MAX1126EGK-TD [MAXIM]

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68;
MAX1126EGK-TD
型号: MAX1126EGK-TD
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, Bipolar, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68

文件: 总25页 (文件大小:790K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3143; Rev 1; 3/04  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1126 quad, 12-bit analog-to-digital converter  
(ADC) fe a ture s fully d iffe re ntia l inp uts , a p ip e line d  
architecture, and digital error correction. This ADC is  
optimized for low-power, high-dynamic performance for  
medical imaging, communications, and instrumentation  
applications. The MAX1126 operates from a 1.7V to  
1.9V single supply and consumes only 563mW while  
delivering a 69.9dB signal-to-noise ratio (SNR) at a  
5.3MHz input frequency. In addition to low operating  
power, the MAX1126 features an 813µA power-down  
mode for idle periods.  
Four ADC Channels with Serial LVDS/SLVS  
Outputs  
Excellent Dynamic Performance  
69.9dB SNR at f = 5.3MHz  
IN  
93.7dBc SFDR at f = 5.3MHz  
IN  
-90dB Channel Isolation  
Ultra-Low Power  
135mW per Channel (Normal Operation)  
1.5mW Total (Shutdown Mode)  
Accepts 20% to 80% Clock Duty Cycle  
Self-Aligning Data-Clock to Data-Output Interface  
Fully Differential Analog Inputs  
An internal 1.24V precision bandgap reference sets the  
ADCs full-scale range. A flexible reference structure  
allows the use of an external reference for applications  
requiring increased accuracy or a different input volt-  
age range.  
Wide 1.4V  
Differential Input Voltage Range  
P-P  
Internal/External Reference Option  
Test Mode for Digital Signal Integrity  
A single-ended clock controls the conversion process.  
An internal duty-cycle equalizer allows for wide varia-  
tions in inp ut-c loc k d uty c yc le . An on-c hip p ha s e -  
loc ke d loop (PLL) g e ne ra te s the hig h-s p e e d s e ria l  
low-voltage differential signaling (LVDS) clock.  
LVDS Outputs Support Up to 30in FR-4 Backplane  
Connections  
Small, 68-Pin QFN with Exposed Paddle  
Evaluation Kit Available (MAX1127EVKIT)  
The MAX1126 provides serial LVDS outputs for data,  
clock, and frame alignment signals. The output data is  
presented in twos complement or binary format.  
Ord e rin g In fo rm a t io n  
PART  
TEMP RANGE  
PIN-PACKAGE  
68 QFN 10mm x  
x 10mm x 0.9mm  
Refer to the MAX1127 data sheet for a pin-compatible  
65Msps version of the MAX1126.  
MAX1126EGK  
-40°C to +85°C  
The MAX1126 is available in a small, 10mm x 10mm x  
0.9mm, 68-pin QFN package with exposed paddle and  
is specified for the extended industrial (-40°C to +85°C)  
temperature range.  
P in Co n fig u ra t io n  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
GND  
IN0P  
IN0N  
GND  
IN1P  
IN1N  
GND  
1
2
51 OUT0P  
50 OUT0N  
Ap p lic a t io n s  
Ultrasound and Medical Imaging  
Positron Emission Tomography (PET) Imaging  
Multichannel Communication Systems  
Instrumentation  
EP  
3
49 OV  
DD  
4
48 OUT1P  
47 OUT1N  
5
6
46 OV  
DD  
7
45 CLKOUTP  
AV  
DD  
8
CLKOUTN  
44  
MAX1126  
AV  
DD  
9
OV  
43  
42  
DD  
AV  
DD  
10  
FRAMEP  
GND 11  
IN2P 12  
IN2N 13  
GND 14  
IN3P 15  
IN3N 16  
GND 17  
41 FRAMEN  
40 OV  
DD  
39 OUT2P  
38 OUT2N  
37 OV  
DD  
36 OUT3P  
35 OUT3N  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
QFN  
10mm x 10mm x 0.9mm  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ABSOLUTE MAXIMUM RATINGS  
AV to GND.........................................................-0.3V to +2.0V  
CV to GND ........................................................-0.3V to +3.6V  
DD  
T/B, LVDSTEST to GND ...........................-0.3V to (AV + 0.3V)  
DD  
DD  
REFIO, INTREF to GND............................-0.3V to (AV + 0.3V)  
DD  
OV to GND ........................................................-0.3V to +2.0V  
I.C. to GND...............................................-0.3V to (AV + 0.3V)  
DD  
DD  
IN_P, IN_N to GND...................................-0.3V to (AV + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
CLK to GND.............................................-0.3V to (CV + 0.3V)  
68-Pin QFN 10mm x 10mm x 0.9mm  
DD  
OUT_P, OUT_N, FRAME_,  
CLKOUT_ to GND................................-0.3V to (OV + 0.3V)  
DT, SLVS/LVDS to GND...........................-0.3V to (AV + 0.3V)  
PLL0, PLL1, PLL2, PLL3 to GND .............-0.3V to (AV + 0.3V)  
(derated 41.7mW/°C above +70°C)........................3333.3mW  
Operating Temperature Range ...........................-40°C to +85°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range .............................-65°C to +150°C  
Lead Temperature Range (soldering, 10s)......................+300°C  
DD  
DD  
DD  
PD0, PD1, PD2, PD3, PDALL to GND......-0.3V to (AV + 0.3V)  
DD  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
N
12  
Bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
INL  
DNL  
(Note 2)  
(Note 2)  
0.4  
0.25  
LSB  
% FS  
% FS  
Fixed external reference (Note 2)  
Fixed external reference (Note 2)  
1
Gain Error  
-1.5  
+0.9  
+2.5  
ANALOG INPUTS (IN_P, IN_N)  
Input Differential Range  
Common-Mode Voltage Range  
Differential Input Impedance  
Differential Input Capacitance  
CONVERSION RATE  
Maximum Conversion Rate  
Minimum Conversion Rate  
Data Latency  
V
Differential input  
(Note 3)  
1.4  
0.75  
2
V
P-P  
ID  
V
CMO  
V
R
Switched capacitor load  
kΩ  
pF  
IN  
C
12.5  
IN  
f
40  
MHz  
MHz  
SMAX  
f
16  
SMIN  
6.5  
Cycles  
DYNAMIC CHARACTERISTICS (differential inputs, 4096-point FFT)  
f
= 5.3MHz at -0.5dBFS  
69.9  
69.2  
69.8  
69.1  
11.4  
11.3  
IN  
Signal-to-Noise Ratio (Note 2)  
SNR  
dB  
dB  
f
IN  
= 19.3MHz at -0.5dBFS, T +25°C  
66.7  
66.7  
A
f
IN  
= 5.3MHz at -0.5dBFS  
Signal-to-Noise and Distortion  
(First Four Harmonics) (Note 2)  
SINAD  
ENOB  
f
IN  
= 19.3MHz at -0.5dBFS, T +25°C  
A
f
IN  
= 5.3MHz at -0.5dBFS  
= 19.3MHz at -0.5dBFS  
Effective Number of Bits (Note 2)  
Bits  
f
IN  
2
_______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 5.3MHz at -0.5dBFS  
MIN  
TYP  
93.7  
89  
MAX  
UNITS  
f
IN  
Spurious-Free Dynamic Range  
(Note 2)  
SFDR  
dBc  
f
IN  
= 19.3MHz at -0.5dBFS, T +25°C  
77.3  
A
f
= 5.3MHz at -0.5dBFS  
-91.5  
-88.7  
IN  
Total Harmonic Distortion (Note 2)  
Intermodulation Distortion  
THD  
IMD  
IM3  
dBc  
dBc  
dBc  
f
IN  
= 19.3MHz at -0.5dBFS, T +25°C  
-76.3  
A
f = 12.40125MHz at -6.5dBFS,  
1
87.0  
89.3  
f = 13.60125MHz at -6.5dBFS (Note 2)  
2
f = 12.40125MHz at -6.5dBFS,  
1
Third-Order Intermodulation  
f = 13.60125MHz at -6.5dBFS (Note 2)  
2
Aperture Jitter  
t
(Note 2)  
<0.4  
1
ps  
RMS  
AJ  
Aperture Delay  
t
(Note 2)  
ns  
AD  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Output Noise  
SSBW  
LSBW  
Input at -20dBFS (Notes 2 and 4)  
Input at -0.5dBFS (Notes 2 and 4)  
IN_P = IN_N  
100  
100  
0.35  
MHz  
MHz  
LSB  
RMS  
Clock  
cycles  
Overdrive Recovery Time  
t
R
S
= 25, C = 50pF  
1
OR  
S
INTERNAL REFERENCE (INTREF = GND, bypass REFIO to GND with 0.1µF)  
INTREF Internal Reference Mode  
(Note 5)  
0.1  
V
Enable Voltage  
