MAX11358B [MAXIM]

16-Bit Data-Acquisition System with ADC, DAC, UPIOs, RTC, Voltage Monitors, and Temp Sensor; 16位数据采集系统,带有ADC , DAC , UPIOs , RTC ,电压监测器,以及温度传感器
MAX11358B
型号: MAX11358B
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

16-Bit Data-Acquisition System with ADC, DAC, UPIOs, RTC, Voltage Monitors, and Temp Sensor
16位数据采集系统,带有ADC , DAC , UPIOs , RTC ,电压监测器,以及温度传感器

传感器 温度传感器
文件: 总70页 (文件大小:3549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5027; Rev 0; 12/09  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
General Description  
Features  
+1.8V to +3.6V Single-Supply Operation  
The MAX11358B smart data-acquisition system (DAS) is  
based on a 16-bit, sigma-delta analog-to-digital converter  
(ADC) and system-support functionality for a micro-  
processor (µP)-based system. These devices integrate  
an ADC, DACs, operational amplifiers, internal selec-  
table-voltage reference, temperature sensors, analog  
switches, a 32kHz oscillator, a real-time clock (RTC)  
with alarm, a high-frequency-locked loop (FLL) clock,  
four user-programmable I/Os, an interrupt generator,  
and 1.8V and 2.7V voltage monitors in a single chip.  
Multichannel, 16-Bit, Sigma-Delta ADC  
10sps to 477sps Programmable Conversion Rate  
Self- and System Offset and Gain Calibration  
PGA with Gains of 1, 2, 4, or 8  
Unipolar and Bipolar Modes  
10-Input Differential Multiplexer  
10-Bit Force-Sense DACs  
Uncommitted Op Amps  
Dual SPDT and SPST Analog Switches  
The MAX11358B has dual 10:1 differential input multiplex-  
ers (muxes) that accept signal levels from 0 to AV . An  
DD  
on-chip 1x to 8x programmable-gain amplifier (PGA)  
allows measuring low-level signals and reduces external  
circuitry required.  
Selectable References  
1.25V, 2.048V, and 2.5V  
Internal Charge Pump  
System Support  
RTC and Alarm Register  
Internal/External Temperature Sensor  
Internal Oscillator with Clock Output  
User-Programmable I/O and Interrupt Generator  
The MAX11358B operates from a single +1.8V to +3.6V  
supply and consumes only 1.15mA in normal mode and  
only 3µA in sleep mode. The MAX11358B has two  
DACs with one uncommitted op amp.  
V
DD  
Monitors  
SPI/QSPI/MICROWIRE, 4-Wire Serial Interface  
Space-Saving (6mm x 6mm x 0.8mm), 40-Pin  
The serial interface is compatible with either SPI™/QSPI™  
or MICROWIRE™, and is used to power up, configure,  
and check the status of all functional blocks.  
TQFN Package  
Ordering Information  
The MAX11358B is available in a space-saving, 40-pin  
TQFN package and is specified over the commercial  
(0°C to +70°C) and the extended (-40°C to +85°C) tem-  
perature ranges.  
PART  
TEMP RANGE  
0°C to +70°C  
-40°C to +85°C  
PIN-PACKAGE  
40 TQFN-EP*  
40 TQFN-EP*  
MAX11358BCTL+  
MAX11358BETL+  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Applications  
Battery-Powered and Portable Devices  
Electrochemical and Optical Sensors  
Medical Instruments  
Pin Configuration  
TOP VIEW  
Industrial Control  
30 29 28 27 26 25 24 23 22 21  
Data-Acquisition Systems  
31  
20 OUT1  
19 SNC2  
18 SCM2  
17 SNO2  
16 SNC1  
15 SCM1  
14 SNO1  
13 32KIN  
12 32KOUT  
11 RESET  
AIN2  
AIN1  
REF  
32  
33  
34  
35  
36  
37  
38  
REG  
Selector Guide  
CF-  
MAX11358B  
CF+  
OP  
SPDT/SPST  
SWITCHES  
PART  
DACs  
CPOUT  
AMPs  
DV  
DD  
MAX11358B_ _ _  
2
1
2/2  
DGND 39  
UPIO1 40  
*EP  
+
1
2
3
4
5
6
7
8
9
10  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
TQFN  
*EXPOSED PAD.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ABSOLUTE MAXIMUM RATINGS  
AV  
to AGND .........................................................-0.3V to +4V  
Continuous Current Into Any Pin.........................................50mA  
DD  
DV to DGND.........................................................-0.3V to +4V  
Continuous Power Dissipation (T = +70°C)  
DD  
A
AV  
to DV  
............................................................-4V to +4V  
40-Pin TQFN (derate 25.6mW/°C above +70°C) ....2051.3mW  
DD  
DD  
AGND to DGND.....................................................-0.3V to +0.3V  
CLK32K to DGND....................................-0.3V to (DV + 0.3V)  
Operating Temperature Range  
MAX11358BCTL+ ...............................................0°C to +70°C  
MAX11358BETL+ ............................................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Soldering Temperature (reflow) .......................................+260°C  
DD  
UPIO_ to DGND........................................................-0.3V to +4V  
Digital Inputs to DGND ............................................-0.3V to +4V  
Analog Inputs to AGND ...........................-0.3V to (AV  
Digital Output to DGND…........................-0.3V to (DV  
Analog Outputs to AGND.........................-0.3V to (AV  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
MAX1358B  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ADC DC ACCURACY  
Data rate = 10sps, PGA gain = 2;  
data rate = 10sps to 60sps, PGA gain = 1;  
no missing codes, Table 1 (Note 2)  
Noise-Free Resolution  
16  
10  
Bits  
sps  
Conversion Rate  
Output Noise  
No missing codes, Table 1  
No missing codes  
477  
Table 1  
0.0046  
1.0  
Unipolar mode, AV  
= 3V,  
DD  
Integral Nonlinearity  
INL  
%FSR  
%FSR  
PGA gain = 1, data rate = 40sps  
Uncalibrated  
Unipolar Offset Error or Bipolar  
Zero Error (Note 3)  
PGA gain = 1, calibrated,  
0.003  
T
= +25°C, data rate = 10sps  
A
Unipolar Offset-Error or Bipolar  
Zero-Error Temperature Drift  
(Note 4)  
Bipolar  
1
1
µV/°C  
Unipolar  
Uncalibrated  
0.6  
Gain Error (Notes 3, 5)  
%FSR  
PGA = 1, calibrated, data rate = 10sps  
0.003  
Gain-Error Temperature  
Coefficient  
(Notes 4, 6)  
2
ppm/ °C  
DC Positive Power-Supply  
Rejection Ratio  
PGA gain = 1, unipolar mode, measured by  
PSRR  
85  
dB  
full-scale error with AV  
= 1.8V to 3.6V  
DD  
ADC ANALOG INPUTS (AIN1, AIN2)  
DC Input Common-Mode  
Rejection Ratio  
CMRR  
PGA gain = 1, unipolar mode  
85  
dB  
2
_______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Normal-Mode 60Hz Rejection  
Ratio  
PGA gain = 1, unipolar mode, data rate =  
40sps (Note 2)  
100  
dB  
Normal-Mode 50Hz Rejection  
Ratio  
Data rate = 10sps or 40sps, PGA gain = 1,  
unipolar mode (Note 2)  
100  
dB  
V
Absolute Input Range  
V
AV  
DD  
AGND  
-0.05/  
Gain  
V
Gain  
/
REF  
Unipolar mode  
Differential Input Range  
V
-V  
/
V
Gain  
/
REF  
REF  
Bipolar mode  
Gain  
ADC not in measurement mode, mux  
±1  
±5  
enabled, T +55°C, inputs = +0.1V to  
A
DC Input Current (Note 7)  
nA  
(AV  
- 0.1V)  
DD  
T
A
= +85°C  
Input Sampling Capacitance  
Input Sampling Rate  
C
5
pF  
IN  
f
21.94  
Table 3  
kHz  
SAMPLE  
External Source Impedance at Input  
FORCE-SENSE DAC (R = 10kand C = 200pF, FBA = OUTA, unless otherwise noted)  
L
L
Resolution  
Guaranteed monotonic  
Code 3D hex to 3FF hex  
Code 3D hex to 3FF hex  
Reference to code 52 hex  
10  
Bits  
LSB  
LSB  
mV  
Differential Nonlinearity  
Integral Nonlinearity  
Offset Error  
DNL  
INL  
±1  
±4  
±20  
Offset-Error Tempco  
Gain Error  
5
μV/°C  
LSB  
Excludes offset and voltage reference error  
Excludes offset and reference drift  
Switches open (Notes 7, 8)  
±5  
Gain-Error Tempco  
5.6  
ppm/°C  
nA  
Input Leakage Current at SWA/B  
±1  
±1  
T
A
T
A
T
A
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
nA  
V
(AV  
(Note 7)  
= +0.3V to  
- 0.3V)  
FBA  
Input Leakage Current at FBA/B  
±600  
±400  
DD  
pA  
nA  
V
DAC Output Buffer Leakage  
Current  
DAC buffer disabled (Note 7)  
At FBA  
±75  
AV  
-
DD  
Input Common-Mode Voltage  
0
0.35  
Line Regulation  
AV  
= +1.8V to +3.6V, T = +25°C  
40  
175  
0.5  
μV/V  
μV/μA  
V
DD  
A
Load Regulation  
I
= ±2mA, C = 1000pF  
OUT L  
Output Voltage Range  
V
AV  
DD  
AGND  
_______________________________________________________________________________________  
3
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
Output Slew Rate  
SYMBOL  
CONDITIONS  
52 hex to 3FF hex code swing rising or  
falling, R = 10k, C = 100pF  
MIN  
TYP  
50  
MAX  
UNITS  
V/ms  
μs  
L
L
Output-Voltage Settling Time  
10% to 90% rising or falling to ±0.5 LSB  
65  
f = 0.1Hz to  
40  
Referred to FBA,  
10Hz  
Input-Voltage Noise  
excludes reference  
μV  
P-P  
MAX1358B  
f = 10Hz to  
10kHz  
noise  
100  
OUTA shorted to AGND  
20  
18  
Output Short-Circuit Current  
mA  
OUTA shorted to AV  
DD  
Input-Output SWA/SWB  
Switch Resistance  
Between SW_ and OUT_, HFCLK enabled  
150  
SWA/SWB Switch Turn-On/Off  
Time  
HFCLK enabled  
100  
12  
ns  
μs  
Power-On Time  
Excluding reference  
EXTERNAL REFERENCE (REF)  
Input Voltage Range  
Input Resistance  
V
AV  
V
AGND  
DD  
DAC on, internal REF and ADC off  
2.5  
Mꢁ  
nA  
DC Input Leakage Current  
Internal REF, DAC, and ADC off (Note 7)  
100  
INTERNAL VOLTAGE REFERENCE (C  
= 4.7μF)  
REF  
AV +1.8V,  
DD  
1.213  
1.987  
1.25  
1.288  
2.109  
T
A
= +25°C  
AV +2.2V,  
DD  
2.048  
Reference Output Voltage  
V
REF  
V
T
A
= +25°C  
AV +2.7V,  
DD  
2.425  
2.5  
25  
2.575  
T
A
= +25°C  
T
T
= -40°C to +85°C  
= 0°C to +70°C  
A
Output-Voltage Temperature  
Coefficient (Note 7)  
TC  
ppm/oC  
13  
65  
90  
A
REF shorted to AGND  
REF shorted to AV  
mA  
μA  
Output Short-Circuit Current  
Line Regulation  
I
RSC  
DD  
25  
μV/V  
I
I
= 0 to 500μA  
SOURCE  
1.2  
T
V
= +25°C,  
A
Load Regulation  
μV/μA  
= 1.25V  
REF  
= 0 to 50μA  
1.7  
SINK  
4
_______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
Long-Term Stability  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ppm/  
1000hrs  
(Note 9)  
f = 0.1Hz to 10Hz, AV  
150  
= 3V  
= 3V  
50  
DD  
Output Noise Voltage  
µV  
P-P  
f = 10Hz to 10kHz, AV  
200  
100  
DD  
Turn-On Settling Time  
Buffer only, settle to 0.1% of final value  
µs  
TEMPERATURE SENSOR  
Temperature Measurement  
Resolution  
10sps  
0.11  
0.5  
1
°C/LSB  
°C  
T
T
= 0°C to +50°C  
A
A
Internal voltage  
reference, two-  
current method  
Internal Temperature-Sensor  
Measurement Error (Note 10)  
= -40oC to +85°C  
T
T
T
= +25°C  
0.5  
0.5  
A
A
A
External Temperature-Sensor  
Measurement Error (Note 11)  
= 0°C to +50°C  
= -40°C to +85°C  
°C  
1.0  
Temperature Measurement Noise  
0.18  
°C  
RMS  
Temperature Measurement  
Power-Supply Rejection Ratio  
0.2  
°C/V  
OP AMP  
Input Offset Voltage  
Offset-Error Tempco  
V
V
= 0.5V  
1
6.2  
0.006  
4
15  
mV  
µV/oC  
nA  
OS  
CM  
T
T
T
T
T
T
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
1
A
A
A
A
A
A
IN1+  
IN1-  
300  
200  
1
pA  
nA  
pA  
nA  
V
2
Input Bias Current (Note 7)  
Input Offset Current  
I
BIAS  
0.025  
20  
600  
400  
1
I
V
= +0.3V to (AV - 0.3V) (Note 7)  
OS  
IN1_ DD  
Input Common-Mode Voltage  
Range  
AV  
-
DD  
CMVR  
0
0.35  
0 V  
75mV  
60  
75  
75  
CM  
Common-Mode Rejection Ratio  
CMRR  
75mV < V  
AV - 0.5V, T = +25°C  
60  
dB  
CM  
DD  
A
AV - 0.5V V  
AV - 0.35V  
DD  
DD  
CM  
_______________________________________________________________________________________  
5
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= +1.8V to +3.6V, T = +25°C  
MIN  
76.5  
90  
TYP  
100  
116  
MAX  
UNITS  
dB  
Power-Supply Rejection Ratio  
Large-Signal Voltage Gain  
PSRR  
AV  
DD  
A
A
VOL  
100mV V  
AV - 100mV (Note 12)  
DD  
dB  
OUT_  
I
I
I
I
I
I
I
I
I
I
= 10μA  
= 50μA  
= 100μA  
= 500μA  
= 2mA  
0.005  
0.025  
0.05  
0.25  
0.5  
SOURCE  
SOURCE  
SOURCE  
SOURCE  
SOURCE  
Sourcing  
MAX1358B  
Output-Voltage Drop  
V
V
OUT  
= 10μA  
0.005  
0.025  
0.05  
0.25  
0.5  
SINK  
SINK  
SINK  
SINK  
SINK  
= 50μA  
Sinking  
= 100μA  
= 500μA  
= 2mA  
Gain Bandwidth Product  
Phase Margin  
GBW  
SR  
Unity-gain configuration, C = 1nF  
80  
60  
kHz  
L
Unity-gain configuration, C = 1nF (Note 12)  
Degrees  
V/μs  
L
Output Slew Rate  
C = 200pF  
L
0.05  
50  
f = 0.1Hz to 10Hz  
f = 10Hz to 10kHz  
Unity-gain  
configuration  
Input-Voltage Noise  
μV  
P-P  
100  
20  
V
V
shorted to AGND  
OUT_  
OUT_  
Output Short-Circuit Current  
Power-On Time  
mA  
shorted to AV  
18  
DD  
12  
μs  
SPDT SWITCHES (SNO_, SNC_, SCM_, HFCLK enabled)  
V
V
V
= 0V  
T
T
= 0°C to +50°C  
= 0°C to +50°C  
= -40°C to +85°C  
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
= -40°C to +85°C  
= 0°C to +70°C  
= 0°C to +50°C  
= -40°C to +85°C  
45  
50  
SCM_  
SCM_  
SCM_  
A
A
A
A
A
A
A
A
A
A
On-Resistance  
R
= 0.5V  
ON  
= 0.5V to AV  
T
T
T
T
T
T
T
T
150  
±1  
DD  
nA  
pA  
V
, V  
= +0.5V,  
= +1.5V,  
SNO_ SNC_  
I
I
SNO_(OFF)  
SNO_, SNC_ Off-Leakage Current  
SCM_ Off-Leakage Current  
+1.5V; V  
SCM_  
+0.5V (Note 7)  
±600  
±400  
±2  
SNC_(OFF)  
V
, V  
= +0.5V,  
= +1.5V,  
SNO_ SNC_  
I
nA  
nA  
+1.5V; V  
+0.5V (Note 7)  
±1.2  
±0.8  
±2  
SCM_(OFF)  
SCM_  
V
, V  
= +0.5V,  
SNO_ SNC_  
+1.5V, or unconnected;  
V
(Note 7)  
SCM_ On-Leakage Current  
I
SCM_(ON)  
T
A
T
A
= 0°C to +70°C  
= 0°C to +50°C  
±1.2  
±0.8  
= +1.5V, +0.5V  
SCM_  
Input Voltage Range  
Turn-On/Off Time  
V
AV  
V
AGND  
DD  
t
/t  
Break-before-make  
100  
ns  
ON OFF  
6
_______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
Input Capacitance  
SYMBOL  
CONDITIONS  
SNO_, SNC_, or SCM_ = AV  
MIN  
TYP  
MAX  
UNITS  
or AGND;  
DD  
2.5  
pF  
switch connected to enabled mux input  
CHARGE PUMP  
Maximum Output Current  
I
10  
3.2  
3.0  
mA  
V
OUT  
No load  
3.3  
3.6  
50  
Output Voltage  
I
I
= 10mA  
OUT  
= 10mA, excluding ESR of external  
OUT  
Output-Voltage Ripple  
Load Regulation  
mV  
P-P  
capacitor  
I
= 10mA, excluding ESR of external  
OUT  
15  
20  
mV/mA  
capacitor  
REG Input Voltage Range  
REG Input Current  
Internal linear regulator disabled  
Linear regulator off, charge pump off  
Charge pump disabled  
1.6  
1.8  
1.8  
V
3
2
nA  
V
CPOUT Input Voltage Range  
CPOUT Input Leakage Current  
SIGNAL-DETECT COMPARATOR  
3.6  
Charge pump disabled  
nA  
TSEL[2:0] = 0 hex  
TSEL[2:0] = 4 hex  
TSEL[2:0] = 5 hex  
TSEL[2:0] = 6 hex  
TSEL[2:0] = 7 hex  
0
50  
Differential Input-Detection  
Threshold Voltage  
mV  
mV  
100  
150  
200  
Differential Input-Detection  
Threshold Error  
±10  
Common-Mode Input Voltage  
Range  
V
AV  
V
AGND  
DD  
Turn-On Time  
45  
μs  
VOLTAGE MONITORS  
DV Monitor Supply Voltage  
DD  
Range  
For valid reset  
1.4  
3.6  
1.95  
V
V
s
Trip Threshold (DV  
Falling)  
1.80  
1.85  
1.5  
DD  
DV  
Monitor Timeout Reset  
DD  
Period  
HYSE bit set to logic 1  
HYSE bit set to logic 0  
225  
40  
DV  
Monitor Hysteresis  
mV  
DD  
_______________________________________________________________________________________  
7
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DV  
Monitor Turn-On Time  
5
ms  
DD  
CPOUT Monitor Supply Voltage  
Range  
1.4  
2.7  
3.6  
2.9  
V
CPOUT Monitor Trip Threshold  
CPOUT Monitor Hysteresis  
2.8  
35  
5
V
mV  
ms  
V
MAX1358B  
CPOUT Monitor Turn-On Time  
Internal Power-On Reset Voltage  
1.7  
32kHz OSCILLATOR (32KIN, 32KOUT)  
Clock Frequency  
DV  
= 2.7V  
32.768  
25  
kHz  
ppm  
ms  
DD  
DD  
Stability  
DV  
= 1.8V to 3.6V, excluding crystal  
Oscillator Startup Time  
Crystal Load Capacitance  
1500  
6
pF  
LOW-FREQUENCY CLOCK INPUT/OUTPUT (CLK32K)  
Output Clock Frequency  
32.768  
kHz  
ns  
Absolute Input to Output Clock  
Jitter  
Cycle to cycle  
10% to 90%, 30pF load  
5
5
Input to Output Rise/Fall Time  
Input Duty Cycle  
ns  
%
%
40  
60  
Output Duty Cycle  
54  
HIGH-FREQUENCY CLOCK OUTPUT (CLK)  
f
f
f
f
= f  
4.8660 4.9152 4.9644  
OUT  
OUT  
OUT  
OUT  
FLL  
= f /2, power-up default  
FLL  
2.4330 2.4576 2.4822  
MHz  
FLL Output Clock Frequency  
= f /4  
FLL  
1.2165 1.2288 1.2411  
= f /8  
FLL  
608.25 614.4 620.54  
kHz  
ns  
Cycle to cycle, FLL off  
Cycle to cycle, FLL on  
10% to 90%, 30pF load  
0.1  
0.5  
10  
Absolute Clock Jitter  
Rise and Fall Time  
Duty Cycle  
t /t  
R F  
ns  
f
f
= 4.9152MHz  
40  
45  
60  
55  
OUT  
OUT  
%
= 2.4576MHz, 1.2288MHz, 614.4kHz  
Uncalibrated CLK Frequency  
Error  
FLL calibration not performed  
35  
%
DIGITAL INPUTS (SCLK, DIN, CS, UPIO_, CLK32K)  
0.7 x  
Input High Voltage  
Input Low Voltage  
V
V
V
IH  
DV  
DD  
0.3 x  
V
IL  
DV  
DD  
8
_______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
supply voltage  
MIN  
TYP  
MAX  
UNITS  
0.7 x  
DV  
DD  
DV  
DD  
UPIO_ Input High Voltage  
V
V
0.7 x  
CPOUT  
CPOUT supply voltage  
V
0.3 x  
DV  
supply voltage  
DD  
DV  
DD  
UPIO_ Input Low Voltage  
0.3 x  
CPOUT  
CPOUT supply voltage  
DV = 3.0V  
V
Input Hysteresis  
Input Current  
V
200  
±0.01  
4
mV  
nA  
pF  
HYS  
DD  
I
IN  
V
V
V
= V  
DGND  
= V  
DGND  
or DV  
or DV  
(Note 7)  
±100  
IN  
DD  
DD  
Input Capacitance  
IN  
IN  
= DV  
or V  
, pullup enabled  
or 0V,  
±0.01  
1
1
DD  
CPOUT  
UPIO_ Input Current  
UPIO_ Pullup Current  
μA  
μA  
V
= DV  
or V  
IN  
DD  
CPOUT  
pullup disabled  
V
= 0V, pullup enabled, unconnected  
UPIO_ inputs are pulled up to DV  
CPOUT with pullup enabled  
IN  
0.1  
2
5
or  
DD  
DIGITAL OUTPUTS (DOUT, RESET, UPIO_, CLK32K, INT, CLK)  
Output Low Voltage  
V
I
= 1mA  
0.4  
V
V
OL  
SINK  
0.8 x  
Output High Voltage  
V
I
= 500μA  
OH  
SOURCE  
DV  
DD  
DOUT Three-State Leakage  
Current  
I
L
±0.01  
±1  
μA  
DOUT Three-State Output  
Capacitance  
C
4.5  
pF  
V
OUT  
RESET Output Low Voltage  
V
I
= 1mA  
0.4  
0.1  
OL  
SINK  
Open-drain output, RESET deasserted  
(Note 7)  
RESET Output Leakage Current  
μA  
I
I
= 1mA, UPIO_ referenced to DV  
0.4  
0.4  
SINK  
DD  
UPIO_ Output Low Voltage  
UPIO_ Output High Voltage  
V
V
V
OL  
= 4mA, UPIO_ referenced to CPOUT  
SINK  
I
= 500μA, UPIO_ referenced to  
0.8 x  
DV  
SOURCE  
DV  
DD  
DD  
V
OH  
I
= 4mA, UPIO_ referenced to  
V
SOURCE  
CPOUT  
- 0.4  
CPOUT  
POWER REQUIREMENT  
Analog Supply Voltage Range  
Digital Supply Voltage Range  
AV  
DV  
1.8  
1.8  
3.6  
3.6  
V
V
DD  
DD  
_______________________________________________________________________________________  
9
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
ELECTRICAL CHARACTERISTICS (continued)  
(AV  
= DV  
= +1.8V to +3.6V, V  
= +1.25V, external reference, CLK32K = 32.768kHz (external clock), C  
= 10µF, C  
=
DD  
DD  
REF  
REG  
CPOUT  
10µF, 10µF between CF+ and CF-, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
MIN  
MAX  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Everything on,  
charge pump  
unloaded, no digital  
pins, sinking/sourcing  
current, e.g., RST,  
UPIO_, and CLK32K,  
max internal temp-  
sensor current, clock  
output buffers  
AV  
AV  
= DV  
= DV  
= 3.6V  
= 2.7V  
1.2  
2.0  
DD  
DD  
DD  
DD  
I
MAX  
MAX1358B  
Total Supply Current  
mA  
1.15  
1.4  
1.5  
unloaded, ADC at  
477sps  
All on except charge pump and temp  
sensor, ADC at 477sps, CLK output buffer  
enabled, clock output buffers unloaded  
I
1.15  
3.0  
NORMAL  
AV  
AV  
AV  
AV  
= DV  
= DV  
= DV  
= DV  
= 2.7V  
= 3.6V  
= 2.7V  
= 3.6V  
5.2  
6.7  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
T
T
= -40°C to +85°C  
= +25°C  
A
Sleep-Mode Supply Current  
(I + I  
I
μA  
μA  
SLEEP  
)
DVDD  
AVDD  
3.0  
4.5  
A
T
= -40°C to +85°C  
= +25°C  
2.5  
Shutdown Supply Current  
(I + I  
A
A
I
All off  
SHDN  
)
DVDD  
AVDD  
T
1.2  
Note 1: Devices are production tested at T = +25°C and T = +85°C. Specifications to T = -40°C are guaranteed by design.  
A
A
A
Note 2: Guaranteed by design or characterization.  
Note 3: The offset and gain errors are corrected by self-calibration or system calibration. For accurate calibrations, perform cali-  
bration at the lowest rate. The calibration error is therefore in the order of peak-to-peak noise for the selected rate.  
Note 4: Eliminate drift errors by recalibration at the new temperature.  
Note 5: The gain error excludes reference error, offset error (unipolar), and zero error (bipolar).  
Note 6: Gain-error drift does not include unipolar-offset drift or bipolar zero-error drift. It is effectively the drift of the part if zero-  
scale error is removed.  
Note 7: These specifications are obtained from characterization during design or from initial product evaluation. Not production  
tested or guaranteed.  
Note 8:  
V
OUTA  
= +0.5V or +1.5V, V  
= +1.5V or +0.5V, T = 0°C to +50°C.  
SWA  
A
Note 9: Long-term stability is characterized using five to six parts. The bandgaps are turned on for 1000hrs at room temperature  
with the parts running continuously. Daily measurements are taken and any obvious outlying data points are discarded.  
Note 10: Temperature error is the difference in the calculated temperature using the internal circuit vs. measurements made using  
precision external voltage and current meters. The same diode and diode equation are used for both measurements.  
Note 11: All the stated temperature accuracies assume that 1) the external diode characteristic is precisely known (i.e., ideal) and  
2) the ADC reference voltage is exactly equal to 1.25V. Any variations to this known reference characteristic and voltage  
caused by temperature, loading, or power supply results in errors in the temperature measurement. The actual tempera-  
ture calculation is performed externally by the µC.  
Note 12: Values based on simulation results and are not production tested or guaranteed.  
10 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Table 1. Output Noise (Notes 13 and 14)  
OUTPUT NOISE (µV  
)
RMS  
RATE (sps)  
GAIN = 1  
1.75  
GAIN = 2  
GAIN = 4  
1.75  
GAIN = 8  
1.75  
1.75  
2.92  
10  
40  
2.92  
2.92  
2.92  
3.23  
3.60  
3.23  
3.23  
3.60  
3.23  
3.60  
50  
3.60  
60  
56.06  
102.36  
587.06  
951.07  
56.06  
102.36  
587.06  
951.07  
56.06  
102.36  
587.06  
951.07  
56.06  
102.36  
587.06  
951.07  
200  
240  
400  
477  
Note 13: V  
= +1.25V, bipolar mode, V = 1.24912V, PGA gain = 1, T = +25°C.  
IN A  
Note 14: Assume 3 sigma peak-to-peak variation; noise-free resolution means no code flicker at given bitsꢀ LSB.  
REF  
Table 2. Peak-to-Peak Resolution  
PEAK-TO-PEAK RESOLUTION (BITS)  
RATE (sps)  
GAIN = 1  
17.57  
16.83  
16.68  
16.53  
12.57  
11.70  
9.18  
GAIN = 2  
16.57  
15.83  
15.68  
15.53  
11.57  
10.70  
8.18  
GAIN = 4  
15.57  
14.83  
14.68  
14.53  
10.57  
9.70  
GAIN = 8  
14.57  
13.83  
13.68  
13.53  
9.57  
10  
40  
50  
60  
200  
240  
400  
477  
8.70  
7.18  
6.18  
8.48  
7.48  
6.48  
5.48  
Table 3. Maximum External Source Impedance Without 16-Bit Gain Error  
EXTERNAL CAPACITANCE (pF)  
PARAMETER  
0 (Note 15)  
350  
50  
60  
100  
30  
500  
10  
1000  
4
5000  
Resistance (kΩ)  
1
Note 15: 2pF parasitic capacitance is assumed, which represents pad and any other parasitic capacitance.  
______________________________________________________________________________________ 11  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
TIMING CHARACTERISTICS (Figures 1 and 19)  
(AV  
= DV  
= +1.8V to +3.6V, external V  
= +1.25V, CLK32K = 32.768kHz (external clock), C = 10µF, C  
REG  
= 10µF,  
DD  
DD  
REF  
CPOUT  
10µF between CF+ and CF-, T = T  
A
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
MIN  
PARAMETER  
SCLK Operating Frequency  
SCLK Cycle Time  
SYMBOL  
CONDITIONS  
MIN  
0
TYP  
MAX  
UNITS  
MHz  
ns  
f
10  
SCLK  
t
100  
40  
40  
30  
0
CYC  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
DIN to SCLK Setup  
t
ns  
CH  
t
ns  
CL  
DS  
t
ns  
MAX1358B  
DIN to SCLK Hold  
t
t
ns  
DH  
SCLK Fall to DOUT Valid  
CS Fall to DOUT Enable  
CS Rise to DOUT Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
C = 50pF, Figure 2  
40  
48  
48  
ns  
DO  
L
t
C = 50pF, Figure 2  
ns  
DV  
L
t
TR  
C = 50pF, Figure 2  
L
ns  
t
20  
0
ns  
CSS  
CSH  
t
ns  
DV  
Monitor Timeout Period  
t
(Note 16)  
1.5  
1
s
DD  
DSLP  
Minimum pulse width required to detect a  
wake-up event  
Wake-Up (WU) Pulse Width  
Shutdown Delay  
t
μs  
μs  
ms  
μs  
WU  
The delay for SHDN to go high after a valid  
wake-up event  
t
1
DPU  
The turn-on time for the high-frequency  
clock and FLL (FLLE = 1) (Note 17)  
10  
10  
HFCLK Turn-On Time  
t
DFON  
If FLLE = 0, the turn-on time for the high-  
frequency clock (Note 18)  
The delay for CRDY to go low after the  
HFCLK clock output has been enabled  
(Note 19)  
CRDY to INT Delay  
t
7.82  
ms  
DFI  
The delay after a shutdown command has  
asserted and before HFCLK is disabled  
(Note 20)  
HFCLK Disable Delay  
t
1.95  
2.93  
ms  
ms  
DFOF  
SHDN Assertion Delay  
t
(Note 21)  
DPD  
Note 16: The delay for the sleep voltage monitor output, RESET, to go high after V  
rises above the reset threshold. This is largely  
DD  
driven by the startup of the 32kHz oscillator.  
Note 17: FLLE is gated by an AND function with three inputs—the external RESET signal, the internal DV  
monitor output, and the  
going high or the external RESET going high,  
DD  
external SHDN signal. The time delay is timed from the internal LOV  
DD  
whichever happens later. HFCLK always starts in the low state.  
Note 18: If FLLE = 0, the internal signal CRDY is not generated by the FLL block and INT or INT is deasserted.  
Note 19: CRDY is used as an interrupt signal to inform the µC that the high-frequency clock has started. Only valid if FLLE = 1.  
Note 20: t  
Note 21: t  
gives the µC time to clean up and go into sleep-override mode properly.  
is greater than the HFCLK delay to clean up before losing power.  
DFOF  
DPD  
12 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
CS  
t
t
t
t
CSH  
CSH  
CYC  
CH  
t
CSS  
t
CL  
SCLK  
DIN  
t
t
DH  
DS  
t
t
t
TR  
DV  
DO  
DOUT  
Figure 1. Detailed Serial-Interface Timing  
DV  
DD  
6kΩ  
DOUT  
DOUT  
6kΩ  
C
LOAD  
= 50pF  
C
LOAD  
= 50pF  
a) FOR ENABLE, HIGH IMPEDANCE  
TO V AND V TO V  
b) FOR ENABLE, HIGH IMPEDANCE  
TO V AND V TO V  
OH  
OL  
OH  
OL  
OH  
OL  
FOR DISABLE, V TO HIGH IMPEDANCE  
FOR DISABLE, V TO HIGH IMPEDANCE  
OH  
OL  
Figure 2. DOUT Enable and Disable Time Load Circuits  
Typical Operating Characteristics  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
DV SUPPLY CURRENT  
DD  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
vs. DV SUPPLY VOLTAGE  
DD  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
10.000  
SLEEP MODE  
ALL ON WITH ADC AT 477sps AND  
MAXIMUM INTERNAL TEMP-SENSOR  
CURRENT SETTING  
1.000  
0.100  
0.010  
0.001  
I
SLEEP MODE: ALL OFF EXCEPT  
32kHz OSC, RTC, AND 1.8V MONITOR  
SHUTDOWN MODE: ALL OFF  
DVDD  
I
AVDD  
SHUTDOWN MODE  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
DV (V)  
3.0  
3.3  
3.6  
AV , DV (V)  
DD  
DD  
DD  
______________________________________________________________________________________ 13  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
AV SUPPLY CURRENT  
DD  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
vs. AV SUPPLY VOLTAGE  
DD  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1.0  
SLEEP MODE: ALL OFF EXCEPT  
32kHz OSC, RTC, AND 1.8V MONITOR  
SLEEP MODE: ALL OFF EXCEPT  
32kHz OSC, RTC, AND 1.8V MONITOR  
SHUTDOWN MODE: ALL OFF  
ALL ON WITH ADC AT 512sps AND  
MAXIMUM INTERNAL TEMP-SENSOR  
CURRENT SETTING  
0.9  
0.8  
0.7  
0.6  
0.5  
MAX1358B  
SLEEP MODE  
DV = 3.0V  
DD  
DV = 3.0V  
DD  
SHUTDOWN MODE  
DV = 1.8V  
DD  
DV = 1.8V  
DD  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
20  
16  
12  
8
2.5  
2.1  
1.7  
1.3  
0.9  
0.5  
0.55  
0.53  
0.51  
0.49  
0.47  
0.45  
SLEEP MODE: ALL OFF EXCEPT  
32kHz OSC, RTC, AND 1.8V MONITOR  
ALL ON WITH ADC AT 512sps AND  
MAXIMUM INTERNAL TEMP-SENSOR  
CURRENT SETTING  
ALL OFF  
DV = 3.0V  
DD  
DV = 3.0V  
DD  
DV = 3.0V  
DD  
DV = 1.8V  
DD  
DV = 1.8V  
DD  
4
DV = 1.8V  
DD  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
AV SUPPLY CURRENT  
DD  
vs. TEMPERATURE  
INTERNAL OSCILLATOR FREQUENCY  
vs. TEMPERATURE  
0.50  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
ALL OFF  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
FLL DISABLED  
FLL ENABLED  
DV = 3.0V  
DD  
DV = 1.8V  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
14 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
INTERNAL OSCILLATOR FREQUENCY  
vs. SUPPLY VOLTAGE  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REFERENCE OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
1.2502  
3.0  
2.5  
2.0  
1.5  
1.0  
50kI LOAD  
V
= 2.50V  
REF  
FLL ENABLED  
1.2500  
1.2498  
1.2496  
1.2494  
1.2492  
V
= 2.048V  
REF  
V
= 1.25V  
REF  
FLL DISABLED  
V
= 1.25V  
50  
REF  
CLK = 2.4576MHz  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-50  
150  
250  
350  
450  
550  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
AV , DV SUPPLY VOLTAGE (V)  
OUTPUT CURRENT (µA)  
DD  
DD  
SUPPLY VOLTAGE (V)  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REFERENCE OUTPUT VOLTAGE  
vs. OUTPUT CURRENT  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
2.0496  
2.0494  
2.0492  
2.0490  
2.0488  
2.0486  
2.4970  
2.4968  
2.4966  
2.4964  
2.4962  
2.4960  
1.251  
1.250  
1.249  
1.248  
1.247  
1.246  
1.245  
V
= 2.048V  
V
= 2.5V  
V
= 1.25V  
REF  
REF  
REF  
-50  
50  
150  
250  
350  
450  
550  
-50  
50  
150  
250  
350  
450  
550  
-40  
-15  
10  
35  
60  
85  
OUTPUT CURRENT (µA)  
OUTPUT CURRENT (µA)  
TEMPERATURE (°C)  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
REFERENCE OUTPUT VOLTAGE  
vs. TEMPERATURE  
REFERENCE DRIFT (0˚C TO 50˚C)  
2.500  
2.497  
2.494  
2.491  
2.488  
2.485  
2.052  
2.050  
2.048  
2.046  
2.044  
2.042  
V
REF  
= 1.25V  
BOX METHOD  
V
= 2.5V  
V
= 2.048V  
REF  
REF  
-40  
-15  
10  
35  
60  
85  
6
11  
16  
21  
26  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
ABSOLUTE DRIFT (ppm/NC)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 15  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
REFERENCE NOISE DENSITY vs.  
REFERENCE VOLTAGE OUTPUT NOISE  
ADC INL vs. OUTPUT CODE  
FREQUENCY  
(0.1Hz TO 10Hz)  
MAX11358B toc19  
1000  
0.002  
0
V
REF  
= 1.25V  
100  
10  
1
-0.002  
-0.004  
-0.006  
-0.008  
-0.010  
50µV/div  
AC-COUPLED  
MAX1358B  
V
= 2.048V  
REF  
UNIPOLAR MODE  
GAIN = 1  
60sps  
10  
100  
1000  
10,000  
0
10k 20k 30k 40k 50k 60k 70k  
OUTPUT CODE  
1s/div  
FREQUENCY (Hz)  
ADC MAXIMUM INL vs.  
SUPPLY VOLTAGE  
ADC MAXIMUM INL vs.  
SUPPLY VOLTAGE  
ADC INL vs. OUTPUT CODE  
-0.0040  
-0.0044  
-0.0048  
-0.0052  
-0.0056  
-0.0060  
-0.0025  
-0.0024  
-0.0023  
-0.0022  
-0.0021  
-0.0020  
0.005  
0.004  
0.003  
0.002  
0.001  
0
V
= 2.048V  
UNIPOLAR MODE  
GAIN = 1  
REF  
AV = DV = 1.8V  
DD  
DD  
V
REF  
= 1.25V  
BIPOLAR MODE  
GAIN = 1  
60sps  
60sps  
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
V
= 1.25V  
BIPOLAR MODE  
GAIN = 1  
REF  
60sps  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
SUPPLY VOLTAGE (V)  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
SUPPLY VOLTAGE (V)  
0
10k 20k 30k 40k 50k 60k 70k  
OUTPUT CODE  
ADC MAXIMUM INL vs. TEMPERATURE  
ADC MAXIMUM INL vs. TEMPERATURE  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
0
-0.001  
-0.002  
-0.003  
-0.004  
-0.005  
-0.006  
-0.007  
V
= 2.048V  
REF  
UNIPOLAR MODE  
GAIN = 1  
60sps  
V
= 1.25V  
REF  
BIPOLAR MODE  
GAIN = 1  
60sps  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
16 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
ADC MAXIMUM INL vs.  
COMMON-MODE INPUT VOLTAGE  
ADC MAXIMUM vs.  
OUTPUT DATA RATE  
ADC MAXIMUM INL vs. PGA GAIN  
0.010  
0
0.030  
0.025  
0.020  
0.015  
0.010  
0.005  
0
AV = DV = 1.8V  
AV = DV = 1.8V  
V
= 1.25V  
REF  
BIPOLAR MODE  
GAIN = 1  
DD  
DD  
DD  
DD  
-0.0005  
-0.0010  
-0.0015  
-0.0020  
-0.0025  
-0.0030  
-0.0035  
-0.0040  
-0.0045  
-0.0050  
V
= 1.25V  
BIPOLAR MODE  
GAIN = 1  
V
= 1.25V  
REF  
REF  
BIPOLAR MODE  
60sps  
0.008  
0.006  
0.004  
0.002  
0
60sps  
0
2
4
6
8
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2  
COMMON-MODE VOLTAGE (V)  
0
100  
200  
300  
400  
500  
PGA GAIN  
DATA RATE (sps)  
ADC OFFSET ERROR vs.  
TEMPERATURE  
ADC GAIN ERROR vs.  
TEMPERATURE  
ADC OFFSET ERROR vs.  
SUPPLY VOLTAGE  
0.0020  
0.0015  
0.0010  
0.0005  
0
0.006  
0.005  
0.004  
0.003  
0.002  
0.001  
0
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
V
= 2.048V  
V
= 2.048V  
REF  
REF  
V
= 1.25V  
REF  
UNIPOLAR MODE  
GAIN = 1  
60sps  
UNIPOLAR MODE  
GAIN = 1  
60sps  
UNIPOLAR MODE  
GAIN = 1  
60sps  
-0.0005  
-0.0010  
-0.0005  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (NC)  
TEMPERATURE (NC)  
ADC MUX INPUT DC CURRENT vs.  
TEMPERATURE  
ADC GAIN ERROR vs.  
SUPPLY VOLTAGE  
1000.00  
0.0040  
V
= 1.25V  
REF  
0.0035  
0.0030  
0.0025  
0.0020  
0.0015  
0.0010  
0.0005  
0
UNIPOLAR MODE  
GAIN = 1  
60sps  
100.00  
10.00  
1.000  
0.100  
0.010  
0.001  
ADC CONVERTING  
ADC OFF  
AIN1 = AV /2  
DD  
MUX+ = AIN1  
MUX- = AGND  
-40  
-15  
10  
35  
60  
85  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (NC)  
______________________________________________________________________________________ 17  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
FB LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
AIN_ LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
SW_ LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
0.4  
0.3  
0.2  
0.1  
0
0.4  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OUT_ = AV /2  
DD  
T
A
= +85°C  
0.3  
0.2  
0.1  
0
T
A
= +85°C  
T
A
= +55°C  
T
A
= +85°C  
T
A
= +55°C  
MAX1358B  
T
= +55°C  
A
T
= +25°C  
A
-0.1  
-0.2  
-0.3  
-0.1  
-0.2  
-0.3  
T
= +25°C  
A
T
A
= +25°C  
-0.5  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
V
V
FB  
V
SW_  
AIN_  
SNC_ LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
SCM_ LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
SNO_ LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
0.20  
0.15  
0.10  
0.05  
0
SCM_ = AV /2  
SN0_ = SNC_ = AV /2  
DD  
SCM_ = AV /2  
DD  
DD  
T
A
= +85°C  
T
= +85°C  
T
= +85°C  
A
A
T
A
= +55°C  
T = +55°C  
A
T
A
= +55°C  
-0.05  
-0.10  
-0.15  
-0.20  
-0.05  
-0.10  
-0.15  
-0.20  
-0.05  
-0.10  
-0.15  
-0.20  
T
A
= +25°C  
T = +25°C  
A
T
A
= +25°C  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
(V)  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
(V)  
V
SCM_  
V
(V)  
SNC_  
SNO_  
IN1- LEAKAGE CURRENT  
vs. INPUT VOLTAGE  
DAC INL vs. OUTPUT CODE  
0.5  
0.20  
0.15  
0.10  
0.05  
0
AV = 1.8V  
DD  
0.4  
0.3  
0.2  
0.1  
0
T
A
= +85NC  
V
= 1.25V  
REF  
T = +55NC  
A
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.05  
-0.10  
-0.15  
-0.20  
T = +25NC  
A
0
100 200 300 400 500 600 700 800 900 10001100  
OUTPUT CODE  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
V
IN1-  
18 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
DAC INL vs. OUTPUT CODE  
DAC DNL vs. OUTPUT CODE  
DAC DNL vs. OUTPUT CODE  
0.5  
0.4  
0.5  
0.4  
0.5  
0.4  
AV = 1.8V  
V
= 2.048V  
DD  
REF  
V
= 2.048V  
REF  
V
REF  
= 1.25V  
0.3  
0.3  
0.3  
0.2  
0.2  
0.2  
0.1  
0.1  
0.1  
0
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
DAC FB_ INPUT BIAS CURRENT  
vs. TEMPERATURE  
DAC OUTPUT VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
DAC OUTPUT VOLTAGE  
vs. TEMPERATURE  
250  
200  
150  
100  
50  
0.62420  
0.62415  
0.62410  
0.62405  
0.62400  
0.62395  
0.62390  
0.62385  
0.62380  
0.6250  
0.6246  
0.6242  
0.6238  
0.6234  
0.6230  
FB_ = AV  
DD  
FB_ = 0  
V
= 1.25V EXTERNAL  
CODE = 0x200  
= 10kI  
V
= 1.25V  
REF  
REF  
CODE = 0x200  
R
0
R
= 10kI  
LOAD  
LOAD  
AV = DV = 1.8V  
DD  
DD  
-50  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AVDD (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DAC GAIN ERROR vs.TEMPERATURE  
DAC OUTPUT NOISE (0.1Hz TO 10Hz)  
MAX11358B toc50  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
= 1.25V EXTERNAL  
REF  
REF = 1.25V  
AV = DV = 1.8V  
DD  
DD  
AV = DV = 1.8V  
DD  
DD  
CODE = 0x3FF  
20µV/div  
AC-COUPLED  
V
= 2.5V EXTERNAL  
REF  
-0.1  
-0.2  
-0.3  
AV = DV = 3.0V  
DD  
DD  
OFFSET MEASURED AT CODE 0x52  
-15 10 35  
TEMPERATURE (°C)  
-40  
60  
85  
1s/div  
______________________________________________________________________________________ 19  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
DD  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
A
CPOUT  
DD  
REF  
DAC OUTPUT-NOISE DENSITY  
vs. FREQUENCY  
DAC LARGE-SIGNAL STEP RESPONSE  
(0x052 TO 0x3FF)  
MAX11358B toc52  
1000  
100  
10  
V
= 1.25V  
REF  
OUT_ = FB_  
AV = DV = 1.8V  
DD  
DD  
SCLK  
2V/div  
CODE = 3FF  
MAX1358B  
OUTA  
500mV/div  
0V  
1
0.01  
0.10  
1.00  
FREQUENCY (kHz)  
10.00  
100.00  
10µs/div  
DAC LARGE-SIGNAL STEP RESPONSE  
OP-AMP INPUT OFFSET VOLTAGE  
vs. TEMPERATURE  
OP-AMP INPUT OFFSET HISTOGRAM  
(0x3FF to 0x052)  
MAX11358B toc53  
35  
30  
25  
20  
15  
10  
5
0
V
= 0.5V  
CM  
OUT_ = FB_  
-0.1  
SCLK  
-0.2  
-0.3  
-0.4  
-0.5  
OUTA  
500mV/div  
0V  
0
10µs/div  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
OFFSET (mV)  
OP-AMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OP-AMP OUTPUT VOLTAGE  
vs. LOAD CURRENT  
0.89970  
0.89968  
0.89966  
0.89964  
0.89962  
0.89960  
0.89958  
0.89956  
0.89954  
0.89952  
0.89950  
1.49970  
1.49965  
1.49960  
1.49955  
1.49950  
1.49945  
1.49940  
UNITY GAIN  
= 0.9V  
UNITY GAIN  
= 1.5V  
V
IN  
V
IN  
AV = DV = 1.8V  
DD  
DD  
AV = DV = 3.0V  
DD  
DD  
-2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0  
-2.0 -1.5 -1.0 -0.5  
0
0.5 1.0 1.5 2.0  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
20 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
OP-AMP OUTPUT VOLTAGE  
vs. TEMPERATURE  
OP-AMP OUTPUT VOLTAGE  
vs. SUPPLY VOLTAGE  
OP-AMP OUTPUT NOISE (0.1Hz TO 10Hz)  
MAX11358B toc60  
0.8987  
0.50000  
UNITY GAIN  
UNITY GAIN  
AV = DV = 1.8V  
UNITY GAIN  
0.49995  
V
R
= 0.5V  
IN  
LOAD  
DD  
DD  
0.8986  
0.8985  
0.8984  
0.8983  
0.8982  
0.8981  
V
IN1+  
= 0.5V  
= 10kI  
V
IN+  
R
= AV /2  
DD  
AV = DV = 1.8V  
DD  
DD  
0.49990  
0.49985  
0.49980  
0.49975  
0.49970  
0.49965  
0.49960  
= 10kI  
LOAD  
20µV/div  
AC-COUPLED  
-40  
-15  
10  
35  
60  
85  
1s/div  
1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
CLOSED-LOOP OP-AMP GAIN AND PHASE  
OP-AMP OUTPUT-NOISE DENSITY  
vs. FREQUENCY  
OP-AMP UNITY-GAIN INPUT RANGE  
vs. FREQUENCY  
MAX11358B toc63  
80  
60  
180  
135  
90  
10  
8
1000  
100  
10  
AV = DV = 3.6V  
UNITY GAIN  
NO LOAD  
DD  
DD  
V
= 0.5V  
IN+  
AV = DV = 1.8V  
UNITY GAIN  
DD  
DD  
6
GAIN  
40  
4
20  
45  
2
0
0
0
-2  
-4  
-6  
-8  
-10  
-20  
-40  
-60  
-80  
-45  
-90  
-135  
-180  
PHASE  
CLOSED-LOOP GAIN = 1000  
R
C
= 10kI  
= 200pF  
LOAD  
LOAD  
1
10  
100  
1k  
10k  
100k  
1M  
0
0.6  
1.2  
1.8  
(V)  
2.4  
3.0  
3.6  
0.01  
0.10  
1.00  
FREQUENCY (kHz)  
10.00  
100.00  
FREQUENCY (Hz)  
V
IN  
SPDT ON-RESISTANCE  
vs. SCM_ VOLTAGE  
SPST ON-RESISTANCE vs. SW_ VOLTAGE  
70  
65  
60  
55  
50  
45  
40  
35  
45  
40  
35  
30  
25  
20  
I
= 1mA  
SW_  
I
= 1mA  
SCM_  
AV = 3V  
DD  
AV = 3V  
DD  
AV = 1.8V  
DD  
AV = 1.8V  
DD  
0
0.5  
1.0  
1.5  
(V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
V
(V)  
SW_  
SCM_  
______________________________________________________________________________________ 21  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
SPDT ON-RESISTANCE  
vs. TEMPERATURE  
SPDT ON-RESISTANCE  
vs. TEMPERATURE  
SPST LEAKAGE CURRENT  
vs. TEMPERATURE  
70  
60  
50  
40  
30  
50  
40  
30  
20  
10  
1.000  
0.100  
0.010  
0.001  
V
I
= AV  
DD  
= 1mA  
V
I
= AV  
SCM_ DD  
= 1mA  
SCM_  
V
= AV  
DD  
SCM_  
SCM_  
IN  
MAX1358B  
AV = DV = 3.0V  
DD  
DD  
AV = DV = 3.0V  
DD  
DD  
AV = DV = 1.8V  
DD  
DD  
AV = DV = 1.8V  
DD  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SPDT SWITCHING TIME  
vs. SUPPLY VOLTAGE  
SPST SWITCHING TIME  
vs. SUPPLY VOLTAGE  
SPDT/SPST SWITCHING TIME  
vs. TEMPERATURE  
70  
60  
50  
40  
30  
20  
70  
60  
50  
40  
30  
20  
50  
40  
30  
20  
10  
0
R
C
= 1kI  
LOAD  
= 35pF  
LOAD  
t
ON  
t
ON  
t
ON  
t
OFF  
t
OFF  
t
OFF  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
1.8  
2.1  
2.4  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
AV , DV (V)  
AV , DV (V)  
TEMPERATURE (°C)  
DD  
DD  
DD  
DD  
INTERNAL TEMPERATURE SENSOR ERROR  
vs. AMBIENT TEMPERATURE  
INTERNAL TEMPERATURE SENSOR ERROR  
vs. REFERENCE VOLTAGE  
2.0  
1.5  
1.0  
0.5  
0
15  
10  
5
V
= 1.250V  
T
A
= +85°C  
REF  
T
= +27°C  
A
0
T
A
= -40°C  
-0.5  
-1.0  
-1.5  
-2.0  
-5  
-10  
-15  
-40  
-15  
10  
35  
60  
85  
1.21  
1.23  
1.25  
1.27  
1.29  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
22 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Typical Operating Characteristics (continued)  
(DV  
= AV = 1.8V, V  
= +1.25V, C  
= 10µF, T = +25°C, unless otherwise noted.)  
DD  
DD  
A
REF  
CPOUT  
CHARGE-PUMP OUTPUT VOLTAGE  
VOLTAGE SUPERVISOR THRESHOLD  
vs. TEMPERATURE  
CHARGE-PUMP OUTPUT VOLTAGE  
vs. TEMPERATURE  
vs. OUTPUT CURRENT  
3.5  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
3.30  
3.26  
3.22  
3.18  
3.14  
3.10  
AV = DV = 1.8V  
FALLING  
DD  
DD  
AV = DV = 1.8V  
DD  
DD  
I
= 10mA  
LOAD  
3.4  
3.3  
3.2  
3.1  
3.0  
CPOUT SUPERVISOR  
DV SUPERVISOR  
DD  
0
2
4
6
8
10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHARGE-PUMP OUTPUT-VOLTAGE  
RIPPLE vs. OUTPUT CURRENT  
CHARGE-PUMP OUTPUT RESISTANCE  
vs. CAPACITANCE  
50  
100  
AV = DV = 1.8V  
AV = DV = 1.8V  
DD  
DD  
DD  
DD  
I
= 10mA  
OUT  
40  
30  
20  
10  
0
80  
60  
40  
20  
0
0
2
4
6
8
10  
0
5
10  
15  
20  
25  
OUTPUT CURRENT (mA)  
CAPACITANCE (µF)  
______________________________________________________________________________________ 23  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Pin Description  
PIN  
1
NAME  
CLK  
FUNCTION  
Clock Output. Default is 2.457MHz output clock for the μC.  
2
UPIO2  
UPIO3  
UPIO4  
User-Programmable Input/Output 2. See the UPIO2_CTRL Register section for functionality.  
User-Programmable Input/Output 3. See the UPIO3_CTRL Register section for functionality.  
User-Programmable Input/Output 4. See the UPIO4_CTRL Register section for functionality.  
3
4
Serial-Data Output. Data is clocked out on SCLK’s falling edge. High impedance when CS is high, when  
UPIO/SPI pass-through mode is enabled, DOUT mirrors the state of UPIO1.  
5
DOUT  
6
7
SCLK  
DIN  
Serial-Clock Input. Clocks data in and out of the serial interface.  
Serial-Data Input. Data is clocked in on SCLK’s rising edge.  
MAX1358B  
Active-Low Chip-Select Input. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is high  
impedance. High impedance when CS is high; when UPIO/SPI pass-through mode is enabled, DOUT  
mirrors the state of UPIO1.  
8
9
CS  
INT  
Programmable Active-High/Low Interrupt Output. ADC, UPIO wake-up, alarm, and voltage-monitor events.  
32kHz Clock Input/Output. Outputs 32kHz clock for the μC. Can be programmed as an input by enabling  
the IO32E bit to accept an external 32kHz input clock. The RTC, PWM, and watchdog timer always use the  
internal 32kHz clock derived from the 32kHz crystal.  
10  
CLK32K  
Active-Low, Open-Drain Reset Output. Remains low while DV  
is below the 1.8V voltage threshold and  
DD  
11  
RESET  
stays low for a timeout period (t ) after DV  
DSLP  
rises above the 1.8V threshold. RESET also pulses low  
DD  
when the watchdog timer times out and holds low during POR until the 32kHz oscillator stabilizes.  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
32KOUT 32kHz Crystal Output. Connect an external 32kHz watch crystal between 32KIN and 32KOUT.  
32KIN  
SNO1  
SCM1  
SNC1  
SNO2  
SCM2  
SNC2  
OUT1  
IN1-  
32kHz Crystal Input. Connect an external 32kHz watch crystal between 32KIN and 32KOUT.  
Analog Switch 1 Normally Open Terminal. Analog input to mux.  
Analog Switch 1 Common Terminal. Analog input to mux.  
Analog Switch 1 Normally Closed Terminal. Analog input to mux (open on POR).  
Analog Switch 2 Normally Open Terminal. Analog input to mux.  
Analog Switch 2 Common Terminal. Analog input to mux (open on POR).  
Analog Switch 2 Normally Closed Terminal. Analog input to mux.  
Amplifier 1 Output. Analog input to mux.  
Amplifier 1 Inverting Input. Analog input to mux.  
IN1+  
Amplifier 1 Noninverting Input  
24 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
23  
24  
25  
26  
SWA  
FBA  
DACA SPST Shunt Switch Input. Connects to OUTA through an SPST switch.  
DACA Force-Sense Feedback Input. Analog input to mux.  
DACA Force-Sense Output. Analog input to mux.  
Analog Ground  
OUTA  
AGND  
Analog Supply Voltage. Also ADC reference voltage during AV  
measurement. Bypass to AGND with  
DD  
27  
AV  
DD  
10μF and 0.1μF capacitors in parallel as close to the pin as possible.  
DACB SPST Shunt Switch Input. Connects to OUTB through an SPST switch.  
DACB Force-Sense Feedback Input. Analog input to mux.  
Force-Sense DACB Ouput. Analog input to mux.  
28  
29  
30  
SWB  
FBB  
OUTB  
Analog Input 2. Analog input to mux. Inputs have internal programmable current source for external  
temperature measurement.  
31  
32  
33  
34  
AIN2  
AIN1  
REF  
Analog Input 1. Analog input to mux. Inputs have internal programmable current source for external  
temperature measurement.  
Reference Input/Output. Output of the reference buffer amplifier or external reference input. Disabled at  
power-up to allow external reference. Reference voltage for ADC and DACs.  
Linear Voltage-Regulator Output. Charge-pump-doubler input voltage. Bypass REG with a 10μF capacitor  
to DGND for charge-pump regulation.  
REG  
35  
36  
CF-  
Charge-Pump Flying Capacitor Terminals. Connect an external 10μF (typ) capacitor between CF+ and CF-.  
Charge-Pump Output. Connect an external 10μF (typ) reservoir capacitor between CPOUT and DGND. There is  
CF+  
a low threshold diode between DV and CPOUT. When the charge pump is disabled, CPOUT is pulled up  
DD  
37  
CPOUT  
within 300mV (typ) of DV  
.
DD  
Digital Supply Voltage. Bypass to DGND with 10μF and 0.1μF capacitors in parallel as close to the pin as  
possible.  
38  
DV  
DD  
39  
40  
DGND  
UPIO1  
EP  
Digital Ground. Also ground for cascaded linear voltage regulator and charge-pump doubler.  
User-Programmable Input/Output 1. See the UPIO1_CTRL Register for functionality.  
Exposed Pad. Leave unconnected or connect to AGND.  
______________________________________________________________________________________ 25  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
The DAS directly interfaces to various sensor outputs  
Detailed Description  
and, once configured, provides the stimulus, signal con-  
The MAX11358B DAS features a multiplexed differential  
ditioning, and data conversion, as well as µP support.  
16-bit ADC, 10-bit force-sense DACs, an RTC with an  
See the Applications section for sample MAX11358B  
alarm, a selectable bandgap voltage reference, a signal-  
applications.  
detect comparator, 1.8V and 2.7V voltage monitors, and  
wake-up control circuitry, all controlled by a 4-wire serial  
interface (see Figure 3 for the functional diagram).  
The 16-bit ADC features programmable continuous con-  
version rates as shown in Table 4, and gains of 1, 2, 4,  
and 8 (Table 5) to suit applications with different power  
MAX1358B  
INT  
CLK32K  
32KOUT  
CLK  
AV  
DD  
32KIN  
DV  
DD  
4.9152MHz HF  
OSCILLATOR  
AND FLL  
CLK32K  
INPUT/OUTPUT  
CONTROL  
M32K  
CS  
SCLK  
DIN  
32.768kHz  
UPIO1  
INTERRUPT  
16  
OSCILLATOR  
UPIO2  
UPIO3  
UPIO4  
SERIAL  
INTERFACE  
UPIO  
HFCLK  
4
4
32K  
UPR<4:1>  
CRDY  
CONTROL  
LOGIC  
PWM  
UPF<4:1>  
DOUT  
STATUS  
RTC AND  
ALARM  
ALD  
SDC  
ADD  
ADOU  
WATCHDOG  
TIMER  
DV (1.8V)  
DD  
VOLTAGE  
MONITOR  
RESET  
LDVD  
LCPD  
WDTO  
AIN1  
AIN2  
TEMP  
PROG  
CURRENT  
SOURCE  
CPOUT (2.7V)  
VOLTAGE  
MONITOR  
CPOUT  
CF+  
CF-  
TEMP+  
TEMP-  
CHARGE-  
PUMP  
DOUBLER  
DV  
M32K  
DD  
SENSOR  
MAX11358B  
LINEAR 1.65V  
VOLTAGE  
REGULATOR  
REG  
AIN1  
SNO1  
FBA  
SCM1  
FBB  
SNC1  
AIN1  
AIN2  
M32K  
CMP  
PROG. V  
OS  
PGA  
1.25V BANDGAP  
REF  
10:1  
MUX  
POS  
A = 1, 1.6384, 2 V/V  
V
IN1-  
TEMP+  
REF  
SNO1  
SNC1  
SCM1  
REF  
REF  
10-BIT DAC  
AGND  
IN+  
OUTA  
SWA  
FBA  
BUF  
HFCLK  
16-BIT ADC  
IN-  
PGA  
TEMP-  
SNO2  
OUTA  
SCM2  
OUTB  
SNC2  
OUT1  
AIN2  
SPDT1  
A = 1, 2, 4, 8 V/V  
POLARITY  
FLIPPER  
V
REF  
SNO2  
SNC2  
SCM2  
10:1  
MUX  
NEG  
10-BIT DAC  
OUTB  
BUF  
OP1  
SWB  
FBB  
REF  
SPDT2  
AGND  
IN1+  
IN1-  
OUT1  
DGND  
AGND  
Figure 3. Functional Diagram  
26 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
and dynamic range constraints. The force-sense DAC  
provides 10-bit resolution for precise sensor applica-  
tions. The ADC and DACs both utilize a low-drift 1.25V  
internal bandgap reference for conversions and full-  
scale range setting. The RTC has a 138-year range and  
provides an alarm function that can be used to wake up  
the system or cause an interrupt at a predefined time.  
ADC Modulator  
The MAX11358B performs analog-to-digital conversions  
using a single-bit, 3rd-order, switched-capacitor sigma-  
delta modulator. The sigma-delta modulation converts  
the input signal into a digital pulse train whose average  
duty cycle represents the digitized signal information.  
The pulse train is then processed by a digital decimation  
filter. The modulator provides 2nd-order frequency shap-  
ing of the quantization noise resulting from the single-bit  
quantizer. The modulator is fully differential for maximum  
signal-to-noise ratio and minimum susceptibility to  
power-supply noise.  
The power-supply voltage monitor detects when DV  
DD  
falls below a trip threshold voltage of +1.8V and asserts  
RESET. The MAX11358B uses a 4-wire serial interface  
to communicate directly among SPI, QSPI, or  
MICROWIRE devices for system configuration and  
readback functions.  
Signal-Detect Comparator  
INT asserts (and remains asserted) within 30µs when  
the differential voltage on the selected analog inputs  
exceeds the signal-detect comparator trip threshold.  
The signal-detect comparatorꢀs differential input trip  
threshold (i.e., offset) is user selectable and can be pro-  
grammed to the following values: 0mV, 50mV, 100mV,  
150mV, or 200mV.  
Analog-to-Digital Converter (ADC)  
The MAX11358B includes a sigma-delta ADC with pro-  
grammable conversion rate, a PGA, and a dual 10:1  
input mux. When performing continuous conversions at  
10sps or single conversions at the 40sps setting (effec-  
tively 10sps due to four sample sigma-delta settling),  
the ADC has 16-bit noise-free resolution. The noise-free  
resolution drops to 10 bits at the maximum sampling  
rate of 477sps. Differential inputs support unipolar  
Analog Inputs  
The ADC provides two external analog inputs: AIN1  
and AIN2. The rail-to-rail inputs accept differential or  
single-ended voltages, or external temperature-sensing  
diodes. The unused op amps, switches, or DAC inputs  
and output pins can also be used as rail-to-rail analog  
inputs if the associated function is disabled.  
(between 0 and V  
) and bipolar (between  
V
)
REF  
REF  
modes of operation. Note: Avoid combinations of input  
signal and PGA gains that exceed the reference range  
at the ADC input. The ADOU bit in the STATUS register  
indicates if the ADC has overranged or underranged.  
Zero-scale and full-scale calibrations remove offset and  
gain errors. Direct access to gain and zero-scale cali-  
bration registers allows system-level offset and gain cal-  
ibration. The zero-scale adjustment register allows  
intentional positive offset skewing to preserve unipolar-  
mode resolution for signals that have a slight negative  
offset (i.e., unipolar clipping near zero can be removed).  
Perform ADC calibration whenever the ADC configura-  
Analog Input Protection  
Internal protection diodes clamp the analog inputs to  
AV  
and AGND and allow the channel input to swing  
DD  
from (AGND - 0.3V) to (AV  
+ 0.3V). For accurate  
DD  
conversions near full scale, the inputs must not exceed  
AV by more than 50mV or be lower than AGND by  
DD  
50mV. If the inputs exceed (AGND - 0.3V) to (AV  
0.3V), limit the current to 50mA.  
+
DD  
tion, temperature, or AV  
changes. The ADC-done sta-  
DD  
tus can be programmed to provide an interrupt on INT  
or on any UPIO_.  
Analog Mux  
The MAX11358B includes a dual 10:1 mux for the positive  
and negative inputs of the ADC. Figure 3 illustrates which  
signals are present at the inputs of each mux for the  
MAX11358B. The MUXP[3:0] and MUXN[3:0] bits of the  
MUX register select the input to the ADC and the signal-  
detect comparator (Tables 8 and 9). See the MUX register  
description in the Register Definitions section for multi-  
plexer functionality. The POL bit of the ADC register  
swaps the polarity of mux output signals to the ADC.  
PGA Gain  
An integrated PGA provides four selectable gains (+1V/V,  
+2V/V, +4V/V, and +8V/V) to maximize the dynamic  
range of the ADC. Bits GAIN1 and GAIN0 set the gain  
(see the ADC Register for more information). The PGA  
gain is implemented in the digital filter of the ADC.  
______________________________________________________________________________________ 27  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Digital Filtering  
The MAX11358B contains an on-chip digital lowpass fil-  
ter that processes the data stream from the modulator  
using a sinc4 (sinx/x)4 response. The sinc4 filter has a  
settling time of four output data periods (4 x 200ms).  
Force-Sense DAC  
The MAX11358B incorporates two 10-bit force-sensing  
DACs. The DACs reference voltage sets the full-scale  
range. Program the DACA_OP register using the serial  
interface to set the output voltages of the DAC at OUTA.  
Connecting resistors in a voltage-divider configuration  
between OUTA, FBA, and GND sets a different closed-  
loop gain for the output amplifier (see the Applications  
Information section).  
The MAX11358B has 25% overrange capability built into  
the modulator and digital filter:  
4
f
SIN Nπ  
The DAC output amplifier typically settles to 0.5 LSB  
from a full-scale transition within 65µs (unity gain and  
loaded with 10kΩ in parallel with 200pF). Loads of less  
than 1kΩ could degrade performance. See the Typical  
Operating Characteristics for the source-and-sink  
capability of the DAC output.  
f
1
N
m
H(f) =  
f
MAX1358B  
SIN  
π
f
m
Figure 4 shows the filter frequency response. The sinc4  
characteristic -3dB cutoff frequency is 0.228 times the  
first notch frequency.  
The MAX11358B features a software-programmable  
shutdown mode for the DAC. Power down DACA or  
DACB independently or simultaneously by clearing the  
DAE and DBE bits (see the DACA_OP Register and  
DACB_OP Register sections). DAC output OUTA and  
OUTB go high impedance when powered down. The  
DACs are normally powered down at power-on reset.  
The output data rate for the digital filter corresponds  
with the positioning of the first notch of the filterꢀs fre-  
quency response. The notches of the sinc4 filter are  
repeated at multiples of the first notch frequency. The  
sinc4 filter provides an attenuation of better than 100dB  
at these notches. For example, 50Hz is equal to five  
times the first notch frequency and 60Hz is equal to six  
times the first notch frequency.  
Charge Pump  
The charge pump provides > 3V at CPOUT with a maxi-  
mum 10mA load. Enable the charge pump through the  
PS_VMONS register. The charge pump is powered  
from DV . See Figures 5 and 6 for block diagrams of  
DD  
the charge pump and linear regulator. The charge  
pump is disabled at power-on reset.  
0
-40  
An internal clock drives the charge-pump clock and  
ADC clock. The charge pump delivers a maximum  
10mA of current to external devices. The droop and the  
ripple depend on the clock frequency (f  
=
CLK  
= 5Ω), and  
-80  
32.768kHz/2), switch resistances (R  
SWITCH  
the external capacitors (10µF) along with their respec-  
tive ESRs, as shown below.  
-120  
-160  
-200  
V
= I  
R
DROOP  
OUT OUT  
1
R
=
+ 2R  
+ 4ESR  
+ ESR  
C
CPOUT  
OUT  
SWITCH  
C
F
f
C
F
CLK  
0
20  
40  
60  
80  
100  
120  
I
OUT  
V
=
+ 2I  
ESR  
RIPPLE  
OUT  
C
FREQUENCY (Hz)  
CPOUT  
f
C
CLK CPOUT  
Figure 4. Filter Frequency Response  
28 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
DV  
DD  
LDOE  
CPE  
CPOUT  
1.22V  
OP  
NONOVERLAP  
CLOCK GENERATOR  
M32K  
1.65V  
REG  
CF+  
CF-  
REG  
LDOE  
CHARGE-PUMP DOUBLER  
LINEAR 1.65V VOLTAGE REGULATOR  
Figure 6. Charge-Pump Block Diagram  
Figure 5. Linear-Regulator Block Diagram  
set to flag the condition. The CPOUT monitor output  
can also be mapped to the interrupt generator and out-  
put on INT. The CPOUT monitor can be used as a 3V  
Voltage Supervisors  
The MAX11358B provides voltage supervisors to monitor  
DV  
DV  
and CPOUT. The first supervisor monitors the  
supply voltage. RESET asserts and sets the corre-  
DD  
DD  
AV  
monitor in applications where the charge pump is  
DD  
disabled and CPOUT is connected to AV . AV  
sponding LDVD status bit when DV  
falls below the  
supply voltage  
DD  
DD  
DD  
must be greater or equal to DV  
when CPOUT is used  
1.8V threshold voltage. When the DV  
DD  
DD  
to monitor AV  
See Figure 8 for a block diagram of the  
rises above the threshold during power-up, RESET  
deasserts after a nominal 1.5s timeout period to give the  
crystal oscillator time to stabilize. Set the threshold hys-  
teresis using the HYSE bit of the PS_VMONS register.  
See the PS_VMONS Register section for configuring hys-  
DD.  
CPOUT voltage supervisor.  
Interrupt Generator (INT)  
The interrupt generator provides an interrupt to an  
external µC. The source of the interrupt is generated by  
the status register and can be masked and unmasked  
through the IMSK register. CRDY is unmasked by  
default, and INT is active-high at power-on reset. INT is  
programmable as active-high and active-low. Possible  
sources include a rising or falling edge of UPIO_, an  
RTC alarm, an ADC conversion completion, or the volt-  
age-supervisor outputs. The interrupt causes INT to  
assert when configured as an interrupt output.  
teresis. There is no separate voltage monitor for AV  
,
DD  
monitor in  
but the analog supply is covered by the DV  
DD  
many applications where DV  
and AV  
are externally  
DD  
DD  
connected together. Multiple supply applications where  
AV and DV are not connected together require a  
DD  
DD  
separate external voltage monitor for AV . See Figure 7  
DD  
for a block diagram of the DV voltage supervisor.  
DD  
The second voltage monitor tracks the charge-pump  
output voltage, CPOUT. If CPOUT falls below the 2.7V  
threshold, a corresponding register status bit (LCPD) is  
______________________________________________________________________________________ 29  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
WDTO  
DV  
DD  
HYSE  
POR  
RSTE  
RESET  
LSDE  
CMP  
1.8VTH  
2.0VTH  
ANALOG  
2:1 MUX  
CONTROL  
LOGIC  
1.25V  
MAX1358B  
LDVD  
LSDE  
DV (1.8V) VOLTAGE MONITOR  
DD  
Figure 7. DV  
Voltage-Supervisor Block Diagram  
DD  
as the C-002RX32-E from Epson Crystal. Using a crys-  
tal with a C that is larger than the load capacitance of  
L
CPOUT  
the oscillator circuit causes the oscillator to run faster  
than the specified nominal frequency of the crystal or to  
not start up. See Figures 9 and 10 for block diagrams  
of the crystal oscillator and the CLK32K I/O.  
CPDE  
2.7VTH  
LCPD  
CMP  
Real-Time Clock (RTC)  
The integrated RTC provides the current time information  
from a 32-bit counter and subsecond counts from an  
8-bit ripple counter. An internally generated reference  
clock of 256Hz (derived from the 32.768kHz crystal) dri-  
ves the 8-bit subsecond counter. An overflow of the 8-bit  
subsecond counter inputs a 1Hz clock to increment the  
32-bit second counter. The RTC 32-bit second counter is  
translatable to calendar format with firmware. All 40 bits  
(32-bit second counter and 8-bit subsecond counter)  
must be clocked in or out for valid data. The RTC and  
the 32.768kHz crystal oscillator consume less than 1µA  
when the rest of the device is powered down.  
1.25V  
CPDE  
CPOUT (2.7V) VOLTAGE MONITOR  
Figure 8. CPOUT Voltage-Supervisor Block Diagram  
Crystal Oscillator  
The on-chip oscillator requires an external crystal (or  
resonator) connected between 32KIN and 32KOUT  
with a 32.768kHz operating frequency. This oscillator is  
used for the RTC, alarm, PWM, watchdog, charge  
pump, and FLL. In any crystal-based oscillator circuit,  
the oscillator frequency is sensitive to the capacitive  
Time-of-Day Alarm  
Program the AL_DAY register with a 20-bit value, which  
corresponds to a time 1s to 12 days later than the cur-  
rent time with a 1s resolution. The alarm status bit, ALD,  
asserts when the 20 bits of the AL_DAY register match-  
es the 20 LSBs of the 32-bit second counter. The ADE  
bit automatically clears when the time-of-day alarm  
trips. The time-of-day alarm causes the device to exit  
sleep mode.  
load (C ). C is the capacitance that the crystal needs  
L
L
from the oscillator circuit and not the capacitance of the  
crystal. The input capacitance across 32KIN and  
32KOUT is 6pF. Choose a crystal with a 32.768kHz  
oscillation frequency and a 6pF capacitive load such  
30 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
locked to the 32.768kHz reference. If the FLL is dis-  
abled, the high-frequency clock is free-running. At  
power-up, the CLK pin defaults to a 2.4576MHz clock  
output, which is compatible with most µCs. See Figure  
12 for a block diagram of the high-frequency clock.  
Watchdog  
Enable the watchdog timer by writing a 1 to the WDE  
bit in the CLK_CTRL register. After enabling the watch-  
dog timer, the device asserts RESET for 250ms, if the  
watchdog address register is not written every 500ms.  
Due to the asynchronous nature of the watchdog timer,  
the watchdog timeout period varies between 500ms  
and 750ms. Write a 0 to the WDE bit to disable the  
watchdog timer. See Figure 11 for a block diagram of  
the watchdog timer.  
User-Programmable I/Os  
The MAX11358B provides four digital programmable  
I/Os (UPIO1–UPIO4). Configure UPIOs as logic inputs  
or outputs using the UPIO control register. Configure  
the internal pullups using the UPIO setup register, if  
required. At power-up, the UPIOs are internally pulled  
up to DV . UPIO_ outputs can be referenced to DV  
High-Frequency Clock  
An internal oscillator and an FLL are used to generate a  
4.9152MHz 1% high-frequency clock. This clock and  
derivatives are used internally by the ADC, analog  
switches, and PWM. This clock signal outputs to CLK.  
When the FLL is enabled, the high- frequency clock is  
DD  
DD  
or CPOUT. See the UPIO__CTRL Register and  
UPIO_SPI Register sections for more details on config-  
uring the UPIO_ pins.  
OSCE  
32K  
32KOUT  
OSCE  
CK32E  
IO32E  
IO32E  
32kHz  
32K  
OSCILLATOR  
0
IO32E  
2:1  
MUX  
M32K  
32KIN  
CLK32K  
1
32.768kHz OSCILLATOR  
CLK32K I/O CONTROL  
Figure 9. 32kHz Crystal-Oscillator Block Diagram  
Figure 10. CLK32K I/O Block Diagram  
POR PULSES HIGH DURING POWER-UP.  
WDW PULSES HIGH DURING WATCHDOG REGISTER WRITE.  
WDTO  
D
Q
Q
D
Q
Q
4Hz  
CK  
32K  
DIVIDE-  
BY-8192  
CK  
WDE  
R
R
POR  
WDW  
WATCHDOG TIMER  
Figure 11. Watchdog Timer Block Diagram  
______________________________________________________________________________________ 31  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
32.768kHz  
CKSEL2  
CKSEL<1:0>  
CLKE  
HFCE  
0
FLLE  
2:1  
MUX  
1, 2, 4, 8  
DIVIDER  
CLK  
FREQ  
ERROR  
M32K  
TUNE<8:0> DIGITALLY  
CONTROLLED  
FREQUENCY  
COMPARE  
FREQUENCY  
INTEGRATOR  
1
OSCILLATOR  
4.9152MHz  
HFCLK  
CRDY  
MAX1358B  
4.9152MHz HF OSCILLATOR AND FLL  
Figure 12. High-Frequency Clock and FLL Block Diagram  
Program each UPIO1–UPIO4 as one of the following:  
• General-purpose input  
PROGRAMMABLE CURRENT SOURCE  
• Power-mode control  
• Analog switch (SPST) and SPDT control input  
• ADC data-ready output  
• General-purpose output  
• PWM output  
CURRENT  
SOURCE  
IVAL<1:0>  
1:3  
DEMUX  
IMUX<1:0>  
• Alarm output  
AIN1  
AIN2  
AIN1  
AIN2  
• SPI pass-through  
Internal and External (Remote)  
Temperature Sensors  
An internal transistor or a remote transistor (or diode) is  
used with the ADC and a programmable current source  
to measure the ambient temperature. Depending on the  
method, either two or four currents are passed through  
the PN junction. The voltage across the PN junction is  
measured at each current. For each current, the voltage  
across a series resistor is also measured. Measuring the  
voltage across the resistor allows the user to determine  
the precise current ratios. A microcontroller can then  
use the diode equation to calculate the temperature.  
The four-current method eliminates errors caused by  
parasitic resistance in series with the diode, which  
increases the apparent voltage across the PN junction.  
When measuring temperature using the internal transis-  
tor for a sensor, the two-current method is usually ade-  
quate although the four-current method can also be  
used. Refer to Application Note 4296: Measuring  
Temperature with the MAX1358 Data Acquisition System  
for details on the measurement procedure.  
TEMP+  
TEMP-  
TEMP SENSOR  
Figure 13. Temperature-Sensor Measurement Block Diagram  
32 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
-19  
The temperature equations for the two-current and four-  
current methods are as follows:  
q = electron charge = 1.60219 x 10  
n = diode ideality = 1.000 (typ)  
k = Boltzmann's constant = 1.3807 x 10  
I1 = Nominal current (4µA)  
coulombs  
Two-current method:  
-23  
Joules/Kelvin  
T = q(V  
- V  
)/(n k ln(V /V ))  
BE1 R2 R1  
BE2  
Four-current method:  
T = q(V + V  
I2 = Nominal current ng (60µA)  
I3 = Nominal current (64µA)  
- V  
- V  
)/(n k ln((V  
R2  
x
BE2  
BE3  
V
BE1  
BE4  
)/(V x VR4))  
R3  
R1  
I4 = Nominal current (120µA)  
where T is the temperature in degrees Kelvin, V  
the base to emitter voltage at current X, V is the volt-  
is  
BEX  
To convert the measured temperature in Kelvin to  
degrees Celsius, the following formula is used:  
RX  
age across the current-sensing resistor at current X, q  
is the charge on an electron, k is Boltzmannꢀs constant,  
and n is the ideality factor for the diode. From a practi-  
cal standpoint, it is easiest to combine all the constants  
into one constant that also includes the voltage resolu-  
tion of the ADC in unipolar mode. This requires intro-  
°C = K - 273.15  
For the external temperature measurement, a transistor  
such as the 2N3904 is recommended.  
Voltage Reference and Buffer  
An internal 1.25V bandgap reference has a buffer with  
a selectable 1.0V/V, 1.638V/V, or 2.0V/V gain, result-  
ing in nominally 1.25V, 2.048V, or 2.5V reference volt-  
age at REF. The ADC and DACs use this reference  
voltage. The state of the internal voltage reference  
output buffer at POR is disabled so it can be driven, at  
REF, with an external reference between AGND and  
ducing the term V  
, which is the reference voltage of  
REF  
the ADC. An N prefix on a term indicates that it is the  
integer value read directly from the ADC.  
Two-current method:  
T = 0.1771 x V  
(N  
- N  
)/ln(N  
/N  
)
REF VBE2  
VBE1  
VR2 VR1  
Four-current method:  
T = 0.1771 x V  
AV . The MAX11358B reference has an initial toler-  
DD  
((N  
+ N  
- N  
-
REF  
)/ln(N  
VBE2  
VBE3  
VBE1  
)
ance of 1%. Program the reference buffer through  
the serial interface. Bypass REF with a 4.7µF capaci-  
tor to AGND.  
N
VBE4  
x N  
/N  
/N  
VR2  
VR3 VR1 VR4  
The natural log function (ln) is eliminated from the cal-  
culation by using an approximation. Due to the small  
part-to-part variation in current ratios, this approxima-  
tion is extremely accurate.  
Uncommitted Operational  
Amplifiers (Op Amps)  
The MAX11358B includes one op amp. The op amp  
features rail-to-rail outputs, near rail-to-rail inputs, and  
has an 80kHz (1nF load) input bandwidth. The  
DACA_OP (DACB_OP) register controls the power state  
of the op amps. When powered down, the outputs of  
the op amps is high impedance.  
Two-current method without an ln function:  
T = 0.1771 x V  
(N  
– N  
VR2 VR1  
)/(2.7081 +  
REF VBE2  
VBE1  
/N  
2_(N  
/N  
- 15)/(N  
+ 15)  
VR2 VR1  
Four-current method without an ln function:  
T = 0.1771 x V (N + N - N  
VBE1  
-
REF VBE2  
VBE3  
N
VBE4  
)/(2.0794 + 2(N  
x N  
/N  
/N  
- 8)/  
VR2  
/N  
VR3 VR1 VR4  
(N  
x N  
/N  
+ 8)  
VR2  
VR3 VR1 VR4  
______________________________________________________________________________________ 33  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Single-Pole/Double-Throw (SPDT) Switches  
The MAX11358B provides two uncommitted SPDT switch-  
es. Each switch has a typical 35Ω on-resistance. Control  
the switches through the SW_CTRL register, the PWM  
output, and/or a UPIO port configured to control the  
switches (UPIO1–UPIO4_CTRL register).  
Serial Interface  
The MAX11358B features a 4-wire serial interface con-  
sisting of a chip select (CS), serial clock (SCLK), data  
in (DIN), and data out (DOUT). CS must be low to allow  
data to be clocked into or out of the device. DOUT is  
high impedance while CS is high. The data is clocked  
in at DIN on the rising edge of SCLK. Data is clocked  
out at DOUT on the falling edge of SCLK. The serial  
interface is compatible with SPI modes CPOL = 0,  
CPHA = 0 and CPOL = 1, CPHA = 1. A write operation  
to the MAX11358B takes effect on the last rising edge  
of SCLK. If CS goes high before the complete transfer,  
the write is ignored. Every data transfer is initiated by  
the command byte. The command byte consists of a  
start bit (MSB), R/W bit, and 6 address bits. The start  
bit must be 1 to perform data transfers to the device.  
Zeros clocked in are ignored. For SPI pass-through  
mode, see the UPIO_SPI Register section. An address  
byte identifies each register. Table 4 shows the com-  
plete register address map for this family of DAS.  
Figures 14, 15, and 16 provide timing diagrams for  
read and write commands.  
Pulse-Width Modulator (PWM)  
A single 8-bit PWM is available for various system tasks  
such as LCD bias control, sensor bias voltage trim,  
buzzer drive, and duty-cycled sleep-mode power-con-  
trol schemes. PWM input clock sources include the  
4.9512MHz FLL output, the 32kHz clock, and frequen-  
cy-divided versions of each. Although most µCs have  
built-in PWM functions, the MAX11358B PWM is more  
flexible by allowing the UPIO outputs to be driven to  
MAX1358B  
DV  
or regulated CPOUT logic-high voltage levels.  
DD  
For duty-cycled power-control schemes, use the  
32kHz-derived input clock. The PWM output is avail-  
able independent of µC power state. The FLL is typical-  
ly disabled in sleep-override mode.  
34 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
CS  
SCLK  
DIN  
X
1
0
A5  
A4  
A3  
A2  
A1  
A0  
D
D
N -1  
D
N-2  
D
N-3  
D
2
D
1
D
0
X
N
DOUT  
X = DON’T CARE.  
Figure 14. Serial-Interface Register Write with 8-Bit Control Word, Followed by a Variable Length Data Write  
CS  
SCLK  
DIN  
X
1
1
A5  
A4  
A3  
A2  
A1  
A0  
X
X
X
X
X
X
X
X
D
N
D
N-1  
D
N-2  
D
N-3  
D
2
D
1
D
0
DOUT  
X = DON’T CARE.  
Figure 15. Serial-Interface Register Read with 8-Bit Control Word, Followed by a Variable Length Data Read  
CS  
SCLK  
DIN  
1
0
A4 A3 A2 A1 A0 X D7 D6 D5 D4 D3 D2 D1 D0  
1
1 A4 A3 A2 A1 A0 X  
ADC  
CONV  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
CHANGES  
DOUT  
DRDY  
X = DON’T CARE.  
Figure 16. Performing an ADC Conversion (DRDY Function Can Be Accessed at UPIO Pins)  
______________________________________________________________________________________ 35  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
Register Definitions  
Table 4. Register Address Map  
REGISTER  
NAME  
CTL  
ADR<5:0>  
D<39:0>, D<23:0>, D<15:0> OR D<7:0>  
(DATA)  
START  
(R/W)  
(ADDRESS)  
ADCE STRT  
RATE<2:0>  
MUXP<3:0>  
BIP  
POL CONT ADCREF GAIN<1:0>  
MODE<2:0>  
MUXN<3:0>  
ADC<15:0>  
OFFSET<23:0>  
GAIN<23:0>  
ADC  
1
R/W  
0
0
0
0
0
X
X
X
MUX  
DATA  
OFFSET CAL  
GAIN CAL  
RESERVED  
1
1
1
1
1
R/W  
R
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
S
X
X
X
X
Reserved. Do not use.  
MAX1358B  
DAE  
DAE  
DBE OP1E  
X
X
X
X
DACA<9:8>  
DACB<9:8>  
DACA_OP  
DACB_OP  
1
1
R/W  
R/W  
0
0
0
0
1
1
1
1
0
1
X
X
DACA<7:0>  
DBE OP1E  
X
X
DACB<7:0>  
AOFF AON SDCE  
ASEC<19:4>  
REF_SDC  
AL_DAY  
1
1
1
1
R/W  
R/W  
R/W  
R/W  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
X
X
X
X
REFV<1:0>  
TSEL<2:0>  
ASEC<3:0>  
X
X
X
X
RESERVED  
CLK_CTRL  
Reserved. Do not use.  
AWE  
ADE  
X
RWE RTCE  
IO32E CK32E  
SEC<31:0>  
SUB<7:0>  
SWAH  
OSCE  
CLKE  
FLLE HFCE  
INTP WDE  
CKSEL<2:0>  
RTC  
1
1
1
R/W  
R/W  
R/W  
0
0
0
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
PWME  
SPD1 SPD2  
FSEL<2:0>  
SWAL SWBH SWBL  
PWM_CTRL  
PWM_THTP  
X
X
X
X
X
X
PWMTH<7:0>  
PWMTP<7:0>  
WATCHDOG  
NORM_MD  
SLEEP  
SLEEP_CFG  
UPIO4_CTRL  
UPIO3_CTRL  
UPIO2_CTRL  
UPIO1_CTRL  
UPIO_SPI  
1
1
1
1
1
1
1
1
1
1
1
1
W
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
W
W
X
X
X
X
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
SLP SOSCE SCK32E SPWME SHDN  
X
X
X
X
X
X
X
X
UP4MD<3:0>  
UP3MD<3:0>  
UP2MD<3:0>  
PUP4  
PUP3  
PUP2  
PUP1  
X
SV4  
SV3  
SV2  
SV1  
X
ALH4 LL4  
ALH3 LL3  
ALH2 LL2  
ALH1 LL1  
UP1MD<3:0>  
UP4S UP3S UP2S UP1S  
X
X
X
X
X
X
SW_CTRL  
SWA  
SWB SPDT1<1:0>  
IVAL<1:0>  
Reserved. Do not use.  
MLDVD MLCPD MADO MSDC MCRDY MADD MALD  
SPDT2<1:0>  
TEMP_CTRL  
RESERVED  
IMUX<1:0>  
X
X
X
IMSK  
1
R/W  
1
1
0
1
1
X
MUPR<4:1>  
Reserved. Do not use.  
CPE LSDE CPDE HYSE  
Reserved. Do not use.  
MUPF<4:1>  
RESERVED  
PS_VMONS  
RESERVED  
1
1
1
R/W  
R/W  
R/W  
1
1
1
1
1
1
1
1
1
0
0
1
0
1
0
X
X
X
LDOE  
RSTE  
X
X
X
LDVD LCPD ADOU SDC CRDY  
UPR<4:1>  
ADD  
UPF<4:1>  
ALD  
STATUS  
1
R
1
1
1
1
1
X
X = Donꢀt care.  
36 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Register Bit Descriptions  
ADC Register (Power-On State: 0000 0000 0000 00XX)  
MSB  
LSB  
ADCE  
STRT  
BIP  
POL  
CONT  
ADCREF  
GAIN<1:0>  
RATE<2:0>  
MODE<2:0>  
X
X
The ADC register configures the ADC and starts  
a conversion.  
CONT: Continuous conversion bit. CONT = 1 enables  
continuous conversions following completion of the first  
conversion or calibration(s) initiated by the STRT or S  
bit. Set CONT = 0 while asserting the STRT bit, or prior  
to asserting the S bit to perform a single conversion or to  
prevent conversions following a calibration. Set  
CONT = 0 to abort continuous conversions already in  
progress. When the ADC is stopped in this way, the last  
complete conversion result remains in the DATA register  
and the internal ADC state information is lost. Asserting  
the CONT bit does not restart the ADC, but results in  
continuous conversions once the ADC is restarted with  
the STRT or S bit.  
ADCE: ADC power-enable bit. ADCE = 1 powers up  
the ADC, and ADCE = 0 powers down the ADC.  
STRT: ADC start bit. STRT = 1 resets the registers  
inside the ADC filter and initiates a conversion or cali-  
bration. The conversion begins immediately after the  
16th ADC control bit is clocked by the rising edge of  
SCLK. The initial conversion requires four conversion  
cycles for valid output data. If CONT = 0 when STRT is  
asserted, the ADC stops after a single conversion and  
holds the result in the DATA register. If CONT = 1 when  
STRT is asserted, the ADC performs continuous conver-  
sions at the rate specified by the RATE<2:0> bits until  
CONT is deasserted or ADCE is deasserted, powering  
down the ADC. The STRT bit is automatically deasserted  
after the initial conversion is complete (four conversion  
cycles; the ADC status bit ADD in the STATUS register  
asserts). The current ADC configurations are not affect-  
ed if the ADC register is written with STRT = 0. This  
allows the ADC and mux configurations to be updated  
simultaneously with the S bit in the MUX register.  
ADCREF: ADC reference source bit. Set ADCREF = 0  
to select REF as the ADC reference. Set ADCREF = 1  
to select AV  
as the ADC reference. To measure the  
DD  
AV  
voltage without having to attenuate the supply  
DD  
voltage, select REF and AGND as the differential inputs  
to the ADC, with POL = 0 and while ADCREF = 1.  
GAIN<1:0>: ADC gain-setting bits. These two bits  
select the gain of the ADC as shown in Table 5.  
Table 5. Setting the Gain of the ADC  
BIP: Unipolar/bipolar bit. Set BIP = 0 for unipolar mode  
and BIP = 1 for bipolar mode. Unipolar-mode data is  
unsigned binary format and bipolar is twoꢀs complement.  
See the ADC Transfer Functions section for more details.  
GAIN SETTING (V/V)  
GAIN1  
GAIN0  
1
2
4
8
0
0
1
1
0
1
0
1
POL: Polarity flipper bit. POL = 1 flips the polarity of the  
differential signal to the ADC and the input to the signal-  
detect comparator (SDC). POL = 0 sets the positive mux  
output to the positive ADC and SDC inputs, and the neg-  
ative mux output to the negative ADC and SDC inputs.  
POL = 1 sets the positive mux output to the negative  
ADC and SDC inputs, and the negative mux output to  
the positive ADC and SDC inputs.  
______________________________________________________________________________________ 37  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
RATE<2:0>: ADC conversion-rate-setting bits. These  
Table 6a. Setting the ADC Conversion Rate*  
three bits set the conversion rate of the ADC as shown  
CONTINUOUS  
SINGLE  
in Table 6. The initial conversion requires four conver-  
sion cycles for valid data, and subsequent conversions  
require only one cycle (if CONT = 1). A full-scale input  
change can require up to five cycles for valid data if  
the digital filter is not reset with the STRT or S bit.  
CONVERSION CONVERSION  
RATE2 RATE1 RATE0  
RATE (sps)  
RATE (sps)  
10  
40  
2.5  
10  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
MODE<2:0>: Conversion-mode bits. These three bits  
determine the type of conversion for the ADC as shown  
in Table 7. When the ADC finishes an offset calibration  
and/or gain calibration, the MODE<2:0> bits clear to 0  
hex, the ADD bit in the STATUS register asserts, and  
an interrupt asserts on INT (or UPIO_ if programmed as  
DRDY) if MADD is unmasked. Perform a gain calibra-  
tion after achieving the desired offset (calibrated or  
not). If an offset and gain calibration are performed  
together (MODE<2:0> = 7 hex), the offset calibration is  
performed first followed by the gain calibration, and the  
µC is interrupted by INT (or UPIO_ if programmed as  
DRDY) if MADD is unmasked only upon completion of  
both offset and gain calibration. After power-on or cali-  
bration, the ADC does not begin conversions until initi-  
ated by the user (see the ADCE and STRT bit  
descriptions in this section and see the S bit descrip-  
tions in the MUX Register section). See the GAIN CAL  
Register and OFFSET CAL Register sections for details  
on system calibration.  
50  
12.5  
15  
60  
200  
240  
400  
477  
50  
MAX1358B  
60  
100  
128  
Table 6b. Actual ADC Conversion Rates  
NOMINAL  
CONTINUOUS  
CONVERSION  
RATE (sps)  
ACTUAL  
DECIMATION  
RATIO  
CONTINUOUS  
CONVERSION  
RATE (sps)  
10  
40  
1096  
274  
220  
183  
55  
10.01  
40.04  
50  
49.87  
60  
59.95  
200  
240  
400  
477  
199.48  
238.51  
406.35  
477.02  
Table 7. Setting the ADC Conversion Mode  
46  
CONVERSION MODE  
MODE2 MODE1 MODE0  
27  
Normal  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
23  
System Offset Calibration  
System Gain Calibration  
Normal  
*Calculate the ADC sampling rate using the following  
equation:  
f
HFCLK  
Normal  
f
=
S
448× decimation ratio  
= 4.9152MHz nominally.  
Self-Offset Calibration  
Self-Gain Calibration  
where f  
HFCLK  
Self-Offset and Gain  
Calibration  
1
1
1
38 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
MUX Register (Power-On State: 0000 0000)  
MSB  
LSB  
S (ADR0)  
MUXP3  
MUXP2  
MUXP1  
MUXP0  
MUXN3  
MUXN2  
MUXN1  
MUXN0  
The MUX register configures the positive and negative  
mux inputs and can start an ADC conversion.  
specified by the RATE<2:0> bits until CONT deasserts  
or ADCE deasserts, powering down the ADC. When a  
conversion initiates using the S bit, the STRT bit asserts  
and deasserts automatically after the initial conversion  
completes. Writing to the MUX register with S = 0 caus-  
es the MUX settings to change immediately and the  
ADC continues in its prior state with its settings unaf-  
fected. When the ADC is powered down, MUX inputs  
are open.  
S (ADR0): Conversion start bit. The S bit is the LSB of  
the MUX register address byte. S = 1 resets the regis-  
ters inside the ADC filter and initiates a conversion or  
calibration. The conversion begins immediately after  
the eighth MUX register data bit, when S = 1 and when  
writing to the MUX register. This allows the new MUX  
and ADC register settings to take effect simultaneously  
for a new conversion, if STRT = 0 during the last write  
to the ADC register. If the S bit is asserted and the  
command is a read from the MUX register, the conver-  
sion starts immediately after the S bit (ADR0) is clocked  
in by the rising edge of SCLK.  
MUXP<3:0>: MUX positive input bits. These four bits  
select one of 10 inputs from the positive MUX to go to the  
positive output of the MUX as shown in Table 8. Any  
writes to the MUX register take effect immediately once  
the LSB (MUXN0) is clocked by the rising edge of SCLK.  
Read the MUX register with S = 1 for the fastest method  
of initiating a conversion because only 8 bits are  
required. The subsequent MUX register read is valid,  
but can be aborted by raising CS with no harmful side  
effects. The initial conversion requires four conversion  
cycles for valid output data. If CONT = 0 and S = 1, the  
ADC stops after a single conversion and holds the  
result in the DATA register. If CONT = 1 and S = 1, the  
ADC performs continuous conversions at the rate  
MUXN<3:0> MUX negative input bits. These four bits  
select one of 10 inputs from the negative MUX to go to  
the negative output of the MUX as shown in Table 9. Any  
writes to the MUX register take effect immediately once  
the LSB (MUXN0) is clocked by the rising edge of SCLK.  
The DATA register contains the data from the most  
recently completed conversion.  
The OFFSET CAL register contains the 24-bit data of  
the most recently completed offset calibration.  
Table 9. Selecting the Negative MUX Inputs  
Table 8. Selecting the Positive MUX Inputs  
POSITIVE MUX  
NEGATIVE  
MUX INPUT  
MUXP3  
MUXP2  
MUXP1  
MUXP0  
MUXN3  
MUXN2  
MUXN1  
MUXN0  
INPUT  
AIN1  
SNO1  
FBA  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
X
0
1
0
1
0
1
0
1
0
1
X
X
TEMP-  
SNO2  
OUTA  
SCM2  
OUTB  
SNC2  
OUT1  
AIN2  
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
1
0
0
1
1
0
0
1
1
0
0
1
X
0
1
0
1
0
1
0
1
0
1
X
X
SCM1  
FBB  
SNC1  
IN1-  
TEMP+  
REF  
REF  
AGND  
AGND  
Open  
Open  
X = Donꢀt care.  
X = Donꢀt care.  
______________________________________________________________________________________ 39  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DATA Register (Power-On State: 0000 0000 0000 0000)  
MSB  
ADC15  
ADC14  
ADC13  
ADC12  
ADC11  
ADC3  
ADC10  
ADC2  
ADC9  
ADC1  
ADC8  
LSB  
ADC7  
ADC6  
ADC5  
ADC4  
ADC0  
ADC<15:0> Analog-to-digital conversion data bits.  
These 16 bits are the results from the most recently  
completed conversion. The data format is unsigned,  
binary for unipolar mode, and twoꢀs complement for  
bipolar mode.  
MAX1358B  
OFFSET CAL Register (Power-On State: 0000 0000 0000 0000 0000 0000)  
MSB  
OFFSET23  
OFFSET15  
OFFSET7  
OFFSET22  
OFFSET14  
OFFSET6  
OFFSET21  
OFFSET13  
OFFSET5  
OFFSET20  
OFFSET12  
OFFSET4  
OFFSET19  
OFFSET11  
OFFSET3  
OFFSET18  
OFFSET10  
OFFSET2  
OFFSET17  
OFFSET9  
OFFSET1  
OFFSET16  
OFFSET8  
LSB  
OFFSET0  
OFFSET<23:0>: Offset-calibration bits. The data format  
is twoꢀs complement and is subtracted from the ADC  
output before being written to the DATA register. The  
offset calibration allows input offset errors between  
ibration for the entire signal path. See the ADC  
Calibration section for more details.  
The ADC input voltage range specifications must  
always be obeyed, and the OFFSET CAL register effec-  
tively offsets the ADC digital scale to a “zero” value  
determined by the calibration.  
V
50% to be corrected in unipolar or bipolar mode.  
REF  
The MAX11358B can perform system offset calibration  
or self-offset calibration. Self-calibration performs a cal-  
GAIN CAL Register (Power-On State: 1000 0000 0000 0000 0000 0000)  
MSB  
GAIN23  
GAIN15  
GAIN7  
GAIN22  
GAIN14  
GAIN6  
GAIN21  
GAIN13  
GAIN5  
GAIN20  
GAIN12  
GAIN4  
GAIN19  
GAIN11  
GAIN3  
GAIN18  
GAIN10  
GAIN2  
GAIN17  
GAIN9  
GAIN1  
GAIN16  
GAIN8  
LSB  
GAIN0  
GAIN<23:0>: Gain-calibration bits. The data format is  
unsigned binary with 23 bits to the right of the decimal  
point and scales the ADC output before being written to  
the DATA register. The gain calibration allows full-scale  
bration for offsets in the ADC, and system calibration  
performs a calibration for the entire signal path. See the  
ADC Calibration section for more details.  
The ADC input voltage range specifications must always  
be obeyed, and the GAIN CAL register effectively scales  
the ADC digital output to a full-scale value determined  
by the calibration. The usable gain-calibration range is  
limited to less than the full GAIN CAL register digital-  
scaling range by the internal noise of the ADC.  
errors between -V  
/2 and +V  
/2 to be corrected in  
REF  
REF  
unipolar mode and full-scale errors between (+50% x  
) and (+200% x V ) in unipolar or bipolar mode.  
V
REF  
REF  
The MAX11358B can perform system gain calibration  
or self-gain calibration. Self-calibration performs a cali-  
40 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
DACA_OP Register (Power-On State: 000X XX00 0000 0000)  
MSB  
DAE  
DBE  
OP1E  
X
X
X
DACA9  
DACA1  
DACA8  
LSB  
DACA7  
DACA6  
DACA5  
DACA4  
DACA3  
DACA2  
DACA0  
Writing to the DACA_OP output register updates DACA  
on the rising SCLK edge of the LSB data bit. The output  
voltage can be calculated as follows:  
DAE: DACA enable bit. Set DAE = 1 to power up the  
DACA and the DACA output buffer in the MAX11358B.  
DBE: DACB enable bit. Set DBE = 1 to power up the  
DACB and the DACB output buffer in the MAX11358B.  
This bit is mirrored in the DACB_OP register.  
V
OUTA  
= V  
x N/210  
REF  
where V  
is the reference voltage for the DAC, and N  
REF  
is the integer value of the DACA<9:0> output register.  
The output buffer is in unity gain. The DACA data is 10  
bits long and right justified.  
OP1E: OP1 power-enable bit. Set OP1E = 1 to power  
up OP1 in the MAX11358B. This bit is mirrored in the  
DACB_OP register.  
DACA<9:0>: DACA data bits.  
DACB_OP Register (Power-On State: 000X XX00 0000 0000)  
MSB  
DAE  
DBE  
OP1E  
X
X
X
DACA9  
DACA1  
DACA8  
LSB  
DACA7  
DACA6  
DACA5  
DACA4  
DACA3  
DACA2  
DACA0  
Writing to the DACB_OP output register updates DACB  
on the rising SCLK edge of the LSB. The output voltage  
can be calculated as follows:  
DAE: DACA enable bit. Set DAE = 1 to power up  
DACA and the DACA output buffer in the MAX11358B.  
This bit is mirrored in the DACA_OP register.  
10  
V
OUTB  
= V  
x N/2  
DBE: DACB enable bit. Set DBE = 1 to power up DACB  
and the DACB output buffer in the MAX11358B. This bit  
is mirrored in the DACA_OP register.  
REF  
where V  
is the reference voltage for the DAC, and N  
REF  
is the integer value of DACB<9:0> output register. The  
output buffer is in unity gain. The DACB data is 10 bits  
long and right justified.  
OP1E: OP1 power-enable bit. Set OP1E = 1 to power  
up OP1 in the MAX11358B. This bit is mirrored in the  
DACA_OP register.  
DACB<9:0>: DACB data bits.  
______________________________________________________________________________________ 41  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
REF_SDC Register (Power-On State: 0000 0000)  
MSB  
LSB  
REFV1  
REFV0  
AOFF  
AON  
SDCE  
TSEL2  
TSEL1  
TSEL0  
The REF_SDC register contains bits to control the refer-  
ence voltage and signal-detect comparator.  
AON: ADC and DAC/op-amp power-on bit. This bit pro-  
vides a method of turning on several analog functions  
with a single write. Setting AON = 1 asserts the ADCE  
bit in the ADC register and DAE, DBE, and OP1E bits in  
the DACA_OP and DACB_OP register, powering up  
these blocks. Setting AON = 0 has no effect. The AON  
bit has priority when both AON and AOFF bits are  
asserted.  
REFV<1:0>: Reference buffer voltage gain and enable  
bits. Enables the output buffer, and sets the gain and  
the voltage at the REF pin as shown in Table 10. Power-  
on state is off to enable an external reference to drive  
the REF pin without contention.  
MAX1358B  
AOFF: ADC and DAC/op-amp power-off bit. This bit pro-  
vides a method for turning off several analog functions  
with a single write. Setting AOFF = 1 deasserts the  
ADCE in the ADC register and the DAE, DBE, and OP1E  
bits in the DACA_OP and DACB_OP registers, powering  
down these analog blocks. Setting AOFF = 0 has no  
effect. The AON bit has priority when both AON and  
AOFF bits are asserted.  
Most of the analog functions can be enabled with a sin-  
gle write to the REF_SDC register using AON,  
REFV<1:0>, and SDCE.  
SDCE: Signal-detect comparator power-enable bit. Set  
SDCE = 1 to power up the signal-detect comparator,  
and set SDCE = 0 to power down the signal-detect  
comparator. The ADCE bit in the ADC register must be  
set to 1 to use the signal-detect comparator.  
Most of the analog functions can be disabled with a  
single write to the REF_SDC register by using AOFF,  
REFV<1:0>, and SDCE.  
TSEL<2:0>: Threshold-select bits. These bits select the  
threshold for the signal-detect comparator as shown in  
Table 11.  
Table 10. Setting the Reference Output  
Voltage  
Table 11. Setting the Signal-Detect  
Comparator Threshold  
NOMINAL  
REFERENCE  
TSEL2  
TSEL1  
TSEL0  
REF OUTPUT  
VOLTAGE (V)  
THRESHOLD (mV)  
BUFFER GAIN  
(V/V)  
REFV1  
REFV0  
0
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
50  
Off (High  
Impedance  
at REF)  
100  
150  
200  
Disabled  
0
0
1.0  
1.638  
2.0  
1.25  
2.048  
2.5  
0
1
1
1
0
1
X = Donꢀt care.  
42 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
AL_DAY Register (Power-On State: 0000 0000 0000 0000 0000 XXXX)  
MSB  
ASEC19  
ASEC11  
ASEC3  
ASEC18  
ASEC10  
ASEC2  
ASEC17  
ASEC9  
ASEC1  
ASEC16  
ASEC8  
ASEC0  
ASEC15  
ASEC7  
X
ASEC14  
ASEC6  
X
ASEC13  
ASEC5  
X
ASEC12  
ASEC4  
LSB  
X
The AL_DAY register stores the second information of  
the time-of-day alarm.  
existing value remains. When the lower 20 bits in the RTC  
second counter match the contents of this register, the  
alarm triggers and asserts ALD in the STATUS register. It  
also asserts an interrupt on the INT pin unless masked by  
the MALD bit in the IMSK register. The part enters normal  
mode if an alarm triggers while in sleep mode. The time-  
of-day alarm is intended to trigger single events.  
Therefore, once it triggers, in the CLK_CTRL register, the  
ADE bit is automatically cleared, disabling the time-of-  
day alarm. Implement a recurring alarm with repeated  
software writes over the serial interface each time the  
time-of-day alarm triggers. The time-of-day alarm can  
also be programmed to output at the UPIO pins.  
ASEC<19:0>: Alarm-second bits. These 20 bits store  
the time-of-day alarm, which corresponds to the lower  
20 bits of the RTC second counter or SEC<19:0>.  
Program the time-of-day alarm trigger between 1s to  
just over 12 days beyond the current RTC second  
counter value in increments of 1s.  
Assert the AWE bit in the CLK_CTRL register (see the  
CLK_CTRL Register section) to enable writing to the  
AL_DAY register. Enabling the time-of-day alarm requires  
two writes to the CLK_CTRL register. Write the 20 alarm-  
second bits in 3 bytes, MSB first. If CS is raised before  
the LSB is written, the alarm write is aborted, and the  
When configured this way the MALD bit does not mask  
the UPIO alarm output.  
______________________________________________________________________________________ 43  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
CLK_CTRL Register (Power-On State: 00X0 1111 0010 1110)  
MSB  
AWE  
ADE  
X
RWE  
RTCE  
OSCE  
CLKE  
FLLE  
INTP  
HFCE  
LSB  
CKSEL2  
CKSEL1  
CKSEL0  
IO32E  
CK32E  
WDE  
The CLK_CTR register contains the control bits for the  
RTC alarms and clocks.  
therefore, a second write to this register is required to  
change the value of the RTCE bit. The power-on default  
state is 0.  
AWE: Alarm write-enable bit. Set AWE = 1 to write data  
to the AL_DAY register as well as the ADE bit in this  
register. When AWE = 0, all writes are prevented to the  
AL_DAY register and the ADE bit in this register. A sec-  
ond write to this register is required to change the value  
of the ADE bit. The power-on default state is 0.  
MAX1358B  
RTCE: Real-time-clock enable bit. Set RTCE = 1 to  
enable the RTC, and set RTCE = 0 to disable the RTC.  
The RTC has a 32-bit second and an 8-bit subsecond  
counter. The power-on default state is 1.  
OSCE: 32kHz crystal-oscillator enable bit. Set OSCE =  
1 to power up the 32kHz oscillator, and set OSCE = 0  
to power down the oscillator. The power-on default  
state is 1.  
ADE: Alarm (time-of-day) enable bit. Set ADE = 1 to  
enable the time-of-day alarm, and set ADE = 0 to dis-  
able the time-of-day alarm. When enabled, the ALD bit  
in the STATUS register asserts when the RTC second  
counter time matches AL_DAY register. The device  
wakes up from sleep to normal mode if not already  
awake. The ADE bit can only be written if the AWE = 1  
from a previous write. The power-on default state is 0.  
FLLE: Frequency-locked-loop enable bit. Set FLLE = 1  
to enable the FLL, and set FLLE = 0 to disable the FLL.  
If HFCE = 1 and FLLE = 0, the internal high-frequency  
oscillator is enabled, but it is not frequency-locked to  
the 32kHz clock. When FLLE is asserted, it typically  
takes 3.5ms for the high-frequency clock to settle to  
within 1% of the 32kHz reference clock frequency.  
Switching the FLL on or off with this bit does not cause  
high-frequency clock glitching. The power-on default  
state is 1.  
RWE: RTC write-enable bit. Set RWE = 1 prior to writing  
to the RTC register and the RTCE bit in this register. If  
RWE = 0, all writes are prevented to the RTC register  
as well as the RTCE bit in this register. The RWE signal  
takes effect after the rising edge of the 16th clock;  
44 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
HFCE: High-frequency-clock enable bit. Set HFCE = 1  
to enable the internal high-frequency clock source, and  
set HFCE = 0 to disable the high-frequency clock  
source.  
power in cases where the high-frequency clock is used  
internally but is not needed externally. If HFCE = 0, or if  
CLKE = 0, CLK remains low. The power-on default  
state is 1.  
If HFCE = 1 and CLKE = 1, the internal high-frequency  
oscillator is enabled and is present at CLK. The power-  
on default state is 1.  
INTP: Interrupt pin polarity bit. Set INTP = 1 to make  
INT an active-high output when asserted, and set INTP  
= 0 to make INT an active-low output when asserted.  
The power-on default state is 1.  
CKSEL<2:0>: Clock selection bits. These bits select  
the FLL-based output clock frequency at the high-fre-  
quency CLK pin as shown in Table 12. The power-on  
default state is 001.  
WDE: Watchdog-enable bit. Set WDE = 1 to enable the  
watchdog timer, which asserts RESET low within 500ms  
if the WATCHDOG register is not written. Set WDE = 0  
to disable the watchdog timer. The power-on default  
state is 0.  
IO32E: Input/output 32kHz clock select bit. Set IO32E  
= 0 to configure the CLK32K pin as an output, and set  
IO32E = 1 to configure the CLK32K pin as an input,  
regardless of the signal on the 32KIN pin as shown in  
Table 13.  
Table 12. Setting the CLK Frequency  
CLOCK FREQUENCY  
CKSEL2  
CKSEL1  
CKSEL0  
External clock frequencies applied to CLK32K are  
clock sources to the FLL, charge pump, and the signal-  
detect comparator. The default power-on state is 0.  
(kHz)  
4915.2  
2457.6  
1228.8  
614.4  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
CK32E: CLK32K output-buffer enable bit. Set CK32E =  
1 to enable the CLK32K output buffer as long as OSCE  
= 1 and IO32E = 0; otherwise, the CK32E bit is not  
asserted. Set CK32E = 0 to disable the CLK32K output  
buffer. The power-on default state is 1.  
32.768  
16.384  
8.192  
CLKE: CLK output-buffer enable bit. Set CLKE = 1 to  
enable the CLK output buffer. Set CLKE = 0 to disable  
the buffer. Disabling the buffer is useful for saving  
4.096  
Table 13. Configuring the CLK32K as an Input or Output  
RTC, PWM, WDT  
CLOCK SOURCE  
FLL, C/P, SDC INPUT  
SOURCE  
CLK32K CLK32K  
IO32E  
32KIN, 32KOUT  
ADC CLOCK SOURCE  
Output  
Input  
1
0
0
1
XTAL attached  
XTAL attached  
XTAL  
XTAL  
XTAL  
FLL/HFCLK  
FLL/HFCLK  
CLK32K  
______________________________________________________________________________________ 45  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
RTC Register (Power-On State: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000)  
MSB  
SEC31  
SEC23  
SEC15  
SEC7  
SEC30  
SEC22  
SEC14  
SEC6  
SEC29  
SEC21  
SEC13  
SEC5  
SEC28  
SEC20  
SEC12  
SEC4  
SEC27  
SEC19  
SEC11  
SEC3  
SEC26  
SEC18  
SEC10  
SEC2  
SEC25  
SEC17  
SEC9  
SEC1  
SUB1  
SEC24  
SEC16  
SEC8  
SEC0  
LSB  
MAX1358B  
SUB7  
SUB6  
SUB5  
SUB4  
SUB3  
SUB2  
SUB0  
The RTC register stores the 40-bit second and subsec-  
ond count of the respective time-of-day and system  
clocks.  
of the RTC register in less than 1ms. The power-on  
default state is 0000 0000 hex.  
SUB<7:0>: The subsecond bits store the system clock.  
This 8-bit binary counter has 3.9ms resolution (1/256Hz)  
and a span of 1s. The subsecond counter increments in  
single counts from 00 hex to FF hex before rolling over  
again to 00 hex, at which time the RTC second counter  
(SEC<31:0>) increments. The RTC runs continuously  
(as long as RTCE = 1) and does not stop for reads or  
writes. A 256Hz clock, derived from the 32kHz crystal,  
increments this counter. Set the RWE = 1 bit to enable  
writing to the RTC register. After writing to RWE, perform  
another write, setting RTCE = 1, to enable the RTC. A  
40-bit burst write operation, starting with SEC31 and fin-  
ishing with SUB0, is required to set the RTC second and  
subsecond bits. If CS is brought high before the 40th  
rising SCLK edge, the write is aborted and the RTC con-  
tents are unchanged. The RTC register is loaded on the  
rising SCLK edge of the 40th bit (SUB0). A 40-bit burst  
read operation, starting with SEC31 and finishing with  
SUB0, is required to retrieve the current RTC second  
and subsecond counts. The read command can be  
aborted prior to receiving the 40th bit (SUB0) by raising  
CS, and any RTC data read to that point is valid. When  
the read command is received, a snapshot of a valid  
RTC second count is latched to avoid reading an erro-  
neous, transitioning RTC value. Due to the asynchro-  
nous nature of RTC reads, it is possible to have a  
maximum 1s error between the actual and reported  
times from the time-of-day clock. To prevent the data  
from changing during a read operation, complete reads  
of the RTC registers occur in less than 1ms. The power-  
on default state is 00 hex.  
SEC<31:0>: The second bits store the time-of-day  
clock settings. It is a 32-bit binary counter with 1s reso-  
lution that can keep time for a span of over 136 years.  
Firmware in the µC can translate this time count to units  
that are meaningful to the system (i.e., translate to cal-  
endar time or as an elapsed time from some predefined  
time = 0, such as January 1, 2000). The RTC runs con-  
tinuously as long as RTCE = 1 (see the CLK_CNTL  
Register section) and does not stop for reads or writes.  
The counter increments when the subsecond counter  
overflows. Set RWE = 1 to enable writing to the RTC  
register. After writing to RWE, perform another write  
and set RTCE = 1 to enable the RTC. A 40-bit burst  
write operation, starting with SEC31 and finishing with  
SUB0 is required to set the RTC second and subsec-  
ond bits. If CS is brought high before the 40th rising  
SCLK edge, the write is aborted and the RTC contents  
are unchanged. The RTC register is loaded on the ris-  
ing SCLK edge of the 40th bit (SUB0). A 40-bit burst  
read operation, starting with SEC31 and finishing with  
SUB0, is required to retrieve the current RTC second  
and subsecond counts. The read command can be  
aborted prior to receiving the 40th bit (SUB0) by raising  
CS and any RTC data read to that point is valid. When  
the read command is received, a snapshot of a valid  
RTC second count is latched to avoid reading an erro-  
neous, transitioning RTC value. Due to the asynchro-  
nous nature of RTC reads, it is possible to have a  
maximum 1s error between the actual and reported  
times from the time-of-day clock. To prevent the data  
from changing during a read operation, complete reads  
46 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
PWM_CTRL Register (Power-On State: 0000 0000 00XX XXXX)  
MSB  
PWME  
FSEL2  
SPD2  
FSEL1  
X
FSEL0  
X
SWAH  
X
SWAL  
X
SWBH  
X
SWBL  
LSB  
X
SPD1  
The PWM_CTRL register contains control bits for the  
8-bit PWM.  
SWAH: SWA-switch PWM-high control bit. Set SWAH =  
1 to enable the PWM output to directly control the SWA  
switch. When SWAH = SWAL, the PWM output is dis-  
abled from controlling the SWA switch. When SWAH =  
1, a PWM high output closes the SWA switch and a  
PWM low output opens the SWA switch. The PWM high  
output refers to the beginning of the period when the  
output is logic-high. See Table 17 for more details. The  
power-on default is 0.  
PWME: PWM-enable bit. Set PWME = 1 to enable the  
internal PWM, and set PWME = 0 to disable the internal  
PWM. Enable the high-frequency clock before enabling  
the PWM when using input clock frequencies above  
32.768kHz. The power-on default state is 0.  
FSEL<2:0>: Frequency selection bits. Selects the PWM  
input clock frequency as shown in Table 14. The  
power-on default is 000.  
SWAL: SWA-switch PWM-low control bit. Set SWAL = 1  
to enable the inverted PWM output to directly control  
the SWA switch. When SWAH = SWAL, the PWM output  
is disabled from controlling the SWA switch. When  
SWAL = 1, a PWM low output closes the SWA switch  
and a PWM high output opens the SWA switch. The  
PWM low output refers to the end of the period when  
the output is logic-low. See Table 17 for more details.  
The power-on default is 0.  
Table 14. Setting the PWM Frequency  
PWM INPUT FREQUENCY*  
FSEL2  
FSEL1  
FSEL0  
(kHz)  
4915.2**  
2457.6**  
1228.8**  
32.768  
8.192  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
SPD1: SPDT1-switch PWM drive control bit. Set SPD1  
= 1 to enable the PWM output to directly control the  
SPDT1 switch, and set SPD1 = 0 to disable the PWM  
output controlling the SPDT1 switch. The SPDT1<1:0>  
bits, the UPIO pins (if programmed), and the PWM out-  
put (if enabled), determine the SPDT1-switch state. See  
Table 18 for more details. The power-on default is 0.  
1.024  
0.256  
0.032  
*The lower PWM frequencies are useful for power-supply duty  
cycling to conserve battery life and enable a single-battery cell-  
powered system. The higher frequencies allow reasonably small,  
external components for RC filtering when used as a DAC for bias  
adjustments.  
**When the part is in sleep mode, the HFCLK is shut down. In this  
case, PWM frequencies above 32kHz are not available (see  
SPWME in the SLEEP_CFG Register section).  
SPD2: SPDT2-switch PWM drive control bit. Set SPD2  
= 1 to enable the PWM output to directly control the  
SPDT2 switch, and set SPD2 = 0 to disable the PWM  
output controlling the SPDT2 switch. The SPDT2<1:0>  
bits, the UPIO pins (if programmed), and the PWM out-  
put (if enabled), determine the SPDT2-switch state. See  
Table 19 for more details. The power-on default is 0.  
______________________________________________________________________________________ 47  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
PWM_THTP Register (Power-On State: 0000 0000 0000 0000)  
MSB  
PWMTH7  
PWMTH6  
PWMTH5  
PWMTH4  
PWMTH3  
PWMTH2  
PWMTP2  
PWMTH1  
PWMTP1  
PWMTH0  
LSB  
PWMTP7  
PWMTP6  
PWMTP5  
PWMTP4  
PWMTP3  
PWMTP0  
The PWM_THTP register contains the bits that set the  
PWM on-time and period.  
WATCHDOG Register (Power-On State: N/A)  
Writing to the WATCHDOG register address sets the  
watchdog timer to 0ms. If the watchdog is enabled  
(WDE = 1) and the WATCHDOG register is not written  
to before the 750ms expiration, RESET asserts low for  
250ms and the watchdog timer restarts at 0ms when  
the watchdog timer is enabled. There are no data bits  
for this register, and the watchdog timer is reset on the  
rising edge of SCLK during the ADR0 bit in the  
WATCHDOG register address control byte. Figure 17  
shows an example of watchdog timing.  
PWMTH<7:0>: PWM time high bits. These bits define  
the PWM on (or high)-time and when combined with the  
PWMTP<7:0> bits, they determine the duty cycle and  
period. The on-time duty cycle is defined as:  
MAX1358B  
(PWMTH<7:0> + 1)/(PWMTP<7:0> + 1)  
To get 50% duty cycle, set PWMTH<7:0> to 126 deci-  
mal and PWMTP<7:0> to 253 decimal. Note that setting  
PWMTP<7:0> to 255 decimal is not valid as the denom-  
inator in the above formula becomes 0. A 100% duty  
cycle (i.e., always on) is possible with a value of  
PWMTH<7:0> PWMTP<7:0> > 0. A 0% duty cycle is  
possible by setting PWMTH<7:0> = 0 or PWME = 0 in  
the PWM_CTRL register. If the PWM is selected to drive  
the UPIO_ pin(s), the ALH_ bit(s) (UPIO_CTRL register)  
determine the on-time polarity at the beginning of the  
PWM cycle. If ALH_ = 1, the on-time at the start of the  
NORM_MD Register (Power-On State: N/A)  
Exit sleep mode and enter normal mode by writing to  
the NORM_MD register. The specific normal-mode  
state of all circuit blocks is set by the user, who must  
configure the individual power-enable bits before enter-  
ing sleep mode (Table 15). There are no data bits for  
this register, and normal mode begins on the rising  
edge of SCLK during the ADR0 bit in the NORM_MD  
register address control byte.  
PWM period causes a logic-high level (DV  
or  
DD  
CPOUT) at the UPIO_ pin. When ALH_ = 0, it causes a  
logic-low level (DGND) during the on-time. When the  
PWM output drives the SWA/B switches, the SWA(B)H  
or SWA(B)L bits in the PWM_CTRL register determine  
which PWM phase closes these switches. The SPDT1  
and SPDT2 switches do not have PWM polarity inver-  
sion bits (see the SPDT1<1:0> and SPDT2<1:0> bit  
descriptions in the SW_CTRL Register section), but  
their effective polarity is set by how the switches are  
connected externally. The power-on default is 00 hex.  
SLEEP Register (Power-On State: N/A)  
Enter sleep mode by writing to the SLEEP register. This  
low-power state overrides most of the normal power-  
control bits. Table 15 shows which functions are off,  
which functions are unaffected (ADE, RTCE, LSDE, and  
HYSE), and which functions are controlled by special  
sleep-mode bits (SOSCE, SCK32E, and SPWME) while  
in sleep mode. There are no data bits for this register,  
and sleep mode begins on the rising edge of SCLK  
during the ADR0 bit in the SLEEP register address con-  
trol byte.  
PWMTP<7:0>: PWM time period bits. These bits con-  
trol the PWM output period defined. The PWM output  
period is defined as:  
(PWMTP<7:0> + 1)/(PWM input frequency)  
Set the PWM input frequency by selecting the  
FSEL<2:0> bits as described in Table 14. The power-  
on default is 00 hex.  
48 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Table 15. Normal-Mode and Sleep-Register Summary  
REGISTER  
NAME  
CIRCUIT BLOCK  
DESCRIPTION  
POR DEFAULT  
NORMAL MODE  
SLEEP  
ADC  
ADC  
DACA  
DACB  
OP1  
ADCE = 0  
DAE = 0  
DBE = 0  
OP1E = 0  
ADCE  
DAE  
OFF  
OFF  
OFF  
OFF  
DACA_OP,  
DACB_OP  
DBE  
OP1E  
Reference Buffer Gain and  
Enable  
REFV<1:0> = 00  
REFV<1:0>  
OFF  
REF_SDC  
Signal-Detect Comparator  
Time-of-Day Alarm Enable  
RTC  
SDCE = 0  
ADE = 0  
SDCE  
ADE  
OFF  
ADE  
RTCE = 1  
OSCE = 1  
CK32E = 1  
HFCE = 1  
RTCE  
OSCE  
CK32E  
HFCE  
RTCE  
SOSCE  
SCK32E  
OFF  
CK32 XTAL Oscillator  
CK32 Output Buffer  
High-Frequency Clock  
CLK_CTRL  
High-Frequency Clock Output  
Buffer  
CLKE = 1  
CLKE  
OFF  
FLL Enable  
Watchdog Timer  
PWM  
FLLE = 1  
WDE = 0  
FLLE  
WDE  
OFF  
OFF  
PWM_CTRL  
PS_VMONS  
PWME = 0  
LDOE = 0  
PWME  
LDOE  
SPWME  
OFF  
Linear Regulator  
Charge-Pump Doubler  
CPOUT Voltage Monitor  
CPE = 0  
CPE  
OFF  
CPDE = 0  
CPDE  
OFF  
1.8V DV  
Monitor  
LSDE = 1  
LSDE  
LSDE  
HYSE  
OFF  
DD  
1.8V Monitor Hysteresis  
Temperature Sense Source  
UPIO_ Function  
HYSE = 0  
HYSE  
TEMP_CTRL  
UPIO_CTRL  
IMUX<1:0> = 00  
UP_MD<3:0> = 0 hex  
PUP_ = 1  
IMUX<1:0>  
UP_MD<3:0>  
PUP_  
UP_MD<3:0>  
PUP_  
SV_  
UPIO_ Pullup  
UPIO_ Supply Voltage  
UPIO_ Assertion Level  
SV_ = 0  
SV_  
ALH_ = 0  
ALH_  
ALH_  
______________________________________________________________________________________ 49  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
SLEEP_CFG Register (Power-On State: 1100 XXXX)  
MSB  
LSB  
SLP (ADR0)  
SOSCE  
SCK32E  
SPWME  
SHDN  
X
X
X
X
The SLEEP_CFG register allows users to program spe-  
cific behavior for the 32kHz oscillator, buffer, and PWM  
in sleep mode. It also contains a sleep-control bit (SLP)  
to enable sleep mode.  
SPWME: Sleep-mode PWM enable bit. SPWME = 1  
enables the internal PWM in sleep mode, and  
SPWME = 0 disables it in sleep mode, regardless of the  
state of the PWME bit.  
SLP (ADR0): Sleep bit. The SLP bit is the LSB in the  
SLEEP_CFG address control byte. Set SLP = 1 to  
assert the SHDN bit and enter sleep mode. Writing the  
register with SLP = 0 or reading with SLP = 0 or  
SLP = 1 has no effect on the SHDN bit.  
Input frequencies are limited to 32.768kHz or lower  
since the high-frequency clock is disabled in sleep  
mode. SOSCE must be asserted to have 32kHz avail-  
able as an input to the PWM. The power-on default is 0.  
MAX1358B  
SHDN: Shutdown bit. This bit is read only. SHDN is  
asserted by writing to the SLEEP register address or by  
writing to the SLEEP_CFG register with SLP = 1. When  
SHDN is asserted, the device is in sleep mode even if  
the SLEEP or SLEEP function on the UPIO is deassert-  
ed. The SHDN bit is deasserted by writing to the  
NORM_MD register or by other defined events. Events  
that cause SHDN to be deasserted are a day alarm or  
an edge on the UPIO wake-up pin causing wake-up to  
be asserted. The power-on default is 0.  
SOSCE: Sleep-mode 32kHz crystal oscillator enable  
bit. SOSCE = 1 enables the 32kHz oscillator in sleep  
mode, and SOSCE = 0 disables it in sleep mode,  
regardless of the state of the OSCE bit. The power-on  
default is 1.  
SCK32E: Sleep-mode CK32K-pin output-buffer enable  
bit. SCK32E = 1 enables the 32kHz output buffer in  
sleep mode, and SCK32E = 0 disables it in sleep  
mode, regardless of the state of the CK32E bit. The  
power-on default is 1.  
RESET  
Q
Q
D
D
Q
Q
4Hz  
CK  
32K  
DIVIDE-  
BY-8192  
CK  
WDE  
R
R
POR  
WDW  
WATCHDOG TIMER  
750ms  
1
4Hz CLOCK  
2-BIT COUNTER  
X
0
1
2
0
1
0
2
3
0
1
2
0
SPI WRITES  
RESET  
WATCHDOG  
ADDRESS  
WATCHDOG  
ADDRESS  
WDE = 1  
WATCHDOG  
ADDRESS  
250ms  
Figure 17. Watchdog Timer Architecture  
50 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
UPIO4_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP4MD3  
UP4MD2  
UP4MD1  
UP4MD0  
PUP4  
SV4  
ALH4  
LL4  
The UPIO4_CTRL register configures the UPIO4 pin  
functionality.  
ALH4: Active logic-level assertion high UPIO4 bit. Set  
ALH4 = 0 to define the input or output assertion level  
for UPIO4 as low except when in GPI and GPO modes.  
Set ALH4 = 1 to define the input or output assertion  
level as high. For example, asserting ALH4 defines the  
UPIO4 output signal as ALARM, while deasserting  
ALH4 defines it as ALARM. Similarly, asserting ALH4  
defines the UPIO4 input signal as WU, while deassert-  
ing ALH4 defines it as WU. The power-on default is 0.  
UP4MD<3:0>: UPIO4-mode selection bits. These bits  
configure the mode for the UPIO4 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP4: Pullup UPIO4 control bit. Set PUP4 = 1 to enable  
a weak pullup resistor on the UPIO4 pin, and set PUP4  
= 0 to disable it. The pullup resistor is connected to  
either DV  
or CPOUT as programmed by the SV4 bit.  
DD  
LL4: Logic-level UPIO4 bit. When UPIO4 is configured  
as GPO, LL4 = 0 sets the output to a logic-low and LL4  
= 1 sets the output to a logic-high. A read of LL4  
returns the voltage level at the UPIO4 pin at the time of  
the read, regardless of how it is programmed. The  
power-on default is 0.  
The pullup is enabled only when UPIO4 is configured as  
an input. Open-drain behavior can be simulated at  
UPIO4 by setting the mode to GPO with LL4 = 0 and by  
changing the mode to GPI with PUP4 = 0, allowing  
external high pullup. The power-on default is 1.  
SV4: Supply-voltage UPIO4 selection bit. Set SV4 = 0  
to select DV  
as the supply voltage for the UPIO4 pin,  
DD  
and set SV4 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO4 pin. The power-on default is 0.  
UPIO3_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP3MD3  
UP3MD2  
UP3MD1  
UP3MD0  
PUP3  
SV3  
ALH3  
LL3  
The UPIO3_CTRL register configures the UPIO3 pin  
functionality.  
ALH3: Active logic-level assertion high UPIO3 bit. Set  
ALH3 = 0 to define the input or output assertion level  
for UPIO3 as low except when in GPI and GPO modes.  
Set ALH3 = 1 to define the input or output assertion  
level as high. For example, asserting ALH3 defines the  
UPIO3 output signal as ALARM, while deasserting  
ALH3 defines it as ALARM. Similarly, asserting ALH3  
defines the UPIO3 input signal as WU, while deassert-  
ing ALH3 defines it as WU. The power-on default is 0.  
UP3MD<3:0>: UPIO3-mode selection bits. These bits  
configure the mode for the UPIO3 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP3: Pullup UPIO3 control bit. Set PUP3 = 1 to enable  
a weak pullup resistor on the UPIO3 pin, and set PUP3  
= 0 to disable it. The pullup resistor is connected to  
either DV  
or CPOUT as programmed by the SV3 bit.  
DD  
LL3: Logic-level UPIO3 bit. When UPIO3 is configured  
as GPO, LL3 = 0 sets the output to a logic-low and LL3  
= 1 sets the output to a logic-high. A read of LL3  
returns the voltage level at the UPIO3 pin at the time of  
the read, regardless of how it is programmed. The  
power-on default is 0.  
The pullup is enabled only when UPIO3 is configured as  
an input. Open-drain behavior can be simulated at  
UPIO3 by setting the mode to GPO with LL3 = 0 and by  
changing the mode to GPI with PUP3 = 0, allowing  
external high pullup. The power-on default is 1.  
SV3: Supply-voltage UPIO3 selection bit. Set SV3 = 0  
to select DV  
as the supply voltage for the UPIO3 pin,  
DD  
and set SV3 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO3 pin. The power-on default is 0.  
______________________________________________________________________________________ 51  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
UPIO2_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP2MD3  
UP2MD2  
UP2MD1  
UP2MD0  
PUP2  
SV2  
ALH2  
LL2  
The UPIO2_CTRL register configures the UPIO2 pin  
functionality.  
ALH2: Active logic-level assertion high UPIO2 bit. Set  
ALH2 = 0 to define the input or output assertion level  
for UPIO2 as low except when in GPI and GPO modes.  
Set ALH2 = 1 to define the input or output assertion  
level as high. For example, asserting ALH2 defines the  
UPIO2 output signal as ALARM, while deasserting  
ALH2 defines it as ALARM. Similarly, asserting ALH2  
defines the UPIO2 input signal as WU, while deassert-  
ing ALH2 defines it as WU. The power-on default is 0.  
UP2MD<3:0>: UPIO2-mode selection bits. These bits  
configure the mode for the UPIO2 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
PUP2: Pullup UPIO2 control bit. Set PUP2 = 1 to enable  
a weak pullup resistor on the UPIO2 pin, and set PUP2  
= 0 to disable it. The pullup resistor is connected to  
MAX1358B  
either DV  
or CPOUT as programmed by the SV2 bit.  
DD  
LL2: Logic-level UPIO2 bit. When UPIO2 is configured  
as GPO, LL2 = 0 sets the output to a logic-low and LL2  
= 1 sets the output to a logic-high. A read of LL2  
returns the voltage level at the UPIO2 pin at the time of  
the read, regardless of how it is programmed. The  
power-on default is 0.  
The pullup is enabled only when UPIO2 is configured as  
an input. Open-drain behavior can be simulated at  
UPIO2 by setting the mode to GPO with LL2 = 0 and by  
changing the mode to GPI with PUP2 = 0, allowing  
external high pullup. The power-on default is 1.  
SV2: Supply-voltage UPIO2 selection bit. Set SV2 = 0  
to select DV  
as the supply voltage for the UPIO2 pin,  
DD  
and set SV2 = 1 to select CPOUT as the supply volt-  
age. The selected supply voltage applies to all modes  
for the UPIO2 pin. The power-on default is 0.  
UPIO1_CTRL Register (Power-On State: 0000 1000)  
MSB  
LSB  
UP1MD3  
UP1MD2  
UP1MD1  
UP1MD0  
PUP1  
SV1  
ALH1  
LL1  
The UPIO1_CTRL register configures the UPIO1 pin  
functionality.  
age. The selected supply voltage applies to all modes  
for the UPIO1 pin. The power-on default is 0.  
UP1MD<3:0>: UPIO1-mode selection bits. These bits  
configure the mode for the UPIO1 pin. See Table 16 for  
a detailed description. The power-on default is 0 hex.  
ALH1: Active logic-level assertion high UPIO1 bit. Set  
ALH1 = 0 to define the input or output assertion level  
for UPIO1 as low except when in GPI and GPO modes.  
Set ALH1 = 1 to define the input or output assertion  
level as high. For example, asserting ALH1 defines the  
UPIO1 output signal as ALARM, while deasserting  
ALH1 defines it as ALARM. Similarly, asserting ALH1  
defines the UPIO1 input signal as WU, while deassert-  
ing ALH1 defines it as WU. The power-on default is 0.  
PUP1: Pullup UPIO1 control bit. Set PUP1 = 1 to enable  
a weak pullup resistor on the UPIO1 pin, and set PUP1  
= 0 to disable it. The pullup resistor is connected to  
either DV  
or CPOUT as programmed by the SV1 bit.  
DD  
The pullup is enabled only when UPIO1 is configured as  
an input. Open-drain behavior can be simulated at  
UPIO1 by setting the mode to GPO with LL1 = 0 and by  
changing the mode to GPI with PUP1 = 0, allowing  
external high pullup. The power-on default is 1.  
LL1: Logic-level UPIO1 bit. When UPIO1 is configured  
as GPO, LL1 = 0 sets the output to a logic-low and LL1  
= 1 sets the output to a logic-high. A read of LL1  
returns the voltage level at the UPIO1 pin at the time of  
the read, regardless of how it is programmed. The  
power-on default is 0.  
SV1: Supply-voltage UPIO1 selection bit. Set SV1 = 0  
to select DV  
as the supply voltage for the UPIO1 pin,  
DD  
and set SV1 = 1 to select CPOUT as the supply volt-  
52 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Table 16. UPIO Mode Configuration  
UP4MD<3:0>,  
UP3MD<3:0>,  
MODE  
DESCRIPTION  
UP2MD<3:0>, UP1MD<3:0>  
General-purpose digital input. Active edges detected by UPR_ or UPF_  
status register bits. ALH_ has no effect with this setting.  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
GPI  
General-purpose digital output. Logic level set by LL_ bit. ALH_ has no  
effect with this setting.  
GPO  
Digital input. DAC A buffer switch control. See the SWA bit description in  
the SW_CTRL Register section.  
SWA or SWA  
SWB or SWB  
SPDT1 or SPDT1  
SPDT2 or SPDT2  
Digital input. DAC B buffer switch control. See the SWB bit description in  
the SW_CTRL Register section.  
Digital input. SPDT1 switch control. See the SPDT1<1:0> bit description in the  
SW_CTRL Register section.  
Digital input. SPDT2 switch control. See the SPDT2<1:0> bit description in the  
SW_CTRL Register section.  
Sleep-mode digital input. Overrides power-control register and puts the  
part into sleep mode when asserted. The clock buffers must be powered  
down separately. When deasserted, power mode is determined by the  
SHDN bit.  
0
1
1
0
SLEEP or SLEEP  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
WU or WU  
Wake-up digital input. Asserted edge clears SHDN bit.  
Reserved  
Reserved. Do not use these settings.  
PWM digital output. Signal defined by the PWM_CTRL register. PWM on  
(or high or “1”); assertion level defined by the ALH_ bit. When PWM is  
1
1
0
1
1
0
1
0
PWM or PWM  
disabled (PWME = 0), the UPIO pin idles high (DV  
ALH = 1, and low (DGND) if ALH = 0.  
or CPOUT) if  
DD  
Power-supply shutdown digital output. Equivalent to SHDN bit. Power-on  
default of GPI with pullup ensures initial power-supply turn-on when UPIO  
is connected to a power supply with a SHDN input.  
SHDN or SHDN  
RTC alarm digital output. Asserts for time-of-day alarm events; equivalent  
to ALD in STATUS register.  
1
1
1
1
1
1
0
1
1
1
0
1
AL_DAY or AL_DAY  
Reserved  
Reserved. Do not use these settings.  
ADC data-ready digital output. Asserts when analog-to-digital conversion  
or calibration completes. Not masked by MADD bit.  
DRDY or DRDY  
Note: When multiple UPIO inputs are configured for the same input function, the inputs are ORed together.  
______________________________________________________________________________________ 53  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
UPIO_SPI Register (Power-On State: 0000 XXXX)  
MSB  
LSB  
UP4S  
UP3S  
UP2S  
UP1S  
X
X
X
X
The UPIO_SPI pass-through control register bits map  
the serial interface signals to the UPIO pins, allowing  
UP4S: UPIO4 SPI pass-through-mode enable bit. A  
logic 1 maps the inverted CS signal to the UPIO4 pin.  
Therefore, UPIO4 is low (near DGND) when SPI pass-  
the DAS to drive other devices at CPOUT or DV  
volt-  
DD  
age levels, depending on the SV_ bit setting found in  
the UPIO_CTRL register. Individual bits are provided to  
set only the desired UPIO inputs to the SPI pass-  
through mode. This mode becomes active when CS is  
driven high to complete the write to this register, and  
remains active as long as CS stays high (i.e., multiple  
pass-through writes are possible). The SPI pass-  
through mode is deactivated immediately when CS is  
pulled low for the next DAS write.  
through mode is active, and is high (near DV  
or  
DD  
CPOUT) when the mode is inactive. A logic 0 disables  
the UPIO4 SPI pass-through mode. The power-on  
default is 0.  
MAX1358B  
UP3S: UPIO3 SPI pass-through-mode enable bit. A  
logic 1 maps the SCLK signal to UPIO3 (directly with no  
inversion), while a logic 0 disables the UPIO3 SPI pass-  
through mode. The power-on default is 0.  
UP2S: UPIO2 SPI pass-through-mode enable bit. A  
logic 1 maps the DIN signal to UPIO2 (directly with no  
inversion), while a logic 0 disables the UPIO2 SPI pass-  
through mode. The power-on default is 0.  
The UPIO_ state (both before and after the SPI pass-  
through mode) is set by the UP_MD<3:0> and LL_ bits.  
When a UPIO is configured for SPI pass-through mode  
and the CS is high, UPR_, UPF_, and LL_ continue to  
detect UPIO_ edges, which can still generate interrupts.  
See Figure 18 for an SPI pass-through timing diagram.  
UP1S: UPIO1 SPI pass-through-mode enable bit. A  
logic 1 maps the UPIO1 input signal to DOUT (directly  
with no inversion), while a logic 0 disables the UPIO1  
SPI pass-through mode. The power-on default is 0.  
WRITE TO DAS TO ENABLE SPI MODE  
NORMAL WRITE TO DAS  
WRITE THROUGH DAS TO UPIO DEVICE  
CS  
SCLK  
DIN  
D
N
D
N-1  
D
N-2  
D
N-3  
D
3
D
2
D
D
0
E
N
E
N-1  
E
E
X
X
X
E
X
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
1
N-2  
N-3  
E
3
E
2
E
0
DOUT  
1
SET BY UPIO4_CTRL REGISTER  
SET BY UPIO3_CTRL REGISTER  
SET BY UPIO2_CTRL REGISTER  
SET BY UPIO1_CTRL REGISTER  
UPIO4  
UPIO3  
UPIO2  
UPIO1  
SET BY UPIO4_CTRL REGISTER  
SET BY UPIO3_CTRL REGISTER  
SET BY UPIO2_CTRL REGISTER  
SET BY UPIO1_CTRL REGISTER  
E
E
N-1  
E
E
N-3  
X
X
X
E
X
N
N-2  
E
3
E
2
E
0
1
Figure 18. SPI Pass-Through Timing Diagram  
54 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
SW_CTRL Register (Power-On State: 0000 00XX)  
MSB  
LSB  
SWA  
SWB  
SPDT11  
SPDT10  
SPDT21  
SPDT20  
X
X
The switch-control register controls the two SPDT  
switches (SPDT1 and SPDT2) and the DACA output  
buffer SPST switch (SWA). Control this switch by the  
serial bits in this register, by any of the UPIO pins that  
are enabled for that function, or by the PWM.  
Table 17. SWA States  
SW_ BIT*  
UPIO_*  
PWM*  
SW_ SWITCH STATE  
Switch open  
0
0
X
1
X
0
1
X
X
X
Switch closed  
Switch closed  
Switch closed  
SWA: DACA output buffer SPST-switch A control bit.  
The SWA bit, the UPIO inputs (if configured), and the  
PWM (if configured) control the state of the SWA switch  
as shown in Table 17. The UPIO_ states of 0 and 1 in the  
table correspond to respective deasserted and asserted  
logic states as defined by the ALH_ bit of the  
UPIO_CTRL register. If a UPIO is not configured for this  
mode, its value applied to the table is 0. The PWM  
states of 0 and 1 in the table correspond to the respec-  
tive PWM off (or low) and on (or high) states defined by  
the SWAH and SWAL bits (see the PWM_CTRL Register  
section). If the PWM is not configured for this mode, its  
value applied to the table is 0. The power-on default is 0.  
X
1
X = Donꢀt care.  
*Switch SW_ control is effectively an OR of the SW_ bit, UPIO_  
pins, and PWM.  
Table 18. SPDT Switch 1 States  
SPDT1<1:0> UPIO_* PWM* SPDT1 SWITCH STATE  
0
0
0
0
1
1
1
1
0
X
X
1
0
X
X
1
0
X
1
X
0
X
1
X
0
1
X
X
0
1
X
X
SNO1 open, SNC1 open  
SNO1 closed, SNC1 closed  
SNO1 closed, SNC1 closed  
SNO1 closed, SNC1 closed  
SNC1 closed, SNO1 open  
SNC1 open, SNO1 closed  
SNC1 open, SNO1 closed  
SNC1 open, SNO1 closed  
SWB: DACB output buffer SPST-switch B control bit.  
The SWB bit, the UPIO inputs (if configured), and the  
PWM (if configured) control the state of the SWB switch  
as shown in Table 18. The UPIO_ states of 0 and 1 in the  
table correspond to respective deasserted and asserted  
logic states as defined by the ALH_ bit (see the  
UPIO_CTRL Register section). If a UPIO is not config-  
ured for this mode, its value applied to the table is 0.  
The PWM states of 0 and 1 in the table correspond to  
the respective PWM off (or low) and on (or high) states  
defined by the SWBH and SWBL bits (see the  
PWM_CTRL Register section). If the PWM is not config-  
ured for this mode, its value applied to the table is 0.  
The power-on default is 0.  
X = Donꢀt care.  
*Switch SPDT1 control is effectively an OR of the SPDT10 bit, the  
UPIO_ pins, and the PWM output. The SPDT11 bit determines if  
the switches open and close together or if they toggle.  
Table 19. SPDT Switch 2 States  
SPDT2<1:0> UPIO_* PWM* SPDT2 SWITCH STATE  
SPDT1<1:0>: Single-pole double-throw switch 1 con-  
trol bits. The SPDT1<1:0> bits, the UPIO pins (if config-  
ured), and the PWM (if configured) control the state of  
the switch as shown in Table 18. The UPIO_ states of 0  
and 1 in the table correspond to respective deasserted  
and asserted logic states as defined by the ALH_ bit of  
the UPIO_CTRL register. If a UPIO is not configured for  
this mode, its value applied to Table 18 is 0. The PWM  
states of 0 and 1 in Table 18 correspond to the respec-  
tive PWM off (low) and on (high) states defined by the  
SPD1 bit in the PWM_CTRL register. If the PWM is not  
configured for this mode, its value applied to Table 18  
is 0. The power-on default is 00.  
0
0
0
0
1
1
1
1
0
X
X
1
0
X
X
1
0
X
1
X
0
X
1
X
0
1
X
X
0
1
X
X
SNO2 open, SNC2 open  
SNO2 closed, SNC2 closed  
SNO2 closed, SNC2 closed  
SNO2 closed, SNC2 closed  
SNC2 closed, SNO2 open  
SNC2 open, SNO2 closed  
SNC2 open, SNO2 closed  
SNC2 open, SNO2 closed  
X = Donꢀt care.  
*Switch SPDT2 control is effectively an OR of the SPDT20 bit, the  
UPIO_ pins, and the PWM output. The SPDT21 bit determines if  
the switches open and close together or if they toggle.  
______________________________________________________________________________________ 55  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
SPDT2<1:0>: Single-pole double-throw switch 2 control  
bits. The SPDT2<1:0> bits, the UPIO pins (if config-  
ured), and the PWM (if configured) control the state of  
the switch as shown in Table 19. The UPIO_ states of 0  
and 1 in the table correspond to respective deasserted  
and asserted logic states as defined by the ALH_ bit in  
the UPIO_CTRL register. If a UPIO is not configured for  
this mode, its value applied to Table 19 is 0. The PWM  
states of 0 and 1 in Table 19 correspond to the respec-  
tive PWM off (low) and on (high) states defined by the  
SPD2 bit in the PWM_CTRL register. If the PWM is not  
configured for this mode, its value applied to Table 19 is  
0. The power-on default is 00.  
TEMP_CTRL Register (Power-On State: 0000 XXXX)  
MSB  
LSB  
MAX1358B  
IMUX1  
IMUX0  
IVAL1  
IVAL0  
X
X
X
X
The temperature-sensor control register controls the  
internal and external temperature measurement.  
IVAL<1:0>: Internal current-source value bits. Selects  
the value of the internal current source as shown in  
Table 21. The power-on default is 00.  
IMUX<1:0>: Internal current-source MUX bits. Selects  
the pin to be driven by the internal current sources as  
shown in Table 20. The power-on default is 00.  
Table 20. Selecting Internal Current Source  
Table 21. Setting the Current Level  
CURRENT SOURCE  
IMUX1  
IMUX0  
CURRENT  
TYPICAL CURRENT (µA)  
IVAL1  
IVAL0  
Disabled  
Internal temperature sensor  
0
0
1
1
0
1
0
1
I
I
I
I
4
0
0
1
1
0
1
0
1
1
2
3
4
60  
AIN1  
AIN2  
64  
120  
56 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
IMSK Register (Power-On State: 1111 011X 1111 1111)  
MSB  
MLDVD  
MLCPD  
MADO  
MSDC  
MCRDY  
MUPF4  
MADD  
MALD  
X
LSB  
MUPR4  
MUPR3  
MUPR2  
MUPR1  
MUPF3  
MUPF2  
MUPF1  
The IMSK register determines which bits of the STATUS  
register generate an interrupt on INT. The bits in this  
register do not mask output signals routed to UPIO  
since the output signals are masked by disabling that  
UPIO function.  
MCRDY = 1 to mask the CRDY status bit interrupt. The  
power-on default value is 0.  
MADD: ADD status bit mask. Set MADD = 0 to enable  
the ADD status bit interrupt to INT, and set MADD = 1  
to mask the ADD status bit interrupt. The power-on  
default value is 1.  
MLDVD: LDVD status bit mask. Set MLDVD = 0 to  
enable the LDVD status bit interrupt to INT, and set  
MLDVD = 1 to mask the LDVD status bit interrupt. The  
power-on default value is 1.  
MALD: ALD status bit mask. Set MALD = 0 to enable  
the ALD status bit interrupt to INT, and set MALD = 1 to  
mask the ALD status bit interrupt. The power-on default  
value is 1.  
MLCPD: LCP status bit mask. Set MLCPD = 0 to  
enable the LCP status bit interrupt to INT, and set  
MLCPD = 1 to mask the LCP status bit interrupt. The  
power-on default value is 1.  
MUPR<4:1>: UPR<4:1> status bits mask. Set MUPR_ =  
0 to enable the UPR_ status bit interrupt to INT, and set  
MUPR_ = 1 to mask the UPR_ status bit interrupt. (_ =  
1, 2, 3, or 4 and corresponds to the UPIO1, UPIO2,  
UPIO3, or UPIO4 pins, respectively.) The power-on  
default value is F hex.  
MADO: ADO status bit mask. Set MADO = 0 to enable  
the ADO status bit interrupt to INT, and set MADO = 1  
to mask the ADO status bit interrupt. The power-on  
default value is 1.  
MUPF<4:1>: UPF<4:1> status bits mask. Set MUPF_ =  
0 to enable the UPF_ status bit interrupt to INT, and set  
MUPF_ = 1 to mask the UPF_ status bit interrupt. (_ = 1,  
2, 3, or 4 and corresponds to the UPIO1, UPIO2,  
UPIO3, or UPIO4 pins, respectively.) The power-on  
default value is F hex.  
MSDC: SDC status bit mask. Set MSDC = 0 to enable  
the SDC status bit interrupt to INT, and set MSDC = 1  
to mask the SDC status bit interrupt. The power-on  
default value is 1.  
MCRDY: CRD status bit mask. Set MCRDY = 0 to  
enable the CRDY status bit interrupt to INT, and set  
PS_VMONS Register (Power-On State: 0010 01XX)  
MSB  
LSB  
LDOE  
CPE  
LSDE  
CPDE  
HYSE  
RSTE  
X
X
This register is the power-supply and voltage monitors  
control register.  
disable the DV  
low-supply-voltage detector. The  
DD  
power-on default value is 1.  
LDOE: Low-dropout linear-regulator enable bit. Set  
LDOE = 1 to enable the low-dropout linear regulator to  
provide the internal source voltage for the charge  
pump. Set LDOE = 0 to disable the LDO, allowing an  
external drive to the charge-pump input through REG.  
The power-on default value is 0.  
CPDE: CPOUT low-supply voltage-detector power-  
enable bit. Set CPDE = 1 to enable the +2.7V CPOUT  
low-supply voltage-detector comparator, and set CPDE  
= 0 to disable the CPOUT low-supply voltage-detector  
comparator. The power-on default value is 0.  
HYSE: DV  
low-supply voltage-detector hysteresis-  
DD  
CPE: Charge-pump enable bit. Set CPE = 1 to enable the  
charge-pump doubler, and set CPE = 0 to disable the  
charge-pump doubler. The power-on default value is 0.  
enable bit. Set HYSE = 1 to set the hysteresis for the  
+1.8V (DV ) low-supply-voltage detector to +200mV,  
DD  
and set HYSE = 0 to set the hysteresis to +20mV. On initial  
power-up, the hysteresis is +20mV and can be pro-  
grammed to 200mV once RESET goes high. Once pro-  
LSDE: DV  
low-supply voltage-detector power-  
DD  
enable bit. Set LSDE = 1 to enable the +1.8V (DV  
)
DD  
grammed to +200mV, the DV  
falling threshold is +1.8V  
DD  
low-supply-voltage detector, and set LSDE = 0 to  
nominally and the rising threshold is +2.0V nominally. The  
______________________________________________________________________________________ 57  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
hysteresis helps eliminate chatter when running directly off  
unregulated batteries. If DV falls below +1.3V (typ), the  
RSTE: RESET output enable bit. Set RSTE = 1 to  
enable RESET to be controlled by the +1.8V DV low-  
DD  
DD  
power-on reset circuitry is enabled and the HYSE bit is  
deasserted setting the hysteresis back to +20mV. The  
power-on default is 0.  
supply-voltage detector, and set RSTE = 0 to disable  
this control. The power-on default is 1.  
STATUS Register (Power-On State: 0000 000X 0000 0000)  
MSB  
LDVD  
LCPD  
ADOU  
SDC  
CRDY  
UPF4  
ADD  
ALD  
X
LSB  
UPF1  
MAX1358B  
UPR4  
UPR3  
UPR2  
UPR1  
UPF3  
UPF2  
The STATUS register contains the status bits of events in  
various system blocks. Any status bits not masked in the  
IMSK register cause an interrupt on INT. Some of the  
status bit setting events (GPI, WAKEUP, ALARM, DRDY)  
can be directed to UPIO_ to provide multiple µC inter-  
rupt inputs. There are no specific mask bits for the UPIO  
interrupt signals since the bits are effectively masked by  
selecting a different function for UPIO. The STATUS bits  
always record the triggering event(s), even for masked  
bits, which do not generate an interrupt on INT. It is pos-  
sible to set multiple STATUS bits during a single INT  
interrupt event. Clear all STATUS bits except for ADD  
and ADOU by reading the STATUS register. During a  
STATUS register read, INT deasserts when the first  
STATUS data bit (LDVD) reads out (9th rising SCLK) and  
remains deasserted until shortly after the last STATUS  
data bit (~15ns). At this point, INT reasserts if any  
STATUS bit is set during the STATUS register read. If the  
STATUS register is partially read (i.e., the read is aborted  
midway), none of the STATUS bits are cleared. New  
events occurring during a STATUS register read, or  
events that persist after reading the STATUS bits result in  
another interrupt immediately after the STATUS register  
read finishes. This is a read-only register.  
ADOU: ADC overflow/underflow status bit. ADOU = 1  
indicates an ADC underflow or overflow condition in the  
current ADC result. New conversions that are valid  
clear the ADOU bit. ADOU = 0 when the ADC data is  
valid or the ADC is disabled (ADCE = 0). An underflow  
condition occurs when the ADC data is theoretically  
less than 0000 hex in unipolar mode and less than  
8000 hex in bipolar mode. An overflow condition occurs  
when the ADC data is theoretically greater than FFFF  
hex in unipolar mode and greater than 7FFF hex in  
bipolar mode. Use this bit to determine the validity of  
an ADC result at the maximum or minimum code values  
(i.e., 0000 hex or FFFF hex for unipolar mode and 8000  
hex and 7FFF hex for bipolar mode). The power-on  
default is 0. Reading the STATUS register does not  
clear the ADOU bit.  
SDC: Signal-detect comparator status bit. When  
SDC = 1, the positive input to the signal-detect compara-  
tor exceeds the negative input plus the programmed  
threshold voltage. The SDC bit clears during the STATUS  
register read unless the condition remains true. The SDC  
bit also deasserts when the signal-detect comparator  
powers down (SDCE = 0). The power-on default is 0.  
CRDY: High-frequency-clock ready status bit.  
CRDY = 1 indicates a locked high-frequency clock to  
the 32kHz reference frequency by the FLL. The CRDY  
bit clears during the STATUS register read. This bit only  
asserts after power-up or after enabling the FLL using  
the FLLE bit. The power-on default is 0.  
LDVD: Low DV  
voltage-detector status bit. LDVD = 1  
DD  
indicates DV  
is below the +1.8V threshold; otherwise  
DD  
LDVD = 0. LDVD clears during the STATUS register  
read as long as the condition does not persist.  
Otherwise, the LDVD bit reasserts immediately. If the  
DV  
low voltage detector is disabled, LDVD = 0. The  
DD  
ADD: ADC-done status bit. ADD = 1 indicates a com-  
pleted ADC conversion or calibration. Clear the ADD bit  
by reading the appropriate ADC data, offset, or gain-cali-  
bration registers. The ADC status bit also clears when a  
new ADC result updates to the data or calibration regis-  
ters (i.e., it follows the assertion level of the UPIO =  
DRDY signal). Reading the STATUS register does not  
clear this bit. This bit is equivalent to the DRDY signal  
available through UPIO_. The power-on default is 0.  
power-on default is 0.  
LCPD: Low CPOUT voltage-detector status bit. LCPD =  
1 indicates CPOUT is below the +2.7V threshold; other-  
wise LCPD = 0. LCPD clears during the STATUS regis-  
ter read as long as the condition does not persist.  
Otherwise the LCPD bit reasserts immediately. LCPD =  
0 when the CPOUT low voltage detector is disabled.  
The power-on default is 0.  
58 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
ALD: Alarm (day) status bit. ALD = 1 when the value  
programmed in ASEC<19:0> in the AL_DAY register  
matches SEC<19:0> in the RTC register. Clear the ALD  
bit by reading the STATUS register or by disabling the  
day alarm (ADE = 0). The power-on default is 0.  
When placing passive components in front of the  
MAX11358B, ensure a low enough source impedance  
to prevent introducing gain errors to the system. This  
configuration significantly limits the amount of passive  
anti-aliasing filtering that can be applied in front of the  
MAX11358B. See Table 3 for acceptable source  
impedances.  
UPR<4:1>: User-programmable I/O rising-edge status  
bits. UPR_ = 1 indicates a rising edge on the respec-  
tive UPIO_ pin has occurred. Clear UPR_ by reading  
the STATUS register. Rising edges are detected inde-  
pendent of UPIO_ configuration, providing the ability to  
capture and record rising input (e.g., WU) or output  
(e.g., PWM) edge events on the UPIO_. Set the appro-  
priate mask to determine if the edge will generate an  
interrupt on INT. If the UPIO_ is configured as an out-  
put, INT provides confirmation that an intended rising  
edge output occurred and has reached the desired  
Power-On Reset or Power-Up  
After a power-on reset, the DV  
voltage supervisor is  
DD  
enabled and all UPIOs are configured as inputs with  
pullups enabled. The internal oscillators are enabled and  
are output at CLK and CLK32K once the DV  
voltage  
DD  
supervisor is cleared and the subsequent timeout period  
has expired. All interrupts are masked except CRDY.  
Figure 19 illustrates the timing of various signals during  
initial power-up, sleep mode, and wake-up events. The  
ADC, charge pump, internal reference, op amp(s), DAC,  
and switches are disabled after power-up.  
DV  
or CPOUT level (i.e., was not loaded down exter-  
DD  
nally). The power-on default is 0.  
UPF<4:1>: User-programmable I/O falling-edge status  
bit. UPF_ = 1 indicates a falling edge on the respective  
UPIO_ has occurred. Clear UPF_ by reading the  
STATUS register. Falling edges are detected indepen-  
dent of UPIO_ configuration, providing the ability to cap-  
ture and record falling input (e.g., WU) or output (e.g.,  
PWM) edge events on the UPIO_. Set the appropriate  
mask to determine if that edge should generate an inter-  
rupt on the INT pin. If the UPIO is configured as an out-  
put, INT provides confirmation that an intended falling  
edge output occurred at the pin and it reached the  
desired DGND level. The power-on default is 0.  
Power Modes  
Two power modes are available for the MAX11358B:  
sleep and normal mode. In sleep mode, all functional  
blocks are powered down except the serial interface,  
data registers, internal bandgap, wake-up circuitry (if  
enabled), DV  
voltage supervisor (if enabled), and  
DD  
the 32kHz oscillator (if enabled), which remain active.  
See Table 15 for details of the sleep-mode and normal-  
mode power states of the various internal blocks.  
Each analog block can be shut down individually  
through its respective control register with the excep-  
tion of the bandgap reference.  
Applications Information  
Sleep Mode  
Analog Filtering  
The internal digital filter does not provide rejection  
close to the harmonics of the modulator sample fre-  
quency. However, due to high oversampling ratios in  
the MAX11358B, these bands typically occupy a small  
fraction of the spectrum and most broadband noise is  
filtered. Therefore, the analog filtering requirements in  
front of the MAX11358B are considerably reduced  
compared to a conventional converter with no on-chip  
filtering. In addition, because the deviceꢀs common-  
mode rejection (60dB) extends out to several kHz, the  
common-mode noise susceptibility in this frequency  
range is substantially reduced.  
Sleep mode is entered one of three ways:  
• Writing to the SLEEP register address. The result is  
the SHDN bit is set to 1.  
• Asserting the SLEEP or SLEEP function on a UPIO  
(SLEEP takes precedence over software writes or  
wake-up events). The SHDN bit is unaffected.  
• Asserting the SHDN bit by writing SLP = 1 in the  
SLEEP_CFG register.  
Entering sleep mode is an OR function of the UPIO or  
SHDN bit. Before entering sleep mode, configure the  
normal mode conditions.  
Exit sleep mode and enter normal mode by one of the  
following methods:  
Depending on the application, provide filtering prior to the  
MAX11358B to eliminate unwanted frequencies the digital  
filter does not reject. Providing additional filtering in some  
applications ensures that differential noise signals outside  
the frequency band of interest do not saturate the analog  
modulator.  
• With the SHDN bit = 0, deassert the SLEEP or  
SLEEP function on UPIO, only if SLEEP or SLEEP  
function is used for entering sleep mode.  
______________________________________________________________________________________ 59  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
INITIAL POWER, WAKE-UP, AND SLEEP  
2
1
XTAL BETWEEN 32KIN AND 32KOUT PIN  
1.8V  
AV  
DV  
DD  
DD  
0V  
2
1.8V  
1
0V  
HI  
POR  
MAX1358B  
LO  
OSCE = 1  
SOSCE = 1  
SCK32E = 0  
OSCE = 1  
CK32E = 1  
HI  
XIN, XOUT  
(32kHz)  
LO  
CK32E = 1  
HI  
CK32K  
(32kHz)  
BUFFER DISABLED  
LO  
HI  
LO  
HI  
RESET  
(OPEN DRAIN)  
INTERNAL  
EXTERNAL  
OUTPUT DISABLED,  
BUT  
PULLED LOW  
INTERNAL  
LOW DV DETECTOR  
OUTPUT ENABLED  
DD  
LO  
HI  
UPIO (WU)  
(INT. PULLUP)  
t
WU  
LO  
t
DPU  
HI  
UPIO (SHDN)  
CLK  
INTERNAL  
LO  
t
DPD  
HI  
INTERNAL  
LO  
t
t
t
DFON  
DFON  
DFOF  
INTERNAL  
CRDY  
HFCE = 1, FLLE = 1  
HI  
IF FLLE = 0, CRDY WILL  
STAY LOW, DFON = 0  
LO  
t
t
DFI  
DFI  
HI  
INT  
LO  
PWME = 0  
PWME = 0  
POWER SUPPLY OFF  
SPWME = 1  
UPIO (PWM)  
CONNECTED TO POWER  
SUPPLY SHDN PIN  
HI  
LO  
HI  
POWER SUPPLY OFF  
INTERNAL  
DRDY  
LO  
HI  
DOUT  
CS  
THREE-STATED  
LO  
HI  
SLEEP  
WRITE  
LO  
HI  
SCLK,  
DIN  
LO  
Figure 19. Initial Power-Up, Sleep Mode, and Wake-Up Timing Diagram with AV  
> 1.8V  
DD  
60 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
V
/GAIN  
V
/GAIN  
V
/GAIN  
REF  
REF  
REF  
1111 1111 1111 1111  
1111 1111 1111 1110  
1111 1111 1111 1101  
1111 1111 1111 1100  
0111 1111 1111 1111  
0111 1111 1111 1110  
0111 1111 1111 1101  
FULL-SCALE TRANSITION  
V
V
REF  
REF  
1 LSB =  
1 LSB =  
x 2  
(GAIN x 65,536)  
(GAIN x 65,536)  
0000 0000 0000 0001  
0000 0000 0000 0000  
1111 1111 1111 1111  
0000 0000 0000 0011  
0000 0000 0000 0010  
0000 0000 0000 0001  
0000 0000 0000 0000  
1000 0000 0000 0010  
1000 0000 0000 0001  
1000 0000 0000 0000  
0
65,533 65,535  
-32,768  
-1  
0
+1  
+32,765 +32,767  
1
2
3
-32,766  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 20. ADC Unipolar Transfer Function  
Figure 21. ADC Bipolar Transfer Function  
• With the SLEEP or SLEEP function deasserted on  
UPIO, clear the SHDN bit by writing to the normal-  
mode register address control byte.  
MAX11358B  
FBA  
FBB  
• With the SLEEP or SLEEP function deasserted,  
assert WU or WU (wake-up) function on UPIO.  
OUTA  
OUTB  
DAC A  
• With the SLEEP or SLEEP function deasserted, the  
day alarm triggers.  
REF  
Wake-Up  
A wake-up event, such as an assertion of a UPIO con-  
figured as WU or a time-of-day alarm causes the  
MAX11358B to exit sleep mode, if in sleep mode. A  
wake-up event in normal mode results only in a wake-up  
event being recorded in the STATUS register.  
DAC B  
Figure 22. DAC Unipolar Output Circuit  
RESET  
Supply Voltage Measurement  
The RESET output pulls low for any one of the following  
The AV  
supply voltage can be measured with the  
DD  
cases: power-on reset, DV  
monitor trips and  
RSTE = 0, watchdog timer expires, crystal oscillator is  
attached, and 32kHz clock not ready.  
DD  
ADC by reversing the normal input and reference sig-  
nals. The REF voltage is applied to one multiplexer  
input, and AGND is selected in the other. The AV  
DD  
The RESET output can be turned off through the RSTE  
signal is then switched in as the ADC reference voltage  
bit in the PS_VMONS register, causing DV  
low sup-  
DD  
and a conversion is performed. The AV  
then be calculated directly as:  
value can  
DD  
ply voltage events to issue an interrupt or poll through  
the LDVD status bit. This allows brownout detection  
V
AVDD  
= (V  
x Gain x 65,536)/N  
REF  
µCs that operate with DV  
< 1.8V.  
DD  
where V  
is the reference voltage for the ADC, Gain  
REF  
Driving UPIO Outputs to AV  
Levels  
DD  
is the PGA gain before the ADC, and N is the ADC  
result. Note the AV voltage must be greater than the  
UPIO outputs can be driven to AV  
levels in systems  
DD  
DD  
with separate AV  
and DV  
supplies. Disable the  
DD  
DD  
gained-up REF voltage (AV  
measurement must be done in unipolar mode.  
> V  
x Gain). This  
REF  
DD  
charge-pump doubler by setting CPE = 0 in the  
PS_VMONS register, and connect the systemꢀs analog  
supply to AV  
and CPOUT. Setting UPIO outputs to  
DD  
drive to CPOUT results in AV -referenced logic levels.  
DD  
______________________________________________________________________________________ 61  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V
REF  
R
1
R
2
10kΩ  
FBA  
MAX11358B  
FB_  
+3.3V  
10kΩ  
V
OUT  
OUTA  
OUTB  
DAC A  
DAC_  
OUT_  
-3.3V  
10kΩ  
REF  
FBB  
R = R  
2
1
V
REF  
= 1.25V  
MAX11358B  
10kΩ  
5
DAC B  
Figure 24. DAC Bipolar Output Circuit  
In unipolar mode, the output code ranges from 0 to  
65,535 for inputs from zero to full-scale. In bipolar  
mode, the output code ranges from -32,768 to +32,767  
for inputs from negative full-scale to positive full-scale.  
V
= 1.25V  
REF  
Figure 23. DAC Unipolar Rail-to-Rail Output Circuit  
Power Supplies  
DAC Unipolar Output  
For a unipolar output, the output voltages and the refer-  
ence have the same polarity. Figure 22 shows the  
unipolar output circuit of the MAX11358B, which is also  
the typical operating circuit for the DAC. Table 22 lists  
some unipolar input codes and their corresponding  
output voltages.  
AV  
and DV  
provide power to the MAX11358B. The  
DD  
DD  
AV powers up the analog section, while the DV pow-  
DD  
DD  
ers up the digital section. The power supply for both AV  
DD  
and  
and DV  
ranges from +1.8V to +3.6V. Both AV  
DD  
DD  
DV  
must be greater than +1.8V for device operation.  
DD  
AV  
and DV  
can connect to the same power supply.  
to AGND with a 10µF electrolytic capacitor  
DD  
DD  
Bypass AV  
DD  
For larger output swing, see Figure 23. This circuit  
shows the output amplifiers configured with a closed-  
loop gain of +2V/V to provide 0 to 2.5V full-scale range  
with the 1.25V reference.  
in parallel with a 0.1µF ceramic capacitor, and bypass  
DV to DGND with a 10µF electrolytic capacitor in paral-  
lel with a 0.1µF ceramic capacitor. For improved perfor-  
mance, place the bypass capacitors as close to the device  
as possible.  
DD  
DAC Bipolar Output  
The MAX11358B DAC output can be configured for  
bipolar operation using the application circuit in  
Figure 24:  
ADC Transfer Functions  
Figures 20 and 21 provide the ADC transfer functions  
for unipolar and bipolar mode. The digital output code  
format is binary for unipolar mode and twoꢀs comple-  
ment for bipolar mode. Calculate 1 LSB using the fol-  
lowing equations:  
2N  
1024  
V
= V  
1  
OUT  
REF  
1 LSB (Unipolar Mode) = V /(Gain x 65,536)  
REF  
where N is the decimal value of the DACꢀs binary input code.  
1 LSB (Bipolar Mode) = 2V  
/(Gain x 65,536)  
REF  
Table 23 shows digital codes (offset binary) and corre-  
sponding output voltages for Figure 24 assuming  
R = R .  
where V  
equals the reference voltage at REF and  
REF  
Gain equals the PGA gain.  
1
2
Table 22. Unipolar Code  
Table 23. Bipolar Code  
DAC CONTENTS  
DAC CONTENTS  
ANALOG OUTPUT  
ANALOG OUTPUT  
MSB  
LSB  
MSB  
LSB  
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
+V  
(511/512)  
(1/512)  
0
1111 1111 11  
1000 0000 01  
1000 0000 00  
0111 1111 11  
0000 0000 01  
0000 0000 00  
+V  
+V  
(1023/1024)  
(513/1024)  
REF  
REF  
REF  
REF  
+V  
(512/1024) = +V  
/2  
REF  
REF  
-V  
(1/512)  
+V  
+V  
(511/1024)  
(1/1024)  
REF  
REF  
-V  
REF  
(511/512)  
REF  
-V  
(512/512) = -V  
REF  
0
REF  
62 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
Clocking with a CMOS Signal  
A CMOS signal can be used to drive 32KIN if it is divid-  
ed down. Figure 25 is an example circuit, which works  
well.  
Temperature Measurement with  
Two Remote Sensors  
Use two diode-connected 2N3904 transistors for exter-  
nal temperature sensing in Figure 29. Select AIN1 and  
AIN2 through the positive and negative mux, respec-  
tively. For internal temperature sensor measurements,  
set MUXP<3:0> to 0111, and set MUXN<3:0> to 0000.  
The analog input signals feed through a PGA to the  
ADC for conversion.  
Input Multiplexer  
The mux inputs can range between AGND and AV  
.
DD  
However, when the internal temperature sensor is  
enabled, AIN1 and AIN2 cannot exceed 0.7V. This  
necessitates additional circuitry to divide down the  
input signal. See Figure 26 for an example circuit that  
The MAX11358B integrated PWM is available for LCD  
bias control, sensor-bias voltage trimming, buzzer drive,  
and duty-cycled sleep-mode power-control schemes.  
Figure 31 shows the MAX11358B performing LCD bias  
control. A sensor-bias voltage trimming application is  
shown in Figure 32. Figures 34 and 35 show the PWM  
circuitry being used in a single-ended and differential  
piezoelectric buzzer-driving application.  
divides down backlight V  
AIN1 pin.  
to work properly with the  
DD  
Optical Reflectometry Application with  
Dual LED and Single Photodiode  
Figure 27 illustrates the MAX11358B in a complete opti-  
cal reflectometry application with two transmitting LEDs  
and one receiving photodiode. The LEDs transmit light  
at a specific wavelength onto the sample strip, and the  
photodiode receives the reflections from the strip. Set  
the DAC to provide appropriate bias currents for the  
LEDs. Always keep the photodiodes reverse-biased or  
zero-biased. SPDT1 and SPDT2 switch between the  
two LEDs.  
ADC Calibration  
Internal to the MAX11358B, the ADC is 24 bits and is  
always in bipolar mode. The OFFSET CAL and GAIN  
CAL data is also 24 bits. The conversion to unipolar and  
the gain are performed digitally. The default values for  
the OFFSET CAL and GAIN CAL registers in the  
MAX11358B are 00 0000h and 80 0000h, respectively.  
Electrochemical Sensor Operation  
The MAX11358B family interface with electrochemical  
sensors. The 10-bit DAC with the force-sense buffers  
have the flexibility to connect to many different types of  
sensors. An external precision resistor completes the  
transimpedance amplifier configuration to convert the  
current generated by the sensor to a voltage measure-  
ment using the ADC. The induced error from this source  
is negligible due to FBAꢀs extremely low input bias cur-  
rent. Internally, the ADC can differentially measure  
directly across the external transimpedance resistor,  
RF, eliminating any errors due to voltages drifting over  
time, temperature, or supply voltage.  
The calibration works as follows:  
ADC = (RAW - OFFSET) x Gain x PGA  
where ADC is the conversion result in the DATA register,  
RAW is the output of the decimation filter internal to the  
MAX11358B, OFFSET is the value stored in the OFFSET  
CAL register, Gain is the value stored in the GAIN CAL  
register, and PGA is the selected PGA gain found in the  
ADC register as GAIN<1:0>. In unipolar mode, all nega-  
tive values return a zero result and an additional gain of 2  
is added.  
BACKLIGHT  
V
BATT2  
V
DD  
100kΩ  
V
BATT1  
CMOS CLOCK  
32KIN  
GPIOn  
(0 TO DV  
)
DD  
UPIO1  
MAX11358B  
NOTE:  
100kΩ  
GPIOn IS LOW = LED ON,  
HIGH-Z = LED OFF  
BATTVCHECK < 0.6125V  
MAX11358B  
x2  
AIN1  
V
REF  
= 1.25V  
μP  
Figure 25. Clocking with a CMOS Signal  
______________________________________________________________________________________ 63  
Figure 26. Input Multiplexer  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
V
CP  
TXD  
RXD  
SERIAL-PORT INTERFACE  
V
SS  
V
SS  
μC  
V
BAT  
EEPROM  
V
SS  
MOSI  
V
CC  
SI  
SO  
MISO  
SCK  
CS1  
SCK  
CS  
GND  
MAX1358B  
V
SS  
V
CP  
MAX11358B  
LCD MODULE  
BDIN  
BDOUT  
BSCLK  
BCS2  
UPIO1  
UPIO2  
UPIO3  
UPIO4  
DIN  
DOUT  
SCLK  
CS  
V
SS  
CS2  
CS2  
MEM  
UP  
RESET  
INT  
RESET  
INPUT  
X2IN  
INPUT  
INPUT  
INPUT  
HIGH-FREQUENCY MICRO CLOCK  
32kHz MICRO CLOCK  
DOWN  
CLK  
IN1-  
32KIN  
CLK32K  
V
SS  
IN1+  
AV  
DD  
V
BAT  
OUT1  
V
SS  
DV  
DD  
V
SS  
V
DD  
2 AAA OR  
1 LITHIUM  
COIN CELL  
1nF  
SNO2  
SCM2  
ADC  
TEST  
STRIP  
V
SS  
AGND  
DGND  
V
SS  
SNC2  
V
SS  
PWM  
DACA  
AIN1  
AIN2  
AMBIENT LIGHT  
LED SOURCES  
V
CP  
OUTA  
32KIN  
LED  
SWA  
FBA  
V
CP  
32.768kHz  
SNO1  
LED  
SCM1  
SNC1  
32KOUT  
DV  
DD  
LINEAR  
REG  
REG  
CF+  
REF  
CHARGE-  
V
SS  
PUMP  
DOUBLER  
BG  
CF-  
CPOUT  
V
CP  
V
SS  
V
SS  
V
SS  
Figure 27. Optical Reflectometry Application with Dual LED and Single Photodiode  
64 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
μC  
V
CP  
LCD GLA SS  
COM<3:0>  
SEG<23:0>  
LCDBIAS  
RX_WAKEUP  
SERIAL-PORT INTERFACE  
RXD  
V
SS  
LCD  
DRIVERS  
V
SS  
BUZ_HI  
BUZ_LO  
PIEZO  
ALARM  
V
BAT  
EEPROM  
MOSI  
V
CC  
SI  
V
SS  
SO  
MISO  
SCK  
CS1  
SCK  
CS  
GND  
V
SS  
MAX11358B  
CPOUT  
UPIO2  
DIN  
TXD  
CS2  
DOUT  
UPIO1  
UPIO3  
RX_WAKEUP  
CPOUT  
PWM  
LCDBIAS  
SCLK  
CS  
CS2  
STRIP INSERTED  
UPIO4  
V
SS  
MEM  
UP  
RESET  
INT  
OUTA  
SWA  
FBA  
RESET  
INPUT  
X2IN  
INPUT  
TEST  
STRIP  
INPUT  
INPUT  
HIGH-FREQUENCY MICRO CLOCK  
32kHz MICRO CLOCK  
DOWN  
CLK  
32KIN  
CLK32K  
V
SS  
AV  
DD  
V
BAT  
V
SS  
DV  
DACA  
DD  
V
DD  
OUTB  
SWB  
FBB  
2 AAA OR  
1 LITHIUM  
COIN CELL  
ADC  
V
AGND  
DGND  
SS  
V
SS  
DACB  
SNO1  
SCM1  
SNC1  
32KIN  
OUT1  
IN1-  
IN1+  
REF  
32.768kHz  
32KOUT  
DV  
DD  
LINEAR  
REG  
BG  
REG  
CF+  
SNO2  
SCM2  
SNC2  
CHARGE-  
PUMP  
DOUBLER  
V
SS  
CF-  
CPOUT  
V
CP  
V
AIN1  
AIN2  
SS  
V
SS  
REMOTE TEMPERATURE-  
MEASUREMENT DIODE  
V
SS  
Figure 28. Electrochemical Meter Application Circuit (Traditional and Counter Configuration)  
______________________________________________________________________________________ 65  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
For self-calibration, the offset value is the RAW result  
when the inputs are shorted internally and the gain value  
is 1/(RAW - OFFSET) with the reference connected to the  
input. This is done automatically when these modes are  
selected. The self-offset and gain calibration corrects for  
errors internal to the ADC and the results are stored and  
used automatically in the OFFSET CAL and GAIN CAL  
registers. For best results, use the ADC in the same con-  
figuration as the calibration. This pertains to conversion  
rate only because the PGA gain and unipolar/bipolar  
modes are performed digitally.  
log ground plane under the MAX11358B to minimize  
coupling of digital noise. Make the power-supply lines  
to the MAX11358B as wide as possible to provide low-  
impedance paths and reduce the effects of glitches on  
the power-supply line.  
Shield fast-switching signals such as clocks with digital  
ground to avoid radiating noise to other sections of the  
board. Avoid running clock signals near the analog  
inputs. Avoid crossover of digital and analog signals.  
Good decoupling is important when using high-resolu-  
tion ADCs. Decouple all analog supplies with 10µF  
capacitors in parallel with 0.1µF HF ceramic capacitors  
to AGND. Place these components as close to the  
device as possible to achieve the best decoupling.  
MAX1358B  
For system calibration, the offset and gain values cor-  
rect for errors in the whole signal path including the  
internal ADC and any external circuits in the signal  
path. For the system calibration, a user-provided zero-  
input condition is required for the offset calibration and  
a user-provided full-scale input is required for the gain  
calibration. These values are automatically written to  
the OFFSET CAL and GAIN CAL registers. The order of  
the calibrations should be offset followed by gain.  
Crystal Layout  
Follow basic layout guidelines when placing a crystal  
on a PCB with a DAS to avoid coupled noise:  
1) Place the crystal as close as possible to 32KIN and  
32KOUT. Keeping the trace lengths between the  
crystal and inputs as short as possible reduces the  
probability of noise coupling by reducing the length  
of the “antennae”. Keep the 32KIN and 32KOUT  
lines close to each other to minimize the loop area  
of the clock lines. Keeping the trace lengths short  
also decreases the amount of stray capacitance.  
The offset correction value is in twoꢀs complement. The  
default value is 000000h, 00...00b, or 0 decimal.  
The gain correction value is an unsigned binary number  
with 23 bits to the right of the decimal point. The largest  
number is therefore 1.1111...1b = 2 - 2-23 and the small-  
est is 0.000...0b = 0, although it does not make sense to  
use a number smaller than 0.1000...0b = 0.5. The default  
value is 800000h, 1.000...0b or 1 decimal.  
2) Keep the crystal solder pads and trace width to  
32KIN and 32KOUT as small as possible. The larg-  
er these bond pads and traces are, the more likely  
it is that noise will couple from adjacent signals.  
Changing the offset or gain calibration values does not  
affect the value in the DATA register until a new conver-  
sion has completed. This applies to all the mode bits  
for PGA gain, unipolar/bipolar, etc.  
3) Place a guard ring (connect to ground) around the  
crystal to isolate the crystal from noise coupled  
from adjacent signals.  
Grounding and Layout  
For best performance, use a PCB with separate analog  
and digital ground planes.  
4) Ensure that no signals on other PCB layers run  
directly below the crystal or below the traces to  
32KIN and 32KOUT. The more the crystal is isolat-  
ed from other signals on the board, the less likely it  
is that noise will be coupled into the crystal.  
Maintain a minimum distance of 5mm between any  
digital signal and any trace connected to 32KIN or  
32KOUT.  
Design the PCB so that the analog and digital sections  
are separated and confined to different areas of the  
board. Join the digital and analog ground planes at one  
point. If the DAS is the only device requiring an AGND-to-  
DGND connection, connect planes to the AGND pin of the  
DAS. In systems where multiple devices require AGND-to-  
DGND connections, the connection should still be made  
at only one point. Make the star ground as close as possi-  
ble to the MAX11358B.  
5) Place a local ground plane on the PCB layer imme-  
diately below the crystal guard ring. This helps to  
isolate the crystal from noise coupling from signals  
on other PCB layers.  
Avoid running digital lines under the device because  
these may couple noise onto the device. Run the ana-  
Note: The ground plane must be in the vicinity of the  
crystal only and not on the entire board.  
66 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
AIN1  
PGA  
16-BIT ADC  
MUX  
MUX  
REF  
AGND  
AIN2  
A = 1, 2, 4, 8  
V
2N3904  
2N3904  
MAX11358B  
AGND  
A = 1, 1.638, 2  
V
C
REF  
REF  
TEMP  
SENSOR  
1.25V  
REF  
Figure 29. Temperature Measurement with Two Remote Sensors  
Gain Error  
Parameter Definitions  
Gain error is the amount of deviation between the mea-  
sured full-scale transition point and the ideal full-scale  
transition point.  
INL  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line is either a best-straight-line fit or a line drawn  
between the end points of the transfer function, once off-  
set and gain errors have been nulled. INL for the  
MAX11358B is measured using the end-point method.  
Common-Mode Rejection  
Common-mode rejection (CMR) is the ability of a  
device to reject a signal that is common to both input  
terminals. The common-mode signal can be either an  
AC or a DC signal or a combination of the two. CMR is  
often expressed in decibels.  
DNL  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A DNL  
error specification of greater than -1 LSB guarantees no  
missing codes and a monotonic transfer function.  
Power-Supply Rejection Ratio (PSRR)  
Power-supply rejection ratio (PSRR) is the ratio of the  
input supply change (in volts) to the change in the  
converter output (in volts). It is typically measured in  
decibels.  
______________________________________________________________________________________ 67  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX11358B  
DV CPOUT  
DD  
CPOUT  
UPIO_  
MUX  
SV_  
100kΩ  
200kΩ  
(1.8V  
TO  
μC  
PWM  
0.01μF  
100kΩ  
2.6V)  
MAX1358B  
EN_  
SEG  
n
ALH_  
LCD  
DRIVERS  
100kΩ  
100kΩ  
LCD  
COM  
m
Figure 30. LCD Contrast-Adjustment Application  
~1.25V  
REF  
~19kHz  
VOLTAGE  
MAX11358B  
240kΩ  
RIPPLE < 1mV  
SNO1  
350kΩ  
SCM1  
SNC1  
PWM  
~0.3V  
60kΩ  
SPDT1  
0.1μF  
AGND  
IN1+  
IN1-  
OUT1  
I
T
TRANSDUCER  
0.300V ( 1mV)  
Figure 31. Sensor-Bias Voltage Trim Application  
68 ______________________________________________________________________________________  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
MAX1358B  
V
DD  
AV  
DV  
DD  
DD  
MAX11358B  
DV  
< 10μA  
CPOUT  
DD  
V
DD  
V
OUT  
V
IN  
MUX  
SV_  
V
BATT  
μC  
100μF  
POWER SUPPLY  
10MΩ  
UPIO_  
EN_  
SHDN  
PWM  
PSCTL  
ON-TIME <100ms TYP  
10s PERIOD TYP  
PSCTL  
+3.3V  
V
ALH_  
DD  
+2.3V  
Figure 32. Power-Supply Sleep-Mode Duty-Cycle Control  
DV  
CPOUT  
DD  
MAX11358B  
SV_  
MUX  
CPOUT(+3.2V)  
0V  
1kHz TO 8kHz TYP  
~10,000pF  
1kΩ  
UPIO_  
PWM  
ALH_  
Figure 33. Single-Ended Piezoelectric Buzzer Drive  
______________________________________________________________________________________ 69  
16-Bit Data-Acquisition System with ADC, DAC,  
UPIOs, RTC, Voltage Monitors, and Temp Sensor  
DV CPOUT  
DD  
CPOUT(+3.2V)  
0V  
MAX11358B  
MUX  
SV_  
1kHz TO 8kHz TYP  
1kΩ  
UPIO_  
PWM  
MAX1358B  
CPOUT  
+
6.4V DIFF  
-
~10,000pF  
ALH_  
-CPOUT  
DV CPOUT  
DD  
MUX  
SV_  
1kΩ  
UPIO_  
CPOUT(~+3.2V)  
0V  
1kHz TO 8kHz TYP  
ALH_  
Figure 34. Differential Piezoelectric Buzzer Drive  
Chip Information  
Package Information  
For the latest package outline information and land patterns,  
go to www.maxim-ic.com/packages. Note that a “+”, “#”, or  
“-” in the package code indicates RoHS status only. Package  
drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
40 TQFN-EP  
T4066+5  
21-0141  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
70 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2009 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY