MAX11624EEG+T [MAXIM]

10-Bit, 300ksps ADCs with FIFO and Internal Reference;
MAX11624EEG+T
型号: MAX11624EEG+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

10-Bit, 300ksps ADCs with FIFO and Internal Reference

先进先出芯片 信息通信管理 光电二极管 转换器
文件: 总21页 (文件大小:1269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5961; Rev 1; 9/11  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
General Description  
Features  
The MAX11618–MAX11621/MAX11624/MAX11625 are  
serial 10-bit analog-to-digital converters (ADCs) with an  
internal reference. These devices feature on-chip FIFO,  
scan mode, internal clock mode, internal averaging,  
and AutoShutdown™. The maximum sampling rate is  
300ksps using an external clock. The MAX11624/  
MAX11625 have 16 input channels, the MAX11620/  
MAX11621 have 8 input channels, and the MAX11618/  
MAX11619 have 4 input channels. These six devices  
operate from either a +3V supply or a +5V supply, and  
contain a 10MHz SPI™-/QSPI™-/MICROWIRE™-com-  
patible serial port.  
o Analog Multiplexer with Track/Hold  
16 Channels (MAX11624/MAX11625)  
8 Channels (MAX11620/MAX11621)  
4 Channels (MAX11618/MAX11619)  
o Single Supply  
2.7V to 3.6V (MAX11619/MAX11621/MAX11625)  
4.75V to 5.25V  
(MAX11618/MAX11620/MAX11624)  
o Internal Reference  
2.5V (MAX11619/MAX11621/MAX11625)  
4.096V (MAX11618/MAX11620/MAX11624)  
The MAX11618–MAX11621 are available in 16-pin  
QSOP packages. The MAX11624/MAX11625 are avail-  
able in 24-pin QSOP packages. All six devices are  
specified over the extended -40°C to +85°C tempera-  
ture range.  
o External Reference: 1V to V  
DD  
o 16-Entry First-In/First-Out (FIFO)  
o Scan Mode, Internal Averaging, and Internal Clock  
o Accuracy: 1 LSB INL, 1 LSB DNL, No Missing  
Applications  
System Supervision  
Codes Over Temperature  
o 10MHz 3-Wire SPI-/QSPI-/MICROWIRE-Compatible  
Interface  
Data-Acquisition Systems  
Industrial Control Systems  
Patient Monitoring  
o Small Packages  
16-Pin QSOP (MAX11618–MAX11621)  
24-Pin QSOP (MAX11624/MAX11625)  
Data Logging  
Ordering Information  
Instrumentation  
NUMBER  
OF  
SUPPLY  
VOLTAGE  
RANGE (V)  
PIN-  
PACKAGE  
PART  
INPUTS  
MAX11618EEE+T  
MAX11619EEE+T  
MAX11620EEE+T  
MAX11621EEE+T  
MAX11624EEG+T  
MAX11625EEG+T  
4
4
4.75 to 5.25 16 QSOP  
2.7 to 3.6 16 QSOP  
4.75 to 5.25 16 QSOP  
2.7 to 3.6 16 QSOP  
4.75 to 5.25 24 QSOP  
2.7 to 3.6 24 QSOP  
8
8
16  
16  
Note: All devices are specified over the -40°C to +85°C operating  
temperature range.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
CS, SCLK, DIN, EOC, DOUT to GND.........-0.3V to (V  
AIN0–AIN14, CNVST/AIN_,  
REF to GND...........................................-0.3V to (V  
Maximum Current into Any Pin............................................50mA  
+ 0.3V)  
DD  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW  
24-Pin QSOP (derate 9.5mW/°C above +70°C)...........762mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAL CHARACTERISTICS (Note 1)  
16 QSOP  
24 QSOP  
Junction-to-Ambient Thermal Resistance (θ )................88°C/W  
Junction-to-Ambient Thermal Resistance (θ )...............105°C/W  
Junction-to-Case Thermal Resistance (θ )......................37°C/W  
JA  
JA  
Junction-to-Case Thermal Resistance (θ ).......................34°C/W  
JC  
JC  
Note 1: Package thermal resistances were obtained usiˇng the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
ELECTRICAL CHARACTERISTICS  
(V  
= 2.7V to 3.6V (MAX11619/MAX11621/MAX11625); V  
= 4.75V to 5.25V (MAX11618/MAX11620/MAX11624),  
DD  
DD  
f
= 300kHz, f  
= 4.8MHz (external clock, 50% duty cycle), V = 2.5V (MAX11619//MAX11621/MAX11625); V  
= 4.096V  
SAMPLE  
SCLK  
REF  
REF  
(MAX11618/MAX11620/MAX11624), T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
DC ACCURACY (Note 3)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
10  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
1.0  
1.0  
2.0  
2.0  
DNL  
No missing codes over temperature  
(Note 4)  
0.5  
0.5  
Gain Error  
Offset Error Temperature  
Coefficient  
ppm/°C  
FSR  
2
Gain Temperature Coefficient  
0.8  
0.1  
ppm/°C  
Channel-to-Channel Offset  
Matching  
LSB  
DYNAMIC SPECIFICATIONS (30kHz sine-wave input, 300ksps, f  
= 4.8MHz)  
8–4/MAX1625  
SCLK  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
SINAD  
THD  
62  
-79  
-81  
-74  
1
dB  
dBc  
dBc  
dBc  
MHz  
kHz  
Up to the 5th harmonic  
SFDR  
IMD  
f
= 29.9kHz, f  
= 30.1kHz  
IN2  
IN1  
-3dB point  
S/(N + D) > 61dB  
Full-Linear Bandwidth  
100  
2
_______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
ELECTRICAL CHARACTERISTICS (continued)  
= 4.75V to 5.25V (MAX11618/MAX11620/MAX11624),  
DD  
(V  
= 2.7V to 3.6V (MAX11619/MAX11621/MAX11625); V  
DD  
f
= 300kHz, f  
= 4.8MHz (external clock, 50% duty cycle), V = 2.5V (MAX11619//MAX11621/MAX11625); V  
= 4.096V  
SAMPLE  
SCLK  
REF  
REF  
(MAX11618/MAX11620/MAX11624), T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
External reference  
0.8  
65  
Power-Up Time  
Acquisition Time  
Conversion Time  
t
µs  
µs  
µs  
PU  
Internal reference (Note 5)  
t
0.6  
ACQ  
Internally clocked  
3.5  
t
CONV  
Externally clocked (Note 6)  
Externally clocked conversion  
Data I/O  
2.7  
0.1  
4.8  
10  
External Clock Frequency  
f
MHz  
SCLK  
Aperture Delay  
30  
ns  
ps  
Aperture Jitter  
< 50  
ANALOG INPUT  
Input Voltage Range  
Input Leakage Current  
Input Capacitance  
INTERNAL REFERENCE  
Unipolar  
0
V
V
REF  
V
= V  
0.01  
24  
1
µA  
pF  
IN  
DD  
During acquisition time (Note 7)  
MAX11618/MAX11620/MAX11624  
MAX11619/MAX11621/MAX11625  
MAX11618/MAX11620/MAX11624  
MAX11619/MAX11621/MAX11625  
4.024  
2.48  
4.096  
2.50  
20  
4.168  
2.52  
REF Output Voltage  
V
REF Temperature Coefficient  
TC  
ppm/°C  
REF  
30  
Output Resistance  
6.5  
k  
REF Output Noise  
200  
-70  
µV  
RMS  
REF Power-Supply Rejection  
EXTERNAL REFERENCE  
PSRR  
dB  
REF Input Voltage Range  
REF Input Current  
V
1.0  
V
DD  
+ 50mV  
100  
V
REF  
V
= 2.5V (MAX11619/MAX11621/  
REF  
MAX11625); V  
(MAX11618/MAX11620/MAX11624),  
= 4.096V  
REF  
40  
f
= 300ksps  
SAMPLE  
I
µA  
REF  
V
REF  
= 2.5V (MAX11619/MAX11621/  
MAX11625); V  
= 4.096V  
REF  
0.1  
5
(MAX11618/MAX11620/MAX11624),  
= 0  
f
SAMPLE  
_______________________________________________________________________________________  
3
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
ELECTRICAL CHARACTERISTICS (continued)  
= 4.75V to 5.25V (MAX11618/MAX11620/MAX11624),  
DD  
(V  
= 2.7V to 3.6V (MAX11619/MAX11621/MAX11625); V  
DD  
f
= 300kHz, f  
= 4.8MHz (external clock, 50% duty cycle), V = 2.5V (MAX11619//MAX11621/MAX11625); V  
= 4.096V  
SAMPLE  
SCLK  
REF  
REF  
(MAX11618/MAX11620/MAX11624), T = T  
to T , unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST) (Note 8)  
MAX11618/MAX11620/MAX11624  
MAX11619/MAX11621/MAX11625  
MAX11618/MAX11620/MAX11624  
MAX11619/MAX11621/MAX11625  
0.8  
Input-Voltage Low  
Input-Voltage High  
V
V
V
IL  
V
DD  
x 0.3  
2.0  
V
IH  
V
x 0.7  
DD  
Input Hysteresis  
V
200  
0.01  
15  
mV  
µA  
pF  
HYST  
Input Leakage Current  
Input Capacitance  
I
V
= 0V or V  
DD  
1.0  
IN  
IN  
C
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
I
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
Output-Voltage Low  
V
V
OL  
SINK  
Output-Voltage High  
V
= 1.5mA  
V - 0.5  
DD  
V
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output  
I
CS = V  
CS = V  
0.05  
15  
1
µA  
pF  
L
DD  
DD  
C
OUT  
POWER REQUIREMENTS  
MAX11618/MAX11620/MAX11624  
MAX11619/MAX11621/MAX11625  
4.75  
2.7  
5.25  
3.6  
2000  
1200  
5
Supply Voltage  
V
V
DD  
f
f
= 300ksps  
= 0, REF on  
1750  
1000  
0.2  
SAMPLE  
SAMPLE  
Internal reference  
External reference  
Internal reference  
External reference  
MAX11619/MAX11621/  
MAX11625 Supply Current  
(Note 9)  
µA  
Shutdown  
= 300ksps  
I
DD  
f
1050  
0.2  
1200  
5
SAMPLE  
Shutdown  
f
f
= 300ksps  
= 0, REF on  
2300  
1000  
0.2  
2550  
1350  
5
SAMPLE  
SAMPLE  
MAX11618/MAX11620/  
MAX11624 Supply Current  
(Note 9)  
I
Shutdown  
= 300ksps  
µA  
DD  
f
1550  
0.2  
1700  
5
SAMPLE  
Shutdown  
= 2.7V to 3.6V, full-scale input  
V
V
0.2  
1
DD  
Power-Supply Rejection  
PSR  
mV  
= 4.75V to 5.25V, full-scale input  
0.2  
1.4  
DD  
1
Note 2: Limits at T = -40°C are guaranteed by design and not production tested.  
A
Note 3: MAX11619/MAX11621/MAX11625 tested at V  
= +3V. MAX11618/MAX11620/MAX11624 tested at V  
= +5V.  
DD  
DD  
Note 4: Offset nulled.  
Note 5: Time for reference to power up and settle to within 1 LSB.  
Note 6: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 7: See Figure 3 (Equivalent Input Circuit) and the Sampling Error vs. Source Impedance curve in the Typical Operating  
Characteristics section.  
Note 8: When CNVST is configured as a digital input, do not apply a voltage between V and V  
.
IL  
IH  
Note 9: Supply current is specified depending on whether an internal or external reference is used for voltage conversions.  