INTREF Low-Leakage Current  
200  
µA  
V
REFIO Output Voltage  
V
REFIO  
1.18  
1.24  
1.30  
Reference Temperature  
Coefficient  
TC  
100  
ppm/°C  
REFIO  
EXTERNAL REFERENCE (INTREF = AV  
)
DD  
INTREF External Reference Mode  
Enable Voltage  
AV  
0.1V  
-
DD  
(Note 5)  
V
INTREF High-Leakage Current  
200  
1.24  
<1  
µA  
V
REFIO Input Voltage Range  
REFIO Input Current  
I
µA  
REFIO  
CLOCK INPUT (CLK)  
0.8 x  
Input High Voltage  
Input Low Voltage  
V
V
V
CLKH  
CV  
DD  
0.2 x  
V
CLKL  
CV  
DD  
Clock Duty Cycle  
50  
%
%
Clock Duty-Cycle Tolerance  
±30  
_______________________________________________________________________________________  
3
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
DI  
CONDITIONS  
MIN  
TYP  
MAX  
5
UNITS  
µA  
Input at GND  
Input at AV  
Input Leakage  
IN  
80  
DD  
Input Capacitance  
DC  
5
pF  
IN  
DIGITAL INPUTS (PLL_, LVDSTEST, DT, SLVS/LVDS, PD_, PDALL, T/B)  
0.8 x  
Input High Threshold  
Input Low Threshold  
V
V
V
IH  
AV  
DD  
0.2 x  
V
IL  
AV  
DD  
Input at GND, except PLL2 and PLL3  
5
Input Leakage  
DI  
Input at AV , except PLL2 and PLL3  
DD  
80  
µA  
pF  
IN  
PLL2 and PLL3 only  
200  
Input Capacitance  
DC  
5
IN  
LVDS OUTPUTS (OUT_P, OUT_N, SLVS/LVDS = 0  
Differential Output Voltage  
Output Common-Mode Voltage  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
V
R
TERM  
R
TERM  
R
TERM  
R
TERM  
= 100Ω  
250  
1.125  
450  
mV  
V
OHDIFF  
V
= 100Ω  
1.375  
OCM  
t
= 100, C  
= 100, C  
= 5pF  
= 5pF  
150  
150  
ps  
ps  
R
LOAD  
LOAD  
t
F
SLVS OUTPUTS (OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP, FRAMEN), SLVS/LVDS = 1, DT = 1  
Differential Output Voltage  
Output Common-Mode Voltage  
Rise Time (20% to 80%)  
Fall Time (80% to 20%)  
POWER-DOWN  
V
R
TERM  
R
TERM  
R
TERM  
R
TERM  
= 100Ω  
240  
220  
120  
120  
mV  
mV  
ps  
OHDIFF  
V
= 100Ω  
OCM  
t
= 100, C  
= 100, C  
= 5pF  
= 5pF  
R
LOAD  
LOAD  
t
ps  
F
PD Fall to Output Enable  
PD Rise to Output Disable  
POWER REQUIREMENTS  
t
132  
10  
µs  
ns  
ENABLE  
t
DISABLE  
AV Supply Voltage  
AV  
1.7  
1.7  
1.7  
1.8  
1.8  
1.8  
1.9  
1.9  
3.6  
V
V
V
DD  
DD  
OV Supply Voltage  
OV  
DD  
DD  
CV Supply Voltage  
CV  
DD  
DD  
4
_______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
PDALL = 0, all channels  
active  
246  
285  
PDALL = 0, all channels  
active, DT = 1  
246  
mA  
f
IN  
=
AV Supply Current  
I
19.3MHz at  
-0.5dBFS  
PDALL = 0, 1 channel active  
PDALL = 0, PD[3:0] = 1111  
76  
20  
DD  
AVDD  
PDALL = 1, global power  
down, PD[3:0] =1111, no  
clock input  
438  
µA  
mA  
µA  
PDALL = 0, all channels  
active  
51  
63  
57  
PDALL = 0, all channels  
active, DT = 1  
f
IN  
=
OV Supply Current  
I
19.3MHz at  
-0.5dBFS  
PDALL = 0, 1 channel active  
PDALL = 0, PD[3:0] = 1111  
35  
30  
DD  
OVDD  
PDALL = 1, global power-  
down, PD[3:0] =1111, no  
clock input  
375  
CV is used only to bias ESD-protection  
DD  
diodes on CLK input, Figure 2  
CV Supply Current  
DD  
I
0
mA  
CVDD  
Power Dissipation  
P
f
IN  
= 19.3MHz at -0.5dBFS  
535  
616  
mW  
DISS  
TIMING CHARACTERISTICS (Note 6)  
(t  
/
(t  
/
SAMPLE  
24)  
- 0.15  
SAMPLE  
24)  
+ 0.15  
t
/
SAMPLE  
24  
Data Valid to CLKOUT Rise/Fall  
t
f
= 40MHz, Figure 5 (Notes 6 and 7)  
ns  
OD  
CLK  
t
/
SAMPLE  
12  
CLKOUT Output Width High  
CLKOUT Output Width Low  
t
Figure 5  
Figure 5  
ns  
ns  
CH  
t
/
SAMPLE  
12  
t
CL  
(t  
/
(t  
/
/
SAMPLE  
24)  
- 0.15  
SAMPLE  
24)  
+ 0.15  
t
/
SAMPLE  
24  
FRAME Rise to CLKOUT Rise  
Sample CLK Rise to Frame Rise  
t
Figure 4 (Note 7)  
ns  
ns  
CF  
(t  
/ (t  
/ (t  
SAMPLE SAMPLE SAMPLE  
2)  
2)  
2)  
t
Figure 4 (Notes 7 and 8)  
SF  
+0.9  
+1.3  
+1.7  
_______________________________________________________________________________________  
5
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , C  
to GND = 0.1µF,  
REFIO  
DD  
DD  
DD  
REFIO  
DD  
f
= 40MHz (50% duty cycle), DT = 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
CLK  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
(Note 2)  
f = 19.3MHz (Note 2)  
IN  
-90  
±0.1  
±1  
dB  
dB  
Gain Matching  
Phase Matching  
f
= 19.3.MHz (Note 2)  
Degrees  
IN  
Note 1: Specifications at T +25°C are guaranteed by production testing. Specifications at T < +25°C are guaranteed by design  
A
A
and characterization and not subject to production testing.  
Note 2: See definition in the Parameter Definitions section.  
Note 3: The MAX1126 internally sets the common-mode voltage to 0.6V (typ) (see Figure 1). The common-mode voltage can be  
overdriven to between 0.55V and 0.85V.  
Note 4: Limited by MAX1127EVKIT input circuitry.  
Note 5: Connect INTREF to GND directly to enable internal reference mode. Connect INTREF to AV directly to disable the internal  
DD  
bandgap reference and enable external reference mode.  
Note 6: Data valid to CLKOUT rise/fall timing is measured from 50% of data output level to 50% of clock output level.  
Note 7: Guaranteed by design and characterization. Not subject to production testing.  
Note 8: Sample CLK Rise to FRAME RISE timing is measured from 50% of sample clock input level to 50% of FRAME output level.  
6
_______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
REFIO DD  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
FFT PLOT  
FFT PLOT  
(32,768-POINT DATA RECORD)  
(32,768-POINT DATA RECORD)  
0
0
f
= 40.96MHz  
= 5.30125MHz  
= -0.5dBFS  
CLK  
f
= 40.96MHz  
CLK  
-10  
-20  
-10  
-20  
f
IN  
f
IN  
= 19.00125MHz  
A
IN  
A
= -0.5dBFS  
IN  
SNR = 69.88dB  
SINAD = 69.85dB  
THD = -91.46dBc  
SFDR = 93.65dBc  
-30  
SNR = 69.20dB  
SINAD = 69.16dB  
THD = -88.74dBc  
SFDR = 89.04dBc  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
HD3  
HD3  
-80  
-80  
HD2  
HD2  
-90  
-90  
-100  
-110  
-120  
-100  
-110  
-120  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
CROSSTALK  
(4096-POINT DATA RECORD)  
CROSSTALK  
(4096-POINT DATA RECORD)  
CROSSTALK  
(4096-POINT DATA RECORD)  
0
0
0
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 0  
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 1  
MEASURED ON CHANNEL 2,  
WITH INTERFERING SIGNAL  
ON CHANNEL 3  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
= 39.9997651MHz  
f
= 39.9997651MHz  
f
= 39.9997651MHz  
CLK  
CLK  
CLK  
f
= 5.2831721MHz  
= 19.3260584MHz  
f
= 5.2831721MHz  
= 19.3260584MHz  
f
= 5.2831721MHz  
= 19.3260584MHz  
IN(IN2)  
IN(IN2)  
IN(IN2)  
f
f
f
IN(IN3)  
IN(IN0)  
IN(IN1)  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
0
4
8
12  
16  
20  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TWO-TONE INTERMODULATION DISTORTION  
(32,768-POINT DATA RECORD)  
GAIN BANDWIDTH PLOT  
0
1
0
f
= 12.40125MHz  
= 13.60125MHz  
= -6.5dBFS  
= -6.5dBFS  
FULL-POWER  
BANDWIDTH  
-0.5dBFS  
IN(IN1)  
-10  
f
IN(IN2)  
-20  
A
A
IN1  
-30  
IN2  
IMD = 87.0dBc  
IM3 = 89.3dBc  
-40  
-1  
-2  
-3  
-4  
-5  
SMALL-SIGNAL  
BANDWIDTH  
-20dBFS  
-50  
-60  
-70  
-80  
-90  
LIMITED BY  
MAX1127EVKIT  
INPUT CIRCUITRY  
-100  
-110  
-120  
1
10  
100  
1000  
0
4
8
12  
16  
20  
ANALOG INPUT FREQUENCY (MHz)  
FREQUENCY (MHz)  
_______________________________________________________________________________________  
7
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
72  
72  
70  
68  
66  
64  
62  
60  
70  
68  
66  
64  
62  
60  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
f (MHz)  
IN  
f
IN  
(MHz)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
f
IN  
(MHz)  
f
IN  
(MHz)  
8
_______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT POWER  
vs. ANALOG INPUT POWER  
72  
72  
67  
62  
57  
52  
47  
42  
37  
32  
f
IN  
= 5.301935MHz  
f
IN  
= 5.301935MHz  
67  
62  
57  
52  
47  
42  
37  
32  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
f
IN  
= 5.301935MHz  
f = 5.301935MHz  
IN  
-30  
-25  
-20  
-15  
-10  
-5  
0
-30  
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
_______________________________________________________________________________________  
9
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. SAMPLING RATE  
SIGNAL-TO-NOISE RATIO  
vs. SAMPLING RATE  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
72  
f = 5.301935MHz  
IN  
f
IN  
= 5.301935MHz  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
20  
25  
30  
(MHz)  
35  
40  
20  
25  
30  
(MHz)  
35  
40  
f
f
CLK  
CLK  
TOTAL HARMONIC DISTORTION  
vs. SAMPLING RATE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. SAMPLING RATE  
-75  
-80  
105  
100  
95  
f
IN  
= 5.301935MHz  
f = 5.301935MHz  
IN  
-85  
-90  
90  
-95  
85  
-100  
-105  
80  
75  
20  
25  
30  
(MHz)  
35  
40  
20  
25  
30  
(MHz)  
35  
40  
f
f
CLK  
CLK  
10 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK DUTY CYCLE  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK DUTY CYCLE  
72  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
f
IN  
= 5.301935MHz  
f = 5.301935MHz  
IN  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
TOTAL HARMONIC DISTORTION  
vs. CLOCK DUTY CYCLE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK DUTY CYCLE  
-75  
-80  
100  
95  
90  
85  
80  
75  
70  
f
IN  
= 5.301935MHz  
f = 5.301935MHz  
IN  
-85  
-90  
-95  
-100  
-105  
30  
40  
50  
60  
70  
30  
40  
50  
60  
70  
CLOCK DUTY CYCLE (%)  
CLOCK DUTY CYCLE (%)  
______________________________________________________________________________________ 11  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
SIGNAL-TO-NOISE RATIO  
vs. TEMPERATURE  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. TEMPERATURE  
72  
72  
70  
68  
66  
64  
62  
f
= 40.404040404MHz  
= 19.29204151MHz  
f
= 40.404040404MHz  
CLK  
CLK  
f
f = 19.29204151MHz  
IN  
IN  
4096-POINT DATA RECORD  
4096-POINT DATA RECORD  
70  
68  
66  
64  
62  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TOTAL HARMONIC DISTORTION  
vs. TEMPERATURE  
SPURIOUS-FREE DYNAMIC RANGE  
vs. TEMPERATURE  
-75  
-80  
100  
95  
90  
85  
80  
75  
70  
f
= 40.404040404MHz  
= 19.29204151MHz  
f
= 40.404040404MHz  
f = 19.29204151MHz  
IN  
CLK  
CLK  
f
IN  
4096-POINT DATA RECORD  
4096-POINT DATA RECORD  
-85  
-90  
-95  
-100  
-105  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
12 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
ANALOG SUPPLY CURRENT  
DIGITAL SUPPLY CURRENT  
vs. SAMPLING RATE  
vs. SAMPLING RATE  
270  
70  
60  
50  
40  
30  
20  
10  
0
260  
250  
240  
230  
220  
20  
25  
30  
(MHz)  
35  
40  
20  
25  
30  
(MHz)  
35  
40  
f
f
CLK  
CLK  
OFFSET ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
0.020  
0.015  
0.010  
0.005  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.005  
-0.010  
-0.015  
-0.020  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
0.6  
0.4  
0.2  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.2  
-0.4  
-0.6  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
0
512 1024 1536 2048 2560 3072 3584 4096  
DIGITAL OUTPUT CODE  
______________________________________________________________________________________ 13  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(AV  
= 1.8V, OV  
= 1.8V, CV  
= 1.8V, GND = 0, external V  
= 1.24V, INTREF = AV , differential input at -0.5dBFS,  
DD  
DD  
DD  
REFIO DD  
f
= 40MHz (50% duty cycle), DT = low, C  
= 10pF, T = +25°C, unless otherwise noted.)  
LOAD A  
CLK  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. REFERENCE LOAD CURRENT  
1.239  
1.26  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
NEGATIVE CURRENT  
FLOWS INTO REFIO  
1.238  
1.237  
1.236  
1.235  
1.25  
1.24  
1.23  
1.22  
AV = OV  
AV = OV  
DD DD  
DD  
DD  
1.7  
1.8  
1.9  
2.0  
2.1  
-40  
-15  
10  
35  
60  
85  
-400 -300 -200 -100  
I
0
100 200 300 400  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
(µA)  
REFIO  
P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1, 4, 7, 11,  
14, 17, 22,  
24, 65, 68  
GND  
Ground. Connect all GND pins to the same potential.  
2
3
5
6
IN0P  
IN0N  
IN1P  
IN1N  
Channel 0 Positive Analog Input  
Channel 0 Negative Analog Input  
Channel 1 Positive Analog Input  
Channel 1 Negative Analog Input  
Analog Power Input. Connect AV to a 1.7V to 1.9V power supply. Bypass each AV to GND with  
DD  
DD  
8, 9, 10, 18,  
20, 25, 26,  
27, 58–62  
a 0.1µF capacitor as close to the device as possible. Bypass the AV power plane to the GND  
DD  
AV  
DD  
ground plane with a bulk 2.2µF capacitor as close to the device as possible. Connect all AV pins  
DD  
to the same potential.  
12  
13  
15  
16  
19  
IN2P  
IN2N  
IN3P  
IN3N  
I.C.  
Channel 2 Positive Analog Input  
Channel 2 Negative Analog Input  
Channel 3 Positive Analog Input  
Channel 3 Negative Analog Input  
Internally Connected. Do not connect.  
Clock Power Input. Connect CV to a 1.7V to 3.6V supply. Bypass CV to GND with a 0.1µF  
DD  
DD  
capacitor in parallel with a 2.2µF capacitor. Install the bypass capacitors as close to the device as  
21  
CV  
DD  
possible.  
23  
28  
CLK  
DT  
Single-Ended CMOS Clock Input  
Double Termination Select Input. Drive DT high to select the internal 100termination between the  
differential output pairs. Drive DT low to select no internal output termination.  
14 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
Differential Output Signal Format Select Input. Drive SLVS/LVDS high to select SLVS outputs. Drive  
SLVS/LVDS low to select LVDS outputs.  
29  
SLVS/LVDS  
30  
31  
32  
33  
PLL0  
PLL1  
PLL2  
PLL3  
PLL Control Input 0. PLL0 is reserved for factory testing only and must always be connected to GND.  
PLL Control Input 1. PLL1 is reserved for factory testing only and must always be connected to GND.  
PLL Control Input 2. See Table 1 for details.  
PLL Control Input 3. See Table 1 for details.  
Output-Driver Power Input. Connect OV to a 1.7V to 1.9V power supply. Bypass each OV to  
DD  
DD  
34, 37, 40,  
43, 46, 49,  
52  
GND with a 0.1µF capacitor as close to the device as possible. Bypass the OV power plane to the  
DD  
OV  
DD  
GND ground plane with a bulk 2.2µF capacitor as close to the device as possible. Connect all OV  
pins to the same potential.  
DD  
35  
36  
38  
39  
OUT3N  
OUT3P  
OUT2N  
OUT2P  
Channel 3 Negative LVDS/SLVS Output  
Channel 3 Positive LVDS/SLVS Output  
Channel 2 Negative LVDS/SLVS Output  
Channel 2 Positive LVDS/SLVS Output  
Negative Frame Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns  
to a valid D0 in the output data stream.  
41  
42  
FRAMEN  
FRAMEP  
Positive Frame Alignment LVDS/SLVS Output. A rising edge on the differential FRAME output aligns to  
a valid D0 in the output data stream.  
44  
45  
47  
48  
50  
51  
CLKOUTN Negative LVDS/SLVS Serial Clock Output  
CLKOUTP  
OUT1N  
OUT1P  
Positive LVDS/SLVS Serial Clock Output  
Channel 1 Negative LVDS/SLVS Output  
Channel 1 Positive LVDS/SLVS Output  
Channel 0 Negative LVDS/SLVS Output  
Channel 0 Positive LVDS/SLVS Output  
OUT0N  
OUT0P  
Channel 0 Power-Down Input. Drive PD0 high to power-down channel 0. Drive PD0 low for normal  
operation.  
53  
54  
55  
56  
57  
63  
PD0  
PD1  
Channel 1 Power-Down Input. Drive PD1 high to power-down channel 1. Drive PD1 low for normal  
operation.  
Channel 2 Power-Down Input. Drive PD2 high to power-down channel 2. Drive PD2 low for normal  
operation.  
PD2  
Channel 3 Power-Down Input. Drive PD3 high to power-down channel 3. Drive PD3 low for normal  
operation.  
PD3  
Global Power-Down Input. Drive PDALL high to power-down all channels and reference. Drive PDALL  
low for normal operation.  
PDALL  
T/B  
Output Format Select Input. Drive T/B high to select binary output format. Drive T/B low to select twos  
complement output format.  
______________________________________________________________________________________ 15  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
P in De s c rip t io n (c o n t in u e d )  
PIN  
NAME  
FUNCTION  
LVDS Test Pattern Enable Input. Drive LVDSTEST high to enable the output test pattern  
(000010111101 MSBLSB). As with the analog conversion results, the test pattern data is output LSB  
first. Drive LVDSTEST low for normal operation.  
64  
LVDSTEST  
Reference Input/Output. For internal reference operation (INTREF = GND), the reference output  
66  
REFIO  
voltage is 1.24V. For external reference operation (INTREF = AV ), apply a stable reference voltage  
DD  
at REFIO. Bypass to GND with a 0.1µF capacitor.  
Internal/External Reference Mode Select Input. For internal reference mode, connect INTREF directly  
67  
INTREF  
to GND. For external reference mode, connect INTREF directly to AV  
.
DD  
Exposed Paddle. EP is internally connected to GND. Externally connect EP to GND to achieve  
specified performance.  
EP  
Fu n c t io n a l Dia g ra m  
AV  
OV  
DD  
PDALL PD0 PD1 PD2 PD3  
POWER CONTROL  
DD  
DT  
SLVS/LVDS  
REFIO  
LVDSTEST  
T/B  
REFERENCE  
SYSTEM  
OUTPUT  
INTREF  
MAX1126  
CONTROL  
12-BIT  
PIPELINE  
ADC  
IN0P  
IN0N  
OUT0P  
OUT0N  
12:1  
SERIALIZER  
T/H  
T/H  
T/H  
T/H  
OUT1P  
OUT1N  
12-BIT  
PIPELINE  
ADC  
IN1P  
IN1N  
12:1  
SERIALIZER  
OUT2P  
OUT2N  
LVDS/SLVS  
OUTPUT  
DRIVERS  
12-BIT  
PIPELINE  
ADC  
IN2P  
IN2N  
12:1  
SERIALIZER  
OUT3P  
OUT3N  
FRAMEP  
FRAMEN  
12-BIT  
PIPELINE  
ADC  
IN3P  
IN3N  
12:1  
SERIALIZER  
CLKOUTP  
CLKOUTN  
CLOCK  
CIRCUITRY  
PLL  
6x  
CLK  
CV  
DD  
PLL0 PLL1 PLL2 PLL3  
GND  
16 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
ductance amplifier (OTA), and open simultaneously with  
S1, sampling the input waveform. Switches S4a, S4b,  
De t a ile d De s c rip t io n  
The MAX1126 ADC features fully differential inputs, a  
S5a, and S5b are then opened before switches S3a and  
S3b connect capacitors C1a and C1b to the output of  
the amplifier and switch S4c is closed. The resulting dif-  
ferential voltages are held on capacitors C2a and C2b.  
The amplifiers charge capacitors C1a and C1b to the  
same values originally held on C2a and C2b. These  
values are then presented to the first-stage quantizers  
and isolate the pipelines from the fast-changing inputs.  
Analog inputs IN_P to IN_N are driven differentially. For  
differential inputs, balance the input impedance of IN_P  
and IN_N for optimum performance.  
pipelined architecture, and digital error correction for  
high-speed signal conversion. The ADC pipeline archi-  
tecture moves the samples taken at the inputs through  
the pipeline stages every half clock cycle. The convert-  
ed digital results are serialized and sent through the  
LVDS/SLVS output drivers. The total latency from input  
to output is 6.5 input clock cycles.  
The MAX1126 offe rs four s e p a ra te fully d iffe re ntia l  
c ha nne ls with s ync hronize d inp uts a nd outp uts .  
Configure the outputs for binary or twos complement  
with the T/B digital input. Power-down each channel  
individually or globally to minimize power consumption.  
The MAX1126 analog inputs are self-biased at a com-  
mon-mode voltage of 0.6V (typ) and allow a differential  
input voltage swing of 1.4V . The common-mode volt-  
P-P  
In p u t Circ u it  
Figure 1 displays a simplified functional diagram of the  
input T/H circuits. In track mode, switches S1, S2a, S2b,  
S4a, S4b, S5a, and S5b are closed. The fully differential  
circuits sample the input signals onto the two capacitors  
(C2a and C2b) through switches S4a and S4b. S2a and  
S2b set the common mode for the operational transcon-  
age can be overdriven to between 0.55V and 0.85V.  
Drive the analog inputs of the MAX1126 in AC-coupled  
configuration to achieve best dynamic performance.  
Se e the Us ing Tra ns forme r Coup ling s e c tion for a  
detailed discussion of this configuration.  
SWITCHES SHOWN IN TRACK MODE  
INTERNALLY  
GENERATED  
COMMON-MODE  
INTERNAL  
COMMON-MODE  
BIAS*  
INTERNAL  
LEVEL*  
BIAS*  
S5a  
S2a  
AV  
DD  
MAX1126  
C1a  
S3a  
S4a  
S4b  
C2a  
C2b  
IN_P  
IN_N  
GND  
OUT  
OUT  
OTA  
C1b  
S4c  
S1  
S3b  
S2b  
S5b  
INTERNAL  
COMMON-MODE  
BIAS*  
INTERNALLY  
GENERATED  
COMMON-MODE  
LEVEL*  
INTERNAL  
BIAS*  
*NOT EXTERNALLY ACCESSIBLE  
Figure 1. Internal Input Circuitry  
______________________________________________________________________________________ 17  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
source at REFIO. Bypass REFIO to GND with a 0.1µF  
capacitor. The REFIO input impedance is >1M.  
Re fe re n c e Co n fig u ra t io n s  
(REFIO a n d INTREF)  
The MAX1126 provides an internal 1.24V bandgap ref-  
erence or can be driven with an external reference volt-  
age. The MAX1126 full-scale analog differential input  
range is ±FSR. Full-scale range (FSR) is given by the  
following equation:  
Clo c k In p u t (CLK)  
The MAX1126 accepts a CMOS-compatible clock sig-  
nal with a wide 20% to 80% input-clock duty cycle.  
Drive CLK with an external single-ended clock signal.  
Figure 2 shows the simplified clock input diagram.  
V
Low clock jitter is required for the specified SNR perfor-  
mance of the MAX1126. Analog input sampling occurs  
on the rising edge of CLK, requiring this edge to pro-  
vide the lowest possible jitter. Jitter limits the maximum  
SNR performance of any ADC according to the follow-  
ing relationship:  
REFIO  
FSR = 700mVx  
1.24V  
where V  
is the voltage at REFIO, generated inter-  
REFIO  
nally or externally. For a V  
= 1.24V, the full-scale  
REFIO  
input range is ±700mV (1.4V ).  
P-P  
Internal Reference Mode  
Connect INTREF to GND to use the internal bandgap  
reference directly. The internal bandgap reference gen-  
erates REFIO to be 1.24V with a 100ppm/°C tempera-  
ture coefficient in internal reference mode. Connect an  
external 0.1µF bypass capacitor from REFIO to GND  
for stability. REFIO sources up to 200µA and sinks up  
to 200µA for external circuits, and REFIO has a load  
regulation of 83mV/mA. The global power-down input  
(PDALL) enables and disables the reference circuit.  
REFIO ha s > 1Mre s is ta nc e to GND whe n the  
MAX1126 is in power-down mode. The internal refer-  
ence circuit requires 132µs to power-up and settle  
when power is applied to the MAX1126 or when PDALL  
transitions from high to low.  
1
SNR = 20 ×log  
2 × π × f × t  
IN  
J
where f represents the analog input frequency and t  
IN  
J
is the total system clock jitter. Clock jitter is especially  
critical for undersampling applications. For example,  
assuming that clock jitter is the only noise source, to  
obtain the specified 69.2dB of SNR with an input fre-  
quency of 19.3MHz, the system must have less than  
of clock jitter. In actuality, there are other  
noise sources, such as thermal noise and quantization  
noise, that contribute to the system noise requiring the  
2.8ps  
RMS  
clock jitter to be less than 1.1ps  
fied 69.2dB of SNR at 19.3MHz.  
to obtain the speci-  
RMS  
PLL Inputs (PLLO–PLL3)  
The MAX1126 features a PLL that generates an output  
clock signal with 6 times the frequency of the input  
clock. The output clock signal is used to clock data out  
of the MAX1126 (see the System Timing Requirements  
section). Set the PLL2 and PLL3 bits according to the  
input clock range provided in Table 1. PLL0 and PLL1  
are reserved for factory testing and must always be  
connected to GND.  
External Reference Mode  
The external reference mode allows for more control  
over the MAX1126 reference voltage and allows multi-  
ple converters to use a common reference. Connect  
INTREF to AV  
to disable the internal reference and  
DD  
enter external reference mode. Apply a stable 1.24V  
Table 1. PLL2 and PLL3 Configuration  
AV  
DD  
CLOCK INPUT RANGE  
MAX1126  
(MHz)  
PLL2  
PLL3  
CV  
DD  
MIN  
MAX  
DUTY-CYCLE  
EQUALIZER  
0
0
1
1
0
1
0
1
NOT USED  
CLK  
GND  
32.500  
24.375  
16.000  
40.000  
32.500  
24.375  
*PLL0 and PLL11 are reserved for factory testing and must  
always be connected to GND.  
Figure 2. Clock Input Circuitry  
18 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
N + 2  
N + 6  
N + 3  
N
N + 9  
N + 8  
(V  
IN_P  
-
N + 5  
V
)
IN_N  
N + 1  
N + 7  
N + 4  
t
SAMPLE  
CLK  
6.5 CLOCK-CYCLE DATA LATENCY  
(V  
FRAMEP  
-
V
)*  
FRAMEN  
(V  
CLKOUTP  
-
V
)
CLKOUTN  
(V  
OUT_P  
-
V
)
OUT_N  
OUTPUT  
OUTPUT  
DATA FOR  
SAMPLE  
N - 6  
DATA FOR  
SAMPLE N  
*DUTY CYCLE VARIES DEPENDING ON INPUT CLOCK FREQUENCY.  
Figure 3. Global Timing Diagram  
N + 2  
N
(V - V  
)
IN_P IN_N  
N + 1  
t
t
SF  
SAMPLE  
CLK  
(V  
FRAMEP  
-
V
)
t
CF  
FRAMEN  
(V  
CLKOUTP  
-
V
)
CLKOUTN  
(V  
V
-
OUT_P  
D5  
N-7  
D6  
N-7  
D7  
N-7  
D8  
N-7  
D9 D10 D11 D0  
N-7 N-7 N-7 N-6  
D1  
N-6  
D2  
N-6  
D3  
N-6  
D4  
N-6  
D5  
N-6  
D6  
N-6  
D7  
N-6  
D8  
N-6  
D9 D10 D11 D0  
N-6 N-6 N-6 N-5  
D1  
N-5  
D2  
N-5  
D3  
N-5  
D4  
N-5  
D5  
N-5  
D6  
N-5  
)
OUT_N  
*DUTY CYCLE DEPENDS ON INPUT CLOCK FREQUENCY.  
Figure 4. Detailed Two-Conversion Timing Diagram  
Clock Output (CLKOUTP, CLKOUTN)  
S ys t e m Tim in g Re q u ire m e n t s  
Figure 3 shows the relationship between the analog  
inputs, input clock, frame alignment output, serial clock  
output, and serial data output. The differential analog  
input (IN_P and IN_N) is sampled on the rising edge of  
the CLK signal and the resulting data appears at the  
digital outputs 6.5 clock cycles later. Figure 4 provides  
a detailed, two-conversion timing diagram of the rela-  
tionship between the inputs and the outputs.  
The MAX1126 provides a differential clock output that  
consists of CLKOUTP and CLKOUTN. As shown in  
Figure 4, the serial output data is clocked out of the  
MAX1126 on both edges of the clock output. The fre-  
quency of the output clock is 6 times the frequency  
of CLK.  
______________________________________________________________________________________ 19  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Frame Alignment Output (FRAMEP, FRAMEN)  
t
t
CL  
CH  
The MAX1126 provides a differential frame alignment  
s ig na l tha t c ons is ts of FRAMEP a nd FRAMEN. As  
shown in Figure 4, the rising edge of the frame align-  
ment signal corresponds to the first bit (D0) of the  
12-bit serial data stream. The frequency of the frame  
alignment signal is identical to the frequency of the  
sample clock.  
(V  
V
-
)
CLKOUTP  
CLKOUTN  
t
OD  
t
OD  
(V  
-
OUT_P  
V
D0  
D1  
D2  
D3  
)
OUT_N  
Figure 5. Serialized Output Detailed Timing Diagram  
Serial Output Data (OUT_P, OUT_N)  
The MAX1126 provides its conversion results through  
individual differential outputs consisting of OUT_P and  
OUT_N. The results are valid 6.5 input clock cycles  
after the sample is taken. As shown in Figure 3, the out-  
put data is clocked out on both edges of the output  
clock, LSB (D0) first. Figure 5 provides the detailed ser-  
ial output timing diagram.  
CODE 2048  
10  
V
V  
= FSR×2 ×  
IN_P  
IN_N  
4096  
where CODE is the decimal equivalent of the digital  
10  
output code as shown in Table 2. FSR is the full-scale  
range as shown in Figures 6 and 7.  
Keep the capacitive load on the MAX1126 digital out-  
puts as low as possible.  
Output Data Format (T/B), Transfer Functions  
The MAX1126 output data format is either offset binary  
or twos complement, depending on the logic input T/B.  
With T/B low, the output data format is twos comple-  
ment. With T/B high, the output data format is offset  
binary. The following equations, Table 2, Figure 6, and  
Figure 7 define the relationship between the digital  
output and the analog input. For twos complement  
(T/B = 0):  
LVDS a n d S LVS S ig n a ls (S LVS /LVDS)  
Drive SLVS/LVDS low for LVDS or drive SLVS/LVDS  
high for scalable low-voltage signaling (SLVS) levels at  
the MAX1126 outp uts (OUT_P, OUT_N, CLKOUTP,  
CLKOUTN, FRAMEP, and FRAMEN). See the Electrical  
Characteristics table for LVDS and SLVS output voltage  
levels.  
CODE  
10  
4096  
LVDS Te s t P a t t e rn (LVDS TES T)  
Drive LVDSTEST high to enable the output test pattern  
on all LVDS or SLVS output channels. The output test  
pattern is 0000 1011 1101 MSBLSB. As with the ana-  
log conversion results, the test pattern data is output  
V
V  
= FSR×2 ×  
IN_P  
IN_N  
and for offset binary (T/B = 1):  
Table 2. Output Code Table (V  
= 1.24V)  
REFIO  
TWO’S COMPLEMENT DIGITAL OUTPUT CODE  
OFFSET BINARY DIGITAL OUTPUT CODE  
(T/B = 0)  
(T/B = 1)  
V
(V  
- V  
(mV)  
= 1.24V)  
IN_P  
IN_P  
HEXADECIMAL  
EQUIVALENT  
OF  
DECIMAL  
EQUIVALENT  
OF  
HEXADECIMAL  
EQUIVALENT  
OF  
DECIMAL  
EQUIVALENT  
OF  
REFIO  
BINARY  
D11 D0  
BINARY  
D11 D0  
D11 D0  
D11 D0  
D11 D0  
D11 D0  
0111 1111 1111  
0111 1111 1110  
0x7FF  
0x7FE  
+2047  
+2046  
1111 1111 1111  
1111 1111 1110  
0xFFF  
0xFFE  
+4095  
+4094  
+699.66  
+699.32  
0000 0000 0001  
0000 0000 0000  
1111 1111 1111  
0x001  
0x000  
0xFFF  
+1  
0
1000 0000 0001  
1000 0000 0000  
0111 1111 1111  
0x801  
0x800  
0x7FF  
+2049  
+2048  
+2047  
+0.34  
0
-1  
-0.34  
1000 0000 0001  
1000 0000 0000  
0X801  
0x800  
-2047  
-2048  
0000 0000 0001  
0000 0000 0000  
0x001  
0x000  
+1  
0
-699.66  
-700.00  
20 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
V
1.24V  
V
REFIO  
1.24V  
2 x FSR  
4096  
2 x FSR  
4096  
REFIO  
1 LSB =  
FSR = 700mV x  
1 LSB =  
FSR = 700mV x  
FSR  
FSR  
FSR  
FSR  
0x7FF  
0x7FE  
0x7FD  
0xFFF  
0xFFE  
0xFFD  
0x001  
0x000  
0xFFF  
0x801  
0x800  
0x7FF  
0x803  
0x802  
0x801  
0x800  
0x003  
0x002  
0x800  
0x000  
-2047 -2045  
-1 0 +1  
+2045 +2047  
-2047 -2045  
-1 0 +1  
+2045 +2047  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
Figure 6. Bipolar Transfer Function with Twos Complement  
Output Code (T/B = 0)  
Figure 7. Bipolar Transfer Function with Offset Binary Output  
Code (T/B = 1)  
directly at the outputs helps eliminate unwanted reflec-  
tions down the line. This feature is useful in applications  
where trace lengths are long (>5in) or with mismatched  
impedance. Drive DT high to select double termination,  
or drive DT low to disconnect the internal termination  
resistor (single termination). Selecting double termina-  
DT  
OUT_P/  
CLKOUTP/  
FRAMEP  
Z = 50  
0
tion inc re a s e s the OV  
s up p ly c urre nt (s e e the  
DD  
Electrical Characteristics table).  
P o w e r-Do w n Mo d e s  
The MAX1126 offers two types of power-down inputs,  
PD0–PD3 and PDALL. The power-down modes allow  
the MAX1126 to efficiently use power by transitioning to  
a low-power state when conversions are not required.  
100Ω  
100Ω  
Independent Channel Power-Down (PD0–PD3)  
PD0–PD3 control the power-down mode of each chan-  
nel independently. Drive a power-down input high to  
p owe r d own its c orre s p ond ing inp ut c ha nne l. For  
example, to power down channel 1, drive PD1 high.  
Drive a power-down input low to place the correspond-  
ing input channel in normal operation. The differential  
output impedance of a powered-down output channel  
is approximately 378, when DT is low. The output  
impedance of OUT_P, with respect to OUT_N, is 100Ω  
when DT is high. See the Electrical Characteristics  
table for typical supply currents with powered-down  
channels.  
Z = 50Ω  
0
OUT_N/  
CLKOUTN/  
FRAMEN  
MAX1126  
SWITCHES ARE CLOSED WHEN DT IS HIGH.  
SWITCHES ARE OPEN WHEN DT IS LOW.  
Figure 8. Double Termination  
LSB first. Drive LVDSTEST low for normal operation  
(test pattern disabled).  
Do u b le Te rm in a t io n (DT)  
As shown in Figure 8, the MAX1126 offers an optional,  
inte rna l 100te rmina tion b e twe e n the d iffe re ntia l  
outp ut p a irs (OUT_P a nd OUT_N, CLKOUTP a nd  
CLKOUTN, FRAMEP and FRAMEN). In addition to the  
termination at the end of the line, a second termination  
The state of the internal reference is independent of the  
PD0–PD3 inputs. To power down the internal reference  
circuitry, drive PDALL high (see the Global Power-  
Down (PDALL) section).  
______________________________________________________________________________________ 21  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Global Power-Down (PDALL)  
PDALL controls the power-down mode of all channels  
and the internal reference circuitry. Drive PDALL high to  
enable global power-down. In global power-down mode,  
the output impedance of all the LVDS/SLVS outputs is  
approximately 378, if DT is low. The output impedance  
of the differential LVDS/SLVS outputs is 100when DT is  
high. See the Electrical Characteristics table for typical  
supply currents with global power-down. The following  
list shows the state of the analog inputs and digital out-  
puts in global power-down mode:  
Gro u n d in g , Byp a s s in g , a n d Bo a rd La yo u t  
The MAX1126 requires high-speed board layout design  
techniques. Refer to the MAX1127 EV kit data sheet for  
a board layout reference. Locate all bypass capacitors  
as close to the device as possible, preferably on the  
same side as the ADC, using surface-mount devices  
for minimum inductance. Bypass AV  
to GND with a  
DD  
0.1µF c e ra mic c a p a c itor in p a ra lle l with a 2.2µF  
ceramic capacitor. Bypass OV to GND with a 0.1µF  
DD  
ceramic capacitor in parallel with a 2.2µF ceramic  
capacitor. Bypass CV to GND with a 0.1µF ceramic  
DD  
capacitor in parallel with a 2.2µF ceramic capacitor.  
• IN_P, IN_N analog inputs are disconnected from the  
internal input amplifier.  
Multilayer boards with ample ground and power planes  
produce the highest level of signal integrity. Connect  
MAX1126 ground pins and the exposed backside pad-  
dle to the same ground plane. The MAX1126 relies on  
the exposed backside paddle connection for a low-  
ind uc ta nc e g round c onne c tion. Is ola te the g round  
plane from any noisy digital system ground planes.  
• REFIO has >1Mresistance to GND.  
• OUT_P, OUT_N, CLKOUTP, CLKOUTN, FRAMEP,  
and FRAMEN have approximately 378between the  
output pairs when DT is low. When DT is high, the dif-  
ferential output pairs have 100between each pair.  
When operating from the internal reference, the wake-  
up time from global power-down is typically 132µs.  
When using an external reference, the wake-up time is  
dependent on the external reference drivers.  
Route high-speed digital signal traces away from the  
sensitive analog traces. Keep all signal lines short and  
free of 90° turns.  
Ensure that the differential analog input network layout  
is symmetric and that all parasitics are balanced equal-  
ly. Refer to the MAX1126 EV kit data sheet for an exam-  
ple of symmetric input layout.  
Ap p lic a t io n s In fo rm a t io n  
Us in g Tra n s fo rm e r Co u p lin g  
An RF transformer (Figure 9) provides an excellent  
solution to convert a single-ended input source signal  
to a fully differential signal, required by the MAX1126  
for optimum performance. The MAX1126 input com-  
mon-mode voltage is internally biased to 0.6V (typ) with  
P a ra m e t e r De fin it io n s  
In t e g ra l No n lin e a rit y (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. For the  
MAX1126, this straight line is between the end points of  
the transfer function, once offset and gain errors have  
been nullified. INL deviations are measured at every  
step and the worst-case deviation is reported in the  
Electrical Characteristics table.  
f
= 40MHz. Although a 1:1 transformer is shown, a  
CLK  
step-up transformer can be selected to reduce the  
drive requirements. A reduced signal swing from the  
input driver, such as an op amp, can also improve the  
overall distortion.  
Diffe re n t ia l No n lin e a rit y (DNL)  
Differential nonlinearity is the difference between an  
actual step width and the ideal value of 1 LSB. A DNL  
error specification of less than 1 LSB guarantees no  
missing codes and a monotonic transfer function. For  
the MAX1126, DNL deviations are measured at every  
step and the worst-case deviation is reported in the  
Electrical Characteristics table.  
10Ω  
0.1µF  
IN_P  
1
2
3
6
5
4
39pF  
V
IN  
T1  
N.C.  
MAX1126  
0.1µF  
MINICIRCUITS  
ADT1-1WT  
Offs e t Erro r  
Offset error is a figure of merit that indicates how well  
the actual transfer function matches the ideal transfer  
function at a single point. For the MAX1126, the ideal  
midscale digital output transition occurs when there is  
-1/2 LSB across the analog inputs (Figures 6 and 7).  
10Ω  
IN_N  
39pF  
Figure 9. Transformer-Coupled Input Drive  
22 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
Bipolar offset error is the amount of deviation between  
the measured midscale transition point and the ideal  
midscale transition point.  
CLK  
t
AD  
Ga in Erro r  
Gain error is a figure of merit that indicates how well the  
slope of the actual transfer function matches the slope  
of the ideal transfer function. For the MAX1126, the gain  
error is the difference of the measured full-scale and  
zero-scale transition points minus the difference of the  
ideal full-scale and zero-scale transition points.  
ANALOG  
INPUT  
t
AJ  
SAMPLED  
DATA  
For the bipolar devices (MAX1126), the full-scale transi-  
tion point is from 0x7FE to 0x7FF for twos complement  
output format (0xFFE to 0xFFF for offset binary) and the  
zero-scale transition point is from 0x800 to 0x801 for  
twos complement (0x000 to 0x001 for offset binary).  
T/H  
HOLD  
TRACK  
HOLD  
Figure 10. Aperture Jitter/Delay Specifications  
Cro s s t a lk  
Crosstalk indicates how well each analog input is isolat-  
e d from the othe rs . For the MAX1126, a 5.3MHz,  
-0.5dBFS analog signal is applied to one channel while  
a 19.3MHz, -0.5dBFS analog signal is applied to all  
other channels. An FFT is taken on the channel with the  
5.3MHz analog signal. From this FFT, the crosstalk is  
me a s ure d a s the d iffe re nc e in the 5.3MHz a nd  
19.3MHz amplitudes.  
For the MAX1126, SNR is computed by taking the ratio  
of the RMS s ig na l to the RMS nois e . RMS nois e  
includes all spectral components to the Nyquist fre-  
quency excluding the fundamental, the first six harmon-  
ics (HD2–HD7), and the DC offset.  
S ig n a l-t o -No is e P lu s Dis t o rt io n (S INAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to the RMS noise plus distortion. RMS noise plus  
d is tortion inc lud e s a ll s p e c tra l c omp one nts to the  
Nyquist frequency, excluding the fundamental and the  
DC offset.  
Ap e rt u re De la y  
Aperture delay (t ) is the time defined between the  
AD  
rising edge of the sampling clock and the instant when  
an actual sample is taken. See Figure 10.  
Effe c t ive Nu m b e r o f Bit s (ENOB)  
ENOB specifies the dynamic performance of an ADC at  
a specific input frequency and sampling rate. An ideal  
ADCs error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
Ap e rt u re J it t e r  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the aperture delay. See Figure 10.  
S ig n a l-t o -No is e Ra t io (S NR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADCs reso-  
lution (N bits):  
SINAD1.76  
ENOB =  
6.02  
To t a l Ha rm o n ic Dis t o rt io n (THD)  
THD is the ratio of the RMS sum of the first six harmon-  
ics of the input signal to the fundamental itself. This is  
expressed as:  
2
2
2
2
2
2
SNR  
= 6.02 x N + 1.76  
dB  
V
+ V + V + V + V + V  
3 4 5 6 7  
dB[max]  
dB  
2
THD = 20 × log  
V
1
In reality, there are other noise sources besides quantiza-  
tion noise: thermal noise, reference noise, clock jitter, etc.  
______________________________________________________________________________________ 23  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
performance. The input frequency is then swept up to  
the point where the amplitude of the digitized conver-  
sion result has decreased by -3dB.  
S p u rio u s -Fre e Dyn a m ic Ra n g e (S FDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest spurious  
component, excluding DC offset. SFDR is specified in  
decibels relative to the carrier (dBc).  
Fu ll-P o w e r Ba n d w id t h  
A large -0.5dBFS analog input signal is applied to an  
ADC, and the input frequency is swept up to the point  
where the amplitude of the digitized conversion result  
has decreased by -3dB. This point is defined as full-  
power input bandwidth frequency.  
In t e rm o d u la t io n Dis t o rt io n (IMD)  
IMD is the total power of the IM2 to IM5 intermodulation  
products to the Nyquist frequency relative to the total  
input power of the two input tones, f1 and f2. The indi-  
vidual input tone levels are at -6.5dBFS. The intermodu-  
lation products are as follows:  
Ga in Ma t c h in g  
Gain matching is a figure of merit that indicates how  
well the gain of all four ADC channels is matched to  
each other. For the MAX1126, gain matching is mea-  
sured by applying the same 19.3MHz, -0.5dBFS analog  
signal to all analog input channels. These analog inputs  
are sampled at 40MHz and the maximum deviation in  
amplitude is reported in dB as gain matching in the  
Electrical Characteristics table.  
• 2nd-order intermodulation products (IM2): f1 + f2,  
f2 - f1  
• 3rd-order intermodulation products (IM3): 2 x f1 - f2,  
2 x f2 - f1, 2 x f1 + f2, 2 x f2 + f1  
• 4th-order intermodulation products (IM4): 3 x f1 - f2,  
3 x f2 - f1, 3 x f1 + f2, 3 x f2 + f1  
• 5th-order intermodulation products (IM5): 3 x f1 - 2 x  
f2, 3 x f2 - 2 x f1, 3 x f1 + 2 x f2, 3 x f2 + 2 x f1  
P h a s e Ma t c h in g  
Phase matching is a figure of merit that indicates how  
well the phase of all four ADC channels is matched to  
each other. For the MAX1126, phase matching is mea-  
sured by applying the same 19.3MHz, -0.5dBFS analog  
signal to all analog input channels. These analog inputs  
are sampled at 40MHz and the maximum deviation in  
phase is reported in degrees as phase matching in the  
Electrical Characteristics table.  
Th ird -Ord e r In t e rm o d u la t io n (IM3 )  
IM3 is the total power of the 3rd-order intermodulation  
product to the Nyquist frequency relative to the total  
input power of the two input tones f1 and f2. The indi-  
vidual input tone levels are at -6.5dBFS. The 3rd-order  
intermodulation products are 2 x f1 - f2, 2 x f2 - f1, 2 x  
f1 + f2, 2 x f2 + f1.  
S m a ll-S ig n a l Ba n d w id t h  
A small -20dBFS analog input signal is applied to an  
ADC so the signal’s slew rate does not limit the ADCs  
24 ______________________________________________________________________________________  
Qu a d , 1 2 -Bit , 4 0 Ms p s , 1 .8 V ADC w it h  
S e ria l LVDS Ou t p u t s  
P a c k a g e In fo rm a t io n  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Note: For the MAX1126 Exposed Pad Variation,  
the package code is G6800-4.  
PACKAGE OUTLINE, 68L QFN, 10x10x0.9 MM  
1
21-0122  
C
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 4 0 8 -7 3 7 -7 6 0 0 ____________________ 25  
© 2004 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1127

Quad, 12-Bit, 65Msps, 1.8V ADC with Serial LVDS Outputs
MAXIM

MAX11270EUG+

ADC, Delta-Sigma, 24-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO24, ROHS COMPLIANT, TSSOP-24
MAXIM

MAX11270EUG+T

IC ADC 24-BIT DELTA SIG 24TSSOP
MAXIM

MAX1127EGK

Quad, 12-Bit, 65Msps, 1.8V ADC with Serial LVDS Outputs
MAXIM

MAX1127EGK+TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, ROHS COMPLIANT, MO-220, QFN-68
MAXIM

MAX1127EGK-TD

ADC, Proprietary Method, 12-Bit, 1 Func, 4 Channel, Parallel, Word Access, 10 X 10 MM, 0.90 MM HEIGHT, MO-220, QFN-68
MAXIM

MAX113

4-Digit.Up/Down Counter Decoder Driver[MM74C945/MM74C947/MM74C945C/D/MM74C945N ]
MAXIM

MAX113-MAX117

3V, 400ksps, 4/8-Channel, 8-Bit ADCs with 1UA Power-Down
MAXIM

MAX11311

PIXI, 12-Port Programmable Mixed-Signal I/O with 12-Bit ADC, 12-Bit DAC, Analog Switches, and GPIO
MAXIM

MAX11311GTJ

PIXI, 12-Port Programmable Mixed-Signal I/O with 12-Bit ADC, 12-Bit DAC, Analog Switches, and GPIO
MAXIM

MAX11311GTJ+

Analog Circuit, 1 Func, BICMOS, 5 X 5 MM, ROHS COMPLIANT, TQFN-32
MAXIM

MAX11312

PIXI, 12-Port Programmable Mixed-Signal I/O with 12-Bit ADC, 12-Bit DAC, Analog Switches, and GPIO
MAXIM