MAX1134BCAP+ [MAXIM]

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20;
MAX1134BCAP+
型号: MAX1134BCAP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 16-Bit, 1 Func, 1 Channel, Serial Access, BICMOS, PDSO20, 5.30 MM, 0.65 MM PITCH, SSOP-20

文件: 总18页 (文件大小:352K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2464; Rev 0; 4/02  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
General Description  
Features  
The MAX1134/MAX1135 are 150ksps, 16-bit ADCs.  
These serially interfaced ADCs connect directly to SPI™,  
QSPI™, and MICROWIRE™ devices without external  
logic. They combine an input scaling network, internal  
track/hold (T/H), clock, and three general-purpose digital  
output pins (for external multiplexer or PGA control) in a  
20-pin SSOP package. The excellent dynamic perfor-  
mance (THD 90dB), high speed (150ksps in bipolar  
mode), and low power (8.0mA) of these ADCs make  
them ideal for applications such as industrial process  
control, instrumentation, and medical applications.  
150ksps (Bipolar) and 125ksps (Unipolar)  
Sampling ADC  
16 Bits, No Missing Codes  
1LSB INL (typ) Guaranteed  
-100dB THD  
3.3V Single-Supply Operation  
Low-Power Operation  
4.5mA (typ) (Unipolar Mode)  
1.2µA Shutdown Mode  
Software-Configurable Unipolar and Bipolar Input  
Ranges  
0 to +6V and 6V (MAꢀ1134)  
0 to +2.048V and 2.048V (MAꢀ1135)  
Internal or External Clock  
SPI/QSPI/MICROWIRE TMS320-Compatible Serial  
Interface  
Three User-Programmable Logic Outputs  
The MAX1134 accepts input signals of 0 to +6V (unipo-  
lar) or 6V (bipolar), while the MAX1135 accepts input  
signals of 0 to +2.048V (unipolar) or 2.048V (bipolar).  
Operating from a single 3.135V to 3.465V analog and  
digital supply, power-down modes reduce current con-  
sumption to 0.15mA at 10ksps and further reduce sup-  
ply current to less than 20µA at slower data rates.  
A serial strobe output (SSTRB) allows direct connection  
to the TMS320 family digital-signal processors. The  
MAX1134/MAX1135 user can select either the internal  
clock or an external serial-interface clock for the ADC to  
perform analog-to-digital conversions.  
Small 20-Pin SSOP Package  
Ordering Information  
The MAX1134/MAX1135 feature internal calibration cir-  
cuitry to correct linearity and offset errors. On-demand  
calibration allows the user to optimize performance.  
Three user-programmable logic outputs are provided  
for the control of an 8-channel mux or PGA.  
TEMP  
PIN-  
INL  
PART  
RANGE  
PACKAGE  
(LSB)  
MAꢀ1134BCAP  
0°C to +70°C  
20 SSOP  
20 SSOP  
2.5  
2.5  
MAX1134BEAP  
-40°C to +85°C  
The MAX1134/MAX1135 are available in a 20-pin SSOP  
package and are fully specified over the -40°C to  
+85°C temperature range.  
Ordering Information continued at end of data sheet.  
Applications  
Industrial Process Control  
Pin Configuration  
TOP VIEW  
Industrial I/O Modules  
REF  
1
2
3
4
5
6
7
8
9
20 AIN  
Data-Acquisition Systems  
AV  
19 AGND  
18 CREF  
17 CS  
DD  
Medical Instruments  
AGND  
Portable and Battery-Powered Equipment  
AV  
DD  
MAX1134  
MAX1135  
DGND  
SHDN  
P2  
16 DIN  
15 DV  
Functional Diagram and Typical Application Circuit appear  
at end of data sheet.  
DD  
14  
DGND  
P1  
13 SCLK  
12 RST  
PO  
SPI and QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor, Corp.  
SSTRB 10  
11 DOUT  
SSOP  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
ABSOLUTE MAꢀIMUM RATINGS  
AV  
to AGND% DV  
to DGND ..............................-0.3V to +6V  
Operating Temperature Ranges  
DD  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .................................................................... 16.5V  
MAX113_ _CAP...................................................0°C to +70°C  
MAX113_ _EAP................................................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering% 10s) .................................+300°C  
CREF% REF to AGND................................-0.3V to (AV  
+ 0.3V)  
DD  
Digital Inputs to DGND.............................................-0.3V to +6V  
Digital Outputs to DGND .........................-0.3V to (DV + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
20-Pin SSOP (derate 8.00mW/°C above +70°C) .........640mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= 3.3V 5ꢀ% ꢁ  
= 3.6MHz% external clock (50ꢀ duty cycle)% 24 clocks/conversion (150ksps)% bipolar input% V  
=
DD  
DD  
SCLK  
REF  
2.048V% C  
= 4.7µF% C  
= 1µF% T = T  
to T  
% unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
REF  
CREF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
1.0  
MAꢀ  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
16  
Bits  
LSB  
Bits  
LSB  
Relative Accuracy  
No Missing Codes  
Diꢁꢁerential Nonlinearity  
Transition Noise  
INL  
Bipolar mode (Note 2)  
Bipolar mode  
MAX113_B  
MAX113_B  
2.5  
16  
-1  
DNL  
+1.75  
1.5  
LSB  
RMS  
Unipolar  
4
Oꢁꢁset Error  
mV  
Bipolar  
6
Unipolar  
0.2  
0.3  
Gain Error (Note 3)  
ꢀFSR  
Bipolar  
Oꢁꢁset Driꢁt (Bipolar and Unipolar)  
Gain Driꢁt (Bipolar and Unipolar)  
Excluding reꢁerence driꢁt  
Excluding reꢁerence driꢁt  
1
4
ppm/°C  
ppm/°C  
.
DYNAMIC SPECIFICATIONS (5kHz SINE-WAVE INPUT, 150ksps, 3.6MHz CLOCK, BIPOLAR INPUT MODE. MAꢀ1134, 12V  
P-P  
MAꢀ1135, 4.096V .)  
P-P  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 5kHz  
= 75kHz  
= 5kHz  
= 75kHz  
= 5kHz  
= 75kHz  
= 5kHz  
= 75kHz  
80  
80  
84  
83  
Signal-to-Noise Plus Distortion  
(SINAD)  
dB  
dB  
dB  
dB  
84  
Signal-to-Noise Ratio (SNR)  
83  
-100  
-93  
105  
97  
-90  
Total Harmonic Distortion (THD)  
92  
Spurious-Free Dynamic Range  
(SFDR)  
ANALOG INPUT  
Unipolar  
Bipolar  
Unipolar  
Bipolar  
0
-6  
+6  
+6  
MAX1134  
MAX1135  
Input Range  
V
0
+2.048  
+2.048  
-2.048  
2
_______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 3.3V 5ꢀ% ꢁ  
= 3.6MHz% external clock (50ꢀ duty cycle)% 24 clocks/conversion (150ksps)% bipolar input% V  
=
DD  
DD  
SCLK  
REF  
2.048V% C  
= 4.7µF% C  
= 1µF% T = T  
to T  
% unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
REF  
CREF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Unipolar  
MIN  
7.5  
TYP  
10.5  
8.4  
MAꢀ  
UNITS  
k  
MAX1134  
MAX1135  
Bipolar  
Unipolar  
Bipolar  
5.9  
Input Impedance  
100  
3.4  
1000  
5.3  
Input Capacitance  
CONVERSION RATE  
Internal Clock Frequency  
Aperture Delay  
32  
pF  
3
MHz  
ns  
t
10  
50  
AD  
Aperture Jitter  
t
ps  
AJ  
MODE 1 (24 EꢀTERNAL CLOCK CYCLES PER CONVERSION)  
Unipolar  
0.1  
0.1  
3.0  
3.6  
External Clock Frequency  
Sample Rate  
MHz  
ksps  
SCLK  
Bipolar  
Unipolar  
Bipolar  
4.17  
4.17  
125  
150  
ꢁ =  
S
/ 24  
SCLK  
t
CONV+ACQ  
= 24 /  
Unipolar  
Bipolar  
8
240  
240  
Conversion Time (Note 4)  
µs  
6.7  
SCLK  
MODE 2 (INTERNAL CLOCK MODE)  
External Clock Frequency  
(Data Transꢁer Only)  
4
7
MHz  
µs  
Conversion Time  
(SSTRB low pulse width)  
Unipolar  
5.3  
1.67  
1.39  
Acquisition Time (Note 5)  
µs  
Bipolar  
MODE 3 (32 EꢀTERNAL CLOCK CYCLES PER CONVERSION)  
External Clock Frequency  
Unipolar or bipolar  
0.1  
3.6  
MHz  
ksps  
SCLK  
ꢁ =  
S
Sample Rate  
Unipolar or bipolar  
3.125  
112  
/ 32  
SCLK  
t
CONV+ACQ  
= 32 /  
Conversion Time (Note 4)  
Unipolar or bipolar  
(Notes 6% 7)  
8.89  
1.9  
320  
2.2  
µs  
SCLK  
EꢀTERNAL REFERENCE  
Input Range  
2.048  
110  
100  
0.1  
V
V
V
= 2.048V% ꢁ  
= 2.048V% ꢁ  
= 3.6MHz  
= 0  
REF  
REF  
SCLK  
SCLK  
Input Current  
µA  
In power-down% ꢁ  
= 0  
SCLK  
DIGITAL INPUTS  
Input High Voltage  
Input Low Voltage  
Input Leakage  
V
2.4  
-1  
V
V
IH  
V
0.8  
+1  
IL  
I
V
= 0 or DV  
DD  
µA  
IN  
IN  
_______________________________________________________________________________________  
3
16-Bit ADCs, 150ksps, 3.3V Single Supply  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= 3.3V 5ꢀ% ꢁ  
= 3.6MHz% external clock (50ꢀ duty cycle)% 24 clocks/conversion (150ksps)% bipolar input% V  
=
DD  
DD  
SCLK  
REF  
2.048V% C  
= 4.7µF% C  
= 1µF% T = T  
to T  
% unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
REF  
CREF  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.2  
10  
MAꢀ  
UNITS  
V
Input Hysteresis  
V
HYST  
Input Capacitance  
DIGITAL OUTPUTS  
C
pF  
IN  
DV  
0.5  
-
DD  
Output High Voltage  
Output Low Voltage  
V
I
= 0.5mA  
V
V
OH  
SOURCE  
I
I
= 5mA  
0.4  
0.8  
SINK  
V
OL  
= 16mA  
SINK  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER SUPPLIES  
Analog Supply  
I
CS = DV  
CS = DV  
-10  
+10  
µA  
pF  
L
DD  
DD  
10  
AV  
DV  
3.135  
3.135  
3.3  
3.3  
3.9  
7
3.465  
3.465  
8
V
V
DD  
Digital Supply  
DD  
Unipolar mode  
mA  
Analog Supply Current  
I
ANALOG  
Bipolar mode  
11  
SHDN = 0% or soꢁtware power-down mode  
Unipolar or bipolar mode  
SHDN = 0% or soꢁtware power-down mode  
0.1  
1
10  
µA  
mA  
µA  
2
Digital Supply Current  
I
DIGITAL  
PSRR  
1.1  
10  
Power-Supply Rejection Ratio  
(Note 8)  
AV  
= DV  
= 3.135V to 3.465V  
DD  
65  
dB  
DD  
TIMING CHARACTERISTICS (Figures 5 and 6)  
(AV  
= DV  
= 3.3V 5ꢀ% T = T  
to T  
% unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAꢀ  
UNITS  
ns  
DIN to SCLK Setup  
t
50  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
ns  
SCLK to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK High Pulse Width  
SCLK Low Pulse Width  
SCLK Fall to SSTRB  
t
70  
80  
80  
ns  
t
C
C
= 50pF  
= 50pF  
ns  
DV  
LOAD  
LOAD  
t
ns  
TR  
t
100  
0
ns  
CSS  
CSH  
t
ns  
t
120  
120  
ns  
CH  
t
ns  
CL  
t
C
C
C
= 50pF  
80  
80  
80  
ns  
SSTRB  
LOAD  
LOAD  
LOAD  
CS Fall to SSTRB Enable  
CS Rise to SSTRB Disable  
SSTRB Rise to SCLK Rise  
RST Pulse Width  
t
= 50pF% external clock mode  
= 50pF% external clock mode  
ns  
SDV  
t
ns  
STR  
SCK  
t
Internal clock mode  
0
ns  
t
278  
70  
ns  
RS  
4
_______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
TIMING CHARACTERISTICS (Figures 5 and 6) (continued)  
(AV  
= DV  
= 3.3V 5ꢀ% T = T  
to T  
% unless otherwise noted.)  
MAX  
DD  
DD  
A
MIN  
Note 1: Tested at AV  
= DV = 3.3V% bipolar input mode.  
DD  
DD  
Note 2: Relative accuracy is the deviation oꢁ the analog value at any code ꢁrom its theoretical value aꢁter the gain error and oꢁꢁset  
error have been nulliꢁied.  
Note 3: Oꢁꢁset nulliꢁied.  
Note 4: Conversion time is deꢁined as the number oꢁ clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle. Includes  
the acquisition time.  
Note 5: Acquisition time is 5 clock cycles in short acquisition mode and 13 clock cycles in long acquisition mode.  
Note 6: Perꢁormance is limited by the converters noise ꢁloor% typically 300µV  
.
P-P  
Note 7: When an external reꢁerence has a diꢁꢁerent voltage than the speciꢁied typical value% the ꢁull scale oꢁ the ADC scales propor-  
tionally.  
Note 8: Deꢁined as the change in positive ꢁull scale caused by a 5ꢀ variation in the nominal supply voltage.  
Typical Operating Characteristics  
(MAX1134/MAX1135% AV  
= DV  
= 3.3V% ꢁ  
= 3.6MHz% external clock (50ꢀ duty cycle)% 24 clocks/conversion (150ksps)%  
SCLK  
DD  
DD  
bipolar input% REF = 2.048V% 4.7µF on REF% 1µF on CREF% T = +25°C% unless otherwise noted.)  
A
TOTAL SUPPLY CURRENT  
vs. TEMPERATURE  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
9.0  
8.9  
8.8  
8.7  
8.6  
8.5  
8.4  
8.3  
8.2  
8.1  
8.0  
3
2
A: AV , DV = 3.135V  
DD  
DD  
B: AV , DV = 3.3V  
DD  
DD  
C: AV , DV = 3.465V  
DD  
DD  
0.6  
0.4  
1
C
B
0.2  
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1  
-2  
-3  
A
1
13273 26545 39817 53089 59725  
DIGITAL OUTPUT CODE  
1
13649 27297 40945 54593 61417  
DIGITAL OUTPUT CODE  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
5
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Typical Operating Characteristics (continued)  
(MAX1134/MAX1135% AV  
= DV  
= 3.3V% ꢁ  
= 3.6MHz% external clock (50ꢀ duty cycle)% 24 clocks/conversion (150ksps)%  
SCLK  
DD  
DD  
bipolar input% REF = 2.048V% 4.7µF on REF% 1µF on CREF% T = +25°C% unless otherwise noted.)  
A
OFFSET VOLTAGE  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
TOTAL SUPPLY CURRENT vs.  
CONVERSION RATE (USING SHUTDOWN)  
-0.5  
0.06  
0.05  
100  
10  
A: AV , DV = 3.135V  
DD  
DD  
DD  
DD  
B: AV , DV = 3.3V  
DD  
C: AV , DV = 3.465V  
DD  
-1.0  
-1.5  
-2.0  
B
0.04  
0.03  
0.02  
0.01  
0
C
C
1
A
A
0.1  
0.01  
-2.5  
-3.0  
A: AV , DV = 3.135V  
DD  
DD  
DD  
DD  
B: AV , DV = 3.3V  
DD  
B
C: AV , DV = 3.465V  
DD  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
0
1
10  
100  
1000  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CONVERSION RATE (ksps)  
FFT PLOT  
SINAD PLOT  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
f
= 150kHz  
SAMPLE  
f
f
= 150kHz  
SAMPLE  
= 5kHz  
IN  
-20  
-40  
-60  
-80  
-100  
-120  
0
10  
20  
30  
40  
50  
60  
70  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SFDR PLOT  
THD PLOT  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
f
= 150kHz  
SAMPLE  
f
= 150kHz  
SAMPLE  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Pin Description  
PIN  
NAME  
REF  
AV  
FUNCTION  
1
ADC Reꢁerence Input. Connect a 2.048V voltage source to REF. Bypass REF to AGND with a 4.7µF capacitor.  
2
3
4
5
6
7
8
9
Analog Supply. Connect to pin 4.  
DD  
AGND Analog Ground. This is the primary analog ground (star ground).  
AV Analog Supply% 3.3V 5ꢀ. Bypass AV to AGND (pin 3) with a 0.1µF capacitor.  
DD  
DD  
DGND Digital Ground  
SHDN Shutdown Control Input. Drive SHDN low to put the ADC in shutdown mode.  
P2  
P1  
P0  
User-Programmable Output 2  
User-Programmable Output 1  
User-Programmable Output 0  
Serial Strobe Output. In internal clock mode% SSTRB goes low when the ADC begins a conversion and goes  
10  
SSTRB high when the conversion is ꢁinished. In external clock mode% SSTRB pulses high ꢁor one clock period beꢁore  
the MSB decision. It is high impedance when CS is high in external clock mode.  
Serial Data Output. MSB ꢁirst% straight binary ꢁormat ꢁor unipolar input% twos complement ꢁor bipolar input.  
Each bit is clocked out oꢁ DOUT at the ꢁalling edge oꢁ SCLK.  
11  
12  
13  
DOUT  
RST  
Reset Input. Drive RST low to put the device in the power-on deꢁault mode. See the Power-On Reset section.  
Serial Data Clock Input. Serial data on DIN is loaded on the rising edge oꢁ SCLK% and serial data is updated  
on DOUT on the ꢁalling edge oꢁ SCLK. In external clock mode% SCLK sets the conversion speed.  
SCLK  
14  
15  
16  
DGND Digital Ground. Connect to pin 5.  
DV Digital Supply% 3.3V 5ꢀ. Bypass DV  
to DGND (pin 14) with a 0.1µF capacitor.  
DD  
DD  
DIN  
Serial Data Input. Serial data on DIN is latched on the rising edge oꢁ SCLK.  
Chip-Select Input. Drive CS low to enable the serial interꢁace. When CS is high% DOUT is high impedance. In  
external clock mode% SSTRB is high impedance when CS is high.  
17  
CS  
18  
19  
20  
CREF  
Reꢁerence Buꢁꢁer Bypass. Bypass CREF to AGND (pin 3) with a 1µF capacitor.  
AGND Analog Ground. Connect to pin 3.  