4
_______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
TIMING CHARACTERISTICS (Figure 1)  
(V  
= 2.7V to 3.6V (MAX11619/MAX11621/MAX11625); V  
= 4.75V to 5.25V (MAX11618/MAX11620/MAX11624),  
DD  
DD  
f
= 300kHz, f  
= 4.8MHz (50% duty cycle), V = 2.5V (MAX11619/MAX11621/MAX11625); V  
= 4.096V  
SAMPLE  
SCLK  
REF  
REF  
(MAX11618/MAX11620/MAX11624), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
MAX A  
A
MIN  
PARAMETER  
SCLK Clock Period  
SYMBOL  
CONDITIONS  
MIN  
208  
100  
40  
TYP  
MAX  
UNITS  
Externally clocked conversion  
Data I/O  
t
ns  
CP  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Fall to DOUT Transition  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
CS Low to SCLK Setup  
CS High to SCLK Setup  
CS High After SCLK Hold  
CS Low After SCLK Hold  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
µs  
CH  
t
40  
CL  
t
C
C
C
= 30pF  
= 30pF  
= 30pF  
40  
40  
40  
DOT  
LOAD  
LOAD  
LOAD  
t
DOD  
t
DOE  
t
40  
0
DS  
DH  
t
t
t
40  
40  
0
CSS0  
CSS1  
CSH1  
CSH0  
t
t
0
4
t
CKSEL = 00  
40  
1.4  
CSPW  
CNVST Pulse Width Low  
CKSEL = 01  
Voltage conversion  
Reference power-up  
7
CS or CNVST Rise to EOC  
Low (Note 10)  
µs  
65  
Note 10: This time is defined as the number of clock cycles needed for conversion multiplied by the clock period. If the internal refer-  
ence needs to be powered up, the total time is additive.  
Typical Operating Characteristics  
(V  
= 3V (MAX11619/MAX11621/MAX11625); V  
= 5V (MAX11618/MAX11620/MAX11624), f  
= 4.8MHz, C  
= 30pF,  
LOAD  
DD  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
INTEGRAL NONLINEARITY  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
0.5  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
vs. OUTPUT CODE  
0.5  
0.5  
0.4  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
0.2  
0.1  
0
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
MAX11618/MAX11620/  
MAX11624  
MAX11619/MAX11621/  
MAX11625  
MAX11618/MAX11620/  
MAX11624  
-0.3  
-0.4  
-0.5  
-0.3  
-0.4  
-0.5  
f
= 300ksps  
f
= 300ksps  
f
= 300ksps  
SAMPLE  
SAMPLE  
SAMPLE  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
0
256  
512  
768  
1024  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
_______________________________________________________________________________________  
5
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= 3V (MAX11619/MAX11621/MAX11625); V  
= 5V (MAX11618/MAX11620/MAX11624), f  
= 4.8MHz, C = 30pF,  
LOAD  
DD  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
DIFFERENTIAL NONLINEARITY  
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
vs. OUTPUT CODE  
65  
100  
0.5  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
0.4  
0.3  
0.2  
0.1  
0
MAX11618/MAX11620/  
MAX11618/MAX11620/  
MAX11624  
90  
MAX11624  
80  
MAX11619/MAX11621/  
MAX11625  
MAX11619/MAX11621/  
MAX11625  
70  
-0.1  
-0.2  
MAX11619/MAX11621/  
-0.3  
60  
50  
MAX11625  
-0.4  
f
= 300ksps  
SAMPLE  
-0.5  
1
10  
100  
1k  
1
10  
100  
1k  
0
256  
512  
768  
1024  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT CODE (DECIMAL)  
SUPPLY CURRENT vs. SAMPLING RATE  
THD vs. FREQUENCY  
3000  
2500  
2000  
1500  
1000  
500  
-50  
-60  
MAX11618/MAX11620/  
MAX11624  
V
= 5V  
DD  
MAX11619/MAX11621/  
-70  
MAX11625  
INTERNAL REFERENCE  
-80  
EXTERNAL REFERENCE  
MAX11618/MAX11620/  
MAX11624  
-90  
0
-100  
1
10  
100  
1k  
1
10  
100  
1k  
SAMPLING RATE (ksps)  
FREQUENCY (kHz)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SAMPLING RATE  
1800  
1600  
1400  
1200  
1000  
800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
MAX11619/MAX11621/  
MAX11625  
INTERNAL REFERENCE  
V
DD  
= 3V  
8–4/MAX1625  
INTERNAL REFERENCE  
EXTERNAL REFERENCE  
600  
EXTERNAL REFERENCE  
MAX11618/MAX11620/  
400  
MAX11624  
= 300ksps  
200  
f
SAMPLE  
0
1
10  
100  
1k  
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
(V)  
SAMPLING RATE (ksps)  
V
DD  
6
_______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
Typical Operating Characteristics (continued)  
(V  
= 3V (MAX11619/MAX11621/MAX11625); V  
= 5V (MAX11618/MAX11620/MAX11624), f  
= 4.8MHz, C  
= 30pF,  
LOAD  
DD  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
2000  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
0.5  
0.8  
INTERNAL REFERENCE  
1800  
1600  
1400  
1200  
1000  
800  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.4  
0.3  
EXTERNAL REFERENCE  
0.2  
600  
MAX11618/MAX11620/  
MAX11624  
MAX11619/MAX11621/  
MAX11625  
MAX11619/MAX11621/  
0.1  
400  
MAX11625  
= 300ksps  
V
DD  
= 5V  
200  
V
DD  
= 3V  
f
SAMPLE  
0
0
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
(V)  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
(V)  
4.75 4.80 4.85 4.90 4.95 5.00 5.05 5.10 5.15 5.20 5.25  
(V)  
V
DD  
V
V
DD  
DD  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
2500  
2200  
1900  
1600  
1300  
1000  
1800  
1600  
1400  
1200  
1000  
800  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
MAX11619/MAX11621/  
MAX11625  
V
= 3V  
DD  
f
= 300ksps  
SAMPLE  
EXTERNAL REFERENCE  
EXTERNAL REFERENCE  
MAX11618/MAX11620/  
MAX11624  
V
= 5V  
DD  
f
= 300ksps  
SAMPLE  
600  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
MAX11618/MAX11620/  
MAX11624  
MAX11619/MAX11621/  
MAX11625  
V
= 5V  
V
= 3V  
DD  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= 3V (MAX11619/MAX11621/MAX11625); V  
= 5V (MAX11618/MAX11620/MAX11624), f  
= 4.8MHz, C  
= 30pF,  
LOAD  
DD  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
4.099  
4.098  
4.097  
4.096  
4.095  
4.094  
MAX11619/MAX11621  
MAX11625  
MAX11618/MAX11620/  
MAX11624  
= 5V  
V
= 3V  
DD  
V
DD  
3.0  
3.3  
2.7  
3.6  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
DD  
(V)  
V
DD  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
4.120  
4.110  
4.100  
4.090  
4.080  
4.070  
2.520  
2.510  
2.500  
2.490  
2.480  
2.470  
MAX11618/MAX11620/  
MAX11624  
MAX11619/MAX11621/  
MAX11625  
V
= 5V  
DD  
V
= 3V  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.70  
0.65  
0.60  
0.55  
0.50  
0.6  
0.4  
0.2  
0
8–4/MAX1625  
-0.2  
-0.4  
-0.6  
MAX11619/MAX11621/  
MAX11625  
MAX11618/MAX11620/  
MAX11624  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
3.0  
3.3  
2.7  
3.6  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
DD  
(V)  
V
DD  
8
_______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
Typical Operating Characteristics (continued)  
(V  
= 3V (MAX11619/MAX11621/MAX11625); V  
= 5V (MAX11618/MAX11620/MAX11624), f  
= 4.8MHz, C  
= 30pF,  
LOAD  
DD  
DD  
SCLK  
T
A
= +25°C, unless otherwise noted.)  
OFFSET ERROR vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
1.0  
0.8  
0.3  
MAX11618/MAX11620  
MAX11624  
MAX11619/MAX11621/  
MAX11625  
0.6  
0.2  
f
= 300ksps  
f
= 300ksps  
SAMPLE  
SAMPLE  
0.7  
0.6  
0.5  
0.4  
0.2  
0.1  
0
-0.2  
MAX11618/MAX11620/  
-0.6  
MAX11624  
f
= 300ksps  
SAMPLE  
-1.0  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
V
DD  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0
1.0  
0.6  
MAX11619/MAX11621/  
MAX11625  
MAX11618/MAX11620  
MAX11624  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
0.2  
-0.1  
-0.2  
-0.2  
-0.6  
-1.0  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
V
(V)  
TEMPERATURE (°C)  
DD  
SAMPLING ERROR  
vs. SOURCE IMPEDANCE  
GAIN ERROR vs. TEMPERATURE  
0.5  
0.3  
2
0
MAX11619/MAX11621/  
MAX11625  
f
= 300ksps  
SAMPLE  
-2  
0.1  
-4  
-6  
-0.1  
-0.3  
-8  
-10  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
TEMPERATURE (°C)  
SOURCE IMPEDANCE (k)  
_______________________________________________________________________________________  
9
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Pin Configurations  
TOP VIEW  
+
1
2
3
4
5
6
7
8
9
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
AIN8  
24 EOC  
23 DOUT  
22 DIN  
+
AIN0  
1
2
3
4
5
6
7
8
16 EOC  
15 DOUT  
14 DIN  
21  
20  
19  
SCLK  
CS  
AIN1  
AIN2  
MAX11624–  
MAX11625  
V
AIN3  
MAX11618–  
MAX11621  
13  
12  
11  
DD  
SCLK  
CS  
18 GND  
AIN4 (N.C.)  
AIN5 (N.C.)  
AIN6 (N.C.)  
17 REF  
V
DD  
16 CNVST/AIN15  
15 AIN14  
14 AIN13  
13 AIN12  
10 GND  
REF  
AIN9 10  
AIN10 11  
AIN11 12  
AIN7/(CNVST)  
9
QSOP  
() MAX11618/MAX11619 ONLY  
QSOP  
Pin Description  
PIN  
MAX11618  
MAX11619  
MAX11620  
MAX11621  
MAX11624  
MAX11625  
NAME  
FUNCTION  
(4 CHANNELS) (8 CHANNELS) (16 CHANNELS)  
1–4  
5, 6, 7  
AIN0–AIN3  
N.C.  
Analog Inputs  
No Connection. Not internally connected.  
1–15  
AIN0–AIN14 Analog Inputs  
1–7  
AIN0–AIN6  
Analog Inputs  
Active-Low Conversion Start Input/Analog Input 15. See  
Table 3 for details on programming the setup register.  
8
8
16  
CNVST/AIN15  
CNVST/AIN7  
CNVST  
Active-Low Conversion Start Input/Analog Input 7. See Table  
3 for details on programming the setup register.  
Active-Low Conversion Start Input. See Table 3 for details on  
programming the setup register.  
9
9
17  
18  
19  
REF  
Reference Input. Bypass to GND with a 0.1µF capacitor.  
Ground  
10  
11  
10  
11  
GND  
V
Power Input. Bypass to GND with a 0.1µF capacitor.  
DD  
Active-Low Chip-Select Input. When CS is low, the serial  
interface is enabled. When CS is high, DOUT is high  
impedance.  
8–4/MAX1625  
12  
12  
20  
CS  
Serial Clock Input. Clocks data in and out of the serial  
interface (duty cycle must be 40% to 60%). See Table 3 for  
details on programming the clock mode.  
13  
14  
13  
14  
21  
22  
SCLK  
DIN  
Serial Data Input. DIN data is latched into the serial interface  
on the rising edge of SCLK.  
Serial Data Output. Data is clocked out on the falling edge of  
15  
16  
15  
16  
23  
24  
DOUT  
SCLK. High impedance when CS is connected to V  
.
DD  
EOC  
End of Conversion Output. Data is valid after EOC pulls low.  
10 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
CS  
t
CSH0  
t
t
t
CSH1  
t
CH  
CP  
CSS0  
t
CSS1  
t
CL  
SCLK  
DIN  
t
DH  
t
DS  
t
t
DOT  
DOD  
t
DOE  
DOUT  
Figure 1. Detailed Serial-Interface Timing Diagram  
CS  
DIN  
SCLK  
SERIAL  
INTERFACE  
DOUT  
EOC  
OSCILLATOR  
CNVST  
CONTROL  
AIN0  
AIN1  
10-BIT  
SAR  
ADC  
T/H  
FIFO AND  
ACCUMULATOR  
AIN15  
REF  
INTERNAL  
REFERENCE  
MAX11618–MAX11621  
MAX11624/MAX11625  
Figure 2. Functional Diagram  
through a 3-wire SPI-/QSPI-/MICROWIRE-compatible  
serial interface.  
Detailed Description  
The MAX11618–MAX11621/MAX11624/MAX11625 are  
low-power, serial-output, multichannel ADCs with FIFO  
capability for system monitoring, process-control, and  
instrumentation applications. These 10-bit ADCs have  
internal track and hold (T/H) circuitry supporting single-  
ended inputs. Data is converted from analog voltage  
sources in a variety of channel and data-acquisition con-  
figurations. Microprocessor (µP) control is made easy  
Figure 2 shows a simplified functional diagram of the  
MAX11618–MAX11621/MAX11624/MAX11625 internal  
architecture. The MAX11624/MAX11625 have 16 sin-  
gle-ended analog input channels. The MAX11620/  
MAX11621 have 8 single-ended analog input channels.  
The MAX11618/MAX11619 have 4 single-ended analog  
input channels.  
______________________________________________________________________________________ 11  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
conversions one channel at a time, controlling the sam-  
Converter Operation  
The MAX11618–MAX11621/MAX11624/MAX11625  
ADCs use a successive-approximation register (SAR)  
conversion technique and an on-chip T/H block to con-  
vert voltage signals into a 10-bit digital result. This single-  
ended configuration supports unipolar signal ranges.  
pling speed without tying up the serial bus. Request  
and start internally timed conversions through the serial  
interface by writing to the conversion register in the  
default clock mode 10. Use clock mode 11 with SCLK  
up to 4.8MHz for externally timed acquisitions to  
achieve sampling rates up to 300ksps. Clock mode 11  
disables scanning and averaging. See Figures 4–7 for  
timing specifications and how to begin a conversion.  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-  
signal bandwidth, so it is possible to digitize high-speed  
transient events and measure periodic signals with  
bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequency  
signals aliasing into the frequency band of interest.  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the last  
requested operation and is waiting for the next input  
data byte (for clock modes 00 and 10). In clock mode  
01, EOC goes low after the ADC completes each  
requested operation. EOC goes high when CS or  
CNVST goes low. EOC is always high in clock mode 11.  
Analog Input Protection  
Internal ESD protection diodes clamp all pins to V  
DD  
Single-Ended Inputs  
The single-ended analog input conversion modes can  
be configured by writing to the setup register (see  
Table 3). Single-ended conversions are internally refer-  
enced to GND (see Figure 3).  
and GND, allowing the inputs to swing from (GND -  
0.3V) to (V + 0.3V) without damage. However, for  
DD  
accurate conversions near full scale, the inputs must  
not exceed V by more than 50mV or be lower than  
DD  
GND by 50mV. If an off-channel analog input voltage  
exceeds the supplies, limit the input current to 2mA.  
AIN0–AIN3 are available on the MAX11618–MAX11621/  
MAX11624/MAX11625. AIN4–AIN7 are only available on  
the MAX11620–MAX11625. AIN8–AIN15 are only available  
on the MAX11624/MAX11625. See Tables 2–5 for more  
details on configuring the inputs. For the inputs that can be  
configured as CNVST or an analog input, only one can be  
used at a time.  
3-Wire Serial Interface  
The MAX11618–MAX11621/MAX11624/MAX11625 fea-  
ture a serial interface compatible with SPI/QSPI and  
MICROWIRE devices. For SPI/QSPI, ensure the CPU  
serial interface runs in master mode so it generates the  
serial clock signal. Select the SCLK frequency of 10MHz  
or less, and set clock polarity (CPOL) and phase  
(CPHA) in the µP control registers to the same value.  
The MAX11618–MAX11621/MAX11624/MAX11625  
operate with SCLK idling high or low, and thus operate  
with CPOL = CPHA = 0 or CPOL = CPHA = 1. Set CS  
low to latch input data at DIN on the rising edge of  
SCLK. Output data at DOUT is updated on the falling  
edge of SCLK. Results are output in binary format.  
Unipolar  
The MAX11618–MAX11621/MAX11624/MAX11625  
always operate in unipolar mode. The analog inputs are  
internally referenced to GND with a full-scale input  
range from 0 to V  
.
REF  
REF  
GND  
DAC  
Serial communication always begins with an 8-bit input  
data byte (MSB first) loaded from DIN. A high-to-low  
transition on CS initiates the data input operation. The  
input data byte and the subsequent data bytes are  
clocked from DIN into the serial interface on the rising  
edge of SCLK. Tables 1–5 detail the register descrip-  
tions. Bits 5 and 4, CKSEL1 and CKSEL0, respectively,  
control the clock modes in the setup register (see Table  
3). Choose between four different clock modes for vari-  
ous ways to start a conversion and determine whether  
the acquisitions are internally or externally timed. Select  
clock mode 00 to configure CNVST/AIN_ to act as a  
conversion start and use it to request the programmed,  
internally timed conversions without tying up the serial  
bus. In clock mode 01, use CNVST to request  
AIN0–AIN15  
CIN+  
COMPARATOR  
8–4/MAX1625  
+
HOLD  
-
CIN-  
GND  
HOLD  
HOLD  
V
DD  
/2  
Figure 3. Equivalent Input Circuit  
12 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
Read out the data at clock speeds up to 10MHz. See  
Figures 4–7 for details on timing specifications and  
starting a conversion.  
True Differential Analog Input T/H  
The equivalent circuit of Figure 3 shows the  
MAX11618–MAX11621/MAX11624/MAX11625s’ input  
architecture. In track mode, a positive input capacitor is  
connected to AIN0–AIN15. A negative input capacitor is  
connected to GND. For external T/H timing, use clock  
mode 01. After the T/H enters hold mode, the difference  
between the sampled positive and negative input voltages  
is converted. The time required for the T/H to acquire an  
input signal is determined by how quickly its input capaci-  
tance is charged. If the input signal’s source impedance is  
high, the required acquisition time lengthens. The acquisi-  
Applications Information  
Register Descriptions  
The MAX11618–MAX11621/MAX11624/MAX11625  
communicate between the internal registers and the  
external circuitry through the SPI-/QSPI-compatible ser-  
ial interface. Table 1 details the registers and the bit  
names. Tables 2–5 show the various functions within  
the conversion register, setup register, averaging regis-  
ter, and reset register.  
tion time, t  
, is the maximum time needed for a signal to  
ACQ  
be acquired, plus the power-up time. It is calculated by the  
following equation:  
Conversion Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, and if the external  
reference is in use.  
t
= 9 x (R + R ) x 24pF + t  
S IN PWR  
ACQ  
where R = 1.5k, R is the source impedance of the  
IN  
S
input signal, and t  
= 1µs, the power-up time of the  
PWR  
device. The varying power-up times are detailed in the  
explanation of the clock mode conversions. When the  
Use the following formula to calculate the total conver-  
sion time for an internally timed conversion in clock  
modes 00 and 10 (see the Electrical Characteristics  
section as applicable):  
conversion is internally timed, t  
is never less than  
ACQ  
1.4µs, and any source impedance below 300does not  
significantly affect the ADC’s AC performance. A high-  
impedance source can be accommodated either by  
Total Conversion Time = t  
where:  
x n  
x n  
+ t  
CNV  
AVG  
RESULT RP  
lengthening t  
or by placing a 1µF capacitor between  
ACQ  
the positive and negative analog inputs.  
t
= t  
(max) + t  
(max).  
CONV  
CNV  
ACQ  
Internal FIFO  
n
n
= samples per result (amount of averaging).  
AVG  
The MAX11618–MAX11621/MAX11624/MAX11625 con-  
tain a FIFO buffer that can hold up to 16 ADC results. This  
allows the ADC to handle multiple internally clocked con-  
versions, without tying up the serial bus. If the FIFO is filled  
and further conversions are requested without reading  
from the FIFO, the oldest ADC results are overwritten by  
the new ADC results. Each result contains 2 bytes, with the  
MSB preceded by four leading zeros. After each falling  
edge of CS, the oldest available byte of data is available at  
DOUT, MSB first. When the FIFO is empty, DOUT is zero.  
= number of FIFO results requested;  
RESULT  
determined by the number of channels being  
scanned or by NSCAN1, NSCAN0.  
t
= internal reference wake-up; set to zero if inter-  
RP  
nal reference is already powered up or external ref-  
erence is being used .  
In clock mode 01, the total conversion time depends on  
how long CNVST is held low or high, including any time  
required to turn on the internal reference. Conversion  
time in externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
Internal Clock  
The MAX11618–MAX11621/MAX11624/MAX11625  
operate from an internal oscillator, which is accurate  
within 10% of the 4.4MHz nominal clock rate. The inter-  
nal oscillator is active in clock modes 00, 01, and 10.  
Table 1. Input Data Byte (MSB First)  
REGISTER NAME  
Conversion  
Setup  
BIT 7  
BIT 6  
BIT 5  
CHSEL2  
CKSEL1  
1
BIT 4  
CHSEL1  
CKSEL0  
AVGON  
1
BIT 3  
CHSEL0  
REFSEL1  
NAVG1  
RESET  
BIT 2  
SCAN1  
REFSEL0  
NAVG0  
X
BIT 1  
SCAN0  
X
BIT 0  
1
0
0
0
CHSEL3  
X
1
0
0
X
NSCAN0  
X
Averaging  
NSCAN1  
X
Reset  
0
X = Don’t care.  
______________________________________________________________________________________ 13  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Conversion Register  
Table 2. Conversion Register*  
Select active analog input channels per scan and scan  
modes by writing to the conversion register. Table 2  
details channel selection and the four scan modes.  
Request a scan by writing to the conversion register  
when in clock mode 10 or 11, or by applying a low  
pulse to the CNVST pin when in clock mode 00 or 01.  
BIT  
BIT  
FUNCTION  
NAME  
7 (MSB) Set to 1 to select conversion register.  
CHSEL3  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
6
5
4
3
2
1
Analog input channel select.  
Analog input channel select.  
Analog input channel select.  
Analog input channel select.  
Scan mode select.  
A conversion is not performed if it is requested on a  
channel that has been configured as CNVST. Do not  
request conversions on channels 8–15 on the  
MAX11618–MAX11621. Set CHSEL3:CHSEL0 to the  
lower channel’s binary values.  
Scan mode select.  
Select scan mode 00 or 01 to return one result per sin-  
gle-ended channel within the requested range. Select  
scan mode 10 to scan a single input channel numerous  
times, depending on NSCAN1 and NSCAN0 in the  
averaging register (Table 4). Select scan mode 11 to  
return only one result from a single channel.  
0 (LSB) Don’t care.  
*See below for bit details.  
SELECTED  
CHANNEL (N)  
CHSEL3 CHSEL2 CHSEL1 CHSEL0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
Setup Register  
Write a byte to the setup register to configure the clock,  
reference, and power-down modes. Table 3 details the  
bits in the setup register. Bits 5 and 4 (CKSEL1 and  
CKSEL0) control the clock mode, acquisition and sam-  
pling, and the conversion start. Bits 3 and 2 (REFSEL1  
and REFSEL0) control internal or external reference use.  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
Averaging Register  
Write to the averaging register to configure the ADC to  
average up to 32 samples for each requested result,  
and to independently control the number of results  
requested for single-channel scans.  
AIN7  
AIN8  
AIN9  
AIN10  
AIN11  
AIN12  
AIN13  
AIN14  
AIN15  
Table 2 details the four scan modes available in the  
conversion register. All four scan modes allow averag-  
ing as long as the AVGON bit, bit 4 in the averaging  
register, is set to 1. Select scan mode 10 to scan the  
same channel multiple times. Clock mode 11 disables  
averaging.  
Reset Register  
Write to the reset register (as shown in Table 5) to clear  
the FIFO or to reset all registers to their default states.  
Set the RESET bit to 1 to reset the FIFO. Set the reset  
bit to zero to return the MAX11618–MAX11621/  
MAX11624/MAX11625 to the default power-up state.  
SCAN MODE (CHANNEL N IS  
SELECTED BY BITS CHSEL3–CHSEL0)  
SCAN1 SCAN0  
8–4/MAX1625  
0
0
0
1
Scans channels 0 through N.  
Scans channels N through the highest  
numbered channel.  
Scans channel N repeatedly. The averaging  
register sets the number of results.  
1
1
0
1
No scan. Converts channel N once only.  
14 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
Table 3. Setup Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to zero to select setup register.  
6
Set to 1 to select setup register.  
Clock mode and CNVST configuration. Resets to 1 at power-up.  
Clock mode and CNVST configuration.  
Reference mode configuration.  
Reference mode configuration.  
Don’t care.  
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
5
4
3
2
1
0 (LSB)  
Don’t care.  
*See below for bit details.  
CKSEL1  
CKSEL0  
CONVERSION CLOCK  
Internal  
ACQUISITION/SAMPLING  
Internally timed  
CNVST CONFIGURATION  
CNVST  
0
0
1
1
0
1
0
1
Internal  
Externally timed through CNVST  
Internally timed  
CNVST  
Internal  
AIN15/AIN11/AIN7**  
AIN15/AIN11/AIN7**  
External (4.8MHz max)  
Externally timed through SCLK  
**For the MAX11618/MAX11619, CNVST has its own dedicated pin.  
REFSEL1 REFSEL0  
VOLTAGE REFERENCE  
Internal  
AutoShutdown  
Reference off after scan; need  
wake-up delay.  
0
0
1
1
0
1
0
1
External single ended  
Internal  
Reference off; no wake-up delay.  
Reference always on; no wake-up  
delay.  
Reserved  
Reserved. Do not use.  
______________________________________________________________________________________ 15  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Table 4. Averaging Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to 0 to select averaging register.  
6
Set to 0 to select averaging register.  
Set to 1 to select averaging register.  
5
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
4
Set to 1 to turn averaging on. Set to zero to turn averaging off.  
Configures the number of conversions for single-channel scans.  
Configures the number of conversions for single-channel scans.  
Single-channel scan count. (Scan mode 10 only.)  
3
2
1
0 (LSB)  
Single-channel scan count. (Scan mode 10 only.)  
*See below for bit details.  
AVGON  
NAVG1  
NAVG0  
FUNCTION  
Performs 1 conversion for each requested result.  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs 4 conversions and returns the average for each requested result.  
Performs 8 conversions and returns the average for each requested result.  
Performs 16 conversions and returns the average for each requested result.  
Performs 32 conversions and returns the average for each requested result.  
X = Don’t care.  
NSCAN1  
NSCAN0  
FUNCTION (APPLIES ONLY IF SCAN MODE 10 IS SELECTED)  
0
0
1
1
0
1
0
1
Scans channel N and returns 4 results.  
Scans channel N and returns 8 results.  
Scans channel N and returns 12 results.  
Scans channel N and returns 16 results.  
Table 5. Reset Register  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to 0 to select reset register.  
6
Set to 0 to select reset register.  
Set to 0 to select reset register.  
Set to 1 to select reset register.  
5
4
8–4/MAX1625  
RESET  
3
Set to zero to reset all registers. Set to 1 to clear the FIFO only.  
X
X
X
2
1
Don’t care.  
Don’t care.  
Don’t care.  
0 (LSB)  
16 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
pulled low and the results are available in the FIFO.  
Wait until EOC goes low before pulling CS low to com-  
municate with the serial interface. EOC stays low until  
CS or CNVST is pulled low again.  
Power-Up Default State  
The MAX11618–MAX11621/MAX11624/MAX11625  
power up with all blocks in shutdown, including the ref-  
erence. All registers power up in state 00000000,  
except for the setup register, which powers up in clock  
mode 10 (CKSEL1 = 1).  
Do not initiate a second CNVST before EOC goes low;  
otherwise, the FIFO can become corrupted.  
Output Data Format  
Figures 4–7 illustrate the conversion timing for the  
MAX11618–MAX11621/MAX11624/MAX11625. The 10-  
bit conversion result is output in MSB-first format with  
four leading zeros followed by 10-bit data and two trail-  
ing zeros. DIN data is latched into the serial interface  
on the rising edge of SCLK. Data on DOUT transitions  
on the falling edge of SCLK. Conversions in clock  
modes 00 and 01 are initiated by CNVST. Conversions  
in clock modes 10 and 11 are initiated by writing an  
input data byte to the conversion register. Data output  
is binary.  
Externally Timed Acquisitions and  
Internally Timed Conversions with CNVST  
Performing Conversions in Clock Mode 01  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using the  
internal oscillator. See Figure 5 for clock mode 01 timing.  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
at least 1.4µs to complete the acquisition. If the internal  
reference needs to wake up, an additional 65µs is  
required for the internal reference to power up.  
Set CNVST high to begin a conversion. After the con-  
version is complete, the ADC shuts down and pulls  
EOC low. EOC stays low until CS or CNVST is pulled  
low again. Wait until EOC goes low before pulling CS or  
CNVST low.  
Internally Timed Acquisitions and  
Conversions Using CNVST  
Performing Conversions in Clock Mode 00  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequences are initiated through CNVST  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 4 for clock mode 00 timing.  
If averaging is turned on, multiple CNVST pulses need  
to be performed before a result is written to the FIFO.  
Once the proper number of conversions has been per-  
formed to generate an averaged FIFO result, as speci-  
fied by the averaging register, the scan logic  
automatically switches the analog input multiplexer to  
the next-requested channel. The result is available on  
DOUT once EOC has been pulled low.  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX11618–  
MAX11621/MAX11624/MAX11625 then wake up, scan  
all requested channels, store the results in the FIFO,  
and shut down. After the scan is complete, EOC is  
CNVST  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
EOC  
LSB1  
MSB2  
MSB1  
SET CNVST LOW FOR AT LEAST 40ns TO BEGIN A CONVERSION.  
Figure 4. Clock Mode 00  
______________________________________________________________________________________ 17  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
CNVST  
(CONVERSION2)  
(ACQUISITION1)  
(ACQUISITION2)  
CS  
(CONVERSION1)  
SCLK  
DOUT  
EOC  
LSB1  
MSB1  
MSB2  
REQUEST MULTIPLE CONVERSIONS BY SETTING CNVST LOW FOR EACH CONVERSION.  
Figure 5. Clock Mode 01  
(CONVERSION BYTE)  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
DIN  
CS  
SCLK  
DOUT  
LSB1  
MSB1  
MSB2  
EOC  
THE CONVERSION BYTE BEGINS THE ACQUISITION. CNVST IS NOT REQUIRED.  
Figure 6. Clock Mode 10  
Internally Timed Acquisitions and  
complete, EOC is pulled low and the results are avail-  
able in the FIFO. EOC stays low until CS is pulled low  
again.  
Conversions Using the Serial Interface  
Performing Conversions in Clock Mode 10  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequences are initiated by writing an  
input data byte to the conversion register, and are per-  
formed automatically using the internal oscillator. This  
is the default clock mode upon power-up. See Figure 6  
for clock mode 10 timing.  
8–4/MAX1625  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
Performing Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing to the conversion register and are per-  
formed one at a time using the SCLK as the conversion  
clock. Scanning and averaging are disabled, and the  
conversion result is available at DOUT during the con-  
version. See Figure 7 for clock mode 11 timing.  
Initiate a scan by writing a byte to the conversion regis-  
ter. The MAX11618–MAX11621/MAX11624/MAX11625  
then power up, scan all requested channels, store the  
results in the FIFO, and shut down. After the scan is  
18 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
(CONVERSION BYTE)  
DIN  
(ACQUISITION2)  
(ACQUISITION1)  
(CONVERSION1)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
EXTERNALLY TIMED ACQUISITION, SAMPLING AND CONVERSION WITHOUT CNVST.  
Figure 7. Clock Mode 11  
Initiate a conversion by writing a byte to the conversion  
register followed by 16 SCLK cycles. If CS is pulsed  
high between the eight and ninth cycles, the pulse  
width must be less than 100µs. To continuously convert  
at 16 cycles per conversion, alternate 1 byte of zeros  
between each conversion byte.  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
11 . . . 110  
11 . . . 101  
If reference mode 00 is requested, wait 65µs with CS  
high after writing the conversion byte to extend the  
acquisition and allow the internal reference to power up.  
FS = V + V  
REF  
COM  
ZS = V  
COM  
Partial Reads and Partial Writes  
If the first byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the second byte of data that is read out contains the  
next 8 bits (not b7–b0). The remaining bits are lost for  
that entry. If the first byte of an entry in the FIFO is read  
out fully, but the second byte is read out partially, the  
rest of the entry is lost. The remaining data in the FIFO  
is uncorrupted and can be read out normally after tak-  
ing CS low again, as long as the 4 leading bits (normal-  
ly zeros) are ignored. Internal registers that are written  
partially through the SPI contain new values, starting at  
the MSB up to the point that the partial write is stopped.  
The part of the register that is not written contains previ-  
ously written values. If CS is pulled low before EOC  
goes low, a conversion cannot be completed and the  
FIFO is corrupted.  
V
1024  
REF  
1 LSB =  
00 . . . 011  
00 . . . 010  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
(COM)  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
Figure 8. Unipolar Transfer Function, Full Scale (FS) = V  
REF  
Layout, Grounding, and Bypassing  
For best performance, use PCBs. Do not use wire wrap  
boards. Board layout should ensure that digital and  
analog signal lines are separated from each other. Do  
not run analog and digital (especially clock) signals  
parallel to one another or run digital lines underneath  
Transfer Function  
Figure 8 shows the unipolar transfer function for single-  
ended inputs. Code transitions occur halfway between  
successive-integer LSB values. Output coding is binary,  
the package. High-frequency noise in the V  
power  
supply  
DD  
DD  
supply can affect performance. Bypass the V  
DD  
with a 0.1µF capacitor to GND, close to the V  
pin.  
Minimize capacitor lead lengths for best supply-noise  
rejection. If the power supply is very noisy, connect a  
10resistor in series with the supply to improve power-  
supply filtering.  
with 1 LSB = V  
/1024 for unipolar operation.  
REF  
______________________________________________________________________________________ 19  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
Signal-to-Noise Plus Distortion  
Definitions  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX11618–MAX11621/MAX11624/MAX11625 is  
measured using the end-point method.  
SINAD (dB) = 20 x log (Signal  
/Noise  
)
RMS  
RMS  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC error consists of quantiza-  
tion noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
ENOB = (SINAD - 1.76)/6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Aperture Delay  
2
2
2
2
Aperture delay (t ) is the time between the rising  
AD  
THD = 20 x log  
V2 + V3 + V4 + V5 /V1  
(
)
edge of the sampling clock and the instant when an  
actual sample is taken.  
where V1 is the fundamental amplitude, and V2–V5 are  
the amplitudes of the 2nd through 5th-order harmonics.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly from the ADC’s resolution  
(N bits):  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next-largest distor-  
tion component.  
SNR = (6.02 x N + 1.76)dB  
Chip Information  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
PROCESS: BiCMOS  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
8–4/MAX1625  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
16 QSOP  
24 QSOP  
E16+5  
E24+3  
21-0055  
21-0055  
90-0167  
90-0172  
20 ______________________________________________________________________________________  
10-Bit, 300ksps ADCs  
with FIFO and Internal Reference  
8–4/MAX1625  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
6/11  
Initial release  
Released MAX11618–MAX11621. Updated Absolute Maximum Ratings, Transfer  
Function section, and Package Information.  
1
9/11  
1, 2, 19, 20  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY