MAX11637EEE+T [MAXIM]

12-Bit, 300ksps ADCs with Differential; 12位,高达300ksps ADC,带有差分
MAX11637EEE+T
型号: MAX11637EEE+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

12-Bit, 300ksps ADCs with Differential
12位,高达300ksps ADC,带有差分

文件: 总24页 (文件大小:1298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-5962; Rev 1; 9/11  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
General Description  
Features  
The MAX11634–MAX11637 are serial 12-bit analog-to-  
digital converters (ADCs) with an internal reference and  
true differential track/hold. These devices feature on-chip  
FIFO, scan mode, internal clock mode, internal averag-  
ing, and AutoShutdown™. The maximum sampling rate is  
300ksps using an external clock. The MAX11636/  
MAX11637 have 8 input channels and the MAX11634/  
MAX11635 have 4 input channels. These four devices  
operate from either a +3V supply or a +5V supply, and  
contain a 10MHz SPI™-/QSPI™-/MICROWIRE™-compati-  
ble serial port.  
o Analog Multiplexer with True Differential Track/Hold  
8-/4-Channel Single-Ended  
4-/2-Channel True Differential  
Unipolar or Bipolar Inputs  
o Single Supply  
2.7V to 3.6V (MAX11635/MAX11637)  
4.75V to 5.25V (MAX11634/MAX11636)  
o External Reference: 1V to V  
DD  
o 16-Entry First-In/First-Out (FIFO)  
The MAX11634–MAX11637 are available in a 16-pin  
QSOP package. All four devices are specified over the  
extended -40°C to +85°C temperature range.  
o Scan Mode, Internal Averaging, and Internal Clock  
o Accuracy: 1 ꢀSB Iꢁꢀ, 1 ꢀSB Dꢁꢀ, ꢁo Missing  
Codes Over Temperature  
Applications  
System Supervision  
o 10MHz 3-Wire SPI-/QSPI-/MICROWIRE-Compatible  
Interface  
o Small 16-Pin QSOP Package  
Data-Acquisition Systems  
Industrial Control Systems  
Patient Monitoring  
Data Logging  
Instrumentation  
Ordering Information/Selector Guide  
PART  
ꢁUMBER OF IꢁPUTS  
SUPPꢀY VOꢀTAGE (V)  
TEMP RAꢁGE  
PIꢁ-PACKAGE  
4 Single-Ended/  
2 Differential  
MAX11634EEE+T  
4.75 to 5.25  
-40°C to +85°C  
16 QSOP  
4 Single-Ended/  
2 Differential  
MAX11635EEE+T  
MAX11636EEE+T  
MAX11637EEE+T  
2.7 to 3.6  
4.75 to 5.25  
2.7 to 3.6  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
16 QSOP  
16 QSOP  
16 QSOP  
8 Single-Ended/  
4 Differential  
8 Single-Ended/  
4 Differential  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
T = Tape and reel.  
AutoShutdown is a trademark of Maxim Integrated Products, Inc.  
SPI/QSPI are trademarks of Motorola, Inc.  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
ABSOꢀUTE MAXIMUM RATIꢁGS  
DD  
CS, SCLK, DIN, EOC, DOUT to GND.........-0.3V to (V  
AIN0–AIN5, REF-/AIN6, CNVST/AIN7,  
REF+ to GND.........................................-0.3V to (V  
Maximum Current into any Pin............................................50mA  
V
to GND..............................................................-0.3V to +6V  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-60°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Soldering Temperature (reflow) .......................................+260°C  
+ 0.3V)  
DD  
+ 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
QSOP (single-layer board)  
(derate 8.3mW/°C above +70°C).................................667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
PACKAGE THERMAꢀ CHARACTERISTICS (ꢁote 1)  
QSOP  
Junction-to-Ambient Thermal Resistance (θ )...............105°C/W  
JA  
Junction-to-Case Thermal Resistance (θ )......................37°C/W  
JC  
ꢁote 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-  
layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.  
4–MAX1637  
EꢀECTRICAꢀ CHARACTERISTICS  
(V  
= 2.7V to 3.6V (MAX11635/MAX11637), V  
= 4.75V to 5.25V (MAX11634/MAX11636), f  
= 300kHz, f  
= 4.8MHz  
SCLK  
DD  
DD  
SAMPLE  
(external clock, 50% duty cycle), V  
= 2.5V (MAX11635/MAX11637), V  
= 4.096V (MAX11634/MAX11636) T = T  
to T  
,
REF  
REF  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
DC ACCURACY (Note 3)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RES  
INL  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
1.0  
1.0  
4.0  
4.0  
DNL  
No missing codes over temperature  
(Note 4)  
0.5  
0.5  
Gain Error  
Offset Error Temperature  
Coefficient  
ppm/°C  
FSR  
2
Gain Temperature Coefficient  
0.8  
0.1  
ppm/°C  
Channel-to-Channel Offset  
Matching  
LSB  
DYNAMIC SPECIFICATIONS (30kHz sine-wave input, 300ksps, f  
= 4.8MHz)  
SCLK  
MAX11635/MAX11637  
MAX11634/MAX11636  
71  
73  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
SINAD  
THD  
dB  
MAX11635/MAX11637  
MAX11634/MAX11636  
-80  
-88  
81  
Up to the 5th  
harmonic  
dBc  
dBc  
MAX11635/MAX11637  
MAX11634/MAX11636  
Spurious-Free Dynamic Range  
SFDR  
IMD  
89  
Intermodulation Distortion  
Full-Power Bandwidth  
Full-Linear Bandwidth  
f
= 29.9kHz, f  
= 30.2kHz  
IN2  
76  
dBc  
MHz  
kHz  
IN1  
-3dB point  
S/(N + D) > 68dB  
1
100  
2
_______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
EꢀECTRICAꢀ CHARACTERISTICS (continued)  
(V  
= 2.7V to 3.6V (MAX11635/MAX11637), V  
= 4.75V to 5.25V (MAX11634/MAX11636), f  
= 300kHz, f  
= 4.8MHz  
SCLK  
DD  
DD  
SAMPLE  
(external clock, 50% duty cycle), V  
= 2.5V (MAX11635/MAX11637), V  
= 4.096V (MAX11634/MAX11636) T = T  
to T  
,
REF  
REF  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
External reference  
0.8  
65  
Power-Up Time  
Acquisition Time  
Conversion Time  
t
µs  
µs  
µs  
PU  
Internal reference (Note 5)  
t
0.6  
ACQ  
Internally clocked  
3.5  
t
CONV  
Externally clocked (Note 6)  
Externally clocked conversion  
Data I/O  
2.7  
0.1  
4.8  
10  
External Clock Frequency  
f
MHz  
SCLK  
Aperture Delay  
Aperture Jitter  
ANALOG INPUT  
30  
ns  
ps  
< 50  
Unipolar  
0
V
REF  
Input Voltage Range  
V
Bipolar (Note 7)  
-V /2  
REF  
+V /2  
REF  
Input Leakage Current  
Input Capacitance  
V
= V  
0.01  
24  
1
µA  
pF  
IN  
DD  
During acquisition time (Note 8)  
INTERNAL REFERENCE  
MAX11634/MAX11636  
MAX11635/MAX11637  
MAX11634/MAX11636  
MAX11635/MAX11637  
4.024  
2.48  
4.096  
2.50  
20  
4.168  
2.52  
REF Output Voltage  
V
REF Temperature Coefficient  
TC  
ppm/°C  
REF  
30  
Output Resistance  
6.5  
k  
REF Output Noise  
200  
-70  
µV  
RMS  
REF Power-Supply Rejection  
EXTERNAL REFERENCE INPUT  
REF- Input Voltage Range  
REF+ Input Voltage Range  
PSRR  
dB  
V
REF-  
0
500  
mV  
V
V
REF+  
1.0  
V
DD  
+ 50mV  
V
REF+  
V
REF+  
= 2.5V (MAX11635/MAX11637),  
= 4.096V (MAX11634/MAX11636),  
40  
100  
f
= 300ksps  
SAMPLE  
REF+ Input Current  
I
µA  
V
REF+  
V
V
f
= 2.5V (MAX11635/MAX11637),  
= 4.096V (MAX11634/MAX11636),  
= 0  
REF+  
REF+  
0.1  
5
SAMPLE  
DIGITAL INPUTS (SCLK, DIN, CS, CNVST (Note 9)  
MAX11634/MAX11636  
MAX11635/MAX11637  
MAX11634/MAX11636  
MAX11635/MAX11637  
0.8  
Input Voltage Low  
V
IL  
V
DD  
x 0.3  
2.0  
Input Voltage High  
Input Hysteresis  
V
V
IH  
V
DD  
x 0.7  
V
200  
mV  
HYST  
_______________________________________________________________________________________  
3
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
EꢀECTRICAꢀ CHARACTERISTICS (continued)  
(V  
= 2.7V to 3.6V (MAX11635/MAX11637), V  
= 4.75V to 5.25V (MAX11634/MAX11636), f  
= 300kHz, f  
= 4.8MHz  
SCLK  
DD  
DD  
SAMPLE  
(external clock, 50% duty cycle), V  
= 2.5V (MAX11635/MAX11637), V  
= 4.096V (MAX11634/MAX11636) T = T  
to T  
,
REF  
REF  
A
MIN  
MAX  
unless otherwise noted. Typical values are at T = +25°C.) (Note 2)  
A
PARAMETER  
Input Leakage Current  
Input Capacitance  
SYMBOL  
CONDITIONS  
MIN  
TYP  
0.01  
15  
MAX  
UNITS  
µA  
I
V
= 0V or V  
DD  
1.0  
IN  
IN  
C
pF  
IN  
DIGITAL OUTPUTS (DOUT, EOC)  
I
I
I
= 2mA  
= 4mA  
0.4  
0.8  
SINK  
Output Voltage Low  
V
V
OL  
SINK  
Output Voltage High  
V
= 1.5mA  
V - 0.5  
DD  
V
OH  
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
I
CS = V  
CS = V  
0.05  
15  
1
µA  
pF  
L
DD  
DD  
C
OUT  
MAX11634/MAX11636  
MAX11635/MAX11637  
4.75  
2.7  
5.25  
3.6  
Supply Voltage  
V
DD  
V
f
f
= 300ksps  
= 0, REF on  
1750  
1000  
0.2  
2000  
1200  
5
SAMPLE  
SAMPLE  
Internal  
reference  
4–MAX1637  
MAX11635/MAX11637  
Supply Current (Note 10)  
I
µA  
Shutdown  
= 300ksps  
DD  
f
1050  
0.2  
1200  
5
External  
reference  
SAMPLE  
Shutdown  
f
f
= 300ksps  
= 0, REF on  
2300  
1050  
0.2  
2550  
1350  
5
SAMPLE  
SAMPLE  
Internal  
reference  
MAX11634/MAX11636  
Supply Current (Note 10)  
I
Shutdown  
= 300ksps  
µA  
DD  
1700  
f
1500  
0.2  
External  
reference  
SAMPLE  
Shutdown  
5
V
V
= 2.7V to 3.6V, full-scale input  
= 4.75V to 5.25V, full-scale input  
0.2  
1
DD  
Power-Supply Rejection  
PSR  
mV  
0.2  
1.4  
DD  
ꢁote 2: Limits at T = -40°C are guaranteed by design and not production tested.  
A
ꢁote 3: Tested at V  
= 3V (MAX11635/MAX11637); V  
= 5V (MAX11634/MAX11636), unipolar input mode.  
DD  
DD  
ꢁote 4: Offset nulled.  
ꢁote 5: Time for reference to power up and settle to within 1 LSB.  
ꢁote 6: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
ꢁote 7: The operational input voltage range for each individual input of a differentially configured pair is from GND to V . The  
DD  
operational input voltage difference is from -V  
/2 to +V  
REF  
/2.  
REF  
ꢁote 8: See Figure 3 (Equivalent Input Circuit) and the Sampling Error vs. Source Impedance curve in the Typical Operating  
Characteristics section.  
ꢁote 9: When CNVST is configured as a digital input, do not apply a voltage between V and V  
.
IH  
IL  
ꢁote 10: Supply current is specified depending on whether an internal or external reference is used for voltage conversions.  
Temperature measurements always use the internal reference.  
4
_______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
TIMIꢁG CHARACTERISTICS (Figure 1)  
PARAMETER  
SYMBOL  
CONDITIONS  
Externally clocked conversion  
Data I/O  
MIN  
208  
100  
40  
TYP  
MAX  
UNITS  
SCLK Clock Period  
t
ns  
CP  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
SCLK Fall to DOUT Transition  
CS Rise to DOUT Disable  
CS Fall to DOUT Enable  
DIN to SCLK Rise Setup  
SCLK Rise to DIN Hold  
CS Low to SCLK Setup  
CS High to SCLK Setup  
CS High After SCLK Hold  
CS Low After SCLK Hold  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
ns  
µs  
CH  
t
40  
CL  
t
C
LOAD  
C
LOAD  
C
LOAD  
= 30pF  
= 30pF  
= 30pF  
40  
40  
40  
DOT  
t
DOD  
t
DOE  
t
40  
0
DS  
DH  
t
t
t
40  
40  
0
CSS0  
CSS1  
CSH1  
CSH0  
t
t
0
4
t
CKSEL = 00  
40  
1.4  
CSPW  
CNVST Pulse-Width Low  
CKSEL = 01  
Voltage conversion  
Reference power-up  
7
CS or CNVST Rise to EOC  
Low (Note 11)  
µs  
65  
ꢁote 11: This time is defined as the number of clock cycles needed for conversion multiplied by the clock period. If the internal  
reference needs to be powered up, the total time is additive. The internal reference is always used for temperature  
measurements.  
Typical Operating Characteristics  
(V  
= 3V, V  
= 2.5V, f  
= 4.8MHz, C  
= 30pF, T = +25°C for MAX11635/MAX11637, unless otherwise noted. V  
= 5V,  
DD  
REF  
SCLK  
LOAD  
A
DD  
V
REF  
= 4.096V, f  
= 4.8MHz, C = 30pF, T = +25°C for MAX11634/MAX11636, unless otherwise noted.)  
LOAD A  
SCLK  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
INTEGRAL NONLINEARITY  
vs. OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
1.0  
1.0  
0.8  
1.0  
0.8  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
MAX11634/MAX11636  
MAX11634/MAX11636  
MAX11635/MAX11637  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
OUTPUT CODE (DECIMAL)  
_______________________________________________________________________________________  
5
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= 3V, V  
= 2.5V, f  
= 4.8MHz, C  
= 30pF, T = +25°C for MAX11635/MAX11637, unless otherwise noted. V  
= 5V,  
DD  
REF  
SCLK  
LOAD  
A
DD  
V
REF  
= 4.096V, f  
= 4.8MHz, C = 30pF, T = +25°C for MAX11634/MAX11636, unless otherwise noted.)  
LOAD A  
SCLK  
DIFFERENTIAL NONLINEARITY  
vs. OUTPUT CODE  
SINAD vs. FREQUENCY  
SFDR vs. FREQUENCY  
1.0  
80  
75  
70  
65  
60  
55  
50  
100  
90  
80  
70  
60  
50  
MAX11634/MAX11636  
0.8  
0.6  
MAX11634/MAX11636  
0.4  
0.2  
MAX11635/MAX11637  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
MAX11635/MAX11637  
100 1000  
MAX11635/MAX11637  
f
= 300ksps  
SAMPLE  
0
1024  
2048  
3072  
4096  
1
10  
100  
1000  
1
10  
OUTPUT CODE (DECIMAL)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
4–MAX1637  
THD vs. FREQUENCY  
SUPPLY CURRENT vs. SAMPLING RATE  
-50  
-60  
3000  
2500  
2000  
1500  
1000  
500  
MAX11634/MAX11636  
V
= 5V  
DD  
MAX11635/MAX11637  
-70  
INTERNAL REFERENCE  
-80  
EXTERNAL REFERENCE  
-90  
MAX11634/MAX11636  
100  
-100  
0
1
10  
1000  
1
10  
100  
1000  
FREQUENCY (kHz)  
SAMPLING RATE (ksps)  
SUPPLY CURRENT vs. SAMPLING RATE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
1800  
1600  
1400  
1200  
1000  
800  
2600  
2400  
2200  
2000  
1800  
1600  
1400  
1200  
1000  
MAX11635/MAX11637  
INTERNAL REFERENCE  
V
= 3V  
DD  
INTERNAL REFERENCE  
EXTERNAL REFERENCE  
600  
EXTERNAL REFERENCE  
400  
MAX11634/MAX11636  
200  
f
= 300ksps  
SAMPLE  
0
1
10  
100  
1000  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
SAMPLING RATE (ksps)  
V
(V)  
DD  
6
_______________________________________________________________________________________  
12-Bit 300ksps ADCs with FIFO,  
Temp Sensor, Internal Reference  
4–MAX1637  
Typical Operating Characteristics (continued)  
(V  
= 3V, V  
= 2.5V, f  
= 4.8MHz, C  
= 30pF, T = +25°C for MAX11635/MAX11637, unless otherwise noted. V  
= 5V,  
DD  
REF  
SCLK  
LOAD  
A
DD  
V
REF  
= 4.096V, f  
= 4.8MHz, C = 30pF, T = +25°C for MAX11634/MAX11636, unless otherwise noted.)  
LOAD A  
SCLK  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
2000  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0.4  
0.3  
0.2  
0.1  
0
1800  
1600  
1400  
1200  
1000  
800  
INTERNAL REFERENCE  
EXTERNAL REFERENCE  
600  
400  
MAX11635/MAX11637  
= 300ksps  
MAX11634/MAX11636  
MAX11635/MAX11637  
200  
f
SAMPLE  
V
= 5V  
V
= 3V  
DD  
DD  
0
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
(V)  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6  
(V)  
V
V
DD  
DD  
V
DD  
SUPPLY CURRENT vs. TEMPERATURE  
SUPPLY CURRENT vs. TEMPERATURE  
1800  
1600  
1400  
1200  
1000  
800  
2500  
2200  
1900  
1600  
1300  
1000  
INTERNAL REFERENCE  
INTERNAL REFERENCE  
MAX11635/MAX11637  
V
DD  
= 3V  
f
= 300ksps  
SAMPLE  
EXTERNAL REFERENCE  
MAX11634/MAX11636  
EXTERNAL REFERENCE  
V
= 5V  
DD  
f
= 300ksps  
SAMPLE  
600  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX11635/MAX11637  
MAX11634/MAX11636  
V
= 3V  
V
= 5V  
DD  
DD  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Typical Operating Characteristics (continued)  
(V  
= 3V, V  
= 2.5V, f  
= 4.8MHz, C  
= 30pF, T = +25°C for MAX11635/MAX11637, unless otherwise noted. V  
= 5V,  
DD  
REF  
SCLK  
LOAD  
A
DD  
V
REF  
= 4.096V, f  
= 4.8MHz, C = 30pF, T = +25°C for MAX11634/MAX11636, unless otherwise noted.)  
LOAD A  
SCLK  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
4.099  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
4.12  
4.11  
4.10  
4.09  
4.08  
4.07  
4.098  
4.097  
4.096  
4.095  
4.094  
MAX11634/MAX11636  
MAX11635/MAX11637  
MAX11634/MAX11636  
V
= 5V  
V
DD  
= 3V  
V
DD  
= 5V  
DD  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
V
DD  
V
DD  
(V)  
TEMPERATURE (°C)  
4–MAX1637  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
0.6  
0.4  
0.2  
0
2.52  
2.51  
2.50  
2.49  
2.48  
2.47  
-0.2  
-0.4  
-0.6  
MAX11634/MAX11636  
MAX11635/MAX11637  
= 3V  
f
= 300ksps  
SAMPLE  
V
DD  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
V
DD  
(V)  
TEMPERATURE (°C)  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
1.10  
1.05  
1.00  
0.95  
0.90  
1.0  
0.6  
0.2  
-0.2  
-0.6  
-1.0  
MAX11635/MAX11637  
MAX11634/MAX11636  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
V
(V)  
TEMPERATURE (°C)  
DD  
8
_______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
Typical Operating Characteristics (continued)  
(V  
= 3V, V  
= 2.5V, f  
= 4.8MHz, C  
= 30pF, T = +25°C for MAX11635/MAX11637, unless otherwise noted. V  
= 5V,  
DD  
REF  
SCLK  
LOAD  
A
DD  
V
REF  
= 4.096V, f  
= 4.8MHz, C = 30pF, T = +25°C for MAX11634/MAX11636, unless otherwise noted.)  
LOAD A  
SCLK  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. SUPPLY VOLTAGE  
1.5  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
1.3  
1.1  
0.9  
0.7  
0.5  
MAX11635/MAX11637  
f = 300ksps  
SAMPLE  
MAX11634/MAX11636  
MAX11635/MAX11637  
f
= 300ksps  
SAMPLE  
f
= 300ksps  
SAMPLE  
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
2.7  
3.0  
3.3  
3.6  
TEMPERATURE (°C)  
V
DD  
(V)  
V
DD  
(V)  
SAMPLING ERROR  
vs. SOURCE IMPEDANCE  
GAIN ERROR vs. TEMPERATURE  
GAIN ERROR vs. TEMPERATURE  
1.0  
0.6  
0.5  
0.3  
2
0
MAX11635/MAX11637  
f
= 300ksps  
SAMPLE  
-2  
0.2  
0.1  
-4  
-0.2  
-0.6  
-1.0  
-0.1  
-0.3  
-0.5  
-6  
-8  
MAX11634/MAX11636  
f
= 300ksps  
SAMPLE  
-10  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
2
4
6
8
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SOURCE IMPEDANCE (k)  
_______________________________________________________________________________________  
9
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Pin Configuration  
TOP VIEW  
+
AIN0  
1
2
3
4
5
6
7
8
16 EOC  
AIN1  
AIN2  
15 DOUT  
14 DIN  
13 SCLK  
12 CS  
AIN3  
MAX11634–  
MAX11637  
AIN4 (N.C.)  
AIN5 (N.C.)  
REF-/AIN6 (REF-)  
11  
10 GND  
REF+  
V
DD  
CNVST/AIN7 (CNVST)  
9
QSOP  
( ) PINOUT FOR THE MAX11634/MAX11635.  
4–MAX1637  
Pin Description  
PIN  
MAX11634  
MAX11635  
NAME  
FUNCTION  
MAX11636  
MAX11637  
1–4  
5, 6  
7
AIN0–AIN3  
N.C.  
Analog Inputs  
No Connection. Not internally connected.  
REF-  
External Differential Reference Negative Input  
Active-Low Conversion Start Input. See Table 3 for details on programming the  
setup register.  
8
CNVST  
9
9
REF+  
GND  
Positive Reference Input. Bypass to GND with a 0.1µF capacitor.  
Ground  
10  
11  
12  
10  
11  
12  
V
DD  
Power Input. Bypass to GND with a 0.1µF capacitor.  
Active-Low Chip-Select Input. When CS is high, DOUT is high impedance.  
CS  
Serial-Clock Input. Clocks data in and out of the serial interface (duty cycle must  
be 40% to 60%). See Table 3 for details on programming the clock mode.  
13  
14  
15  
13  
14  
15  
SCLK  
Serial-Data Input. DIN data is latched into the serial interface on the rising edge of  
SCLK.  
DIN  
Serial-Data Output. Data is clocked out on the falling edge of SCLK. High  
DOUT  
impedance when CS is connected to V  
.
DD  
16  
16  
EOC  
Active-Low End-of-Conversion Output. Data is valid after EOC pulls low.  
1–6  
AIN0–AIN5  
Analog Inputs  
External Differential Reference Negative Input/Analog Input 6. See Table 3 for  
details on programming the setup register.  
7
8
REF-/AIN6  
Active-Low Conversion Start Input/Analog Input 7. See Table 3 for details on  
programming the setup register.  
CNVST/AIN7  
10 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
CS  
t
CSH0  
t
t
t
CSH1  
t
CH  
CP  
CSS0  
t
CSS1  
t
CL  
SCLK  
DIN  
t
DH  
t
DS  
t
t
DOT  
DOD  
t
DOE  
DOUT  
Figure 1. Detailed Serial-Interface Timing Diagram  
CS  
DIN  
SCLK  
SERIAL  
INTERFACE  
DOUT  
EOC  
OSCILLATOR  
CONTROL  
CNVST  
AIN0  
AIN1  
12-BIT  
SAR  
ADC  
FIFO AND  
ACCUMULATOR  
T/H  
AIN7  
REF-  
REF+  
INTERNAL  
REFERENCE  
MAX11634–MAX11637  
Figure 2. Functional Diagram  
Microprocessor (µP) control is made easy through a 3-  
wire SPI/QSPI/MICROWIRE-compatible serial interface.  
Detailed Description  
The MAX11634–MAX11637 are low-power, serial-out-  
put, multichannel ADCs for temperature-control,  
process-control, and monitoring applications. These  
12-bit ADCs have internal track and hold (T/H) circuitry  
that supports single-ended and fully differential inputs.  
Data is converted from analog voltage sources in a  
variety of channel and data-acquisition configurations.  
Figure 2 shows a simplified functional diagram of the  
MAX11634–MAX11637 internal architecture. The  
MAX11636/MAX11637 have eight single-ended analog  
input channels or four differential channels. The  
MAX11634/MAX11635 have four single-ended analog  
input channels or two differential channels.  
______________________________________________________________________________________ 11  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
the subsequent data bytes are clocked from DIN into  
Converter Operation  
The MAX11634–MAX11637 ADCs use a fully differen-  
tial, successive-approximation register (SAR) conver-  
sion technique and an on-chip T/H block to convert  
temperature and voltage signals into a 12-bit digital  
result. Both single-ended and differential configurations  
are supported, with a unipolar signal range for single-  
ended mode and bipolar or unipolar ranges for differ-  
ential mode.  
the serial interface on the rising edge of SCLK.  
Tables 1–7 detail the register descriptions. Bits 5 and 4,  
CKSEL1 and CKSEL0, respectively, control the clock  
modes in the setup register (see Table 3). Choose  
between four different clock modes for various ways to  
start a conversion and determine whether the acquisi-  
tions are internally or externally timed. Select clock  
mode 00 to configure CNVST/AIN7 to act as a conver-  
sion start and use it to request the programmed, inter-  
nally timed conversions without tying up the serial bus.  
In clock mode 01, use CNVST to request conversions  
one channel at a time, controlling the sampling speed  
without tying up the serial bus. Request and start inter-  
nally timed conversions through the serial interface by  
writing to the conversion register in the default clock  
mode 10. Use clock mode 11 with SCLK up to 4.8MHz  
for externally timed acquisitions to achieve sampling  
rates up to 300ksps. Clock mode 11 disables scanning  
and averaging. See Figures 4–7 for timing specifica-  
tions and how to begin a conversion.  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 1MHz small-  
signal bandwidth, so it is possible to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. Anti-alias prefiltering  
of the input signals is necessary to avoid high-frequency  
signals aliasing into the frequency band of interest.  
Analog Input Protection  
Internal ESD protection diodes clamp all pins to V  
DD  
and GND, allowing the inputs to swing from (GND -  
0.3V) to (V + 0.3V) without damage. However, for  
4–MAX1637  
DD  
These devices feature an active-low, end-of-conversion  
output. EOC goes low when the ADC completes the last-  
requested operation and is waiting for the next input  
data byte (for clock modes 00 and 10). In clock mode  
01, EOC goes low after the ADC completes each  
requested operation. EOC goes high when CS or CNVST  
goes low. EOC is always high in clock mode 11.  
accurate conversions near full scale, the inputs must  
not exceed V by more than 50mV or be lower than  
DD  
GND by 50mV. If an off-channel analog input voltage  
exceeds the supplies, limit the input current to 2mA.  
3-Wire Serial Interface  
The MAX11634–MAX11637 feature a serial interface  
compatible with SPI/QSPI and MICROWIRE devices.  
For SPI/QSPI, ensure the CPU serial interface runs in  
master mode so it generates the serial clock signal.  
Select the SCLK frequency of 10MHz or less, and set  
clock polarity (CPOL) and phase (CPHA) in the µP con-  
trol registers to the same value. The MAX11634–  
MAX11637 operate with SCLK idling high or low, and  
thus operate with CPOL = CPHA = 0 or CPOL = CPHA  
= 1. Set CS low to latch input data at DIN on the rising  
edge of SCLK. Output data at DOUT is updated on the  
falling edge of SCLK. Bipolar true differential results are  
available in two’s complement format, while all others  
are in binary.  
Single-Ended/Differential Input  
The MAX11634–MAX11637 use a fully differential ADC  
for all conversions. The analog inputs can be config-  
ured for either differential or single-ended conversions  
by writing to the setup register (see Table 3). Single-  
ended conversions are internally referenced to GND  
(see Figure 3).  
In differential mode, the T/H samples the difference  
between two analog inputs, eliminating common-mode  
DC offsets and noise. IN+ and IN- are selected from the  
following pairs: AIN0/AIN1, AIN2/AIN3, AIN4/AIN5, and  
AIN6/AIN7. AIN0–AIN7 are available on the MAX11636/  
MAX11637. AIN0–AIN3 are available on the MAX11634/  
MAX11635. See Tables 2–5 for more details on config-  
uring the inputs. For the inputs that can be configured  
as CNVST or an analog input, only one can be used at  
a time. For the inputs that can be configured as REF- or  
an analog input, the REF- configuration excludes the  
analog input.  
Serial communication always begins with an 8-bit input  
data byte (MSB first) loaded from DIN. Use a second  
byte, immediately following the setup byte, to write to  
the unipolar mode or bipolar mode registers (see  
Tables 1, 3, 4, and 5). A high-to-low transition on CS ini-  
tiates the data input operation. The input data byte and  
12 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
T/H enters hold mode, the difference between the sam-  
pled positive and negative input voltages is converted.  
REF  
GND  
AIN0–AIN7  
(SINGLE-ENDED);  
AIN0, AIN2,  
AIN4, AIN6  
(DIFFERENTIAL)  
DAC  
The time required for the T/H to acquire an input signal  
is determined by how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
CIN+  
COMPARATOR  
the required acquisition time lengthens. The acquisition  
+
time, t  
, is the maximum time needed for a signal to  
ACQ  
HOLD  
be acquired, plus the power-up time. It is calculated by  
-
the following equation:  
GND  
(SINGLE-ENDED);  
AIN1, AIN3,  
AIN5, AIN7  
(DIFFERENTIAL)  
CIN-  
t = 9 x (R + R ) x 24pF + t  
ACQ S IN PWR  
where R = 1.5k, R is the source impedance of the  
IN  
S
PWR  
HOLD  
HOLD  
input signal, and t  
= 1µs, the power-up time of the  
device. The varying power-up times are detailed in the  
explanation of the clock mode conversions.  
V
DD  
/2  
When the conversion is internally timed, t  
is never  
ACQ  
Figure 3. Equivalent Input Circuit  
less than 1.4µs, and any source impedance below  
300does not significantly affect the ADC’s AC perfor-  
mance. A high-impedance source can be accommo-  
Unipolar/Bipolar  
Address the unipolar and bipolar registers through the  
setup register (bits 1 and 0). Program a pair of analog  
channels for differential operation by writing a 1 to the  
appropriate bit of the bipolar or unipolar register.  
Unipolar mode sets the differential input range from 0  
dated either by lengthening t  
or by placing a 1µF  
ACQ  
capacitor between the positive and negative analog  
inputs.  
Internal FIFO  
The MAX11634–MAX11637 contain a FIFO buffer that  
can hold up to 16 ADC results. This allows the ADC to  
handle multiple internally clocked conversions without  
tying up the serial bus.  
to V  
. A negative differential analog input in unipolar  
REF  
mode causes the digital output code to be zero.  
Selecting bipolar mode sets the differential input range  
to  
V
REF  
/2. The digital output code is binary in unipolar  
mode and two’s complement in bipolar mode (Figures  
8 and 9).  
If the FIFO is filled and further conversions are requested  
without reading from the FIFO, the oldest ADC results  
are overwritten by the new ADC results. Each result  
contains 2 bytes, with the MSB preceded by four lead-  
ing zeros. After each falling edge of CS, the oldest  
available byte of data is available at DOUT, MSB first.  
When the FIFO is empty, DOUT is zero.  
In single-ended mode, the MAX11634–MAX11637  
always operate in unipolar mode. The analog inputs are  
internally referenced to GND with a full-scale input  
range from 0 to V  
.
REF  
True Differential Analog Input T/H  
The equivalent circuit of Figure 3 shows the  
MAX11634–MAX11637s’ input architecture. In track  
mode, a positive input capacitor is connected to  
AIN0–AIN7 in single-ended mode (and AIN0, AIN2,  
AIN4, AIN5, AIN6 in differential mode). A negative input  
capacitor is connected to GND in single-ended mode  
(or AIN1, AIN3, AIN5, AIN6, AIN7 in differential mode).  
For external T/H timing, use clock mode 01. After the  
Internal Clock  
The MAX11634–MAX11637 operate from an internal  
oscillator, which is accurate within 10% of the 4.4MHz  
nominal clock rate. The internal oscillator is active in  
clock modes 00, 01, and 10. Read out the data at clock  
speeds up to 10MHz. See Figures 4–7 for details on  
timing specifications and starting a conversion.  
______________________________________________________________________________________ 13  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
In clock mode 01, the total conversion time depends on  
Applications Information  
how long CNVST is held low or high, including any time  
required to turn on the internal reference. Conversion  
time in externally clocked mode (CKSEL1, CKSEL0 = 11)  
depends on the SCLK period and how long CS is held  
high between each set of eight SCLK cycles. In clock  
mode 01, the total conversion time does not include the  
time required to turn on the internal reference.  
Register Descriptions  
The MAX11634–MAX11637 communicate between the  
internal registers and the external circuitry through the  
SPI/QSPI-compatible serial interface. Table 1 details  
the registers and the bit names. Tables 2–7 show the  
various functions within the conversion register, setup  
register, averaging register, reset register, unipolar reg-  
ister, and bipolar register.  
Conversion Register  
Select active analog input channels and scan modes  
by writing to the conversion register. Table 2 details  
channel selection, the four scan modes, and how to  
request a temperature measurement. Request a scan  
by writing to the conversion register when in clock  
mode 10 or 11, or by applying a low pulse to the  
CNVST pin when in clock mode 00 or 01.  
Conversion Time Calculations  
The conversion time for each scan is based on a num-  
ber of different factors: conversion time per sample,  
samples per result, results per scan, and if the external  
reference is in use.  
Use the following formula to calculate the total conver-  
sion time for an internally timed conversion in clock  
modes 00 and 10 (see the Electrical Characteristics  
table as applicable):  
A conversion is not performed if it is requested on a  
channel that has been configured as CNVST or REF-.  
Do not request conversions on channels 4–7 on the  
MAX11634/MAX11635. Set CHSEL[2:0] to the lower  
channel’s binary values. If the last two channels are  
configured as a differential pair and one of them has  
been reconfigured as CNVST or REF-, the pair is  
ignored.  
Total Conversion Time = t  
x n  
x n  
+ t  
CNV  
AVG  
RESULT RP  
4–MAX1637  
where:  
t
= t  
+ t  
CONV  
(MAX)  
CNV  
ACQ  
(MAX)  
n
n
= samples per result (amount of averaging)  
AVG  
Select scan mode 00 or 01 to return one result per  
single-ended channel and one result per differential  
pair within the requested range. Select scan mode 10  
to scan a single input channel numerous times,  
depending on NSCAN1 and NSCAN0 in the averag-  
ing register (Table 6). Select scan mode 11 to return  
only one result from a single channel.  
= number of FIFO results requested; deter-  
mined by number of channels being scanned or by  
NSCAN1, NSCAN0  
RESULT  
t
= internal reference wake up; set to zero if internal  
reference is already powered up or external reference  
is being used  
RP  
Table 1. Input Data Byte (MSB First)  
REGISTER NAME  
Conversion  
BIT 7  
BIT 6  
BIT 5  
CHSEL2  
CKSEL1  
1
BIT 4  
CHSEL1  
CKSEL0  
AVGON  
1
BIT 3  
CHSEL0  
REFSEL1  
NAVG1  
RESET  
X
BIT 2  
SCAN1  
REFSEL0  
NAVG0  
X
BIT 1  
BIT 0  
1
X
SCAN0  
X
Setup  
0
1
DIFFSEL1  
DIFFSEL0  
Averaging  
0
0
NSCAN1  
NSCAN0  
Reset  
0
0
0
X
X
X
X
X
X
Unipolar Mode (Setup)  
Bipolar Mode (Setup)  
X = Don’t care.  
UCH0/1  
BCH0/1  
UCH2/3  
BCH1/2  
UCH4/5  
BCH4/5  
UCH6/7  
BCH6/7  
X
X
X
14 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
Bits 1 and 0 (DIFFSEL1 and DIFFSEL0) address the  
unipolar mode and bipolar mode registers and configure  
the analog input channels for differential operation.  
Table 2. Conversion Register*  
BIT  
BIT  
FUNCTION  
NAME  
Unipolar/Bipolar Mode Registers  
The final 2 bits (LSBs) of the setup register control the  
unipolar/bipolar mode address registers. Set bits 1 and  
0 (DIFFSEL1 and DIFFSEL0) to 10 to write to the unipo-  
lar mode register. Set bits 1 and 0 to 11 to write to the  
bipolar mode register. In both cases, the setup byte  
must be followed immediately by 1 byte of data written  
to the unipolar register or bipolar register. Hold CS low  
and run 16 SCLK cycles before pulling CS high. If the  
last 2 bits of the setup register are 00 or 01, neither the  
unipolar mode register nor the bipolar mode register is  
written. Any subsequent byte is recognized as a new  
input data byte. See Tables 4 and 5 to program the  
unipolar and bipolar mode registers.  
7 (MSB) Set to 1 to select conversion register  
X
6
5
4
3
2
1
Don’t care  
CHSEL2  
CHSEL1  
CHSEL0  
SCAN1  
SCAN0  
X
Analog input channel select  
Analog input channel select  
Analog input channel select  
Scan mode select  
Scan mode select  
0 (LSB) Don’t care  
*See below for bit details.  
SELECTED  
CHANNEL (N)  
CHSEL2  
CHSEL1  
CHSEL0  
If a channel is configured as both unipolar and bipolar,  
the unipolar setting takes precedence. In unipolar  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
AIN0  
AIN1  
AIN2  
AIN3  
AIN4  
AIN5  
AIN6  
AIN7  
mode, AIN+ can exceed AIN- by up to V  
. The out-  
REF  
put format in unipolar mode is binary. In bipolar mode,  
either input can exceed the other by up to V  
output format in bipolar mode is two's complement.  
/2. The  
REF  
Averaging Register  
Write to the averaging register to configure the ADC to  
average up to 32 samples for each requested result,  
and to independently control the number of results  
requested for single-channel scans.  
Table 2 details the four scan modes available in the con-  
version register. All four scan modes allow averaging as  
long as the AVGON bit, bit 4 in the averaging register, is  
set to 1. Select scan mode 10 to scan the same channel  
multiple times. Clock mode 11 disables averaging.  
SCAN MODE (CHANNEL N IS  
SELECTED BY BITS CHSEL[2:0])  
SCAN1 SCAN0  
0
0
0
1
Scans channels 0 through N  
Scans channels N through the highest  
numbered channel  
Reset Register  
Write to the reset register (as shown in Table 7) to clear  
the FIFO or to reset all registers to their default states.  
Set the RESET bit to 1 to reset the FIFO. Set the RESET  
bit to zero to return the MAX11634–MAX11637 to the  
default power-up state.  
Scans channel N repeatedly. The averaging  
register sets the number of results.  
1
1
0
1
No scan. Converts channel N once only.  
Setup Register  
Write a byte to the setup register to configure the clock,  
reference, and power-down modes. Table 3 details the  
bits in the setup register. Bits 5 and 4 (CKSEL1 and  
CKSEL0) control the clock mode, acquisition and sam-  
pling, and the conversion start. Bits 3 and 2 (REFSEL1  
and REFSEL0) control internal or external reference use.  
Power-Up Default State  
The MAX11634–MAX11637 power up with all blocks in  
shutdown, including the reference. All registers power up  
in state 00000000, except for the setup register, which  
powers up in clock mode 10 (CKSEL1 = 1).  
______________________________________________________________________________________ 15  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Table 3. Setup Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to 0 to select setup register  
6
Set to 1 to select setup register  
CKSEL1  
CKSEL0  
REFSEL1  
REFSEL0  
DIFFSEL1  
DIFFSEL0  
5
Clock mode and CNVST configuration. Resets to 1 at power-up.  
Clock mode and CNVST configuration  
4
3
Reference mode configuration  
2
1
Reference mode configuration  
Unipolar/bipolar mode register configuration for differential mode  
Unipolar/bipolar mode register configuration for differential mode  
0 (LSB)  
*See below for bit details.  
CKSEL1  
CKSEL0  
CONVERSION CLOCK  
Internal  
ACQUISITION/SAMPLING  
Internally timed  
CNVST CONFIGURATION  
0
0
1
1
0
1
0
1
CNVST  
CNVST  
AIN7*  
AIN7*  
Internal  
Externally timed through CNVST  
Internally timed  
Internal  
4–MAX1637  
External (4.8MHz max)  
Externally timed through SCLK  
*The MAX11634/MAX11635 have a dedicated CNVST pin.  
REFSEL1 REFSEL0  
VOLTAGE REFERENCE  
Internal  
AutoShutdown  
REF- CONFIGURATION  
Reference off after scan; need  
wake-up delay  
0
0
1
1
0
1
0
1
AIN6  
AIN6  
AIN6  
REF-*  
External single-ended  
Internal  
Reference off; no wake-up delay  
Reference always on; no wake-  
up delay  
External differential  
Reference off; no wake-up delay  
*The MAX11634/MAX11635 have a dedicated REF- pin.  
DIFFSEL1 DIFFSEL0  
FUNCTION  
0
0
1
1
0
1
0
1
No data follows the setup byte. Unipolar mode and bipolar mode registers remain unchanged.  
No data follows the setup byte. Unipolar mode and bipolar mode registers remain unchanged.  
1 byte of data follows the setup byte and is written to the unipolar mode register.  
1 byte of data follows the setup byte and is written to the bipolar mode register.  
16 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
edge of SCLK. Conversions in clock modes 00 and 01  
are initiated by CNVST. Conversions in clock modes 10  
and 11 are initiated by writing an input data byte to the  
conversion register. Data is binary for unipolar mode and  
two’s complement for bipolar mode.  
Output Data Format  
Figures 4–7 illustrate the conversion timing for the  
MAX11634–MAX11637. The 12-bit conversion result is  
output in MSB-first format with four leading zeros. DIN  
data is latched into the serial interface on the rising  
edge of SCLK. Data on DOUT transitions on the falling  
Table 4. Unipolar Mode Register (Addressed Through Setup Register)  
BIT NAME  
BIT  
FUNCTION  
UCH0/1  
7 (MSB) Set to 1 to configure AIN0 and AIN1 for unipolar differential conversion  
UCH2/3  
6
5
4
3
2
1
Set to 1 to configure AIN2 and AIN3 for unipolar differential conversion  
UCH4/5  
Set to 1 to configure AIN4 and AIN5 for unipolar differential conversion  
UCH6/7  
Set to 1 to configure AIN6 and AIN7 for unipolar differential conversion  
X
X
X
X
Don’t care  
Don’t care  
Don’t care  
0 (LSB) Don’t care  
Table 5. Bipolar Mode Register (Addressed Through Setup Register)  
BIT NAME  
BIT  
FUNCTION  
BCH0/1  
7 (MSB) Set to 1 to configure AIN0 and AIN1 for bipolar differential conversion  
BCH2/3  
6
5
4
3
2
1
Set to 1 to configure AIN2 and AIN3 for bipolar differential conversion  
BCH4/5  
Set to 1 to configure AIN4 and AIN5 for bipolar differential conversion  
BCH6/7  
Set to 1 to configure AIN6 and AIN7 for bipolar differential conversion  
X
X
X
X
Don’t care  
Don’t care  
Don’t care  
0 (LSB) Don’t care  
______________________________________________________________________________________ 17  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Table 6. Averaging Register*  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to 0 to select averaging register  
6
5
4
3
2
1
Set to 0 to select averaging register  
Set to 1 to select averaging register  
AVGON  
NAVG1  
NAVG0  
NSCAN1  
NSCAN0  
Set to 1 to turn averaging on. Set to 0 to turn averaging off.  
Configures the number of conversions for single-channel scans  
Configures the number of conversions for single-channel scans  
Single-channel scan count (scan mode 10 only)  
0 (LSB) Single-channel scan count (scan mode 10 only)  
*See below for bit details.  
AVGON  
NAVG1  
NAVG0  
FUNCTION  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
Performs 1 conversion for each requested result  
Performs 4 conversions and returns the average for each requested result  
Performs 8 conversions and returns the average for each requested result  
Performs 16 conversions and returns the average for each requested result  
Performs 32 conversions and returns the average for each requested result  
4–MAX1637  
NSCAN1  
NSCAN0  
FUNCTION (APPLIES ONLY IF SCAN MODE 10 IS SELECTED)  
0
0
1
1
0
1
0
1
Scans channel N and returns 4 results  
Scans channel N and returns 8 results  
Scans channel N and returns 12 results  
Scans channel N and returns 16 results  
Table 7. Reset Register  
BIT NAME  
BIT  
FUNCTION  
7 (MSB) Set to 0 to select reset register  
6
Set to 0 to select reset register  
Set to 0 to select reset register  
Set to 1 to select reset register  
5
4
RESET  
3
Set to 0 to reset all registers; set to 1 to clear the FIFO only  
X
X
X
2
1
Don’t care  
Don’t care  
Don’t care  
0 (LSB)  
18 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
the internal oscillator. See Figure 5 for clock mode 01  
timing.  
Internally Timed Acquisitions and  
Conversions Using CNVST  
Setting CNVST low begins an acquisition, wakes up the  
ADC, and places it in track mode. Hold CNVST low for  
at least 1.4µs to complete the acquisition. If the internal  
reference needs to wake up, an additional 65µs is  
required for the internal reference to power up. If a tem-  
perature measurement is being requested, reference  
power-up and temperature measurement are internally  
timed. In this case, hold CNVST low for at least 40ns.  
Performing Conversions in Clock Mode 00  
In clock mode 00, the wake-up, acquisition, conversion,  
and shutdown sequences are initiated through CNVST  
and performed automatically using the internal oscilla-  
tor. Results are added to the internal FIFO to be read  
out later. See Figure 4 for clock mode 00 timing.  
Initiate a scan by setting CNVST low for at least 40ns  
before pulling it high again. The MAX11634–MAX11637  
then wake up, scan all requested channels, store the  
results in the FIFO, and shut down. After the scan is  
complete, EOC is pulled low and the results are avail-  
able in the FIFO. Wait until EOC goes low before pulling  
CS low to communicate with the serial interface. EOC  
stays low until CS or CNVST is pulled low again.  
Set CNVST high to begin a conversion. After the con-  
version is complete, the ADC shuts down and pulls  
EOC low. EOC stays low until CS or CNVST is pulled  
low again. Wait until EOC goes low before pulling CS or  
CNVST low.  
If averaging is turned on, multiple CNVST pulses need  
to be performed before a result is written to the FIFO.  
Once the proper number of conversions has been per-  
formed to generate an averaged FIFO result, as speci-  
fied by the averaging register, the scan logic  
automatically switches the analog input multiplexer to  
the next requested channel. The result is available on  
DOUT once EOC has been pulled low.  
Do not initiate a second CNVST before EOC goes low;  
otherwise, the FIFO can become corrupted.  
Externally Timed Acquisitions and  
Internally Timed Conversions with CNVST  
Performing Conversions in Clock Mode 01  
In clock mode 01, conversions are requested one at a  
time using CNVST and performed automatically using  
CNVST  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
CS  
SCLK  
DOUT  
EOC  
LSB1  
MSB2  
MSB1  
SET CNVST LOW FOR AT LEAST 40ns TO BEGIN A CONVERSION.  
Figure 4. Clock Mode 00  
______________________________________________________________________________________ 19  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
CNVST  
(CONVERSION2)  
(ACQUISITION1)  
(ACQUISITION2)  
CS  
(CONVERSION1)  
SCLK  
DOUT  
EOC  
LSB1  
MSB1  
MSB2  
REQUEST MULTIPLE CONVERSIONS BY SETTING CNVST LOW FOR EACH CONVERSION.  
Figure 5. Clock Mode 01  
(CONVERSION BYTE)  
(UP TO 514 INTERNALLY CLOCKED ACQUISITIONS AND CONVERSIONS)  
DIN  
4–MAX1637  
CS  
SCLK  
DOUT  
LSB1  
MSB1  
MSB2  
EOC  
THE CONVERSION BYTE BEGINS THE ACQUISITION. CNVST IS NOT REQUIRED.  
Figure 6. Clock Mode 10  
Internally Timed Acquisitions and  
Conversions Using the Serial Interface  
Externally Clocked Acquisitions and  
Conversions Using the Serial Interface  
Performing Conversions in Clock Mode 10  
In clock mode 10, the wake-up, acquisition, conversion,  
and shutdown sequences are initiated by writing an  
input data byte to the conversion register, and are per-  
formed automatically using the internal oscillator. This is  
the default clock mode upon power-up. See Figure 6  
for clock mode 10 timing.  
Performing Conversions in Clock Mode 11  
In clock mode 11, acquisitions and conversions are ini-  
tiated by writing to the conversion register and are per-  
formed one at a time using the SCLK as the conversion  
clock. Scanning and averaging are disabled, and the  
conversion result is available at DOUT during the con-  
version. See Figure 7 for clock mode 11 timing.  
Initiate a scan by writing a byte to the conversion regis-  
ter. The MAX11634–MAX11637 then power up, scan all  
requested channels, store the results in the FIFO, and  
shut down. After the scan is complete, EOC is pulled  
low and the results are available in the FIFO. EOC stays  
low until CS is pulled low again.  
Initiate a conversion by writing a byte to the conversion  
register followed by 16 SCLK cycles. If CS is pulsed  
high between the eighth and ninth cycles, the pulse  
width must be less than 100µs. To continuously convert  
at 16 cycles per conversion, alternate 1 byte of zeros  
between each conversion byte.  
20 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
(CONVERSION BYTE)  
DIN  
(ACQUISITION2)  
(ACQUISITION1)  
(CONVERSION1)  
CS  
SCLK  
DOUT  
EOC  
MSB1  
LSB1  
MSB2  
EXTERNALLY TIMED ACQUISITION, SAMPLING AND CONVERSION WITHOUT CNVST.  
Figure 7. Clock Mode 11  
MAX11634–MAX11637 package. High-frequency noise  
in the V power supply can affect performance.  
Partial Reads and Partial Writes  
If the first byte of an entry in the FIFO is partially read  
(CS is pulled high after fewer than eight SCLK cycles),  
the second byte of data that is read out contains the  
next 8 bits (not b[7:0]). The remaining bits are lost for  
that entry. If the first byte of an entry in the FIFO is read  
out fully, but the second byte is read out partially, the  
rest of the entry is lost. The remaining data in the FIFO  
is uncorrupted and can be read out normally after tak-  
ing CS low again, as long as the four leading bits (nor-  
mally zeros) are ignored. Internal registers that are  
written partially through the SPI contain new values,  
starting at the MSB up to the point that the partial write  
is stopped. The part of the register that is not written  
contains previously written values. If CS is pulled low  
before EOC goes low, a conversion cannot be complet-  
ed and the FIFO is corrupted.  
DD  
Bypass the V  
close to the V  
supply with a 0.1µF capacitor to GND,  
pin. Minimize capacitor lead lengths for  
DD  
DD  
best supply-noise rejection. If the power supply is very  
noisy, connect a 10resistor in series with the supply to  
improve power-supply filtering.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. INL for  
the MAX11634–MAX11637 is measured using the end-  
point method.  
Transfer Function  
Figure 8 shows the unipolar transfer function for single-  
ended or differential inputs. Figure 9 shows the bipolar  
transfer function for differential inputs. Code transitions  
occur halfway between successive-integer LSB values.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
Output coding is binary, with 1 LSB = V  
/4096 for  
REF  
unipolar and bipolar operation, and 1 LSB = 0.125°C  
for temperature measurements.  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Do not use wire-  
wrap boards. Board layout should ensure that digital  
and analog signal lines are separated from each other.  
Do not run analog and digital (especially clock) signals  
parallel to one another or run digital lines underneath the  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
______________________________________________________________________________________ 21  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
OUTPUT CODE  
OUTPUT CODE  
V
FULL-SCALE  
TRANSITION  
REF  
2
FS  
+ V  
=
COM  
011. . . 111  
011. . .110  
11. . .111  
11. . .110  
ZS = COM  
-V  
2
REF  
11. . .101  
+ V  
REF  
-FS =  
COM  
000. . . 010  
000. . .001  
000. . .000  
V
4096  
1 LSB =  
FS = V + V  
REF  
COM  
111 . . .111  
111 . . . 110  
111 . . . 101  
ZS = V  
COM  
V
REF  
1 LSB =  
4096  
00. . .011  
00. . .010  
100 . . . 001  
100. . . 000  
00. . . 001  
00. . . 000  
0
1
2
3
FS  
COM*  
- FS  
+FS - 1 LSB  
(COM)  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
*V  
V / 2  
REF  
COM  
4–MAX1637  
Figure 8. Unipolar Transfer Function, Full Scale (FS) = V  
Figure 9. Bipolar Transfer Function, Full Scale ( FS) =  
V
REF  
/2  
REF  
sampling rate. An ideal ADC error consists of quantiza-  
tion noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly from the ADC’s resolution  
(N bits):  
ENOB = (SINAD - 1.76)/6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
SNR = (6.02 x N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
2
2
2
2
THD = 20 xlog  
V
+ V + V + V  
V
1
(
)
2
3
4
5
where V is the fundamental amplitude, and V –V are  
the amplitudes of the 2nd-order to 5th-order harmonics.  
1
2
5
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
SINAD (dB) = 20 x log (Signal  
/Noise  
)
RMS  
RMS  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
22 ______________________________________________________________________________________  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
4–MAX1637  
Package Information  
Chip Information  
For the latest package outline information and land patterns  
(footprints), go to www.maxim-ic.com/packages. Note that a  
“+”, “#”, or “-” in the package code indicates RoHS status only.  
Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTꢀIꢁE  
ꢁO.  
ꢀAꢁD  
PATTERꢁ ꢁO.  
16 QSOP  
E16+5  
21-0055  
90-0167  
______________________________________________________________________________________ 23  
12-Bit, 300ksps ADCs with Differential  
Track/Hold, and Internal Reference  
Revision History  
REVISIOꢁ REVISIOꢁ  
PAGES  
CHAꢁGED  
DESCRIPTIOꢁ  
ꢁUMBER  
DATE  
0
1
6/11  
9/11  
Initial release  
Released the MAX11636/MAX11637 and revised the Transfer Function section.  
1, 21  
4–MAX1637  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2011 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX11638

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11638EEE+

ADC Single SAR 300ksps 8-bit Serial 16-Pin QSOP
MAXIM

MAX11638EEE+T

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11639

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11639EEE+T

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11642

Windows XP-, Windows Vista-, and Windows 7-Compatible Software
MAXIM

MAX11642EEG+

ADC Single SAR 300ksps 8-bit Serial 24-Pin QSOP
MAXIM

MAX11642EEG+T

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11643

Windows XP-, Windows Vista-, and Windows 7-Compatible Software
MAXIM

MAX11643EEG+

ADC, Successive Approximation, 8-Bit, 1 Func, 16 Channel, Serial Access, BICMOS, PDSO24, ROHS COMPLIANT, QSOP-24
MAXIM

MAX11643EEG+T

8-Bit, 16-/8-Channel, 300ksps ADCs with FIFO and Internal Reference
MAXIM

MAX11644

2.7V to 3.6V and 4.5V to 5.5V, Low-Power, 1-/2-Channel, 2-Wire Serial, 12-Bit ADCs
MAXIM