AIN  
Analog Input  
_______________________________________________________________________________________  
7
16-Bit ADCs, 150ksps, 3.3V Single Supply  
In addition to a 16-bit ADC% the MAX1134/MAX1135  
include an input scaler% an internal digital microcontroller%  
calibration circuitry% and an internal clock generator.  
Detailed Description  
The MAX1134/MAX1135 ADCs use a successive-  
approximation technique and input track/hold (T/H) cir-  
cuitry to convert an analog signal to a 16-bit digital  
output. The MAX1134/MAX1135 easily interꢁace to  
microprocessors (µPs). The data bits can be read either  
during the conversion in external clock mode or aꢁter the  
conversion in internal clock mode.  
The input scaler ꢁor the MAX1134 enables conversion  
oꢁ input signals ranging ꢁrom 0 to +6V (unipolar input)  
or 6V (bipolar input). The MAX1135 accepts 0 to  
+2.048V (unipolar input) or 2.048V (bipolar input). The  
input range is soꢁtware selectable.  
Calibration  
To minimize linearity% oꢁꢁset% and gain errors% the  
MAX1134/MAX1135 have on-demand soꢁtware calibra-  
tion. Initiate calibration by writing a control byte with bit  
M1 = 0 and bit M0 = 1 (Table 1). Select internal or exter-  
nal clock ꢁor calibration by setting the INT/EXT bit in the  
control byte. Calibrate the MAX1134/MAX1135 with the  
same clock mode used ꢁor perꢁorming conversions.  
BIPOLAR  
VOLTAGE  
S1  
R3  
REFERENCE  
R1  
UNIPOLAR  
2.5k  
C
HOLD  
32pF  
Oꢁꢁsets resulting ꢁrom synchronous noise (such as the  
conversion clock) are canceled by the MAX1134/  
MAX1135s calibration circuitry. However% because the  
magnitude oꢁ the oꢁꢁset produced by a synchronous  
signal depends on the signals shape% recalibration  
may be appropriate iꢁ the shape or relative timing oꢁ the  
clock% or other digital signals change% as may occur iꢁ  
more than one clock signal or ꢁrequency is used.  
TRACK  
R2  
AIN  
S2  
T/H OUT  
HOLD  
TRACK  
HOLD  
S3  
S1 = BIPOLAR/UNIPOLAR  
S2, S3 = T/H SWITCH  
R2 = 7.6k(MAX1134)  
OR 2.5k(MAX1135)  
R3 = 3.9k(MAX1134)  
OR INFINITY (MAX1135)  
Input Scaler  
The MAX1134/MAX1135 have an input scaler% which  
allows conversion oꢁ true bipolar input voltages while  
operating ꢁrom a single 3.3V supply. The input scaler  
attenuates and shiꢁts the input as necessary to map the  
external input range to the input range oꢁ the internal  
ADC. The MAX1134 analog input range is 0 to +6V  
(unipolar) or 6V (bipolar). The MAX1135 analog input  
Figure 1. Equivalent Input Circuit  
Table 1. Control Byte Format  
BIT  
NAME  
DESCRIPTION  
7 (MSB)  
START  
The ꢁirst logic 1 bit aꢁter CS goes low deꢁines the beginning oꢁ the control byte.  
1 = unipolar% 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode% analog input  
signals ꢁrom 0 to +6V (MAX1134) or 0 to +V (MAX1135) can be converted. In bipolar mode% analog  
6
5
4
UNI/BIP  
INT/EXT  
M1  
REF  
input signals ꢁrom -6V to +6V (MAX1134) or -V  
to +V  
(MAX1135) can be converted.  
REF  
REF  
Selects the internal or external conversion clock. 1 = internal% 0 = external.  
M1  
0
M0  
0
Mode  
24 external clocks per conversion (short acquisition mode)  
Start calibration: starts internal calibration  
Soꢁtware power-down mode  
0
1
1
0
3
M0  
1
1
32 external clocks per conversion (long acquisition mode)  
2
1
P2  
P1  
P0  
These 3 bits are stored in a port register and output to pins P2% P1% and P0 ꢁor use in addressing a mux  
or PGA. These 3 bits are updated in the port register simultaneously when a new control byte is written.  
0 (LSB)  
8
_______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
CS  
t
ACQ  
1
4
8
12  
15  
21  
24  
SCLK  
UNI/  
BIP  
INT/  
EXT  
M1 M0  
P2  
P1  
P0  
START  
DIN  
SSTRB  
FILLED WITH  
ZEROS  
B0  
LSB  
B15  
MSB  
B14 B13 B12 B11 B10 B9  
B4 B3  
B2  
B1  
DOUT  
A/D  
STATE  
IDLE  
ACQUISITION  
CONVERSION  
IDLE  
Figure 2. Short Acquisition Mode (24 Clock Cycles) External Clock  
Table 2. User-Programmable Outputs  
PROGRAMMED  
THROUGH CONTROL  
BYTE  
POWER-ON OR  
RST DEFAULT  
OUTPUT PIN  
DESCRIPTION  
User-programmable outputs ꢁollow the state oꢁ the control  
bytes 3 LSBs% and are updated simultaneously when a new  
control byte is written. Outputs are push-pull. In hardware and  
soꢁtware shutdown% these outputs are unchanged and remain  
low impedance.  
P2  
P1  
P0  
Bit 2  
Bit 1  
Bit 0  
0
0
0
range is 0 to +2.048V (unipolar) or 2.048V (bipolar).  
Unipolar and bipolar mode selection is conꢁigured with  
bit 6 oꢁ the serial control byte (Table 1).  
low or aꢁter a conversion or calibration completes% the  
ꢁirst logic 1 clocked into DIN is interpreted as the  
START bit% the MSB oꢁ the 8-bit control byte.  
Figure 1 shows the equivalent input circuit oꢁ the  
MAX1134/MAX1135. The resistor network on the analog  
input provides 16.5V ꢁault protection. This circuit limits  
the current going into or out oꢁ the pin to less than 2mA.  
The overvoltage protection is active even iꢁ the device  
The SCLK input is the serial-data-transꢁer clock% which  
clocks data in and out oꢁ the MAX1134/MAX1135.  
SCLK also drives the ADC conversion steps in external  
clock mode (see the Internal and External Clock Modes  
section).  
is in a power-down mode% or iꢁ AV  
= 0.  
DD  
DOUT is the serial output oꢁ the conversion result.  
DOUT is updated on the ꢁalling edge oꢁ SCLK. DOUT is  
high impedance when CS is high.  
Digital Interface  
The digital interꢁace pins consist oꢁ SHDN% RST%  
SSTRB% DOUT% SCLK% DIN% and CS. Bringing SHDN low  
places the MAX1134/MAX1135 in its 1.2µA shutdown  
mode. A logic low on RST halts the MAX1134/MAX1135  
operation and returns the part to its power-on-reset  
state.  
CS must be low ꢁor the MAX1134/MAX1135 to accept a  
control byte. The serial interꢁace is disabled when CS is  
high.  
User-Programmable Outputs  
The MAX1134/MAX1135 have three user-program-  
mable outputs: P0% P1% and P2. The power-on deꢁault  
state ꢁor the programmable outputs is zero. These are  
push-pull CMOS outputs suitable ꢁor driving a multi-  
plexer% a PGA% or other signal preconditioning circuitry.  
Bits 0% 1% and 2 oꢁ the control byte control the user-pro-  
grammable outputs (Tables 1% 2).  
In external clock mode% SSTRB is low and pulses high  
ꢁor one clock cycle at the start oꢁ conversion. In internal  
clock mode% SSTRB goes low at the start oꢁ the conver-  
sion% and goes high to indicate that the conversion is  
ꢁinished.  
The DIN input accepts control byte data% which is  
clocked in on each rising edge oꢁ SCLK. Aꢁter CS goes  
_______________________________________________________________________________________  
9
16-Bit ADCs, 150ksps, 3.3V Single Supply  
CS  
t
ACQ  
15  
1
4
8
14  
29  
32  
SCLK  
UNI/  
BIP  
INT/  
EXT  
M1 M0  
P2  
P1  
P0  
START  
DIN  
SSTRB  
FILLED WITH  
ZEROS  
B0  
LSB  
B15  
MSB  
B14 B13  
B4  
B3  
B2  
B1  
DOUT  
A/D  
STATE  
IDLE  
ACQUISITION  
CONVERSION  
IDLE  
Figure 3. Long Acquisition Mode (32 Clock Cycles) External Clock  
CS  
t
t
STR  
SDV  
SSTRB  
t
t
SSTRB  
SSTRB  
SCLK  
P1 CLOCKED IN  
Figure 4. External Clock Mode SSTRB Detailed Timing  
The user-programmable outputs are set to zero during  
power-on reset or when RST goes low. During hardware  
or soꢁtware shutdown% P0% P1% and P2 are unchanged  
and remain low impedance.  
Internal and External Clock Modes  
The MAX1134/MAX1135 use either the external serial  
clock or the internal clock to perꢁorm the successive-  
approximation conversion. In both clock modes% the  
external clock shiꢁts data in and out oꢁ the  
MAX1134/MAX1135. Bit 5 (INT/EXT) oꢁ the control byte  
programs the clock mode.  
Starting a Conversion  
Start a conversion by clocking a control byte into the  
devices internal shiꢁt register. With CS low% each rising  
edge on SCLK clocks a bit ꢁrom DIN into the  
MAX1134/MAX1135sinternal shiꢁt register. Aꢁter CS  
goes low or aꢁter a conversion or calibration completes%  
the ꢁirst arriving logic 1 is deꢁined as the start bit oꢁ the  
control byte. Until this ꢁirst start bit arrives% any number oꢁ  
logic 0 bits can be clocked into DIN with no eꢁꢁect. Iꢁ at  
any time during acquisition or conversion CS is brought  
high and then low again% the part is placed into a state  
where it can recognize a new start bit. Iꢁ a new start bit  
occurs beꢁore the current conversion is complete% the  
conversion is aborted and a new acquisition is initiated.  
External Clock  
In external clock mode% the external clock not only  
shiꢁts data in and out% but also drives the ADC conver-  
sion steps.  
In short acquisition mode% SSTRB pulses high ꢁor one  
clock period aꢁter the seventh ꢁalling edge oꢁ SCLK ꢁol-  
lowing the start bit. The MSB oꢁ the conversion is avail-  
able at DOUT on the eighth ꢁalling edge oꢁ SCLK  
(Figure 2).  
10 ______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
CS  
t
ACQ  
1
4
8
9
10  
21  
24  
SCLK  
UNI/  
BIP  
INT/  
EXT  
M1 M0  
P2  
P1  
P0  
START  
DIN  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B0  
LSB  
B15  
MSB  
DOUT  
B4  
B3  
B2  
B1  
B14 B13  
Figure 5. Internal Clock Mode Timing, Short Acquisition  
CS  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
SSTRB  
t
SSTRB  
SCLK  
P0 CLOCKED IN  
NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION.  
Figure 6. Internal Clock Mode SSTRB Detailed Timing  
In long acquisition mode% when using external clock%  
SSTRB pulses high ꢁor one clock period aꢁter the 15th  
ꢁalling edge oꢁ SCLK ꢁollowing the start bit. The MSB oꢁ  
the conversion is available at DOUT on the 16th ꢁalling  
edge oꢁ SCLK (Figure 3).  
SSTRB goes low at the start oꢁ the conversion and goes  
high when the conversion is complete. SSTRB is low ꢁor  
a maximum oꢁ 7µs% during which time SCLK should  
remain low ꢁor best noise perꢁormance. An internal reg-  
ister stores data when the conversion is in progress.  
SCLK clocks the data out oꢁ the internal storage regis-  
ter at any time aꢁter the conversion is complete.  
In external clock mode% SSTRB is high impedance when  
CS is high (Figure 4). CS is normally held low during the  
entire conversion. Iꢁ CS goes high during the conver-  
sion% SCLK is ignored until CS goes low. This allows  
external clock mode to be used with 8-bit bytes.  
The MSB oꢁ the conversion is available at DOUT when  
SSTRB goes high. The subsequent 15 ꢁalling edges on  
SCLK shiꢁt the remaining bits out oꢁ the internal storage  
register (Figure 5). CS does not need to be held low  
once a conversion is started.  
Internal Clock  
In internal clock mode% the MAX1134/MAX1135 gener-  
ate their own conversion clock. This ꢁrees the micro-  
processor ꢁrom the burden oꢁ running the SAR  
conversion clock% and allows the conversion results to  
be read back at the processors convenience% at any  
clock rate up to 4MHz.  
When internal clock mode is selected% SSTRB does not  
go into a high-impedance state when CS goes high.  
Figure 6 shows the SSTRB timing in internal clock  
mode. In internal clock mode% data can be shiꢁted into  
the MAX1134/MAX1135 at clock rates up to 4MHz% pro-  
______________________________________________________________________________________ 11  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Table 3. Unipolar Full Scale and Zero  
Scale  
Table 4. Bipolar Full Scale, Zero Scale,  
and Negative Full Scale  
PART  
ZERO SCALE  
FULL SCALE  
NEGATIVE FULL  
SCALE  
ZERO  
SCALE  
PART  
FULL SCALE  
MAX1134  
MAX1135  
0
0
+6 (V /2.048)  
REF  
+V  
MAX1134  
MAX1135  
-6 (V  
/2.048)  
0
0
+6 (V /2.048)  
REF  
REF  
REF  
-V  
REF  
+V  
REF  
vided the minimum acquisition time% t  
above 1.39µs in bipolar mode and 1.67µs in unipolar  
mode. Data can be clocked out at 4MHz.  
% is kept  
ACQ  
power supplies and the reꢁerence voltage have ꢁully  
settled prior to initiating the calibration sequence.  
Initiate calibration by setting M1 = 0 and M0 = 1 in the  
control byte. In internal clock mode% SSTRB goes low at  
the beginning oꢁ calibration and goes high to signal the  
end oꢁ calibration% approximately 80%000 clock cycles  
later. In external clock mode% SSTRB goes high at the  
beginning oꢁ calibration and goes low to signal the end  
oꢁ calibration. Calibration should be perꢁormed in the  
same clock mode that is used ꢁor conversions.  
Output Data  
The output data ꢁormat is straight binary ꢁor unipolar  
conversions and twos complement in bipolar mode.  
The MSB is shiꢁted out oꢁ the MAX1134/MAX1135 ꢁirst  
in both modes.  
Data Framing  
The ꢁalling edge oꢁ CS does not start a conversion on the  
MAX1134/MAX1135. The ꢁirst logic high clocked into  
DIN is interpreted as a start bit and deꢁines the ꢁirst bit oꢁ  
the control byte. A conversion starts on the ꢁalling edge  
oꢁ SCLK% aꢁter the seventh bit oꢁ the control byte (the P1  
bit) is clocked into DIN. The start bit is deꢁined as:  
Reference  
The MAX1134/MAX1135 require a 2.048V reꢁerence.  
The reꢁerence must be bypassed with a 4.7µF capaci-  
tor. The input impedance at REF is a minimum oꢁ 16kΩ  
ꢁor DC currents. During conversion% the external reꢁer-  
ence at REF must deliver up to 150µA DC load current  
and have an output impedance oꢁ 10or less.  
The ꢁirst high bit clocked into DIN with CS low any-  
time the converter is idle% e.g.% aꢁter AV  
applied.  
is  
DD  
Analog Input  
The MAX1134/MAX1135 use a capacitive DAC that  
provides an inherent track/hold ꢁunction. Drive AIN with  
a source impedance less than 10. Any signal condi-  
tioning circuitry must settle with 16-bit accuracy in less  
than 500ns. Limit the input bandwidth to less than halꢁ  
the sampling ꢁrequency to eliminate aliasing. The  
MAX1134/MAX1135 have a complex input impedance  
that varies ꢁrom unipolar to bipolar mode (Figure 1).  
The ꢁirst high bit clocked into DIN aꢁter CS is pulsed  
high then low.  
Iꢁ a ꢁalling edge on CS ꢁorces a start bit beꢁore the con-  
version or calibration is complete% then the current  
operation terminates and a new one starts.  
Applications Information  
Power-On Reset  
When power is ꢁirst applied to the MAX1134/MAX1135%  
or iꢁ RST is pulsed low% the internal calibration registers  
are set to their deꢁault values. The user-programmable  
registers (P0% P1% and P2) are low% and the device is  
conꢁigured ꢁor bipolar mode with internal clocking.  
Input Range  
The analog input range in unipolar mode is 0 to +6V ꢁor  
the MAX1134% and 0 to +2.048V ꢁor the MAX1135. In  
bipolar mode% the analog input can be -6V to +6V ꢁor  
the MAX1134% or -2.048V to +2.048V ꢁor the MAX1135.  
Unipolar or bipolar mode is programmed with the  
UNI/BIP bit oꢁ the control byte. When using a reꢁerence  
other than the suggested 2.048V% the ꢁull-scale input  
range varies accordingly. The ꢁull-scale input range  
depends on the voltage at REF and the sampling mode  
selected (Tables 3 and 4).  
Calibration  
Periodically calibrate the MAX1134/MAX1135 to com-  
pensate ꢁor temperature driꢁt and other variations. Aꢁter  
any change in ambient temperature oꢁ more than  
+10°C% the device should be recalibrated. A 100mV  
change in supply voltage or any change in the reꢁer-  
ence voltage should be ꢁollowed by a calibration.  
Calibration corrects ꢁor errors in gain% oꢁꢁset% integral  
nonlinearity% and diꢁꢁerential nonlinearity.  
The MAX1134/MAX1135 should be calibrated aꢁter  
power-up or aꢁter the assertion oꢁ reset. Make sure the  
12 ______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
1k  
V
CC  
100pF  
0.1 F  
2
3
7
4
6
AIN  
1k  
IN  
0.0033 F  
0.1 F  
V
EE  
Figure 7. AIN Buffer for AC/DC Use  
Input Acquisition and Settling  
Clocking in a control byte starts input acquisition. The  
main capacitor array starts acquiring the input as soon  
as a start bit is recognized% using the same input range  
as the previous conversion. Iꢁ the opposite input range  
is selected by the second DIN bit% the part immediately  
switches to the new sampling mode. Acquisition time is  
one-and-a-halꢁ clock cycles shorter when switching  
ꢁrom unipolar to bipolar or bipolar to unipolar modes  
than when continuously converting in the same mode.  
step change in input signal. The input ampliꢁier must  
have a high enough slew rate to complete the required  
output voltage change beꢁore the beginning oꢁ the  
acquisition time.  
At the beginning oꢁ acquisition% the capacitive DAC is  
connected to the ampliꢁier output% causing some output  
disturbance. Ensure that the sampled voltage has set-  
tled to within the required limits beꢁore the end oꢁ the  
acquisition time. Iꢁ the ꢁrequency oꢁ interest is low% AIN  
can be bypassed with a large enough capacitor to  
charge the capacitive DAC with very little change in  
voltage. However% ꢁor AC use% AIN must be driven by a  
wideband buꢁꢁer (at least 10MHz)% which must be sta-  
ble with the DACs capacitive load (in parallel with any  
AIN bypass capacitor used) and also must settle quickly  
(Figure 7).  
Acquisition can be extended by eight clock cycles by  
setting M1 = 1 and M0 = 1 (long acquisition mode). The  
sampling instant in short acquisition completes on the  
ꢁalling edge oꢁ the sixth clock cycle aꢁter the start bit  
(Figure 2). Acquisition is ꢁive clock cycles in short  
acquisition mode and 13 clock cycles in long acquisi-  
tion mode. Short acquisition mode is 24 clock cycles  
per conversion. Using the external clock to run the con-  
version process limits unipolar conversion speed to  
125ksps instead oꢁ 150ksps as in bipolar mode. The  
input resistance in unipolar mode is larger than that oꢁ  
bipolar mode (Figure 1). The RC time constant in unipo-  
lar mode is larger than that oꢁ bipolar mode% reducing  
the maximum conversion rate in 24 external clock  
mode. Long acquisition mode with external clock  
allows both unipolar and bipolar sampling oꢁ 112ksps  
(3.6MHz / 32 clock cycles) by adding eight extra clock  
cycles to the conversion.  
Digital Noise  
Digital noise can couple to AIN and REF. The conver-  
sion clock (SCLK) and other digital signals that are  
active during input acquisition contribute noise to the  
conversion result. Iꢁ the noise signal is synchronous to  
the sampling interval% an eꢁꢁective input oꢁꢁset is pro-  
duced.  
Asynchronous signals produce random noise on the  
input% whose high-ꢁrequency components may be  
aliased into the ꢁrequency band oꢁ interest. Minimize  
noise by presenting a low impedance (at the ꢁrequen-  
cies contained in the noise signal) at the inputs. This  
requires bypassing AIN to AGND% or buꢁꢁering the input  
with an ampliꢁier that has a small-signal bandwidth oꢁ  
several MHz% or preꢁerably both. AIN has a bandwidth  
oꢁ about 4MHz.  
Most applications require an input buꢁꢁer ampliꢁier. Iꢁ  
the input signal is multiplexed% the input channel should  
be switched immediately aꢁter acquisition% rather than  
near the end oꢁ or aꢁter a conversion. This allows more  
time ꢁor the input buꢁꢁer ampliꢁier to respond to a large  
______________________________________________________________________________________ 13  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Oꢁꢁsets resulting ꢁrom synchronous noise (such as the  
conversion clock) are canceled by the MAX1134/  
MAX1135scalibration scheme. However% because the  
magnitude oꢁ the oꢁꢁset produced by a synchronous  
signal depends on the signals shape% recalibration  
may be appropriate iꢁ the shape or relative timing oꢁ the  
clock or other digital signals change% which can occur  
iꢁ more than one clock signal or ꢁrequency is used.  
used to do conversions. The part remains in calibration  
mode ꢁor approximately 80%000 clock cycles unless the  
calibration is aborted. Calibration is halted iꢁ RST or  
SHDN goes low% or iꢁ a valid start condition occurs.  
Software Shutdown  
A soꢁtware power-down is initiated by setting M1 = 1  
and M0 = 0. Aꢁter the conversion completes% the part  
shuts down. It reawakens upon receiving a new start  
bit. Conversions initiated with M1 = 1 and M0 = 0 (shut-  
down) use the acquisition mode selected ꢁor the previ-  
ous conversion.  
Distortion  
Avoid degrading dynamic perꢁormance by choosing an  
ampliꢁier with distortion much less than the  
MAX1134/MAX1135sTHD (-90dB) at ꢁrequencies oꢁ  
interest. Iꢁ the chosen ampliꢁier has insuꢁꢁicient common-  
mode rejection% which results in degraded THD perꢁor-  
mance% use the inverting conꢁiguration to eliminate errors  
ꢁrom common-mode voltage. Low-temperature-coeꢁꢁi-  
cient resistors reduce linearity errors caused by resis-  
tance changes due to selꢁ-heating. To reduce linearity  
errors due to ꢁinite ampliꢁier gain% use an ampliꢁier circuit  
with suꢁꢁicient loop gain at the ꢁrequencies oꢁ interest.  
Shutdown Mode  
The MAX1134/MAX1135 may be shut down by pulling  
SHDN low or by asserting soꢁtware shutdown. In addi-  
tion to lowering power dissipation to 4.0µW% consider-  
able power can be saved by shutting down the  
converter ꢁor short periods between conversions. There  
is no need to perꢁorm a calibration aꢁter the converter  
has been shut down unless the time in shutdown is  
long enough that the supply voltage or ambient temper-  
ature has changed.  
DC Accuracy  
Iꢁ DC accuracy is important% choose a buꢁꢁer with an  
oꢁꢁset much less than the MAX1134/MAX1135smaxi-  
mum oꢁꢁset ( 6mV)% or whose oꢁꢁset can be trimmed  
while maintaining good stability over the required tem-  
perature range.  
Supplies, Layout, Grounding,  
and Bypassing  
For best system perꢁormance% use separate analog and  
digital ground planes. The two ground planes should  
be tied together at the MAX1134/MAX1135. Use pin 3  
and pin 14 as the primary AGND and DGND% respec-  
tively. Iꢁ the analog and digital supplies come ꢁrom the  
same source% isolate the digital supply ꢁrom the analog  
with a low-value resistor (10).  
Operating Modes and Serial Interfaces  
The MAX1134/MAX1135 are ꢁully compatible with  
MICROWIRE and SPI/QSPI devices. MICROWIRE and  
SPI/QSPI both transmit a byte and receive a byte at the  
same time. The simplest soꢁtware interꢁace requires  
only three 8-bit transꢁers to perꢁorm a conversion (one  
8-bit transꢁer to conꢁigure the ADC% and two more 8-bit  
transꢁers to clock out the 16-bit conversion result).  
The MAX1134/MAX1135 are not sensitive to the order  
oꢁ AVDD and DVDD sequencing. Either supply can be  
present in the absence oꢁ the other. Do not apply an  
external reꢁerence voltage until aꢁter both AVDD and  
DVDD are present.  
Short Acquisition Mode (24 SCLK)  
Conꢁigure short acquisition by setting M1 = 0 and M0 =  
0. In short acquisition mode% the acquisition time is 5  
clock cycles. The total period is 24 clock cycles per  
conversion.  
Be sure that digital return currents do not pass through  
the analog ground. All return-current paths must be low  
impedance. A 5mA current ꢁlowing through a PC board  
ground trace impedance oꢁ only 0.05creates an error  
voltage oꢁ about 250µV% or about 2LSBs error with a 4V  
ꢁull-scale system. The board layout should ensure that  
digital and analog signal lines are kept separate. Do not  
run analog and digital lines parallel to one another. Iꢁ you  
must cross one with the other% do so at right angles.  
Long Acquisition Mode (32 SCLK)  
Conꢁigure long acquisition by setting M1 = 1 and M0 =  
1. In long acquisition mode% the acquisition time is 13  
clock cycles. The total period is 32 clock cycles per  
conversion.  
The ADC is sensitive to high-ꢁrequency noise on the  
AVDD power supply. Bypass this supply to the analog  
ground plane with 0.1µF. Iꢁ the main supply is not ade-  
quately bypassed% add an additional 1µF or 10µF low-  
ESR capacitor in parallel with the primary bypass  
capacitor.  
Calibration Mode  
A calibration is initiated through the serial interꢁace by set-  
ting M1 = 0 and M0 = 1. Calibration can be done in either  
internal or external clock mode% though it is desirable that  
the part be calibrated in the same mode in which it will be  
14 ______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
OUTPUT CODE  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
011 . . . 111  
011 . . . 110  
+FS = +2.048V  
-FS = -2.048V  
11 . . . 101  
4.096V  
65536  
1LSB =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
FS = 2.048V  
FS  
65536  
111 . . . 111  
111 . . . 110  
111 . . . 101  
1LSB =  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
0
-FS  
+FS - 1LSB  
INPUT VOLTAGE (LSBs)  
FS - 3/2LSB  
INPUT VOLTAGE (LSBs)  
Figure 8. MAX1135 Unipolar Transfer Function, 2.048V = Full  
Scale  
Figure 9. MAX1135 Bipolar Transfer Function, 4.096V = Full  
Scale  
Transfer Function  
Figures 8 and 9 show the MAX1135stransꢁer ꢁunctions.  
In unipolar mode% the output data is in binary ꢁormat  
and in bipolar mode it is in twos complement ꢁormat.  
Signal-to-Noise Ratio  
For a waveꢁorm perꢁectly reconstructed ꢁrom digital  
samples% signal-to-noise ratio (SNR) is the ratio oꢁ ꢁull-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The ideal% theoretical minimum  
analog-to-digital noise is caused by quantization error  
only and results directly ꢁrom the ADCs resolution  
(N-bits):  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation oꢁ the values  
on an actual transꢁer ꢁunction ꢁrom a straight line. This  
straight line can be either a best-straight-line ꢁit or a line  
drawn between the end points oꢁ the transꢁer ꢁunction%  
once oꢁꢁset and gain errors have been nulliꢁied. INL ꢁor  
the MAX1134/MAX1135 is measured using the end-  
point method.  
SNR = (6.02 x N + 1.76) dB  
In reality% there are other noise sources besides quanti-  
zation noise% including thermal noise% reꢁerence noise%  
clock jitter% etc. Thereꢁore% SNR is calculated by taking  
the ratio oꢁ the RMS signal to the RMS noise% which  
includes all spectral components minus the ꢁundamen-  
tal% the ꢁirst ꢁive harmonics% and the DC oꢁꢁset.  
Differential Nonlinearity  
Diꢁꢁerential nonlinearity (DNL) is the diꢁꢁerence between  
an actual step width and the ideal value oꢁ 1LSB. A  
DNL error speciꢁication oꢁ less than 1LSB guarantees  
no missing codes and a monotonic transꢁer ꢁunction.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio oꢁ the  
ꢁundamental input ꢁrequencys RMS amplitude to the  
RMS equivalent oꢁ all other ADC output signals:  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
SINAD (dB) = 20 x log (Signal  
/ Noise  
)
RMS  
RMS  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge oꢁ the sampling clock and the instant when an  
actual sample is taken.  
______________________________________________________________________________________ 15  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio oꢁ the RMS  
sum oꢁ the ꢁirst ꢁive harmonics oꢁ the input signal to the  
ꢁundamental itselꢁ. This is expressed as:  
Spurious-Free Dynamic Range  
Spurious-ꢁree dynamic range (SFDR) is the ratio oꢁ RMS  
amplitude oꢁ the ꢁundamental (maximum signal compo-  
nent) to the RMS value oꢁ the next largest distortion  
component.  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 20 × log  
V
1
where V1 is the ꢁundamental amplitude% and V through  
2
V
are the amplitudes oꢁ the 2nd- through 5th-order  
5
harmonics.  
Functional Diagram  
AV  
DD  
AGND  
CREF  
MAX1134  
MAX1135  
REF  
AIN  
INPUT  
DAC  
COMPARATOR  
SCALING  
NETWORK  
ANALOG TIMING CONTROL  
DV  
DD  
SSTRB  
DOUT  
DGND  
CS  
SERIAL  
INPUT  
PORT  
SERIAL  
OUTPUT  
PORT  
P2  
MEMORY  
CALIBRATION  
ENGINE  
SCLK  
P1  
P0  
DIN  
RST  
CLOCK  
GENERATOR  
SHDN  
CONTROL  
16 ______________________________________________________________________________________  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Typical Application Circuit  
Ordering Information (continued)  
3.3V  
TEMP  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
0.1µF  
MAꢀ1135BCAP  
0°C to +70°C  
20 SSOP  
20 SSOP  
2.5  
2.5  
MAX1135BEAP  
-40°C to +85°C  
AV  
DD  
SHDN  
3.3V  
DV  
DD  
0.1µF  
MC68HCXX  
AIN  
MAX1134/  
MAX1135  
CS  
SCLK  
DIN  
I/O  
SCLK  
MOSI  
MISO  
I/O  
2.048V  
DOUT  
RST  
Chip Information  
REF  
SSTRB  
CREF  
TRANSISTOR COUNT: 21%807  
DGND AGND  
4.7µF  
1µF  
PROCESS: BiCMOS  
______________________________________________________________________________________ 17  
16-Bit ADCs, 150ksps, 3.3V Single Supply  
Package Information  
(The package drawing(s) in this data sheet may not reꢁlect the most current speciꢁications. For the latest package outline inꢁormation%  
go to www.maxim-ic.com/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark oꢁ Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY