MAX1157BCUI [MAXIM]

Analog to Digital Converter ; 模拟数字转换器\n
MAX1157BCUI
型号: MAX1157BCUI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog to Digital Converter
模拟数字转换器\n

转换器
文件: 总15页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2653; Rev 0; 10/02  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
General Description  
Features  
o Analog Input Voltage Range 1ꢀVꢁ ꢂVꢁ oꢃ ꢀ to 1ꢀV  
o 14-Bit Wide Paꢃallel Inteꢃface  
The MAX1157/MAX1159/MAX1175 14-bit, low-power,  
successive-approximation analog-to-digital converters  
(ADCs) feature automatic power-down, factory-trimmed  
internal clock, and 14-bit wide parallel interface. The  
devices operate from a single +4.75V to +5.25V analog  
supply and feature a separate digital supply input for  
direct interface with +2.7V to +5.25V digital logic.  
o Single +4.7ꢂV to +ꢂ.2ꢂV Analog Supply Voltage  
o Inteꢃfaces with +2.7V to +ꢂ.2ꢂV Digital Logic  
o
o
1LSB IꢄL ꢅ(aꢆx  
1LSB DꢄL ꢅ(aꢆx  
The MAX1157 accepts an analog input voltage range  
from 0 to +10V while the MAX1159 accepts a bipolar  
analog input voltage range of 10V. The MAX1175  
accepts a bipolar analog input voltage range of 5V.  
All devices consume only 23mW at a sampling rate  
of 135ksps when using an external reference and  
29mW when using the internal +4.096V reference.  
AutoShutdown™ reduces supply current to 0.4mA at  
10ksps. The MAX1157/MAX1159/MAX1175 are ideal for  
high-performance, battery-powered data-acquisition  
applications. Excellent AC performance (THD = -100dB)  
and DC accuracy ( 1ꢀSB ꢁIꢀ) make the MAX1157/  
MAX1159/MAX1175 ideal for industrial process control,  
instrumentation, and medical applications.  
o Low Supply Cuꢃꢃent ꢅMAX11ꢂ9x  
ꢂ.3(A ꢅEꢆteꢃnal Refeꢃencex  
6.2(A ꢅInteꢃnal Refeꢃencex  
ꢂµA AutoShutdown Mode  
o S(all Footpꢃint  
28-Pin TSSOP Package  
Pin Configuration  
TOP VIEW  
The MAX1157/MAX1159/MAX1175 are available in a  
28-pin TSSOP package and are fully specified over the  
-40°C to +85°C extended temperature range and the  
0°C to +70°C commercial temperature range.  
D6  
D7  
1
2
3
4
5
6
7
8
9
28 D5  
27 D4  
26 D3  
25 D2  
24 D1  
23 D0  
22 N.C.  
21 N.C.  
D8  
D9  
D10  
D11  
D12  
D13  
R/C  
MAX1157  
MAX1159  
MAX1175  
Applications  
Temperature Sensing and Monitoring  
ꢁndustrial Process Control  
ꢁ/O Modules  
20 DV  
DD  
EOC 10  
AV 11  
19 DGND  
18 CS  
Data-Acquisition Systems  
Precision ꢁnstrumentation  
DD  
AGND 12  
AIN 13  
17 RESET  
16 REF  
AGND 14  
15 REFADJ  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
TSSOP  
Ordering Information  
IꢄPUT VOLTAGE  
RAꢄGE  
PART  
TEMP RAꢄGE  
PIꢄ-PACKAGE  
IꢄL ꢅLSBx  
MAX11ꢂ7ACUI*  
0°C to +70°C  
0°C to +70°C  
28 TSSOP  
28 TSSOP  
0 to +10V  
0 to +10V  
1
2
MAX1157BCUI*  
Ordering Information continued at end of data sheet.  
*Future product—contact factory for availability.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Continuous Power Dissipation (T = +70°C)  
28-Pin TSSOP (derate 12.8mW/°C above +70°C) .....1026mW  
A
AGND to DGND.....................................................-0.3V to +0.3V  
AIN to AGND .....................................................-16.5V to +16.5V  
Operating Temperature Range  
MAX11_ _CUI......................................................0°C to +70°C  
MAX11_ _EUI...................................................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
REF, REFADJ to AGND............................-0.3V to (AV  
+ 0.3V)  
DD  
CS, R/C, RESET to DGND ........................................-0.3V to +6V  
D_, EOC to DGND ...................................-0.3V to (DV + 0.3V)  
DD  
Maximum Continuous Current Into Any Pin ........................50mA  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
, unless  
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
SYMBOL  
COꢄDITIOꢄS  
MIꢄ  
TYP  
MAX  
UꢄITS  
Resolution  
RES  
DNL  
14  
-1  
-1  
-2  
Bits  
Differential Nonlinearity  
No missing codes over temperature  
MAX11_ _A  
+1  
+1  
+2  
LSB  
Integral Nonlinearity  
Transition Noise  
Offset Error  
INL  
LSB  
MAX11_ _B  
RMS noise, external reference  
Internal reference  
0.32  
0.34  
0
LSB  
RMS  
MAX1159  
-10  
-10  
+10  
+10  
0.2  
mV  
MAX1157/MAX1175  
Gain Error  
Offset Drift  
Gain Drift  
0
16  
1
%FSR  
µV/°C  
ppm/°C  
AC ACCURACY ꢅf = 1kHzꢁ V  
Iꢄ  
= full ꢃangeꢁ 13ꢂkspsx  
AIꢄ  
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
81  
82  
85  
85  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
AꢄALOG IꢄPUT  
THD  
-100  
103  
-86  
SFDR  
87  
MAX1157  
0
-10  
-5  
+10  
+10  
+5  
Input Range  
V
V
MAX1159  
AIN  
AIN  
MAX1175  
MAX1157/MAX1175  
MAX1175  
Normal operation  
5.3  
3
6.9  
10  
9.2  
Shutdown mode  
Normal operation  
Shutdown mode  
Input Resistance  
R
k  
7.8  
6
13.0  
MAX1159  
2
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢅcontinuedx  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
, unless  
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
COꢄDITIOꢄS  
MIꢄ  
-0.1  
-1.8  
-1.8  
-1.8  
-1.8  
TYP  
MAX  
+2.0  
+1.2  
+1.8  
+0.4  
+1.8  
UꢄITS  
MAX1157, 0 V  
+10V  
AIN  
Normal operation  
Shutdown mode  
Normal operation  
Shutdown mode  
MAX1159,  
-10V V  
+10V  
Input Current  
I
AIN  
mA  
AIN  
MAX1175,  
-5V V  
+5V  
AIN  
MAX1159, V  
operating mode  
= +10V, shutdown mode to  
AIN  
0.5  
0.7  
1.4  
Input Current Step at Power-Up  
I
mA  
pF  
PU  
MAX1175, V  
= +5V, shutdown mode to  
AIN  
1
operating mode  
Input Capacitance  
C
10  
IN  
IꢄTERꢄAL REFEREꢄCE  
REF Output Voltage  
V
4.056  
3.8  
4.096  
35  
4.136  
V
REF  
REF Output Tempco  
ppm/°C  
mA  
REF Short-Circuit Current  
EXTERꢄAL REFEREꢄCE  
I
10  
REF-SC  
REF and REFADJ Input Voltage  
Range  
4.2  
V
V
AV  
-
AV  
-
DD  
DD  
REFADJ Buffer Disable Threshold  
REF Input Current  
0.4  
0.1  
Normal mode, f  
= 135ksps  
60  
0.1  
16  
100  
10  
SAMPLE  
I
µA  
µA  
REF  
Shutdown mode (Note 1)  
REFADJ = AV  
REFADJ Input Current  
I
REFADJ  
DD  
DIGITAL IꢄPUTS/OUTPUTS  
I
= 0.5mA, DV  
= +5.25V  
= +2.7V to +5.25V, DV  
DD DD  
-
SOURCE  
Output High Voltage  
Output Low Voltage  
Input High Voltage  
Input Low Voltage  
V
V
V
V
V
OH  
AV  
0.4  
DD  
I
= 1.6mA, DV  
= +5.25V  
= +2.7V to +5.25V,  
DD  
SINK  
V
0.4  
OL  
AV  
DD  
0.7 ×  
V
IH  
DV  
DD  
0.3 ×  
V
IL  
DV  
DD  
Input Leakage Current  
Input Hysteresis  
Digital input = DV  
or 0  
-1  
+1  
µA  
V
DD  
V
0.2  
15  
HYST  
Input Capacitance  
C
