platform performs the complete suite of evaluation  
tests for the target IC.  
(MAX6126 and MAX6070)  
Proven PCB Layout  
Fully Assembled and Tested  
Windows XP-, Windows 7-, and Windows  
8.1-Compatible Software  
3) User-Supplied SPI Mode: In addition to the USB and  
FMC interfaces, the EV kit provides a 12-pin Pmod-  
style header for user-supplied SPI interface to con-  
nect the signals for SCLK, DIN, DOUT, and CNVST.  
Ordering Information appears at end of data sheet.  
Pmod is a trademark of Digilent Inc.  
ZedBoard is a trademark of Avnet, Inc.  
®
®
The EV kit includes Windows XP , Windows 7, and  
Windows 8.1-compatible software for exercising the fea-  
tures of the IC. The EV kit GUI allows different sample  
sizes, adjustable sampling rates, internal or external ref-  
erence options, and graphing software that includes the  
FFT and histogram of the sampled signals.  
Xilinx and Zynq are registered trademarks and Xilinx is a regis-  
tered service mark of Xilinx, Inc.  
Windows and Windows XP are registered trademarks and reg-  
istered service marks of Microsoft Corporation.  
The ZedBoard accepts a +12V AC-DC wall adapter. The  
EV kit can be powered by a local +12V supply. The EV kit  
has on-board transformers and digital isolators to sepa-  
rate the IC from the ZedBoard/on-board processor.  
The MAX11253/MAX11254 EV kit comes installed with a  
MAX11253ATJ+ or MAX11254ATJ+ in a 32-pin TQFN-EP  
package.  
19-7584; Rev 2; 4/18  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX11253/11254 EV Kit Photo  
Maxim Integrated  
2  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
System Block Diagram  
MAX11253/MAX11254 EV Kit Files  
Note: In the following section(s), software-related items  
are identified by bolding. Text in bold refers to items direct-  
ly from the EV system software. Text in bold and under-  
line refers to items from the Windows operating system.  
FILE  
DECRIPTION  
Application Program  
(GUI)  
MAX11253_54EVKitSetupV1.0.exe  
Procedure  
ZedBoard firmware  
(SD card to boot  
Zynq)  
The EV kit is fully assembled and tested. Follow the steps  
below to verify board operation:  
Boot.bin  
1) Visit http://www.maximintegrated.com/evkitsoft-  
ware to download the latest version of the EV kit soft-  
ware, MAX11253_54EVKITSetupV1.0.zip. Save the  
EV kit software to a temporary folder and uncompress  
the ZIP file.  
Quick Start  
Required Equipment  
MAX11253/MAX11254 EV kit  
+12V (500mA) power supply  
Micro-USB cable  
2) Install the EV kit software and USB driver on your  
computer by running the MAX11253_54EVKitSetupV1.0.exe  
program inside the temporary folder. The program  
files are copied to your PC and icons are created in  
the Windows Start | Programs menu. At the end of  
the installation process the installer will launch the in-  
staller for the FTDIChip CDM drivers.  
ZedBoard FPGA platform  
(optional – NOT INCLUDED with EVKit)  
Function generator (optional)  
Windows XP, Windows 7, or Windows 8.1 PC with a  
spare USB port  
Maxim Integrated  
3  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
For Standalone mode:  
7) Start the EV kit software by opening its icon in the  
Start | Programs menu. The EV kit software appears  
as shown in Figure 1. From the Device menu select  
FPGA. Verify that the lower left status bar indicates  
the EV Kit hardware is Connected.  
1) Verify that all jumpers are in their default positions for  
the EV kit board (Table 2).  
2) Connect the PC to the EV kit using a micro-USB ca-  
ble.  
For Either Standalone or FPGA Mode:  
3) Connect the +12V adapter to the EV kit.  
1) Connect the positive terminal of the function genera-  
tor to the AIN0D+ (TP1) test point on the EV kit. Con-  
nect the negative terminal of the function generator to  
the AIN0D- (TP2) test point on the EV kit.  
4) Start the EV kit software by opening its icon in the  
Start | Programs menu. The EV kit software appears  
as shown in Figure 1. From the Device menu select  
Standalone. Verify that the lower left status bar indi-  
cates the EV Kit hardware is Connected.  
2) Configure the signal source to generate a 100Hz,  
1V  
sinusoidal wave with +1V offset.  
P-P  
For FPGA mode (when connected to a Zedboard):  
3) Turn on the function generator.  
1) Connect the Ethernet cable from the PC to the Zed-  
Board and configure the Internet Protocol Version  
4 (TCP/Ipv4) properties in the local area connec-  
tion to IP address 192.168.1.2 and subnet Mask to  
255.255.255.0.  
4) In the Device menu, choose either standalone or the  
FPGA option. In the configuration group, select Chan-  
nel 0 and click Convert in the serial interface menu.  
5) Click on the Scope tab.  
2) Verify that the ZedBoard SD card contains the Boot.  
6) Check the Remove DC Offset checkbox to remove  
bin file for the MAX11253/MAX11254 EV kit.  
the DC component of the sampled data.  
3) Connect the EV kit FMC connector to the ZedBoard  
FMC connector. Gently press them together.  
7) Click the Capture button to start the data analysis.  
8) The EV kit software appears as shown in Figure 1.  
4) Verify that all jumpers are in their default positions for  
the ZedBoard (Table 1) and EV kit board (Table 2).  
9) Verify that the frequency, which is displayed on the  
right, is approximately 100Hz. The scope image has  
buttons in the upper right corner that allow zooming  
in to detail.  
5) Connect the 12V power supply to the ZedBoard.  
Leave the Zedboard powered off.  
6) Enable the ZedBoard power supply by sliding SW8 to  
ON and connect the +12V adapter to the EV kit.  
Table 1. ZedBoard Jumper Settings  
JUMPER  
SHUNT POSITION  
DESCIPTION  
J18  
1-2  
VDDIO set for 3.3V.  
JP11  
JP10  
JP9  
JP8  
JP7  
2-3  
1-2  
1-2  
2-3  
2-3  
Boot from SD Card  
J12  
J20  
NA  
NA  
SD Card installed  
Connected to 12V wall adapter  
SW8  
OFF  
ZedBoard power switch, OFF while connecting boards  
Maxim Integrated  
4  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Table 2. MAX11253/MAX11254 Board Jumper Settings  
JUMPER  
POSITION  
JUMPER  
POSITION  
HEADER  
DESCRIPTION  
HEADER  
DESCRIPTION  
Use MAX6126 3.0V as VREF  
signal  
Short AIN2.3- (J29, TP42) to  
AGND and for U12 noninverting  
configuration  
1-2*  
1-2*  
3-4*  
1-2*  
3-4*  
1-2*  
3-4*  
Use MAX6070 3.0V as VREF  
signal  
JMP1  
1-3  
1-4  
J32  
Short AIN2.3+ (J30, TP43) to  
AGND and for U12 inverting  
configuration  
Use MAX6070 1.8V as VREF  
signal  
Open*  
1-2  
Generate +3.3V for DVDD  
Generate +2.0V for DVDD  
Select +3.3V or +2.0V as DVDD  
Select +1.8V as DVDD  
U1 uses internal clock  
Short AIN2.2- (TP40) to AGND  
and for U13 noninverting  
configuration  
J8  
1-2*  
2-3  
J33  
J34  
J10  
Short AIN2.2+ (TP41) to  
AGND and for U13 inverting  
configuration  
Open*  
1-2  
J11  
External clock from FPGA  
External clock from U10  
Select +3.3V as AVDD  
Select +1.8V as AVDD  
Select AVSS as REFN  
Short AIN2.4- (TP44) to AGND  
and for U14 noninverting  
configuration  
2-3  
1-2*  
2-3  
J12  
J13  
Short AIN2.4+ (TP45) to  
AGND and for U14 inverting  
configuration  
1-2*  
Select REFN_S from J1 as  
REFN for external sense point  
2-3  
Open*  
1-2  
Connect output of U11 to  
inverting input of U13  
1-2*  
3-4  
Use internal 1.8V subregulator if  
DVDD ≥ 2.0V  
Connect AIN2.2- (TP40) to  
inverting input of U13  
J14  
J15  
J16  
Use DVDD for internal logic if  
DVDD ≤ 2.0V  
J35  
Connect output of U11 to  
noninverting input of U13  
5-6  
Open*  
1-2  
Use TP23 as GPIO1  
Use external SYNC signal  
Connect AIN2.2+ (TP41) to  
noninverting input of U13  
7-8*  
1-2*  
3-4  
Select REFP_F signal as REFP  
input  
1-2*  
2-3  
Connect output of U12 to  
inverting input of U14  
Select REFP_S signal from J1  
as REFP input  
Connect AIN2.4- (TP44) to  
inverting input of U14  
Use AGND as AVSS. Use this  
setting if AVDD is +3.3V  
1-2*  
2-3  
J36  
Connect output of U12 to  
noninverting input of U14  
J17  
J24  
5-6  
Use -1.8V as AVSS. Use this  
setting if AVDD is +1.8V  
Connect AIN2.4+ (TP45) to  
noninverting input of U14  
7-8*  
1-2*  
2-3  
Use VREF as REFP_F  
Use AVDD as REFP_F  
No offset to U13 noninverting  
input  
Open*  
1-2  
J37  
J38  
Short AIN2.1- (J27, TP38) to  
AGND and for U11 noninverting  
configuration  
1-2*  
3-4*  
Offset U13 output by VREF/2  
No offset to U14 noninverting  
input  
J31  
Open*  
1-2  
Short AIN2.1+ (J28, TP39) to  
AGND and for U11 inverting  
configuration  
Offset U14 output by VREF/2  
Maxim Integrated  
5  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Table 2. MAX11253/MAX11254 Board Jumper Settings (continued)  
JUMPER  
POSITION  
JUMPER  
POSITION  
HEADER  
DESCRIPTION  
HEADER  
DESCRIPTION  
No offset to U18 noninverting  
input  
Short AIN3.1- (TP56) to AGND  
and for U15 noninverting  
configuration  
Open*  
1-2  
1-2*  
3-4*  
1-2*  
3-4*  
1-2*  
3-4*  
1-2*  
3-4*  
J46  
Offset U18 output by VREF/2  
J39  
Short AIN3.1+ (TP57) to  
AGND and for U15 inverting  
configuration  
Short AIN4+ (J47, TP72) to  
AGND  
1-2*  
J49  
Short AIN4- (J48, TP73) to  
AGND  
3-4*  
Short AIN3.3- (TP60) to AGND  
and for U16 noninverting  
configuration  
1-2*  
3-4*  
Short AIN5+ (TP74) to AGND  
Short AIN5- (TP75) to AGND  
Use external +12V source  
Use +12V from ZedBoard  
J50  
J63  
J40  
J41  
J42  
Short AIN3.3+ (TP61) to  
AGND and for U16 inverting  
configuration  
Open*  
1-2  
Short AIN3.2- (TP58) to AGND  
and for U17 noninverting  
configuration  
Open  
If connected to ZedBoard FPGA  
J64  
J65  
If connected to PC through USB  
interface  
1-2*  
Short AIN3.2+ (TP59) to  
AGND and for U17 inverting  
configuration  
Enable U28 H-bridge transformer  
driver to use onboard ±15V  
supply generation  
1-2*  
Short AIN3.4- (TP62) to AGND  
and for U18 noninverting  
configuration  
Disable U28 and use and  
external ±15V supply to TP83,  
TP86, and TP87  
2-3  
Short AIN3.4+ (TP63) to  
AGND and for U18 inverting  
configuration  
Use an external -15V power  
supply, connected to TP86  
1-2  
3-4*  
1-2  
J66  
J67  
J68  
Use U28 driver to generate  
isolated -15V  
Connect output of U15 to  
inverting input of U17  
1-2*  
3-4  
Use an external +15V power  
supply, connected to TP83  
Connect AIN3.2- (TP58) to  
inverting input of U17  
J43  
Use U28 driver to generate  
isolated +15V  
Connect output of U15 to  
noninverting input of U17  
3-4*  
1-2  
5-6  
Connect AIN3.2+ (TP59) to  
noninverting input of U17  
Use an external +12V power  
supply to TP91 as VCC  
7-8*  
1-2*  
3-4  
Connect output of U16 to  
inverting input of U18  
Use onboard +12V from U32  
LDO as VCC  
3-4*  
1-2  
3-4  
Connect AIN3.4- (TP62) to  
inverting input of U18  
AGND as VEE  
Use an external -12V power  
supply to TP90 as VEE  
J44  
J45  
Connect output of U16 to  
noninverting input of U18  
J69  
5-6  
Use onboard -12V from U33  
LDO as VEE  
5-6*  
Connect AIN3.4+ (TP63) to  
noninverting input of U18  
7-8*  
*Default configuration  
No offset to U17 noninverting  
input  
Open*  
1-2  
Offset U17 output by VREF/2  
Maxim Integrated  
6  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Standby), Reset Registers, and RSTB Reset, Clock/  
SYNC (Internal or External Clock, and Disable or Enable  
SYNC Mode), and Other for Disable or Enable Current  
Sink/Source and CAPREG LDO.  
General Description of Software  
The main window of the EV kit software contains seven  
tabs: Configuration, Scope, DMM, Histogram, FFT, Scan  
Mode, and Registers. The Configuration tab provides  
control for the ADC configuration including calibration and  
data capture. The other six tabs are used for evaluating  
the data captured by the ADC.  
The sample settings are available on the left of the config-  
uration menu, which allow the user to select the Channel,  
Sample Rate, Number of Samples and Clock Source if  
FPGA device is used.  
Configuration Tab  
The Read Data and Status information is displayed on  
the right, which shows the data in both voltage and Hex,  
the sample rate, and power state for the selected chan-  
nel. In addition, if there are any errors, the indicator lights  
will turn red.  
The Configuration tab provides an interface for selecting  
and configuring the ADC from a functional perspective.  
Select the desired Device for either Standalone or FPGA  
in the dropdown menu and the corresponding properties  
of the device are displayed including Channel number,  
Sample Rate, Number of Samples, Reference Voltage,  
Sequencing Mode, Calibration, GPO/GPIO selec-  
tion, Input Path (Direct or internal PGA), Delta-Sigma  
Modulator type selection for different Data Format and  
Conversion Mode, Serial Interface function (Convert,  
and Read All), Power setting (NOP, Power Down, and  
Channel Selection  
To select the desired channel among the six available  
channels, click Channel # dropdown menu at the top left  
and select the desired channel from 0 to 5. The default  
selection is Channel 0.  
Figure 1. EV Kit Software (Configuration Tab)  
Maxim Integrated  
7  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Three conversion modes are provided: Continuous,  
Single Cycle, and Single Continuous. Click the  
Conversion Modes dropdown menu under the Delta-  
Sigma Modulator section to select the desired conver-  
sion mode.  
Sample Rate (SPS)  
To select the desired data rate for single-cycle mode from  
50sps to 12800sps and for continuous mode data rate  
from 1.9sps to 64000sps, choose the Sample Rate (SPS)  
from the dropdown menu below the Channel # selection.  
Serial Interface  
Reference Voltage  
To starting converting, click the Convert button under  
the Serial interface section. To read all registers, click the  
Read All button.  
There are three different reference voltages available  
on board: MAX6070AUT18+ (1.8V), MAX6070AUT30+  
(3.0V), and MAX6126AASA30+ (3.0V). To select 1.8V,  
place JMP1 from position 1 to 4. To select 3.0V MAX6070  
with ±0.04% accuracy, place JMP1 from position 1 to 3. To  
select 3.0V MAX6126 with ±0.02% accuracy, place JMP1  
from position 1 to 2.  
Power  
The MAX11253/MAX11254 EV kit features three power-  
down states: Normal Operating Power (NOP), Power  
down, and Standby. Select the desired power state by  
clicking the drop-down menu under the Power section.  
Sequencer Mode  
To change the sequencer mode, click the Sequence  
Mode selection below the Sequencing menu and select  
Mode 1, 2, or 3 as desired. Check the GPO Sequencer  
Mode box to enable GPO/GPIO function in mode 3. In  
addition, check the Enable box to enable the MUX and  
GPO Delay. Choose the desired delay in microseconds  
by clicking on the + or – buttons.  
To reset the configuration settings back to default values,  
press the Reset Registers button.  
To exercise the power-on reset feature, click the RSTB  
button.  
Clock/SYNC  
The internal clock mode is set at default condition. To  
use the external clock provided on-board, select External  
under the Clock/SYNC section and install jumper J11  
from 2-3. To user-supplied external clock, select External  
under the Clock/SYNC section and install jumper J11  
from 1-2. In addition, the Sync mode can be enabled  
or disabled by clicking the drop-down menu under this  
Clock/SYNC section and install jumper J15. The Sync  
signal should be provided externally.  
ADC Calibration  
Two types of software calibration for offset and gain are  
available: Self calibration and system calibration.  
The primary mode for calibration is using the dropdown  
list to select a calibration mode, followed by clicking the  
Calibrate button. The checkboxes for Self Offset, Self  
Gain, System Offset, and System Gain allow for the  
user to enable or disable the calibration values. The cali-  
bration values can also be changed manually by entering  
a hex value in the numeric box.  
Other  
To enable (J14 open) or disable (J14 installed and V  
DDVD  
≤ 2.0V) the internal CAPREG LDO for digital and I/O sup-  
ply, select this option from the drop-down menu under  
the Other section. Additionally, Current Sink/Source can  
also be disabled or enabled under this section.  
GPO/GPIO  
To select GPO or GPIO ports, choose the option under the  
GPO/GPIO dropdown menu and check the Enable box.  
Input Path  
Read Data and Status  
Select Direct under the Input Path dropdown menu to  
bypass the internal amplifiers and apply the analog input  
signals directly to the MAX11253/MAX11254 inputs or to  
use the external amplifiers.  
The Read Data and Status on the far right hand side of  
this Configuration menu depicts the received data and  
status of the device such as the selected channel, data  
rate, sample rate, and power state. Click the Read Data  
and Status button to view the updated status.  
Select PGA under the Input Path dropdown menu to use  
the internal programmable gain amplifiers.  
To save a configuration, select Save ADC Config As… in  
the File menu. This saves all the ADC register values to a  
XML file. To load a configuration, select Load ADC Config  
in the File menu. When the XML file is loaded, all the reg-  
ister values in the file are written to the ADC.  
Delta-Sigma Modulator  
To select the desired data format, click the Data Format  
dropdown menu under the Delta-Sigma Modulator  
section and choose either Bipolar or Unipolar with two’s  
complement or offset binary options.  
Maxim Integrated  
8  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
set, click on the Capture button. The right side of the tab  
sheet displays details of the waveform, such as average,  
standard deviation, maximum, minimum, and fundamen-  
tal frequency as shown in Figure 2.  
Scope Tab  
The Scope tab sheet is used to capture data and display it  
in the time domain. The desired Channel #, Sample Rate,  
Number of Samples, Display Unit, Average Samples,  
and Resolution Selection can also be set in this tab if  
they were not appropriately adjusted in other tabs. The  
Display Unit drop-down list allows counts in LSB and  
voltages in V, mV, or µV. Once the desired configuration is  
To save the captured data to a file, select Options > Save  
Graph > Scope. This saves the setting on the left and the  
data captured to a CSV file.  
Figure 2. EV Kit Software (ScopeTab)  
Maxim Integrated  
9  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
click on the Capture button. Figure 3 displays the results  
shown by the DMM tab when a 1.5V signal is applied to  
AIN0+ and 1.0V to AIN0-.  
DMM Tab  
The DMM tab sheet provides the typical information as a  
digital multimeter. Once the desired configuration is set,  
Figure 3. EV Kit Software (DMM Tab)  
Maxim Integrated  
10  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
The histogram tab is enabled at default. Using the his-  
togram will slow down the GUI response. To disable it,  
check the Disable Histogram box.  
Histogram Tab  
The Histogram tab sheet is used to show the histogram  
of the data. Sample rate and number of samples can also  
be set in this tab if they were not appropriately adjusted  
in other tabs. Once the desired configuration is set, click  
on the Capture button. The right side of the tab sheet  
displays details of the histogram such as average, stan-  
dard deviation, maximum, minimum, peak-to-peak noise,  
effective resolution, and noise-free resolution as shown  
in Figure 4.  
To save the histogram data to a file, go to Options > Save  
Graph > Histogram. This saves the setting on the left  
and the histogram data captured to a CSV file.  
Figure 4. EV Kit Software (Histogram Tab)  
Maxim Integrated  
11  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
To save the FFT data to a file, go to Options > Save  
Graph > FFT. This saves the setting on the left and the  
FFT data captured to a CSV file.  
FFT Tab  
The FFT tab sheet is used to display the FFT of the data.  
The Sample Rate, Number of Samples, Resolution and  
Window Function type can be set as desired. To calcu-  
late the Adjusted Input Signal frequency for Coherent  
Sampling, enter the Input Signal frequency in Hertz and  
push the Calculate button. Once the preferred configura-  
tion is set, click on the Capture button. The right side of  
the tab displays the performance based on the FFT, such  
as fundamental frequency, SNR, SINAD, THD, SFDR,  
ENOB, and Noise Floor as shown in Figure 5.  
When coherent sampling is needed, this tab allows the  
user to calculate the external clock frequency applied  
to the board. Adjust the input frequency of the low-  
jitter clock to the value as shown in the Adjusted  
Master Clock (Hz) and apply it to the EV KIT EXT_  
CLK connector. See the Sync Input and Sync Output  
section before using this feature.  
Figure 5. EV Kit Software (FFT Tab)  
Maxim Integrated  
12  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Figure 6 shows the setup Maxim Integrated uses to cap-  
ture data for coherent sampling.  
Calculate button and enter the Adjusted Master Clock  
(Hz) frequency of approximately 8.192MHz into our low-  
jitter clock. Timing for all SPI timing and sampling rate are  
based off the system clock.  
For coherent FFT evaluation, use the jumper settings  
from Table 2 for proper configurations. The low-jitter clock  
is synchronized with the signal generator at 10MHz from  
the ZedBoard. To achieve coherent sampling, click on the  
LOW-JITTER CLOCK  
RF_IN  
8.192 MHz  
OUT  
ZedBoard  
PC  
SIGNAL GENERATOR  
10MHz  
RF_IN  
-
INV-  
EXT_CLK  
+
INV+  
MAX11253/MAX11254EVKIT  
ETHERNET CABLE  
Figure 6. EV Kit Coherent Sampling Setup  
Maxim Integrated  
13  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
In the Read Data section on top, select the desired unit  
in either LSB or voltage (V, mV, or µV) under the Display  
Unit drop-down menu. Then choose the desired sample  
rate by clicking on the Sample Rate drop-down menu  
under. Finally, click the Scan button to start convert-  
ing and press the Read Data button to view the con-  
verted data displayed on the right hand side as shown in  
Figure 7.  
Scan Mode Tab  
The Scan Mode tab is used to perform selected data  
conversions and read the converted data.  
In the Sequence Setting section at the bottom, set the  
desired sequencer mode (1 to 3) from the Sequence  
Mode drop-down menu and select whether to assert  
the RDYB pin after one channel or after scan com-  
pletes options under the RDYB menu. Check the GPO  
Sequencer Mode and Enable boxes as desired. Then  
set the conversion time delay in µs for MUX and GPO by  
clicking on the + or - buttons under the MUX Delay and  
GPO Delay menu, allowing for high impedance source  
networks to stabilize after the channels are selected.  
Finally press the Read All button to view the selected  
settings.  
Figure 7. EV Kit Software (Scan Mode Tab)  
Maxim Integrated  
14  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
ADC Registers Tab  
Detailed Description of Hardware  
The Registers tab sheet shows the device registers on  
the left. The middle section shows the descriptions of the  
selected register. Click Read All to read all registers and  
refresh the window with the register settings. To write a  
register first select the hex value in the Value column,  
type the desired hex value and press Enter.  
The MAX11253/MAX11254 EV kit provides a proven signal  
path and board layout to demonstrate the performance of  
the MAX11253/MAX11254 16-/24-bit, delta-sigma ADCs.  
Included in the EV kit are digital isolators, isolated DC-DC  
converters, ultra-low-noise LDOs to all supply pins of the  
IC, on-board reference (MAX6126 and MAX6070), preci-  
sion amplifiers (MAX9632 and MAX44205) for analog  
inputs, and sync-in and sync-out signals for coherent  
sampling.  
The command byte is on the right side of the tab sheet.  
This byte precedes all SPI transactions and is described  
in the IC datasheet. To send a command byte enter a  
hex value in the numeric box and click the Send button.  
The command byte has two different formats includ-  
ing Conversion Command and Register Read/Write.  
Select the radio button for the desired mode to see the bit  
description in the table. See Figure 8.  
An on-board FTDI controller is provided to allow for  
evaluation in standalone mode, which has limitations on  
maximum sample speed and on sample depth. The EV kit  
can be used with FPGA to achieve full speed and a larger  
sample depth.  
The EV kit supports a number of different devices as  
listed in Table 3.  
Figure 8. EV Kit Software (ADC Registers Tab)  
Table 3. Products Supported with MAX11253/MAX11254 EV Kit  
PART NO.  
MAX11253  
MAX11254  
RESOLUTION  
16-bits  
MAX. SAMPLE RATE  
64ksps  
24-bits  
64ksps  
Maxim Integrated  
15  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
voltages can be connected to the board for each rail, see  
Table 4 for corresponding jumper positions.  
User-Supplied SPI  
To evaluate the EV kit with a user-supplied SPI bus,  
disconnect from the FMC bus and remove jumper J64.  
Apply the user-supplied SPI signals to SCLK, CSB, DIN,  
and DOUT at the PMOD_A header (J60). Make sure the  
return ground is connected to PMOD ground.  
ADC Input Amplifiers  
The input amplifiers allow for significant flexibility, support-  
ing bipolar or unipolar input paths, as well as the option  
for gain control. Selected input amplifiers can be config-  
ured as inverting, noninverting, differential bipolar, and  
differential unipolar. See Table 5 for these analog input  
configurations for channels 0 to 5.  
The on-board FTDI chip used for standalone mode does  
not conflict with the user-supplied SPI if it is powered off  
by removing jumper J64.  
CAUTION: DO NOT PLUG THIS HEADER INTO A  
STANDARD PMOD INTERFACE FOUND ON OTHER  
FPGA OR MICROCONTROLLER PRODUCTS. THE  
SIGNAL DEFINITION IS UNIQUE TO THIS EV KIT.  
The analog front-end consists of six channels, 0 to 5, and  
there are four user-selectable input pairs (for example  
AINx+ and AINx- where x is 2, 3, 4 or 5) allowing selec-  
tion between one of two op amp solutions, the MAX9632  
a 36V, precision, low-noise, wide-band amplifier or the  
MAX44205, a 180MHz, low-noise, low-distortion, fully  
differential op amp. The op amps can be configured as  
inverting or noninverting amplifiers by jumper selectors.  
Both op amps work as anti-aliasing lowpass filters (LPF)  
and can be daisy-chained to create a second-order LPF.  
FMC Interface:  
The users should confirm compatibility of pin-usage between  
their own FMC implementation and that of the Maxim  
Integrated EV kit before connecting the Maxim Integrated  
EV kit to a different system with FMC connectors.  
Voltage References  
The range of possible configurations are listed in Table 5.  
There are three different reference voltages available  
on board: MAX6070AUT18+ (1.8V), MAX6070AUT30+  
(3.0V), and MAX6126AASA30+ (3.0V). To select 1.8V,  
place JMP1 from position 1 to 4. To select 3.0V MAX6070  
with ±0.04% accuracy, place JUMP1 from position 1 to  
3. To select 3.0V MAX6126 with ±0.02% accuracy, place  
JMP1 from position 1 to 2.  
Table 4. Reference Source Options  
REF  
SOURCE  
JUMPER  
CONNECTION  
FUNCTION  
JMP1  
J13  
1-4  
1-2  
1-2  
1-2  
1-3  
1-2  
1-2  
1-2  
1-2  
1-2  
1-2  
1-2  
1-2  
1-2  
2-3  
1-2  
1-2  
MAX6070  
(1.8V)  
Select U7  
MAX6070  
J16  
For user-supplied external references, remove jumper  
J24 and connect a reference voltage to J24-2. Measure  
and enter the value of the external reference voltage into  
the Reference Voltage edit box on the Configuration tab  
of the GUI. Table 3 depicts the reference source options.  
J24  
JMP1  
J13  
MAX6070  
(3.0V)  
Select U8  
MAX6070  
J16  
External DVDD Power Supply  
J24  
The internal 1.8V regulator can be replaced by an exter-  
nal supply in the range of 1.7V to 2.0V. To use external  
DVDD, disable the internal regulator by selecting the  
Disable in the CAPREG LDO drop-down menu in the  
Other section and install J14.  
JMP1  
J13  
MAX6126  
(3.0V)  
Select U9  
MAX6126  
J16  
J24  
J13  
User-Supplied Power Supply  
AVDD  
J16  
Select AVDD  
The EV kit receives power from a single DC source of  
12V, 500mA through a J61 power jack. The MAX13256,  
H-bridge driver and transformer create an additional  
negative rail for +15V and -15V. The power is then recti-  
fied and regulated down to a +12V and -12V supplies for  
the MAX9632 op amps, as well as +5V and -5V supplies  
for the MAX44205 op amps. Additional supplies are gen-  
erated for +1.8V/-1.8V and +2V/+3.3V for the ADCs and  
VREFs. See the EV kit schematic pdf for details. Specific  
J24  
J13  
J16  
Select User-  
Supplied  
Reference  
User-  
Supplied  
Open. Connect  
user-supplied  
reference  
J24  
to J24-2  
Maxim Integrated  
16  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Table 5. Power Supply to the Board  
POWER  
INPUT CONNECTORS  
JUMPERS  
J67: 3-4  
J66: 3-4  
J68: 3-4  
J69: 5-6  
J65: 1-2  
Single +12V input from a wall  
adapter (default)  
J61  
J64: 1-2 (select onboard FTDI)  
J63: 1-2 (select FPGA ZedBoard)  
J67: 3-4  
J66: 3-4  
J68: 1-2  
J69: 3-4  
J65: 1-2  
TP91 (+12V)  
TP90 (-12V)  
An external ±12V  
J64: 1-2 (select onboard FTDI)  
J63: 1-2 (select FPGA ZedBoard)  
J67: 1-2  
J66: 1-2  
J68: 3-4  
J69: 5-6  
J65: 1-2  
TP86 (+15V)  
TP83 (-15V)  
An external ±15V  
J64: 1-2 (select onboard FTDI)  
J63: 1-2 (select FPGA ZedBoard)  
Table 6. Analog Input Configurations (CH0–CH5)  
CONFIGURATION  
ADC INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
NO.  
DESCRIPTION  
User-supplied signals,  
differential  
1
Channel 0  
Channel 1  
AIN0D+, AIN0D-  
AIN1D+, AIN1D-  
N/A  
N/A  
User-supplied signals,  
differential  
2
3
J31: 1-2  
J35: 5-6 and 3-4  
J33: 1-2  
J32: 1-2  
J36: 5-6 and 3-4  
J34: 1-2  
J28: AIN2.1+ (or TP39):  
AIN2.1+ and AGND  
J30: AIN2.3+ (or TP43):  
AIN2.3+ and AGND  
Noninverting, differential,  
second-order LPF  
MAX9632, Channel 2  
J4: 3-4 and 5-6  
J37: 1-2 (for bipolar signal  
or open for unipolar signal)  
J38: 1-2 (for bipolar signal  
or open for unipolar signal)  
Maxim Integrated  
17  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Table 6. Analog Input Configurations (CH0–CH5) (continued)  
CONFIGURATION  
ADC INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
NO.  
DESCRIPTION  
J31: 3-4  
J35: 1-2 and 7-8  
J33: 3-4  
J32: 3-4  
J36: 1-2 and 7-8  
J34: 3-4  
J27: AIN2.1- (or TP38):  
AIN2.1- and AGND  
J29: AIN2.3- (or TP42):  
AIN2.3- and AGND  
Inverting, differential,  
second-order LPF  
4
MAX9632, Channel 2  
J4: 3-4 and 5-6  
J37: 1-2 (for bipolar signal  
or open for unipolar signal)  
J38: 1-2 (for bipolar signal  
or open for unipolar signal)  
J35: 7-8 and 3-4  
J33: 1-2  
J34: 1-2  
J36: 7-8 and 3-4  
J4: 3-4 and 5-6  
J37: 1-2 (for bipolar signal  
or open for unipolar signal)  
J38: 1-2 (for bipolar signal  
or open for unipolar signal)  
AIN2.2+ (or TP41):  
AIN2.2+ and AGND  
AIN2.4+ (or TP45):  
AIN2.4+ and AGND  
Noninverting, differential,  
first-order LPF  
5
MAX9632, Channel 2  
J35: 7-8 and 3-4  
J33: 3-4  
J34: 3-4  
J36: 7-8 and 3-4  
J4: 3-4 and 5-6  
J37: 1-2 (for bipolar signal  
or open for unipolar signal)  
J38: 1-2 (for bipolar signal  
or open for unipolar signal)  
AIN2.2- (or TP40):  
AIN2.2- and AGND  
AIN2.4- (or TP44):  
AIN2.4- and AGND  
Inverting, differential,  
first-order LPF  
6
MAX9632, Channel 2  
J39: 1-2  
J43: 5-6 and 3-4  
J41: 1-2  
J40: 1-2  
J44: 5-6 and 3-4  
J42: 1-2  
AIN3.1+ (or TP57):  
AIN3.1+ and AGND  
AIN3.3+ (or TP61):  
AIN3.3+ and AGND  
Noninverting, differential,  
second order LPF  
7
MAX9632, Channel 3  
J5: 3-4 and 5-6  
J45: 1-2 (for bipolar signal  
or open for unipolar signal)  
J46: 1-2 (for bipolar signal  
or open for unipolar signal)  
Maxim Integrated  
18  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Table 6. Analog Input Configurations (CH0–CH5) (continued)  
CONFIGURATION  
ADC INPUT  
CONFIGURATION  
INPUT CONNECTORS  
JUMPER POSITIONS  
NO.  
DESCRIPTION  
J39: 3-4  
J43: 1-2 and 7-8  
J41: 3-4  
J40: 3-4  
J44: 1-2 and 7-8  
J42: 3-4  
AIN3.1- (or TP56):  
AIN3.1- and AGND  
AIN3.3- (or TP60):  
AIN3.3- and AGND  
Inverting, differential,  
second-order LPF  
8
MAX9632, Channel 3  
J5: 3-4 and 5-6  
J45: 1-2 (for bipolar signal  
or open for unipolar signal)  
J46: 1-2 (for bipolar signal  
or open for unipolar signal)  
J43: 7-8 and 3-4  
J41: 1-2  
J44: 7-8 and 3-4  
J42: 1-2  
J5: 3-4 and 5-6  
J45: 1-2 (for bipolar signal  
or open for unipolar signal)  
J46: 1-2 (for bipolar signal  
or open for unipolar signal)  
AIN3.2+ (or TP59):  
AIN3.2+ and AGND  
AIN3.4+ (or TP63):  
AIN3.4+ and AGND  
Noninverting, differential,  
first-order LPF  
9
MAX9632, Channel 3  
J43: 7-8 and 3-4  
J41: 3-4  
J44: 7-8 and 3-4  
J42: 3-4  
J5: 3-4 and 5-6  
J45: 1-2 (for bipolar signal  
or open for unipolar signal)  
J46: 1-2 (for bipolar signal  
or open for unipolar signal)  
AIN3.2- (or TP58):  
AIN3.2- and AGND  
AIN3.4- (or TP62):  
AIN3.4- and AGND  
Inverting, differential,  
first-order LPF  
10  
MAX9632, Channel 3  
J48: AIN4- (or TP73):  
AIN4- and AGND  
J47: AIN4+ (or TP72):  
AIN4+ and AGND  
J6: 3-4 and 5-6  
J49: open  
11  
12  
MAX44205, Channel 4 Differential, first-order LPF  
MAX44205, Channel 5 Differential, first-order LPF  
AIN5+ (or TP74):  
AIN5+ and AGND  
AIN5- (or TP75): AIN5-  
and AGND  
J7: 3-4 and 5-6  
J50: open  
Maxim Integrated  
19  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Sync Input and Sync Output  
(For Coherent Sampling)  
Ordering Information  
PART  
TYPE  
EVKIT  
EVKIT  
Sync Input and Sync Output is applicable to the FPGA  
(ZedBoard) and is not used in Standalone mode. The  
SYNC_IN SMA accepts an approximate 100MHz wave-  
form signal to generate the system clock of the ZedBoard.  
For maximum performance, use a low-jitter clock that  
syncs to the user’s analog function generator. The  
SYNC_OUT SMA outputs a 10MHz square waveform  
that syncs to the user’s analog function generator. Both  
options are used for coherent sampling of the IC. Use  
only one option at a time. The relationship between f , f ,  
MAX11253EVKIT#  
MAX11254EVKIT#  
#Denotes RoHS compliant.  
Contact Avnet to purchase a ZedBoard to communicate with  
the MAX11253/MAX11254 EV kit.  
This EV kit comes with two assembly options:  
The MAX11253EVKIT# comes with a MAX11253ATJ+ in  
a 32-pin TQFN package.  
IN  
S
N
, and M  
is given as follows:  
CYCLES  
SAMPLES  
The MAX11254EVKIT# comes with a MAX11254ATJ+ in  
a 32-pin TQFN package..  
f
N
CYCLES  
IN  
=
Both EV kit variations use the same PCB and bill of mate-  
rials, and the only variation is the IC assembled at U1.  
f
M
SAMPLES  
S
where:  
= Input frequency  
f
IN  
f = Sampling frequency  
S
N
= Prime number of cycles in the sampled set  
CYCLES  
M
= Total number of samples  
SAMPLES  
Maxim Integrated  
20  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Bill of Materials  
Maxim Integrated  
21  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Bill of Materials (continued)  
Maxim Integrated  
22  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Bill of Materials (continued)  
Maxim Integrated  
23  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit PCB Layout Diagrams  
MAX1153/MAX11254 Family EV Kit—Bottom Silkscreen  
MAX1153/MAX11254 Family EV Kit—Top Silkscreen  
MAX1153/MAX11254 Family EV Kit—Bottom Paste  
MAX1153/MAX11254 Family EV Kit—Top Paste  
Maxim Integrated  
24  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit PCB Layout Diagrams (continued)  
MAX1153/MAX11254 Family EV Kit —Internal 3  
MAX1153/MAX11254 Family EV Kit—Internal 2  
MAX1153/MAX11254 Family EV Kit—Internal 5  
MAX1153/MAX11254 Family EV Kit—Internal 4  
Maxim Integrated  
25  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit PCB Layout Diagrams (continued)  
MAX1153/MAX11254 Family EV Kit —Bottom  
MAX1153/MAX11254 Family EV Kit—Top  
MAX1153/MAX11254 Family EV Kit—Bottom Mask  
MAX1153/MAX11254 Family EV Kit—Top Mask  
Maxim Integrated  
26  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic  
ꢀ1  
1282834-0  
ꢂ1ꢁ  
49.9  
REFP  
ꢊꢋ  
1
2
3
4
5
1ꢆ  
REFP_S  
AIN0D+  
AIN0D-  
AIN1D+  
AIN1D-  
REFN_S  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
ALL INPUTS +/- 3V MAX  
ꢂ1ꢃ  
ꢂ1ꢄ  
ꢂ1ꢅ  
49.9  
1K  
AVSS  
GPO0  
GPO1  
ꢇꢈꢉ  
ꢇꢈꢉ  
ꢇꢈꢉ  
1K  
ꢀ25  
1282834-0  
1
2
3
4
5
1ꢆ  
ꢇꢈꢉ AIN2D+  
ꢇꢈꢉ AIN2.1+  
ꢇꢈꢉ AIN2.1-  
ꢇꢈꢉ AIN2.2+  
ꢇꢈꢉ AIN2.2-  
ꢇꢈꢉ AIN2.3+  
ꢇꢈꢉ AIN2.3-  
ꢇꢈꢉ AIN2.4+  
ꢇꢈꢉ AIN2.4-  
ꢇꢈꢉ AIN2D-  
ꢀ2ꢁ  
1282834-0  
1
2
3
4
5
1ꢆ  
ꢇꢈꢉ AIN3D+  
ꢇꢈꢉ AIN3.1+  
ꢇꢈꢉ AIN3.1-  
ꢇꢈꢉ AIN3.2+  
ꢇꢈꢉ AIN3.2-  
ꢇꢈꢉ AIN3.3+  
ꢇꢈꢉ AIN3.3-  
ꢇꢈꢉ AIN3.4+  
ꢇꢈꢉ AIN3.4-  
ꢇꢈꢉ AIN3D-  
ꢀ2  
282834-4  
1
2
3
4
AIN4D-  
ꢇꢈꢉ  
AIN4-  
ꢇꢈꢉ  
AIN4+  
ꢇꢈꢉ  
AIN4D+  
ꢇꢈꢉ  
ꢀ3  
282834-4  
1
2
3
4
AIN5D-  
ꢇꢈꢉ  
AIN5-  
ꢇꢈꢉ  
AIN5+  
ꢇꢈꢉ  
AIN5D+  
ꢇꢈꢉ  
Maxim Integrated  
27  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
1
1
5
5
4
4
1
1
5
5
4
4
2
3
4
5
2
3
4
5
2
3
4
5
2
3
4
5
Maxim Integrated  
28  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
1
1
5
5
4
4
1
1
5
5
4
4
Maxim Integrated  
29  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
5
5
3
3
2
2
1 1  
1 3  
1 1  
1 3  
2
3
4
5
2
3
4
5
Maxim Integrated  
30  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
1
3
1
3
1
3
1
3
1
3
2
ꢊ ꢑ ꢕ ꢒ  
ꢓ ꢇ ꢔ K  
A ꢎ ꢑ ꢑ  
A ꢎ ꢓ ꢓ  
ꢊ E F ꢁ  
ꢊ E F ꢍ  
A ꢌ ꢍ ꢉ ꢍ  
A ꢌ ꢍ ꢉ ꢁ  
ꢐ ꢁ ꢋ ꢉ  
2 4  
1
2
3
4
5
ꢐ ꢁ ꢌ ꢋ ꢉ ꢖ ꢇ ꢔ K  
2 3  
ꢐ ꢁ ꢋ 1  
2 2  
ꢐ ꢁ ꢋ ꢐ ꢍ ꢑ  
2 1  
ꢇ A ꢁ ꢁ  
2 ꢉ  
1
2
ꢇ A ꢁ ꢍ  
1 ꢆ  
A ꢌ ꢍ 5 ꢁ  
1 ꢅ  
A ꢌ ꢍ 5 ꢍ  
1 ꢄ  
2
4
ꢌ . ꢇ .  
ꢌ . ꢇ .  
5
2
ꢐ ꢍ ꢑ ꢓ  
ꢐ ꢍ ꢑ 3  
4
2
Maxim Integrated  
31  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
2
2
1
1
1 ꢅ  
1 ꢅ  
1
3
1 5  
1 5  
Maxim Integrated  
32  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
ꢄ53  
ꢄ53  
ASP-134604-01  
ASP-134604-01  
ꢍ1  
ꢍ2  
ꢍ3  
ꢋ1  
ꢋ2  
ꢋ3  
1
1
2
2
3
3
ꢁ15ꢉ  
ꢁ151  
ꢁ152  
ꢁ153  
ꢁ154  
28  
ꢍ4  
ꢍ5  
ꢍꢂ  
ꢍꢃ  
ꢍꢅ  
ꢍꢊ  
ꢋ4  
ꢋ5  
ꢋꢂ  
ꢋꢃ  
ꢋꢅ  
ꢋꢊ  
4
4
ꢎꢏ  
SYNC_CLK_IN  
ꢁ142  
ꢁ143  
ꢁ144  
ꢁ145  
ꢁ14ꢂ  
ꢁ14ꢃ  
28  
5
5
ꢐꢀꢆ SYNC_CLK_OUT  
28  
ꢎꢏ  
RDYB_FPGA  
RSTB_FPGA  
28  
ꢐꢀꢆ  
28  
ꢍ1ꢉ  
ꢍ11  
ꢍ12  
ꢍ13  
ꢍ14  
ꢍ15  
ꢍ1ꢂ  
ꢍ1ꢃ  
ꢍ1ꢅ  
ꢍ1ꢊ  
ꢍ2ꢉ  
ꢍ21  
ꢍ22  
ꢍ23  
ꢍ24  
ꢍ25  
ꢍ2ꢂ  
ꢍ2ꢃ  
ꢍ2ꢅ  
ꢍ2ꢊ  
ꢍ3ꢉ  
ꢍ31  
ꢍ32  
ꢍ33  
ꢍ34  
ꢍ35  
ꢍ3ꢂ  
ꢍ3ꢃ  
ꢍ3ꢅ  
ꢍ3ꢊ  
ꢍ4ꢉ  
ꢋ1ꢉ  
ꢋ11  
ꢋ12  
ꢋ13  
ꢋ14  
ꢋ15  
ꢋ1ꢂ  
ꢋ1ꢃ  
ꢋ1ꢅ  
ꢋ1ꢊ  
ꢋ2ꢉ  
ꢋ21  
ꢋ22  
ꢋ23  
ꢋ24  
ꢋ25  
ꢋ2ꢂ  
ꢋ2ꢃ  
ꢋ2ꢅ  
ꢋ2ꢊ  
ꢋ3ꢉ  
ꢋ31  
ꢋ32  
ꢋ33  
ꢋ34  
ꢋ35  
ꢋ3ꢂ  
ꢋ3ꢃ  
ꢋ3ꢅ  
ꢋ3ꢊ  
ꢋ4ꢉ  
CSB_FPGA  
1ꢉ  
11  
12  
13  
14  
15  
1ꢂ  
1ꢃ  
1ꢅ  
1ꢊ  
2ꢉ  
21  
22  
23  
24  
25  
2ꢂ  
2ꢃ  
2ꢅ  
2ꢊ  
3ꢉ  
31  
32  
33  
34  
35  
3ꢂ  
3ꢃ  
3ꢅ  
3ꢊ  
4ꢉ  
1ꢉ  
11  
12  
13  
14  
15  
1ꢂ  
1ꢃ  
1ꢅ  
1ꢊ  
2ꢉ  
21  
22  
23  
24  
25  
2ꢂ  
2ꢃ  
2ꢅ  
2ꢊ  
3ꢉ  
31  
32  
33  
34  
35  
3ꢂ  
3ꢃ  
3ꢅ  
3ꢊ  
4ꢉ  
ꢐꢀꢆ  
28  
28  
28  
28  
28  
ꢐꢀꢆ  
ꢐꢀꢆ  
DIN_FPGA  
SYNC_FPGA  
DOUT_FPGA  
EXT_CLK_FPGA  
ꢎꢏ  
28  
ꢐꢀꢆ  
ꢁ155  
VDDIO  
28  
ꢁ15ꢂ  
28  
ꢈ125  
0.1UF  
ꢈ124  
1UF  
ꢁ15ꢃ  
28  
ꢁ15ꢅ  
ꢁ15ꢊ  
28  
28  
ꢀ23  
GND_FPGA  
93LC66BT-I/OT  
ꢁ1ꢂꢉ  
28  
ꢑꢈꢈ  
ꢁ14ꢅ  
ꢁ14ꢊ  
28  
5
4
3
ꢈꢒ  
1
ꢈꢓK  
ꢍꢎ  
ꢍꢐ  
ꢐꢀꢆ SO_EEPROM_FPGA  
ꢁ1ꢂ1  
28  
3V3_FPGA  
28  
ꢑꢒꢒ  
GND_FPGA  
VADJ  
ꢄ55  
1
2
3
4
5
SO_EEPROM_FPGA  
ꢎꢏ  
ꢈ123  
1UF  
PBC06SAAN  
GND_FPGA  
GND_FPGA  
GND_FPGA  
GND_FPGA  
ꢄ53  
ASP-134604-01  
ꢄ53  
ASP-134604-01  
ꢈ1  
ꢌ1  
ꢌ2  
ꢌ3  
ꢌ4  
ꢌ5  
ꢌꢂ  
ꢌꢃ  
ꢌꢅ  
1
1
2
VDDIO  
ꢁ13ꢊ  
ꢁ14ꢉ  
28  
28  
ꢈ2  
ꢈ3  
ꢈ4  
ꢈ5  
ꢈꢂ  
ꢈꢃ  
ꢈꢅ  
ꢈꢊ  
2
3
3
4
4
ꢈ12ꢂ  
1000PF  
ꢈ12ꢅ  
5
5
0.1UF  
ꢁ141  
28  
ꢐꢀꢆ SCLK_FPGA  
74LVC2G125DP  
ꢆꢇꢃꢊ  
ꢀ21  
SYNC_CLK_IN  
ꢑꢈꢈ  
ꢌꢊ  
GND_FPGA  
ꢄ54  
1
2
1ꢐE  
ꢈ1ꢉ  
ꢈ11  
ꢈ12  
ꢈ13  
ꢈ14  
ꢈ15  
ꢈ1ꢂ  
ꢈ1ꢃ  
ꢈ1ꢅ  
ꢈ1ꢊ  
ꢈ2ꢉ  
ꢈ21  
ꢈ22  
ꢈ23  
ꢈ24  
ꢈ25  
ꢈ2ꢂ  
ꢈ2ꢃ  
ꢈ2ꢅ  
ꢈ2ꢊ  
ꢈ3ꢉ  
ꢈ31  
ꢈ32  
ꢈ33  
ꢈ34  
ꢈ35  
ꢈ3ꢂ  
ꢈ3ꢃ  
ꢈ3ꢅ  
ꢈ3ꢊ  
ꢈ4ꢉ  
ꢌ1ꢉ  
ꢌ11  
ꢌ12  
ꢌ13  
ꢌ14  
ꢌ15  
ꢌ1ꢂ  
ꢌ1ꢃ  
ꢌ1ꢅ  
ꢌ1ꢊ  
ꢌ2ꢉ  
ꢌ21  
ꢌ22  
ꢌ23  
ꢌ24  
ꢌ25  
ꢌ2ꢂ  
ꢌ2ꢃ  
ꢌ2ꢅ  
ꢌ2ꢊ  
ꢌ3ꢉ  
ꢌ31  
ꢌ32  
ꢌ33  
ꢌ34  
ꢌ35  
ꢌ3ꢂ  
ꢌ3ꢃ  
ꢌ3ꢅ  
ꢌ3ꢊ  
ꢌ4ꢉ  
1ꢉ  
11  
12  
13  
14  
15  
1ꢂ  
1ꢃ  
1ꢅ  
1ꢊ  
2ꢉ  
21  
22  
23  
24  
25  
2ꢂ  
2ꢃ  
2ꢅ  
2ꢊ  
3ꢉ  
31  
32  
33  
34  
35  
3ꢂ  
3ꢃ  
3ꢅ  
3ꢊ  
4ꢉ  
1ꢉ  
11  
12  
13  
14  
15  
1ꢂ  
1ꢃ  
1ꢅ  
1ꢊ  
2ꢉ  
21  
22  
23  
24  
25  
2ꢂ  
2ꢃ  
2ꢅ  
2ꢊ  
3ꢉ  
31  
32  
33  
34  
35  
3ꢂ  
3ꢃ  
3ꢅ  
3ꢊ  
4ꢉ  
ꢁ1ꢂ5  
1
1
1A  
1ꢔ  
2ꢔ  
ꢐꢀꢆ SYNC_CLK_IN  
SYNC_CLK_IN  
0
5
4 3 2  
5
2ꢐE  
2A  
3
ꢁ1ꢂ2  
SYNC_CLK_IN_SPLIT  
ꢌꢏꢍ  
49.9  
ꢄ5ꢂ  
ꢁ1ꢂ4  
49.9  
1
1
5
4
3
2
GND_FPGA  
GND_FPGA  
GND_FPGA  
5V_TTL  
ꢈ12ꢃ  
1000PF  
ꢈ12ꢊ  
0.1UF  
74LVC2G125DP  
ꢆꢇꢃꢅ  
GND_FPGA  
ꢀ22  
SYNC_CLK_OUT  
ꢑꢈꢈ  
ꢄ5ꢃ  
1
2
1ꢐE  
ꢁ1ꢂ3  
ꢁ1ꢂꢂ  
1
1
1A  
1ꢔ  
2ꢔ  
SYNC_CLK_OUT  
ꢎꢏ  
ꢆꢇꢅꢉ  
0
49.9  
GND  
5
4
3
2
5
2ꢐE  
2A  
3
+12V_FPGA  
SYNC_CLK_OUT  
ꢌꢏꢍ  
ꢄ5ꢅ  
ꢁ1ꢂꢃ  
1
1
VADJ  
49.9  
5
4
3
2
GND_FPGA  
3V3_FPGA  
ꢎꢏ  
SYNC_CLK_OUT  
GND_FPGA  
GND_FPGA  
GND_FPGA  
Maxim Integrated  
33  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
1 0 K  
ꢈ 1 ꢉ ꢅ  
1 0 K  
ꢈ 1 ꢉ 5  
1 0 K  
G R E E N  
ꢈ 1 ꢉ 4  
A
K
1 0 K  
1 0 K  
1 0 K  
1 0 K  
ꢈ 1 ꢉ 3  
ꢈ 1 ꢉ 1  
ꢈ 1 ꢊ ꢉ  
ꢈ 1 ꢊ ꢅ  
1 0 K  
ꢈ 1 ꢉ 2  
ꢈ 1 ꢊ ꢁ  
ꢈ 1 ꢊ ꢊ  
ꢈ 1 ꢊ 5  
1 0 K  
1 0 K  
1 0 K  
ꢑ ꢇ ꢇ ꢍ ꢐ  
5 ꢅ  
4 2  
3 1  
2 ꢆ  
ꢒ ꢎ ꢂ  
5 1  
4 ꢊ  
3 5  
2 5  
1 5  
1 1  
ꢑ ꢇ ꢇ ꢍ ꢐ  
ꢑ ꢇ ꢇ ꢍ ꢐ  
ꢑ ꢇ ꢇ ꢍ ꢐ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢒ ꢎ ꢂ  
ꢑ ꢇ ꢐ ꢈ E  
ꢑ ꢇ ꢐ ꢈ E  
ꢑ ꢇ ꢐ ꢈ E  
ꢅ 4  
3 ꢊ  
1 2  
5
1
ꢑ ꢕ ꢌ ꢌ  
ꢑ ꢕ ꢗ ꢋ  
4
A ꢒ ꢎ ꢂ  
1 ꢆ  
1
2
2
ꢌ 1  
6 0 0  
2
1
1 ꢆ  
1 1  
1 ꢆ  
1 1  
Maxim Integrated  
34  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
MAX1153/MAX11254 Family EV Kit Schematic (continued)  
3
3
E ꢁ  
3
4
4
4
ꢌ ꢑ ꢂ  
ꢑ ꢂ  
ꢐ ꢑ ꢌ  
E ꢁ  
E ꢁ  
3
4
3
4
0 . 0 1 U F  
ꢂ 1 ꢅ 5  
ꢌ ꢑ ꢂ  
ꢑ ꢂ  
ꢌ ꢑ ꢂ  
ꢑ ꢂ  
ꢐ ꢑ ꢌ  
ꢐ ꢑ ꢌ  
7 3 . 2 K  
1 2 3 K  
7 3 . 2 K  
0 . 0 1 U F  
3
5
2
4
ꢌ3  
ꢌ1  
ꢌ 3  
ꢌ 1  
ꢌ4  
ꢌ2  
ꢌ 2  
ꢌ 4  
E ꢁ  
3
4
ꢌ ꢑ ꢂ  
ꢑ ꢂ  
ꢐ ꢑ ꢌ  
0 . 0 1 U F  
ꢂ 1 5 ꢆ  
E ꢁ  
1 1  
ꢎ ꢌ ꢌ 2  
ꢎ ꢌ ꢌ 1  
2
1
ꢐ ꢑ ꢌ 2  
ꢐ ꢑ ꢌ 1  
3
1
ꢉ ꢊ M ꢁ E ꢇ  
4 . 7 U F  
ꢂ 1 5 ꢈ  
2
1
3
4
Maxim Integrated  
35  
www.maximintegrated.com  
Evaluates: MAX11253/MAX11254  
MAX11253/MAX11254 Family  
Evaluation Kit  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
4/15  
5/15  
4/18  
0
1
2
Initial release  
Added the MAX11253 EV kit to data sheet  
Updated PCB layout diagrams, schematic, and bill of materials  
1–22  
21-35  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
36  

相关型号:

MAX11254

Longer Battery Life for Portable Applications
MAXIM

MAX11254ATJ

Longer Battery Life for Portable Applications
MAXIM

MAX11254ATJ+

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11254ATJ+T

ADC, Delta-Sigma, 24-Bit, 6 Channel, CMOS, PQCC32,
MAXIM

MAX11254ATJ/V+

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11254ATJ/V+T

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11254ATJT

Longer Battery Life for Portable Applications
MAXIM

MAX11254_V01

24-Bit, 6-Channel, 64ksps, 6.2nV/√Hz PGA, Delta-Sigma ADC with SPI Interface
MAXIM

MAX11259AWX+T

ADC, Delta-Sigma, 24-Bit, 1 Func, 6 Channel, Serial Access, CMOS, PBGA36, WLP-36
MAXIM

MAX1125AIBH

8-Bit, 300Msps Flash ADC
MAXIM

MAX1125AIBH-T

ADC, Flash Method, 8-Bit, 1 Func, 1 Channel, Parallel, 8 Bits Access, CMOS, CQCC44, MO-047AC, CERQUAD-44
MAXIM

MAX1125AIDO

8-Bit, 300Msps Flash ADC
MAXIM