pF  
µA  
pF  
IN  
Three-State Output Leakage  
Three-State Output Capacitance  
I
10  
OZ  
C
15  
OZ  
_______________________________________________________________________________________  
3
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
ELECTRICAL CHARACTERISTICS ꢅcontinuedx  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , T = T  
to T  
, unless  
MAX  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
A
MIN  
otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
POWER SUPPLIES  
SYMBOL  
COꢄDITIOꢄS  
MIꢄ  
TYP  
MAX  
UꢄITS  
Analog Supply Voltage  
Digital Supply Voltage  
AV  
DV  
4.75  
2.70  
5.25  
5.25  
2.9  
V
V
DD  
DD  
MAX1157  
External reference,  
135ksps  
MAX1159/MAX1175  
MAX1157  
4.0  
5.3  
Analog Supply Current  
I
mA  
AVDD  
3.8  
Internal reference,  
135ksps  
MAX1159/MAX1175  
5.2  
0.5  
3.7  
6.2  
Shutdown mode (Note 1), digital input =  
DV or 0  
5
µA  
Shutdown Supply Current  
I
DD  
SHDN  
DVDD  
Standby mode  
mA  
mA  
Digital Supply Current  
Power-Supply Rejection  
I
0.75  
AV  
= DV  
= +4.75V to +5.25V  
DD  
1
LSB  
DD  
TIMIꢄG CHARACTERISTICS ꢅFiguꢃes 1 and 2x  
(AV  
= +4.75V to +5.25V, DV  
= +2.7V to AV , external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV  
,
DD  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
C
LOAD  
= 20pF, T = T  
to T  
.)  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
COꢄDITIOꢄS  
MIꢄ  
TYP  
MAX  
UꢄITS  
ksps  
µs  
Maximum Sampling Rate  
Acquisition Time  
f
135  
SAMPLE-MAX  
t
2
ACQ  
Conversion Time  
t
4.7  
µs  
CONV  
CS Pulse Width High  
t
(Note 2)  
(Note 2)  
40  
40  
60  
0
ns  
CSH  
DV  
DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
DD  
DD  
CS Pulse Width Low  
t
ns  
ns  
ns  
CSL  
R/C to CS Fall Setup Time  
R/C to CS Fall Hold Time  
t
DS  
DV  
DV  
DV  
DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
40  
60  
DD  
DD  
DD  
DD  
t
DH  
40  
80  
CS to Output Data Valid  
EOC Fall to CS Fall  
t
ns  
ns  
ns  
DO  
t
0
DV  
DV  
DV  
DV  
DV  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
= +4.75V to +5.25V  
= +2.7V to +5.25V  
40  
80  
40  
80  
DD  
DD  
DD  
DD  
CS Rise to EOC Rise  
t
EOC  
Bus Relinquish Time  
t
ns  
BR  
ꢄote 1: Maximum specification is limited by automated test equipment.  
ꢄote 2: To ensure best performance, finish reading the data and wait t before starting a new acquisition.  
BR  
4
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , C  
= 20pF, T = T  
MIN  
to  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
LOAD  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Typical Application Circuit)  
A
SUPPLY CURRENT (AV + DV  
DD  
)
DD  
INL vs. CODE  
DNL vs. CODE  
vs. TEMPERATURE  
4.80  
4.75  
4.70  
4.65  
4.60  
4.55  
4.50  
4.45  
4.40  
2.5  
1.0  
0.8  
2.0  
1.5  
5.25V  
5.0V  
0.6  
1.0  
0.4  
4.75V  
0.5  
0.2  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
f
= 135ksps  
SAMPLE  
SHUTDOWN MODE BETWEEN  
CONVERSIONS  
-40  
-20  
0
20  
40  
60  
80  
0
4096  
8192  
12288  
16384  
0
4096  
8192  
12288  
16384  
TEMPERATURE (°C)  
CODE  
CODE  
SUPPLY CURRENT (AV + DV  
DD  
)
SHUTDOWN CURRENT (AV + DV )  
DD DD  
DD  
vs. SAMPLE RATE  
vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10  
1
10  
8
NO CONVERSIONS  
MAX1159  
STANDBY  
MODE  
6
4
0.1  
2
0
SHUTDOWN  
MODE  
0.01  
0.001  
0.0001  
-2  
-4  
-6  
-8  
-10  
V
= 0V  
AIN  
-40  
-20  
0
20  
40  
60  
80  
0.01  
0.1  
1
10  
100  
1000  
-40  
-20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
SAMPLE RATE (ksps)  
TEMPERATURE (°C)  
INTERNAL REFERENCE  
vs. TEMPERATURE  
FFT AT 1kHz  
GAIN ERROR vs. TEMPERATURE  
0
-20  
0.20  
0.15  
0.10  
0.05  
0
4.136  
4.126  
4.116  
4.106  
4.096  
4.086  
4.076  
4.066  
4.056  
f
= 135ksps  
SAMPLE  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-0.05  
-0.10  
-0.15  
-0.20  
0
20  
40  
60  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Typical Operating Characteristics  
(AV  
= DV  
= +5V, external reference = +4.096V, C  
= 10µF, C  
= 0.1µF, V  
= AV , C  
= 20pF, T = T  
to  
MIN  
DD  
DD  
REF  
REFADJ  
REFADJ  
DD  
LOAD  
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.) (Typical Application Circuit)  
A
SPURIOUS-FREE DYNAMIC RANGE  
TOTAL HARMONIC DISTORTION  
vs. FREQUENCY  
SINAD vs. FREQUENCY  
vs. FREQUENCY  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
100  
80  
60  
40  
20  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
1
10  
100  
1
10  
100  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
Pin Description  
PIꢄ  
1
ꢄAME  
FUꢄCTIOꢄ  
D6  
D7  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
Three-State Digital Data Output  
2
3
D8  
4
D9  
5
D10  
D11  
D12  
D13  
6
7
8
Three-State Digital Data Output (MSB)  
Read/Convert Input. Power up and place the MAX1157/MAX1159/MAX1175 in acquisition mode by  
holding R/C low during the first falling edge of CS. During the second falling edge of CS, the level on  
R/C determines whether the reference and reference buffer power down or remain on after  
conversion. Set R/C high during the second falling edge of CS to power down the reference and  
buffer, or set R/C low to leave the reference and buffer powered up. Set R/C high during the third  
falling edge of CS to put valid data on the bus.  
9
R/C  
10  
11  
12  
13  
14  
EOC  
End of Conversion. EOC drives low when conversion is complete.  
Analog Supply Input. Bypass with a 0.1µF capacitor to AGND.  
Analog Ground. Primary analog ground (star ground).  
Analog Input  
AV  
DD  
AGND  
AIN  
AGND  
Analog Ground. Connect pin 14 to pin 12.  
6
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Pin Description (continued)  
PIꢄ  
ꢄAME  
FUꢄCTIOꢄ  
Reference Buffer Output. Bypass REFADJ with a 0.1µF capacitor to AGND for internal reference  
15  
REFADJ  
mode. Connect REFADJ to AV  
to select external reference mode.  
DD  
Reference Input/Output. Bypass REF with a 10µF capacitor to AGND. REF is the external reference  
input when in external reference mode.  
16  
17  
REF  
RESET  
Reset Input. Logic high resets the device.  
Convert Start. The first falling edge of CS powers up the device and enables acquisition when R/C  
is low. The second falling edge of CS starts conversion. The third falling edge of CS loads the result  
onto the bus when R/C is high.  
18  
CS  
19  
20  
DGND  
Digital Ground  
DV  
Digital Supply Voltage. Bypass with a 0.1µF capacitor to DGND.  
No Connection. Make no connection to these pins.  
Three-State Digital Data Output (LSB)  
Three-State Digital Data Output  
DD  
21, 22  
23  
N.C.  
D0  
D1  
D2  
D3  
D4  
D5  
24  
25  
Three-State Digital Data Output  
26  
Three-State Digital Data Output  
27  
Three-State Digital Data Output  
28  
Three-State Digital Data Output  
Detailed Description  
DV  
DD  
Converter Operation  
1mA  
The MAX1157/MAX1159/MAX1175 use a successive-  
approximation (SAR) conversion technique with an  
inherent track-and-hold (T/H) stage to convert an analog  
input into a 14-bit digital output. Parallel outputs provide  
a high-speed interface to most microprocessors (µPs).  
The Functional Diagram at the end of the data sheet  
shows a simplified internal architecture of the MAX1157/  
MAX1159/ MAX1175. Figure 3 shows a typical applica-  
tion circuit for the MAX1157/MAX1159/MAX1175.  
D0–D13  
1mA  
D0–D13  
C
= 20pF  
C
= 20pF  
LOAD  
LOAD  
DGND  
DGND  
A)  
B)  
HIGH-Z TO V  
HIGH-Z TO V  
,
,
OL  
OH  
V
V
TO V , AND  
V
V
TO V , AND  
OL  
OH  
OH  
OH  
OL  
OL  
TO HIGH-Z  
TO HIGH-Z  
Analog Input  
Figure 1. Load Circuits  
Input Scaler  
The MAX1157/MAX1159/MAX1175 have an input scaler  
which allows conversion of true bipolar input voltages  
and input voltages greater than the power supply, while  
operating from a single +5V analog supply. The input  
scaler attenuates and shifts the analog input to match  
the input range of the internal DAC. The MAX1157 has  
a unipolar input voltage range of 0 to +10V. The  
MAX1175 input voltage range is 5V while the  
MAX1159 input voltage range is 10V. Figure 4 shows  
the equivalent input circuit of the MAX1157/  
MAX1159/MAX1175. This circuit limits the current going  
into or out of AIN to less than 1.8mA.  
_______________________________________________________________________________________  
7
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
t
t
CSH  
CSL  
CS  
t
ACQ  
REF POWER-  
DOWN CONTROL  
R/C  
tEOC  
t
t
t
DV  
DH  
DS  
EOC  
t
BR  
t
t
DO  
CONV  
HIGH-Z  
HIGH-Z  
D0D13  
DATA VALID  
Figure 2. MAX1157/MAX1159/MAX1175 Timing Diagram  
Power-Down Modes  
+5V ANALOG  
+5V DIGITAL  
Select standby mode or shutdown mode with R/C during  
the second falling edge of CS (see Selecting Standby or  
Shutdown Mode section). The MAX1157/MAX1159/  
MAX1175 automatically enter either standby mode (refer-  
ence and buffer on), or shutdown (reference and buffer  
off) after each conversion depending on the status of  
R/C during the second falling edge of CS.  
0.1µF  
0.1µF  
µP DATA  
BUS  
AV  
DD  
DV  
DD  
14-BIT  
WIDE  
ANALOG  
INPUT  
D0D13  
AIN  
Internal Clock  
The MAX1157/MAX1159/MAX1175 generate an internal  
conversion clock to free the microprocessor from the bur-  
den of running the SAR conversion clock. Total conver-  
sion time after entering hold mode (second falling edge  
of CS) to end-of-conversion (EOC) falling is 4.7µs (max).  
MAX1157  
MAX1159  
MAX1175  
R/C  
CS  
EOC  
REF  
RESET  
REFADJ  
AGND DGND  
0.1µF  
10µF  
Applications Information  
Starting a Conversion  
CS and R/C control acquisition and conversion in the  
MAX1157/MAX1159/MAX1175 (see Figure 2). The first  
falling edge of CS powers up the device and puts it in  
acquire mode if R/C is low. The convert start CS is  
ignored if R/C is high. The MAX1157/MAX1159/  
Figure 3. Typical Application Circuit for the MAX1157/MAX1159/  
MAX1175  
Track and Hold (T/H)  
In track mode, the internal hold capacitor acquires the  
analog signal (see Figure 4). In hold mode, the T/H  
switches open and the capacitive DAC samples the  
analog input. During the acquisition, the analog input  
MAX1175 need at least 6ms (C  
= 0.1µF, C  
=
REF  
REFADJ  
10µF) for the internal reference to wake up and settle  
before starting the conversion if powering up from shut-  
down. Reset the MAX1157/MAX1159/MAX1175 by tog-  
gling RESET with CS high. The next falling edge of CS  
begins acquisition.  
(AIN) charges capacitor C  
. The acquisition ends  
HOLD  
on the second falling edge of CS. At this instant, the  
T/H switches open. The retained charge on C rep-  
Selecting Standby or Shutdown Mode  
The MAX1157/MAX1159/MAX1175 have a selectable  
standby or low-power shutdown mode. In standby  
mode, the ADCs internal reference and reference  
buffer do not power down between conversions, elimi-  
nating the need to wait for the reference to power up  
before performing the next conversion. Shutdown mode  
powers down the reference and reference buffer after  
HOLD  
resents a sample of the input. In hold mode, the capac-  
itive DAC adjusts during the remainder of the  
conversion time to restore node T/H OUT to zero within  
the limits of 14-bit resolution. Force CS low to put valid  
data on the bus after conversion is complete.  
8
_______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
REF  
MAX1157  
MAX1159/MAX1175  
3.4kΩ  
3.4kΩ  
C
C
HOLD  
30pF  
R2  
R2  
HOLD  
30pF  
161Ω  
161Ω  
TRACK  
TRACK  
AIN  
AIN  
S1  
S1  
T/H OUT  
HOLD  
S2  
T/H OUT  
HOLD  
S2  
HOLD  
HOLD  
S3  
POWER-  
DOWN  
S3  
TRACK  
TRACK  
R3  
R3  
POWER-  
DOWN  
S1, S2 = T/H SWITCH  
S3 = POWER DOWN  
(MAX1159/MAX1175  
ONLY)  
R2 = 7.85k(MAX1159)  
OR 3.92k(MAX1157/MAX1175)  
R3 = 5.45k(MAX1159)  
OR 17.79k(MAX1157/MAX1175)  
Figure 4. Equivalent Input Circuit  
DATA  
OUT  
ACQUISITION  
CONVERSION  
CS  
R/C  
EOC  
REF AND  
BUFFER  
POWER  
Figure 5. Selecting Standby Mode  
completing a conversion. The reference and reference  
buffer require a minimum of 12ms (C = 0.1µF,  
REF  
Standby Mode  
While in standby mode, the supply current is less than  
3.7mA (typ). The next falling edge of CS with R/C low  
causes the MAX1157/MAX1159/MAX1175 to exit stand-  
by mode and begin acquisition. The reference and ref-  
erence buffer remain active to allow quick turn-on time.  
REFADJ  
C
= 10µF) to power up and settle from shutdown.  
The state of R/C during the second falling edge of CS  
selects which power-down mode the MAX1157/  
MAX1159/MAX1175 enters upon conversion comple-  
tion. Holding R/C low causes the MAX1157/MAX1159/  
MAX1175 to enter standby mode. The reference and  
buffer are left on after the conversion completes. R/C  
high causes the MAX1157/MAX1159/MAX1175 to enter  
shutdown mode and power down the reference and  
buffer after conversion (see Figures 5 and 6). Set the  
voltage at REF high during the second falling edge of  
CS to realize the lowest current operation.  
_______________________________________________________________________________________  
9
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
DATA  
OUT  
ACQUISITION  
CONVERSION  
CS  
R/C  
EOC  
REF AND  
BUFFER  
POWER  
Figure 6. Selecting Shutdown Mode  
External Reference  
An external reference can be placed at either the input  
(REFADJ) or the output (REF) of the MAX1157/  
MAX1159/MAX1175s internal buffer amplifier. Using  
the buffered REFADJ input makes buffering the external  
reference unnecessary. The internal buffer output must  
be bypassed at REF with a 10µF capacitor.  
MAX1157  
MAX1159  
MAX1175  
+5V  
68k  
100kΩ  
REFADJ  
0.1µF  
Connect REFADJ to AV  
to disable the internal buffer.  
DD  
150kΩ  
Directly drive REF using an external reference. During  
conversion, the external reference must be able to drive  
100µA of DC load current and have an output imped-  
ance of 10or less. The input impedance of REFADJ is  
typically 5k. The DC input impedance of REF is a min-  
imum 40k.  
Figure 7. MAX1157/MAX1159/MAX1175 Reference Adjust  
Circuit  
For optimal performance, buffer the reference through  
an op amp and bypass REF with a 10µF capacitor.  
Consider the MAX1157/MAX1159/MAX1175s equivalent  
input noise (0.6LSB) when choosing a reference.  
Shutdown Mode  
In shutdown mode, the reference and reference buffer  
shut down between conversions. Shutdown mode  
reduces supply current to 0.5µA (typ) immediately after  
the conversion. The first falling edge of CS with R/C low  
causes the reference and buffer to wake up and enter  
acquisition mode. To achieve 14-bit accuracy, allow  
Reading the Conversion Result  
EOC flags the microprocessor when a conversion is  
complete. The falling edge of EOC signals that the data  
is valid and ready to be output to the bus. D0D13 are  
the parallel outputs of the MAX1157/MAX1159/  
MAX1175. These three-state outputs allow for direct  
connection to a microcontroller I/O bus. The outputs  
remain high-impedance during acquisition and conver-  
sion. Data is loaded onto the bus with the third falling  
12ms (C  
= 0.1µF, C  
= 10µF) for the internal  
REF  
REFADJ  
reference to wake up.  
Internal and External Reference  
Internal Reference  
The internal reference of the MAX1157/MAX1159/  
MAX1175 is internally buffered to provide +4.096V out-  
put at REF. Bypass REF to AGND and REFADJ to  
AGND with 10µF and 0.1µF, respectively.  
edge of CS with R/C high (after t ). Bringing CS high  
DO  
forces the output bus back to high impedance. The  
MAX1157/MAX1159/MAX1175 then wait for the next  
falling edge of CS to start the next conversion cycle  
(see Figure 2).  
Sink or source current at REFADJ to make fine adjust-  
ments to the internal reference. The input impedance of  
REFADJ is nominally 5k. Use the circuit of Figure 7 to  
adjust the internal reference to 1.5%.  
1ꢀ ______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
INPUT RANGE = -10V TO +10V  
INPUT RANGE = 0 TO +10V  
OUTPUT CODE  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
TRANSITION  
11 . . . 1111  
11 . . . 111  
11 . . . 1110  
11 . . . 1101  
11 . . . 110  
11 . . . 101  
10 . . . 0001  
10 . . . 0000  
01 . . . 1111  
FULL-SCALE RANGE  
(FSR) = +20V  
FULL-SCALE RANGE  
(FSR) = +10V  
FSR x V  
16384 x 4.096  
FSR x V  
16384 x 4.096  
REF  
REF  
1LSB =  
1LSB =  
00 . . . 0011  
00 . . . 0010  
00 . . . 0001  
00 . . . 0000  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
-8192 -8190  
0
+8190 +8192  
+8191  
0
1
2
3
16382 16384  
16383  
-8191 -8189  
-1  
+1  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 8. MAX1157 Transfer Function  
Figure 9. MAX1159 Transfer Function  
step-change in input signal. The input amplifier must  
have a high enough slew rate to complete the required  
output voltage change before the beginning of the  
acquisition time. Figure 11 shows an example of this  
circuit using the MAX427.  
INPUT RANGE = -5V TO +5V  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 1111  
11 . . . 1110  
11 . . . 1101  
Figures 12a and 12b show how the MAX1175 and  
MAX1159 analog input current varies depending on  
whether the chip is operating or powered down. The  
part is fully powered down between conversions if the  
voltage at R/C is set high during the second falling  
edge of CS. The input current abruptly steps to the  
powered up value at the start of acquisition. This step  
in the input current can disrupt the ADC input, depend-  
ing on the driving circuits output impedance at high  
frequencies. If the driving circuit cannot fully settle by  
the end of acquisition time, the accuracy of the system  
can be compromised. To avoid this situation, increase  
the acquisition time, use a driving circuit that can settle  
10 . . . 0001  
10 . . . 0000  
01 . . . 1111  
FULL-SCALE RANGE  
(FSR) = +10V  
FSR x V  
16384 x 4.096  
REF  
1LSB =  
00 . . . 0011  
00 . . . 0010  
00 . . . 0001  
00 . . . 0000  
-8192 -8190  
0
+8190 +8192  
+8191  
-8191 -8189  
-1  
+1  
INPUT VOLTAGE (LSB)  
Figure 10. MAX1175 Transfer Function  
within t  
, or leave the MAX1175/MAX1159 powered  
ACQ  
up by setting the voltage at R/C low during the second  
falling edge of CS.  
Transfer Function  
Figures 8, 9, and 10 show the MAX1157/MAX1159/  
MAX1175s output transfer functions. The MAX1159  
and MAX1175 outputs are coded in offset binary, while  
the MAX1157 is coded on standard binary.  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit (PC) boards.  
Do not run analog and digital lines parallel to each  
other, and do not lay out digital signal paths under-  
neath the ADC package. Use separate analog and dig-  
ital ground planes with only one point connecting the  
two ground systems (analog and digital) as close to the  
device as possible.  
Input Buffer  
Most applications require an input buffer amplifier to  
achieve 14-bit accuracy and prevent loading the  
source. Switch the channels immediately after acquisi-  
tion, rather than near the end of or after a conversion  
when the input signal is multiplexed. This allows more  
time for the input buffer amplifier to respond to a large  
Route digital signals far away from sensitive analog and  
reference inputs. If digital lines must cross analog lines,  
do so at right angles to minimize coupling digital noise  
______________________________________________________________________________________ 11  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1157/MAX1159/  
MAX1175 are measured using the endpoint method.  
REF  
MAX1157  
MAX1159  
MAX1175  
**  
MAX427  
AIN  
ANALOG  
INPUT  
*
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step-width and the ideal value of 1LSB. A  
DNL error specification of 1LSB guarantees no missing  
codes and a monotonic transfer function.  
*MAX1157 ONLY.  
**MAX1159/MAX1175 ONLY.  
Figure 11. MAX1157/MAX1159/MAX1175 Fast-Settling Input  
Buffer  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
noise error only and results directly from the ADCs res-  
olution (N bits):  
onto the analog lines. If the analog and digital sections  
share the same supply, isolate the digital and analog  
supply by connecting them with a low value (10)  
resistor or ferrite bead.  
The ADC is sensitive to high-frequency noise on the  
AV  
supply. Bypass AV  
to AGND with a 0.1µF  
DD  
DD  
SNR = ((6.02 N) + 1.76)dB  
capacitor in parallel with a 1µF to 10µF low-ESR capaci-  
tor with the smallest capacitor closest to the device.  
Keep capacitor leads short to minimize stray inductance.  
where N = 14 bits.  
In reality, there are other noise sources besides quanti-  
MAX1175  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
2.0  
MAX1159  
ANALOG INPUT CURRENT  
vs. ANALOG INPUT VOLTAGE  
1.5  
1.5  
1.0  
1.0  
0.5  
0.5  
SHUTDOWN MODE  
0
SHUTDOWN MODE  
0
STANDBY MODE  
-0.5  
-0.5  
STANDBY MODE  
-1.0  
-1.0  
-1.5  
-1.5  
-2.0  
-5.0  
-2.5  
0
2.5  
5.0  
-10  
-5  
0
5
10  
ANALOG INPUT VOLTAGE (V)  
ANALOG INPUT VOLTAGE (V)  
Figure 12b. MAX1159 Analog Input Current  
12 ______________________________________________________________________________________  
Figure 12a. MAX1175 Analog Input Current  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
zation noise: thermal noise, reference noise, clock jitter,  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
2
2
2
2
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequencys RMS amplitude to the  
RMS equivalent of all the other ADC output signals.  
V
+ V + V + V  
3 4 5  
2
=
THD 20 × log  
V
1
Signal  
(Noise + Distortion)  
RMS  
where V1 is the fundamental amplitude and V2 through  
V5 are the 2nd- through 5th-order harmonics.  
SINAD(db) = 20 × log  
RMS  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest fre-  
quency component.  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADCs error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Chip Information  
TRANSISTOR COUNT: 15,383  
SINAD -1.76  
6.02  
=
PROCESS: BiCMOS  
ENOB  
Ordering Information (continued)  
IꢄPUT VOLTAGE  
PART  
TEMP RAꢄGE  
PIꢄ-PACKAGE  
IꢄL ꢅLSBx  
RAꢄGE  
MAX1157AEUI*  
MAX1157BEUI*  
MAX11ꢂ9ACUI  
MAX1159BCUI  
MAX1159AEUI*  
MAX1159BEUI*  
MAX117ꢂACUI*  
MAX1175BCUI*  
MAX1175AEUI*  
MAX1175BEUI*  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
28 TSSOP  
0 to +10V  
0 to +10V  
10V  
1
2
1
2
1
2
1
2
1
2
10V  
10V  
10V  
5V  
5V  
5V  
5V  
*Future product—contact factory for availability.  
______________________________________________________________________________________ 13  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Functional Diagram  
REFADJ  
AV  
AGND DV  
DGND  
DD  
DD  
5kΩ  
REFERENCE  
14 BITS  
14 BITS  
OUTPUT  
REGISTERS  
D0D13  
REF  
MAX1157  
MAX1159  
MAX1175  
CAPACITIVE  
DAC  
INPUT  
SCALER  
AIN  
AGND  
RESET  
SUCCESSIVE-  
APPROXIMATION  
REGISTER AND  
CONTROL LOGIC  
CLOCK  
CS  
EOC  
R/C  
14 ______________________________________________________________________________________  
14-Bit, 135ksps, Single-Supply ADCs with  
Bipolar Analog Input Range  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.(aꢆi(-ic.co(/packages.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 1ꢂ  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY