MAX1190ECM+D [MAXIM]

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48;
MAX1190ECM+D
型号: MAX1190ECM+D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48

文件: 总23页 (文件大小:502K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2524; Rev 1; 6/06  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
General Description  
Features  
Single 3.3V Operation  
The MAX1190 is a 3.3V, dual 10-bit analog-to-digital con-  
verter (ADC) featuring fully differential wideband track-  
and-hold (T/H) inputs, driving two ADCs. The MAX1190 is  
optimized for low power, small size, and high-dynamic  
performance for applications in imaging, instrumentation,  
and digital communications. This ADC operates from a  
single 3.1V to 3.6V supply, consuming only 492mW while  
delivering a typical signal-to-noise and distortion (SINAD)  
of 57dB at an input frequency of 60MHz and a sampling  
rate of 120Msps. The T/H driven input stages incorporate  
400MHz (-3dB) input amplifiers. The converters can also  
be operated with single-ended inputs. In addition to low  
operating power, the MAX1190 features a 3mA sleep  
mode, as well as a 1µA power-down mode to conserve  
power during idle periods.  
Excellent Dynamic Performance  
57dB SINAD at f = 60MHz  
IN  
64dBc SFDR at f = 60MHz  
IN  
-71dBc Interchannel Crosstalk at f = 60MHz  
Low Power  
IN  
492mW (Normal Operation)  
10mW (Sleep Mode)  
3.3µW (Shutdown Mode)  
0.08dB Gain and 0.8° Phase Matching  
Wide 1V  
Differential Analog Input Voltage  
P-P  
Range  
400MHz -3dB Input Bandwidth  
On-Chip 2.048V Precision Bandgap Reference  
An internal 2.048V precision bandgap reference sets the  
full-scale range of the ADC. A flexible reference structure  
allows the use of this internal or an externally applied ref-  
erence, if desired, for applications requiring increased  
accuracy or a different input voltage range.  
User-Selectable Output Format—Two’s Complement  
or Offset Binary  
Pin-Compatible, Lower-Speed, 10-Bit and 8-Bit  
Versions Available  
The MAX1190 features parallel, CMOS-compatible three-  
state outputs. The digital output format can be set to two’s  
complement or straight offset binary through a single con-  
trol pin. The device provides for a separate output power  
supply of 1.7V to 3.6V for flexible interfacing with various  
logic families. The MAX1190 is available in a 7mm  
7mm, 48-pin TQFP-EP package, and is specified for the  
extended industrial (-40°C to +85°C) temperature range.  
Ordering Information  
PART  
TEMP RANGE PIN-PACKAGE PKG CODE  
C48E-7  
C48E-7  
MAX1190ECM -40°C to +85°C 48 TQFP-EP*  
MAX1190ECM+ -40°C to +85°C 48 TQFP-EP*  
*EP = Exposed paddle.  
+Denotes lead-free package.  
Pin-compatible lower speed versions of the MAX1190 are  
also available. Refer to the MAX1180–MAX1184 data  
sheets for 105Msps/80Msps/65Msps/40Msps. In addition  
to these speed grades, this family includes two multi-  
plexed output versions (MAX1185/MAX1186 for  
20Msps/40Msps), for which digital data is presented time-  
interleaved and on a single, parallel 10-bit output port.  
Pin Configuration  
COM  
1
2
36 D1A  
35 D0A  
34 OGND  
V
DD  
For lower speed, pin-compatible, 8-bit versions of the  
MAX1190, refer to the MAX1195–MAX1198 data sheets.  
GND  
INA+  
INA-  
3
4
33 OV  
32 OV  
DD  
DD  
5
Applications  
V
6
31 OGND  
30 D0B  
29 D1B  
DD  
MAX1190  
GND  
INB-  
INB+  
GND  
7
Baseband I/Q Sampling  
Multichannel IF Sampling  
Ultrasound and Medical Imaging  
Battery-Powered Instrumentation  
WLAN, WWAN, WLL, MMDS Modems  
Set-Top Boxes  
8
D2B  
28  
9
D3B  
D4B  
D5B  
10  
11  
12  
27  
26  
25  
V
DD  
CLK  
EP  
VSAT Terminals  
TQFP-EP  
EP = EXPOSED PADDLE.  
Functional Diagram appears at end of data sheet.  
NOTE: THE PIN 1 INDICATOR FOR LEAD-FREE PACKAGES IS REPLACED BY A “+”.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ABSOLUTE MAXIMUM RATINGS  
V
, OV  
to GND ...............................................-0.3V to +3.6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
DD  
OGND to GND.......................................................-0.3V to +0.3V  
48-Pin TQFP-EP (derate 30.4mW/°C above +70°C) ..2430mW  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-60°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
INA+, INA-, INB+, INB- to GND ...............................-0.3V to V  
REFIN, REFOUT, REFP, REFN, COM,  
DD  
CLK to GND............................................-0.3V to (V  
+ 0.3V)  
DD  
OE, PD, SLEEP, T/B,  
D9A–D0A, D9B–D0B to OGND ...........-0.3V to (OV  
+ 0.3V)  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.3V; OV  
= 2V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a  
DD  
DD  
10kΩ resistor; V  
= 2.048V; V = 2V  
(differential with respect to COM); C = 10pF at digital outputs; f  
= 120MHz; T =  
CLK A  
REFIN  
IN  
P-P  
L
T
to T  
, unless otherwise noted; +25°C guaranteed by production test, < +25°C guaranteed by design and characterization;  
MIN  
MAX  
typical values are at T = +25°C.)  
A
PARAMETER  
DC ACCURACY  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
10  
Bits  
LSB  
Integral Nonlinearity  
INL  
f
f
= 7.47MHz  
0.75  
0.4  
3
IN  
= 7.47MHz, no missing codes  
IN  
Differential Nonlinearity  
DNL  
-1.0  
+1.5  
LSB  
guaranteed  
Offset Error  
<
1
1.8  
2
%FS  
%FS  
Gain Error  
0
ANALOG INPUT  
Differential Input Voltage Range  
V
Differential or single-ended inputs  
Switched capacitor load  
1.0  
/ 2  
0.5  
V
V
DIFF  
Common-Mode Input Voltage  
Range  
V
DD  
V
CM  
Input Resistance  
R
20  
kΩ  
IN  
IN  
Input Capacitance  
C
5
pF  
CONVERSION RATE  
Maximum Clock Frequency  
f
120  
MHz  
CLK  
Clock  
Cycles  
Data Latency  
5
DYNAMIC CHARACTERISTICS  
f
T
= 20.01MHz at -0.5dBFS,  
= +25°C  
INA or B  
55  
58.5  
A
Signal-to-Noise Ratio  
SNR  
dB  
dB  
f
f
f
= 30.09MHz at -0.5dBFS  
= 59.74MHz at -0.5dBFS  
= 20.01MHz at -0.5dBFS,  
58.2  
58  
INA or B  
INA or B  
INA or B  
54.5  
57.5  
T
= +25°C  
A
Signal-to-Noise and Distortion  
SINAD  
f
f
= 30.09MHz at -0.5dBFS  
= 59.74MHz at -0.5dBFS  
57  
57  
INA or B  
INA or B  
2
_______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V; OV  
= 2V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a  
DD  
DD  
10kΩ resistor; V  
= 2.048V; V = 2V  
(differential with respect to COM); C = 10pF at digital outputs; f  
= 120MHz; T =  
CLK A  
REFIN  
IN  
P-P  
L
T
to T  
, unless otherwise noted; +25°C guaranteed by production test, < +25°C guaranteed by design and characterization;  
MIN  
MAX  
typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
T
= 20.01MHz at -0.5dBFS,  
= +25°C  
INA or B  
58  
67  
A
Spurious-Free Dynamic Range  
SFDR  
dBc  
f
f
= 30.09MHz at -0.5dBFS  
= 59.74MHz at -0.5dBFS  
67  
64  
INA or B  
INA or B  
f
T
= 20.01MHz at -0.5dBFS,  
= +25°C  
INA or B  
-67  
A
Third-Harmonic  
Distortion  
HD3  
dBc  
f
f
= 30.09MHz at -0.5dBFS  
= 59.74MHz at -0.5dBFS  
-67  
-64  
INA or B  
INA or B  
f
f
= 43.393MHz at -6.5dBFS,  
= 48.9017MHz at -6.5dBFS  
IN1(A or B)  
Intermodulation Distortion  
(First Five Odd-Order IMDs)  
IMD  
IM3  
-73  
dBc  
dBc  
IN2(A or B)  
(Note 1)  
f
f
= 43.393MHz at -6.5dBFS,  
= 48.9017MHz at -6.5dBFS  
IN1(A or B)  
IN2(A or B)  
Third-Order Intermodulation  
Distortion  
-83  
-65  
(Note 1)  
f
= 20.01MHz at -0.5dBFS,  
= +25°C  
INA or B  
-58  
T
A
Total Harmonic Distortion  
(First Four Harmonics)  
THD  
dBc  
f
f
= 30.09MHz at -0.5dBFS  
= 59.74MHz at -0.5dBFS  
-65  
-63  
500  
400  
1
INA or B  
INA or B  
Small-Signal Bandwidth  
Full-Power Bandwidth  
Aperture Delay  
Input at -20dBFS, differential inputs  
Input at -0.5dBFS, differential inputs  
MHz  
MHz  
ns  
FPBW  
t
AD  
Aperture Jitter  
t
AJ  
2
ps  
RMS  
Overdrive Recovery Time  
INTERNAL REFERENCE  
For 1.5× full-scale input  
2
ns  
2.048  
3%  
Reference Output Voltage  
V
V
REFOUT  
Load Regulation  
1.25  
mV/mA  
ppm/°C  
Reference Temperature  
Coefficient  
TC  
60  
REF  
BUFFERED EXTERNAL REFERENCE (V  
= 2.048V)  
REFIN  
Positive Reference Output  
Voltage  
V
(Note 2)  
2.162  
V
REFP  
Negative Reference Output  
Voltage  
V
(Note 2)  
(Note 2)  
1.138  
1.651  
1.024  
> 50  
V
V
REFN  
Common-Mode Level  
V
COM  
Differential Reference Output  
Voltage Range  
ΔV  
ΔV  
= V  
- V  
REFN  
0.95  
1.09  
V
REF  
REF  
REFP  
REFIN Resistance  
R
MΩ  
REFIN  
_______________________________________________________________________________________  
3
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V; OV  
= 2V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a  
DD  
DD  
10kΩ resistor; V  
= 2.048V; V = 2V  
(differential with respect to COM); C = 10pF at digital outputs; f  
= 120MHz; T =  
CLK A  
REFIN  
IN  
P-P  
L
T
to T  
, unless otherwise noted; +25°C guaranteed by production test, < +25°C guaranteed by design and characterization;  
MIN  
MAX  
typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Maximum REFP, COM Source  
Current  
I
5
mA  
SOURCE  
Maximum REFP, COM Sink  
Current  
I
-250  
µA  
SINK  
Maximum REFN Source Current  
I
250  
-5  
µA  
SOURCE  
Maximum REFN Sink Current  
I
mA  
SINK  
UNBUFFERED EXTERNAL REFERENCE (V  
= AGND, reference voltage applied to REFP, REFN, and COM)  
REFIN  
R
R
,
Measured between REFP and COM, and  
REFN and COM  
REFP  
REFP, REFN Input Resistance  
3.4  
kΩ  
REFN  
Differential Reference Input  
Voltage Range  
1.024  
10%  
ΔV  
ΔV  
= V  
- V  
REFN  
V
REF  
REF  
REFP  
COM Input Voltage Range  
REFP Input Voltage  
V
V
V
/ 2 10%  
DD  
V
V
V
COM  
REFP  
REFN  
V
+ ΔV  
/ 2  
/ 2  
COM  
REF  
REF  
REFN Input Voltage  
V
V
- ΔV  
COM  
DIGITAL INPUTS (CLK, PD, OE, SLEEP, T/B)  
0.8 ×  
CLK  
V
DD  
Input High Threshold  
Input Low Threshold  
V
IH  
V
0.8 ×  
OV  
PD, OE, SLEEP, T/B  
CLK  
DD  
0.2 ×  
V
DD  
V
IL  
V
V
0.2 ×  
OV  
PD, OE, SLEEP, T/B  
DD  
Input Hysteresis  
Input Leakage  
V
0.1  
5
HYST  
V
V
V
= V  
(CLK)  
DD  
5
5
5
IH  
IH  
IL  
I
IH  
= OV  
(PD, OE, SLEEP, T/B)  
µA  
pF  
DD  
I
IL  
= 0  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (D9A–D0A, D9B–D0B)  
Output-Voltage Low  
V
I
I
= -200µA  
0.2  
10  
V
V
OL  
SINK  
OV  
0.2  
-
DD  
Output-Voltage High  
V
= 200µA  
SOURCE  
OH  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTS  
Analog Supply Voltage Range  
Output Supply Voltage Range  
I
OE = OV  
OE = OV  
µA  
pF  
LEAK  
DD  
C
5
OUT  
DD  
V
3.1  
1.7  
3.3  
2.5  
3.6  
3.6  
V
V
DD  
OV  
DD  
4
_______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.3V; OV  
= 2V; 0.1µF and 1.0µF capacitors from REFP, REFN, and COM to GND, REFOUT connected to REFIN through a  
DD  
DD  
10kΩ resistor; V  
= 2.048V; V = 2V  
(differential with respect to COM); C = 10pF at digital outputs; f  
= 120MHz; T =  
CLK A  
REFIN  
IN  
P-P  
L
T
to T  
, unless otherwise noted; +25°C guaranteed by production test, < +25°C guaranteed by design and characterization;  
MIN  
MAX  
typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 20.01MHz at  
MIN  
TYP  
MAX  
UNITS  
mA  
Operating, f  
-0.5dBFS  
INA and B  
149  
185  
Analog Supply Current  
I
VDD  
Sleep mode  
3
1
Shutdown, clock idle, PD = OE = OV  
15  
µA  
DD  
Operating, f  
= 20.01MHz at -0.5dBFS;  
INA and B  
see Typical Operating Characteristics  
section, Digital Supply Current vs. Analog  
Input Frequency  
16  
mA  
Output Supply Current  
I
OVDD  
Sleep mode  
100  
2
µA  
Shutdown, clock idle, PD = OE = OV  
10  
DD  
Operating, f  
-0.5dBFS  
= 20.01MHz at  
INA and B  
492  
611  
mW  
Analog Power Dissipation  
PDISS  
PSRR  
Sleep mode  
10  
Shutdown, clock idle, PD = OE = OV  
Offset, V 5%  
3.3  
3.4  
0.81  
50  
µW  
mV/V  
%/V  
DD  
DD  
Power-Supply Rejection Ratio  
Gain, V  
5%  
DD  
TIMING CHARACTERISTICS  
CLK Rise to Output Data Valid  
Time  
t
C = 20pF (Note 3)  
L
4.8  
7.4  
ns  
DO  
OE Fall to Output Enable Time  
OE Rise to Output Disable Time  
t
4.7  
1.2  
ns  
ns  
ENABLE  
t
DISABLE  
Clock period: 8.34ns; see Typical Operating  
Characteristics section, AC Performance vs.  
Clock Duty Cycle  
Clock period: 8.34ns; see Typical Operating  
Characteristics section, AC Performance vs.  
Clock Duty Cycle  
CLK Pulse-Width High  
t
4.17  
4.17  
ns  
CH  
CLK Pulse-Width Low  
Wake-Up Time  
t
ns  
µs  
CL  
Wake up from sleep mode (Note 4)  
0.65  
1.2  
t
WAKE  
Wake up from shutdown mode (Note 4)  
CHANNEL-TO-CHANNEL MATCHING  
Crosstalk  
f
f
f
= 20.01MHz at -0.5dBFS  
-71  
0.08  
0.8  
dBc  
dB  
INA or B  
INA or B  
INA or B  
Gain Matching  
= 20.01MHz at -0.5dBFS (Note 5)  
= 20.01MHz at -0.5dBFS (Note 6)  
0.2  
Phase Matching  
Degrees  
Note 1: Intermodulation distortion is the total power of the intermodulation products relative to the total input power.  
Note 2: REFP, REFN, and COM should be bypassed to GND with a 0.1µF (min) or 1µF (typ) capacitor.  
Note 3: Digital outputs settle to V , V . Parameter guaranteed by design.  
IH IL  
Note 4: With REFIN driven externally, REFP, COM, and REFN are left floating while powered down.  
Note 5: Amplitude matching is measured by applying the same signal to each channel and comparing the magnitude of the funda-  
mental of the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.  
Note 6: Phase matching is measured by applying the same signal to each channel and comparing the phase of the fundamental of  
the calculated FFT. The data from both ADC channels must be captured simultaneously during this test.  
_______________________________________________________________________________________  
5
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics  
(V = 3.3V, OV = 2.5V, V  
= 2.048V, differential input at -0.5dBFS, f  
= 120MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REFIN  
CLK  
L
A
FFT PLOT CHA (8192-POINT RECORD)  
FFT PLOT CHA (8192-POINT RECORD)  
FFT PLOT CHB (8192-POINT RECORD)  
0
0
-25  
0
-25  
f
f
f
= 20.0119MHz  
= 12.9799MHz  
= 120.0128MHz  
INA  
INB  
CLK  
f
f
f
= 12.9799MHz  
= 20.0119MHz  
= 120.0128MHz  
CHA  
INA  
INB  
CLK  
CHB  
CHA  
f
= 31.0873MHz  
= 23.9967MHz  
= 120.0128MHz  
/A = -0.52dBFS  
INA  
-25  
-50  
f
INB  
A
/A = -0.52dBFS  
INA INB  
A
/A = -0.52dBFS  
INA INB  
f
CLK  
f
f
A
INA  
INA  
INA INB  
f
INB  
-50  
-50  
-75  
-75  
-75  
-100  
-125  
-100  
-125  
-100  
-125  
0
12  
24  
36  
48  
60  
60  
60  
0
12  
24  
36  
48  
60  
0
12  
24  
36  
48  
60  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
FFT PLOT CHB (8192-POINT RECORD)  
FFT PLOT CHB (8192-POINT RECORD)  
FFT PLOT CHA (8192-POINT RECORD)  
0
-25  
0
-25  
0
-25  
CHB  
= 23.9967MHz  
CHB  
CHA  
f
f
f
= 49.0189MHz  
= 59.7427MHz  
= 120.0128MHz  
/A = -0.52dBFS  
f
f
f
f
= 59.7427MHz  
= 49.0189MHz  
= 120.0128MHz  
/A = -0.52dBFS  
INA  
INB  
CLK  
INA  
INA  
INB  
CLK  
f
= 31.0873MHz  
INB  
f
= 120.0128MHz  
/A = -0.52dBFS  
CLK  
A
A
A
INA INB  
INA INB  
INA INB  
f
INB  
-50  
-50  
-50  
f
f
INB  
INA  
-75  
-75  
-75  
-100  
-125  
-100  
-125  
-100  
-125  
0
12  
24  
36  
48  
0
12  
24  
36  
48  
60  
0
12  
24  
36  
48  
60  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
TWO-TONE IMD PLOT  
(8192-POINT RECORD)  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. ANALOG INPUT FREQUENCY  
0
-25  
60  
58  
56  
54  
52  
50  
60  
58  
56  
54  
52  
50  
f
f
f
A
= 43.3933MHz  
= 48.9017MHz  
= 120.0128MHz  
IN1  
IN2  
CLK  
CHB  
CHB  
= -6.5dBFS  
IN  
CHA  
f
IN1  
f
IN2  
CHA  
-50  
-75  
-100  
-125  
0
12  
24  
36  
48  
0
10 20 30 40 50 60  
90 100  
0
10 20 30 40 50 60  
90 100  
70 80  
70 80  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
6
_______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.5V, V  
= 2.048V, differential input at -0.5dBFS, f  
= 120MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REFIN  
CLK  
L
A
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT FREQUENCY  
SNR/SINAD, -THD/SFDR  
vs. CLOCK DUTY CYCLE  
80  
72  
64  
56  
48  
40  
-40  
100  
80  
60  
40  
20  
0
SFDR  
-THD  
-48  
-56  
-64  
-72  
-80  
CHB  
CHA  
SNR  
CHA  
SINAD  
CHB  
f
= 20.02536MHz  
INA/B  
0
10 20 30 40 50 60  
90 100  
0
10 20 30 40 50 60  
90 100  
70 80  
40  
44  
48  
52  
56  
60  
70 80  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT FREQUENCY (MHz)  
CLOCK DUTY CYCLE (%)  
FULL-POWER INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
SIGNAL-TO-NOISE RATIO  
SMALL-SIGNAL INPUT BANDWIDTH  
vs. ANALOG INPUT FREQUENCY  
vs. ANALOG INPUT POWER (f = 20.02536MHz)  
IN  
5
2
60  
56  
52  
48  
44  
40  
6
4
2
-1  
0
-2  
-4  
-6  
-8  
-4  
-7  
V
= 100mV  
IN  
P-P  
-10  
1
10  
100  
1000  
-20  
-16  
-12  
-8  
-4  
0
1
10  
100  
1000  
ANALOG INPUT FREQUENCY (MHz)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT FREQUENCY (MHz)  
SIGNAL-TO-NOISE + DISTORTION  
TOTAL HARMONIC DISTORTION  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER (f = 20.02536MHz)  
vs. ANALOG INPUT POWER (f = 20.02536MHz)  
vs. ANALOG INPUT POWER (f = 20.02536MHz)  
IN  
IN  
IN  
60  
56  
52  
48  
44  
40  
-50  
80  
74  
68  
62  
56  
50  
-56  
-62  
-68  
-74  
-80  
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
-20  
-16  
-12  
-8  
-4  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
_______________________________________________________________________________________  
7
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.5V, V  
= 2.048V, differential input at -0.5dBFS, f  
= 120MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REFIN  
CLK  
L
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
GAIN ERROR vs. TEMPERATURE,  
EXTERNAL REFERENCE  
0.6  
0.3  
0.2  
0.1  
0
0.5  
0.3  
0.4  
0.2  
0
CHB  
CHA  
0.1  
-0.2  
-0.4  
-0.6  
-0.1  
-0.2  
-0.3  
-0.1  
-0.3  
0
341  
682  
1023  
0
341  
682  
1023  
-40  
-15  
10  
35  
60  
85  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
OFFSET ERROR vs. TEMPERATURE,  
EXTERNAL REFERENCE  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
DIGITAL SUPPLY CURRENT  
vs. ANALOG INPUT FREQUENCY  
0.8  
0.3  
180  
170  
160  
150  
140  
130  
120  
30  
25  
20  
15  
10  
5
CHB  
-0.2  
-0.7  
-1.2  
CHA  
0
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
0
6
12 18 24 30 36 42 48 54 60  
ANALOG INPUT FREQUENCY (MHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
2.038  
2.034  
2.030  
2.026  
2.022  
2.018  
2.014  
2.010  
2.035  
2.030  
2.025  
2.020  
2.015  
-40  
-15  
10  
35  
60  
85  
2.70 2.85 3.00 3.15 3.30 3.45 3.60  
TEMPERATURE (°C)  
V
(V)  
DD  
8
_______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Typical Operating Characteristics (continued)  
(V = 3.3V, OV = 2.5V, V  
= 2.048V, differential input at -0.5dBFS, f  
= 120MHz, C 10pF, T = +25°C, unless otherwise noted.)  
DD  
DD  
REFIN  
CLK  
L
A
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT POWER  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT POWER  
SIGNAL-TO-NOISE RATIO  
vs. ANALOG INPUT POWER  
(f = 20MHz, T = -40°C)  
(f = 20MHz, T = +25°C)  
(f = 20MHz, T = +85°C)  
IN A  
IN  
A
IN  
A
60  
55  
60  
55  
60  
55  
3.3V  
3.1V  
3.1V  
3.6V  
50  
45  
50  
45  
50  
45  
3.1V  
3.6V  
3.3V  
40  
35  
40  
35  
40  
35  
3.6V  
3.3V  
-15  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
TOTAL HARMONIC DISTORTION  
vs. ANALOG INPUT POWER  
(f = 20MHz, T = -40°C)  
(f = 20MHz, T = +25°C)  
(f = 20MHz, T = +85°C)  
IN  
A
IN  
A
IN  
A
-45  
-50  
-45  
-50  
-45  
-50  
3.1V  
3.6V  
3.3V  
3.3V  
-55  
-60  
-55  
-60  
-55  
-60  
3.6V  
3.3V  
3.1V  
3.6V  
3.1V  
-65  
-70  
-65  
-70  
-65  
-70  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
SPURIOUS-FREE DYNAMIC RANGE  
vs. ANALOG INPUT POWER  
(f = 20MHz, T = -40°C)  
(f = 20MHz, T = +25°C)  
(f = 20MHz, T = +85°C)  
IN  
A
IN  
A
IN  
A
75  
70  
65  
60  
55  
50  
45  
75  
70  
65  
60  
55  
50  
45  
75  
70  
65  
60  
55  
50  
45  
3.3V  
3.6V  
3.1V  
3.1V  
3.1V  
3.3V  
3.3V  
3.6V  
3.6V  
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
-25  
-20  
-15  
-10  
-5  
0
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
ANALOG INPUT POWER (dBFS)  
_______________________________________________________________________________________  
9
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Pin Description  
PIN  
NAME  
FUNCTION  
1
COM  
Common-Mode Voltage I/O. Bypass to GND with a 0.1µF capacitor.  
2, 6, 11,  
14, 15  
Analog Supply Voltage. Bypass each supply pin to GND with a 0.1µF capacitor. Analog supply accepts  
a 3.1V to 3.6V input range.  
V
DD  
3, 7, 10,  
13, 16  
GND  
Analog Ground  
4
5
INA+  
INA-  
INB-  
INB+  
CLK  
Channel A Positive Analog Input. For single-ended operation, connect signal source to INA+.  
Channel A Negative Analog Input. For single-ended operation, connect INA- to COM.  
Channel B Negative Analog Input. For single-ended operation, connect INB- to COM.  
Channel B Positive Analog Input. For single-ended operation, connect signal source to INB+.  
Converter Clock Input  
8
9
12  
T/B selects the ADC Digital Output Format:  
High: Two’s complement  
Low: Straight offset binary  
17  
18  
19  
20  
T/B  
SLEEP  
PD  
Sleep-Mode Input:  
High: Disables both quantizers, but leaves the reference bias circuit active  
Low: Normal operation  
High-Active Power-Down Input:  
High: Power-down mode  
Low: Normal operation  
Low-Active Output Enable Input:  
High: Digital outputs disabled  
Low: Digital outputs enabled  
OE  
21  
22  
D9B  
D8B  
D7B  
D6B  
D5B  
D4B  
D3B  
D2B  
D1B  
D0B  
OGND  
Three-State Digital Output, Bit 9 (MSB), Channel B  
Three-State Digital Output, Bit 8, Channel B  
Three-State Digital Output, Bit 7, Channel B  
Three-State Digital Output, Bit 6, Channel B  
Three-State Digital Output, Bit 5, Channel B  
Three-State Digital Output, Bit 4, Channel B  
Three-State Digital Output, Bit 3, Channel B  
Three-State Digital Output, Bit 2, Channel B  
Three-State Digital Output, Bit 1, Channel B  
Three-State Digital Output, Bit 0, Channel B  
Output Driver Ground  
23  
24  
25  
26  
27  
28  
29  
30  
31, 34  
Output Driver Supply Voltage. Bypass each supply pin to OGND with a 0.1µF capacitor. Output driver  
supply accepts a 1.7V to 3.6V input range.  
32, 33  
OV  
DD  
35  
36  
37  
38  
39  
D0A  
D1A  
D2A  
D3A  
D4A  
Three-State Digital Output, Bit 0, Channel A  
Three-State Digital Output, Bit 1, Channel A  
Three-State Digital Output, Bit 2, Channel A  
Three-State Digital Output, Bit 3, Channel A  
Three-State Digital Output, Bit 4, Channel A  
10 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Pin Description (continued)  
PIN  
40  
41  
42  
43  
44  
45  
46  
47  
48  
NAME  
D5A  
D6A  
D7A  
D8A  
D9A  
FUNCTION  
Three-State Digital Output, Bit 5, Channel A  
Three-State Digital Output, Bit 6, Channel A  
Three-State Digital Output, Bit 7, Channel A  
Three-State Digital Output, Bit 8, Channel A  
Three-State Digital Output, Bit 9 (MSB), Channel A  
REFOUT Internal Reference Voltage Output. Can be connected to REFIN through a resistor or a resistor-divider.  
REFIN  
REFP  
REFN  
EP  
Reference Input. V  
= 2 × (V  
- V  
). Bypass to GND with a > 0.1µF capacitor.  
REFIN  
REFP  
REFN  
Positive Reference I/O. Conversion range is (V  
- V  
). Bypass to GND with a > 0.1µF capacitor.  
REFP  
REFN  
Negative Reference I/O. Conversion range is (V  
Exposed Paddle. Connect to analog ground.  
- V  
). Bypass to GND with a > 0.1µF capacitor.  
REFP  
REFN  
Detailed Description  
Input Track-and-Hold Circuits  
The MAX1190 uses a nine-stage, fully differential,  
pipelined architecture (Figure 1) that allows for high-  
speed conversion while minimizing power consump-  
tion. Samples taken at the inputs move progressively  
through the pipeline stages every half-clock cycle.  
Including the delay through the output latch, the total  
clock-cycle latency is five clock cycles.  
Figure 2 displays a simplified functional diagram of the  
input T/H circuits in both track and hold mode. In track  
mode, switches S1, S2a, S2b, S4a, S4b, S5a, and S5b  
are closed. The fully differential circuits sample the input  
signals onto the two capacitors (C2a and C2b) through  
switches S4a and S4b. S2a and S2b set the common  
mode for the amplifier input, and open simultaneously  
with S1, sampling the input waveform. Switches S4a,  
S4b, S5a, and S5b are then opened before switches  
S3a and S3b connect capacitors C1a and C1b to the  
output of the amplifier and switch S4c is closed. The  
resulting differential voltages are held on capacitors  
C2a and C2b. The amplifiers are used to charge capac-  
itors C1a and C1b to the same values originally held on  
C2a and C2b.  
Flash ADCs convert the held input voltages into a digi-  
tal code. Internal MDACs convert the digitized results  
back into analog voltages, which are then subtracted  
from the original held input signals. The resulting error  
signals are then multiplied by 2, and the residues are  
passed along to the next pipeline stages, where the  
process is repeated until the signals have been  
processed by all nine stages.  
2-BIT FLASH  
ADC  
2-BIT FLASH  
ADC  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
STAGE 1  
STAGE 2  
STAGE 8  
STAGE 9  
DIGITAL ALIGNMENT LOGIC  
10  
DIGITAL ALIGNMENT LOGIC  
10  
T/H  
T/H  
D9A–D0A  
D9B–D0B  
V
INA  
V
INB  
V
INA  
V
INB  
= INPUT VOLTAGE BETWEEN INA+ AND INA- (DIFFERENTIAL OR SINGLE ENDED)  
= INPUT VOLTAGE BETWEEN INB+ AND INB- (DIFFERENTIAL OR SINGLE ENDED)  
Figure 1. Pipelined Architecture—Stage Blocks  
______________________________________________________________________________________ 11  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
INTERNAL  
BIAS  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INA+  
INA-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
CLK  
INTERNAL  
NONOVERLAPPING  
CLOCK SIGNALS  
HOLD  
HOLD  
INTERNAL  
BIAS  
TRACK  
TRACK  
COM  
S5a  
S2a  
C1a  
S3a  
S4a  
S4b  
INB+  
INB-  
OUT  
OUT  
C2a  
C2b  
S4c  
S1  
MAX1190  
C1b  
S3b  
S5b  
COM  
S2b  
INTERNAL  
BIAS  
Figure 2. MAX1190 T/H Amplifiers  
These values are then presented to the first-stage quan-  
tizers and isolate the pipelines from the fast-changing  
inputs. The wide input bandwidth T/H amplifiers allow the  
MAX1190 to track and sample/hold analog inputs of high  
frequencies (> Nyquist). Both ADC inputs (INA+, INB+,  
INA- and INB-) can be driven either differentially or sin-  
gle ended. Match the impedance of INA+ and INA-, as  
well as INB+ and INB-, and set the common-mode volt-  
age to midsupply (V / 2) for optimum performance.  
DD  
12 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
these nodes become high-impedance inputs and can be  
driven through separate, external reference sources.  
Analog Inputs and Reference  
Configurations  
The full-scale range of the MAX1190 is determined by the  
internally generated voltage difference between REFP  
For detailed circuit suggestions and how to drive this  
dual ADC in buffered/unbuffered external reference  
mode, see the Applications Information section.  
(V  
/ 2 + V  
/ 4) and REFN (V  
/ 2 - V  
/ 4).  
DD  
REFIN  
DD  
REFIN  
The full-scale range for both on-chip ADCs is adjustable  
through the REFIN pin, which is provided for this purpose.  
Clock Input (CLK)  
The MAX1190’s CLK input accepts a CMOS-compati-  
ble clock signal. Since the interstage conversion of the  
device depends on the repeatability of the rising and  
falling edges of the external clock, use a clock with low  
jitter and fast rise and fall times (< 2ns). In particular,  
sampling occurs on the rising edge of the clock signal,  
requiring this edge to provide the lowest possible jitter.  
Any significant aperture jitter would limit the SNR per-  
formance of the on-chip ADCs as follows:  
The MAX1190 provides three modes of reference oper-  
ation:  
• Internal reference mode  
• Buffered external reference mode  
• Unbuffered external reference mode  
In internal reference mode, connect the internal refer-  
ence output REFOUT to REFIN through a resistor (e.g.,  
10kΩ) or resistor-divider, if an application requires a  
reduced full-scale range. For stability and noise filtering  
purposes, bypass REFIN with a > 10nF capacitor to  
GND. In internal reference mode, REFOUT, COM,  
REFP, and REFN become low-impedance outputs.  
1
SNR = 20 × log  
2 × π × f × t  
IN AJ  
where f represents the analog input frequency and t  
IN  
AJ  
In buffered external reference mode, adjust the refer-  
ence voltage levels externally by applying a stable and  
accurate voltage at REFIN. In this mode, COM, REFP,  
and REFN are outputs. REFOUT can be left open or  
connected to REFIN through a > 10kΩ resistor.  
In unbuffered external reference mode, connect REFIN to  
GND. This deactivates the on-chip reference buffers for  
REFP, COM, and REFN. With their buffers shut down,  
is the time of the aperture jitter. Clock jitter is especially  
critical for undersampling applications. The clock input  
should always be considered as an analog input and  
routed away from any analog input or other digital signal  
lines. The MAX1190 clock input operates with a voltage  
threshold set to V  
/ 2. Clock inputs with a duty cycle  
DD  
other than 50%, must meet the specifications for high and  
low periods as stated in the Electrical Characteristics.  
5-CLOCK-CYCLE LATENCY  
N
N + 1  
N + 2  
N + 3  
N + 4  
N + 5  
N + 6  
ANALOG INPUT  
CLOCK INPUT  
t
AD  
t
t
CH  
t
CL  
DO  
DATA OUTPUT  
D9A–D0A  
N - 6  
N - 5  
N - 4  
N - 4  
N - 3  
N - 3  
N - 2  
N - 1  
N - 1  
N
N
N + 1  
DATA OUTPUT  
D9B–D0B  
N - 6  
N - 5  
N - 2  
N + 1  
Figure 3. System Timing Diagram  
______________________________________________________________________________________ 13  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
System Timing Requirements  
Figure 3 depicts the relationship between the clock  
OE  
input, analog input, and data output. The MAX1190  
samples at the rising edge of the input clock. Output  
t
t
DISABLE  
ENABLE  
data for channels A and B is valid on the next rising  
edge of the input clock. The output data has an internal  
latency of five clock cycles. Figure 3 also determines  
the relationship between the input clock parameters  
and the valid output data on channels A and B.  
OUTPUT  
D9A–D0A  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
VALID DATA  
VALID DATA  
OUTPUT  
D9B–D0B  
HIGH IMPEDANCE  
Digital Output Data (D0A/B–D9A/B), Output  
Data Format Selection (T/B), Output  
Figure 4. Output Timing Diagram  
Enable (OE)  
All digital outputs, D0A–D9A (channel A) and D0B–D9B  
(channel B), are TTL/CMOS-logic compatible. There is  
a five-clock-cycle latency between any particular sam-  
ple and its corresponding output data. The output cod-  
ing can be chosen to be either straight offset binary or  
two’s complement (Table 1) controlled by a single pin  
(T/B). Pull T/B low to select offset binary and high to  
activate two’s complement output coding. The capaci-  
tive load on digital outputs D0A–D9A and D0B–D9B  
should be kept as low as possible (< 15pF) to avoid  
large digital currents that could feed back into the ana-  
log portion of the MAX1190, thereby degrading its  
dynamic performance. Using buffers on the digital out-  
puts of the ADCs can further isolate the digital outputs  
from heavy capacitive loads. To further improve the  
dynamic performance of the MAX1190, small series  
resistors (e.g., 100Ω) can be added to the digital output  
paths, close to the MAX1190.  
(SLEEP = 1), only the reference bias circuit is active  
(both ADCs are disabled), and current consumption is  
reduced to 3mA.  
To enter full power-down mode, pull PD high. With OE  
simultaneously low, all outputs are latched at the last  
value prior to the power down. Pulling OE high forces  
the digital outputs into a high-impedance state.  
Applications Information  
Figure 5 depicts a typical application circuit containing  
two single-ended to differential converters. The internal  
reference provides a V  
/ 2 output voltage for level-  
DD  
shifting purposes. The input is buffered and then split  
to a voltage follower and inverter. One lowpass filter per  
amplifier suppresses some of the wideband noise  
associated with high-speed operational amplifiers. The  
user can select the R  
and C values to optimize the  
IN  
ISO  
filter performance to suit a particular application. For  
the application in Figure 5, a R of 50Ω is placed  
Figure 4 displays the timing relationship between out-  
put enable and data output valid, as well as power-  
down/wakeup and data output valid.  
ISO  
before the capacitive load to prevent ringing and oscil-  
lation. The 22pF C capacitor acts as a small filter  
IN  
capacitor.  
Power-Down (PD) and Sleep  
(SLEEP) Modes  
The MAX1190 offers two power-save modes—sleep  
mode and full power-down mode. In sleep mode  
Table 1. MAX1190 Output Codes For Differential Inputs  
DIFFERENTIAL INPUT  
VOLTAGE*  
STRAIGHT OFFSET BINARY  
TWO’S COMPLEMENT  
T/B = 1  
DIFFERENTIAL INPUT  
T/B = 0  
V
× 512/512  
+FULL SCALE - 1 LSB  
+1 LSB  
11 1111 1111  
10 0000 0001  
10 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
01 1111 1111  
00 0000 0001  
00 0000 0000  
11 1111 1111  
10 0000 0001  
10 0000 0000  
REF  
V
× 1/512  
0
REF  
Bipolar Zero  
-V  
× 1/512  
-1 LSB  
REF  
-V  
× 511/512  
× 512/512  
-FULL SCALE + 1 LSB  
-FULL SCALE  
REF  
-V  
REF  
*V  
= V  
- V  
REFP REFN  
REF  
14 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
+5V  
0.1μF  
LOWPASS FILTER  
INA-  
MAX4108  
300Ω  
R
50Ω  
IS0  
0.1μF  
C
22pF  
IN  
0.1μF  
-5V  
600Ω  
600Ω  
300Ω  
+5V  
COM  
0.1μF  
+5V  
0.1μF  
0.1μF  
600Ω  
INPUT  
0.1μF  
0.1μF  
LOWPASS FILTER  
MAX4108  
300Ω  
300Ω  
INA+  
MAX4108  
R
IS0  
C
22pF  
IN  
50Ω  
-5V  
-5V  
+5V  
300Ω  
300Ω  
600Ω  
MAX1190  
0.1μF  
LOWPASS FILTER  
INB-  
MAX4108  
300Ω  
R
50Ω  
IS0  
0.1μF  
C
22pF  
IN  
0.1μF  
-5V  
600Ω  
+5V  
600Ω  
600Ω  
300Ω  
0.1μF  
0.1μF  
0.1μF  
+5V  
INPUT  
LOWPASS FILTER  
0.1μF  
MAX4108  
300Ω  
300Ω  
INB+  
MAX4108  
R
50Ω  
IS0  
C
IN  
22pF  
-5V  
0.1μF  
-5V  
300Ω  
300Ω  
600Ω  
Figure 5. Typical Application for Single-Ended-to-Differential Conversion  
______________________________________________________________________________________ 15  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
25Ω  
INA+  
22pF  
0.1μF  
6
5
4
1
2
3
T1  
V
IN  
N.C.  
COM  
2.2μF  
0.1μF  
MINICIRCUITS  
TT1–6-KK81  
25Ω  
INA-  
INB+  
22pF  
22pF  
MAX1190  
25Ω  
0.1μF  
6
5
4
1
2
3
T1  
V
IN  
N.C.  
2.2μF  
0.1μF  
MINICIRCUITS  
TT1-6-KK81  
25Ω  
INB-  
22pF  
Figure 6. Transformer-Coupled Input Drive  
Using Transformer Coupling  
An RF transformer (Figure 6) provides an excellent solu-  
tion to convert a single-ended source signal to a fully dif-  
ferential signal, required by the MAX1190 for optimum  
performance. Connecting the center tap of the trans-  
Single-Ended AC-Coupled Input Signal  
Figure 7 shows an AC-coupled, single-ended applica-  
tion. Amplifiers like the MAX4108 provide high speed,  
high bandwidth, low noise, and low distortion to main-  
tain the integrity of the input signal.  
former to COM provides a V  
/ 2 DC level shift to the  
DD  
Buffered External Reference Drives  
Multiple ADCs  
Multiple-converter systems based on the MAX1190 are  
well suited for use with a common reference voltage.  
The REFIN pin of those converters can be connected  
directly to an external reference source.  
input. Although a 1:1 transformer is shown, a step-up  
transformer can be selected to reduce the drive require-  
ments. A reduced signal swing from the input driver, such  
as an op amp, can also improve the overall distortion.  
In general, the MAX1190 provides better SFDR and  
THD with fully differential input signals than single-  
ended drive, especially for very high input frequencies.  
In differential input mode, even-order harmonics are  
lower as both inputs (INA+, INA- and/or INB+, INB-) are  
balanced, and each of the ADC inputs only requires  
half the signal swing compared to single-ended mode.  
A precision bandgap reference like the MAX6062 gen-  
erates an external DC level of 2.048V (Figure 8), and  
exhibits a noise voltage density of 150nV/Hz. Its output  
passes through a 1-pole lowpass filter (with 10Hz cutoff  
frequency) to the MAX4250, which buffers the reference  
before its output is applied to a second 10Hz lowpass  
filter. The MAX4250 provides a low offset voltage (for  
16 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
REFP  
1kΩ  
1kΩ  
R
50Ω  
ISO  
V
IN  
0.1μF  
INA+  
COM  
INA-  
MAX4108  
C
22pF  
IN  
100Ω  
100Ω  
REFN  
0.1μF  
R
ISO  
50Ω  
C
IN  
22pF  
REFP  
MAX1190  
R
50Ω  
1kΩ  
ISO  
V
IN  
0.1μF  
INB+  
MAX4108  
C
IN  
100Ω  
100Ω  
1kΩ  
22pF  
REFN  
0.1μF  
R
ISO  
50Ω  
INB-  
C
IN  
22pF  
Figure 7. Using an Op Amp for Single-Ended, AC-Coupled Input Drive  
high-gain accuracy) and a low noise level. The passive  
10Hz filter following the buffer attenuates noise pro-  
duced in the voltage reference and buffer stages. This  
filtered noise density, which decreases for higher fre-  
quencies, meets the noise levels specified for preci-  
sion-ADC operation.  
Those three voltages are buffered by the MAX4252,  
which provides low noise and low DC offset. The indi-  
vidual voltage followers are connected to 10Hz lowpass  
filters, which filter both the reference voltage and ampli-  
fier noise to a level of 3nV/Hz. The 2.0V and 1.0V refer-  
ence voltages set the differential full-scale range of the  
associated ADCs at 2V . The 2.0V and 1.0V buffers  
P-P  
Unbuffered External Reference Drives  
Multiple ADCs  
drive the ADCs’ internal ladder resistances between  
them. Note that the common power supply for all active  
components removes any concern regarding power-  
supply sequencing when powering up or down.  
Connecting each REFIN to analog ground disables the  
internal reference of each device, allowing the internal  
reference ladders to be driven directly by a set of exter-  
nal reference sources. Followed by a 10Hz lowpass fil-  
ter and precision voltage-divider, the MAX6066  
generates a DC level of 2.500V. The buffered outputs of  
this divider are set to 2.0V, 1.5V, and 1.0V, with an  
accuracy that depends on the tolerance of the divider  
resistors (Figure 9).  
With the outputs of the MAX4252 matching better than  
0.1%, the buffers and subsequent lowpass filters can  
be replicated to support as many as 32 ADCs. For  
applications that require more than 32 matched ADCs,  
a voltage reference and divider string common to all  
converters is highly recommended.  
______________________________________________________________________________________ 17  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
3.3V  
3.3V  
0.1μF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
2.048V  
0.1μF  
1
MAX6062  
3
0.1μF  
16.2kΩ  
REFN  
N = 1  
5
MAX4250  
2
2
3
4
2
162Ω  
COM  
1
MAX1190  
1μF  
100μF  
10Hz LOWPASS  
FILTER  
0.1μF 0.1μF 0.1μF  
10Hz LOWPASS  
FILTER  
2.2μF  
10V  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN MAY BE USED WITH UP TO 1000 ADCs.  
0.1μF  
29  
31  
32  
1
N.C.  
REFOUT  
REFIN  
REFP  
N = 1000  
0.1μF  
REFN  
MAX1190  
2
COM  
0.1μF 0.1μF 0.1μF  
Figure 8. External Buffered (MAX4250) Reference Drive Using a MAX6062 Bandgap Reference  
QAM signal is divided down into its I and Q components,  
essentially representing the modulation process  
reversed. Figure 10 displays the demodulation process  
performed in the analog domain, using the dual-matched  
3.3V, 10-bit ADC MAX1190 and the MAX2451 quadrature  
demodulator to recover and digitize the I and Q base-  
band signals. Before being digitized by the MAX1190,  
the mixed-down signal components can be filtered by  
matched analog filters, such as Nyquist or pulse-shaping  
filters, which remove unwanted images from the mixing  
process, thereby enhancing the overall SNR perfor-  
mance and minimizing intersymbol interference.  
Typical QAM Demodulation Application  
A frequently used modulation technique in digital com-  
munications applications is quadrature amplitude modu-  
lation (QAM). Typically found in spread-spectrum-based  
systems, a QAM signal represents a carrier frequency  
modulated in both amplitude and phase. At the transmit-  
ter, modulating the baseband signal with quadrature  
outputs, a local oscillator followed by subsequent  
upconversion can generate the QAM signal. The result  
is an in-phase (I) and a quadrature (Q) carrier compo-  
nent, where the Q component is 90° phase shifted with  
respect to the in-phase component. At the receiver, the  
18 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
3.3V  
0.1μF  
N.C.  
29  
31  
32  
1
REFOUT  
REFIN  
REFP  
1
MAX6066  
3
2.0V  
3.3V  
4
4
4
21.5kΩ  
REFN  
N = 1  
2.0V AT 8mA  
2
3
2
1/4 MAX4252  
1
47Ω  
MAX1190  
2
COM  
10μF  
6V  
330μF  
6V  
11  
21.5kΩ  
1.47kΩ  
0.1μF 0.1μF 0.1μF  
1.5V  
3.3V  
1.5V AT 0mA  
5
6
1/4 MAX4252  
7
47Ω  
1μF  
10μF  
330μF  
11  
6V  
6V  
21.5kΩ  
2.2μF  
10V  
1.47kΩ  
0.1μF  
3.3V  
0.1μF  
1.0V  
3.3V  
1.0V AT -8mA  
10  
9
1/4 MAX4252  
8
47Ω  
21.5kΩ  
21.5kΩ  
330μF  
6V  
29  
31  
32  
1
N.C.  
10μF  
11  
REFOUT  
REFIN  
REFP  
MAX4254 POWER-SUPPLY  
6V  
BYPASSING. PLACE CAPACITOR  
AS CLOSE AS POSSIBLE TO  
THE OP AMP.  
1.47kΩ  
N = 32  
REFN  
MAX1190  
2
COM  
0.1μF 0.1μF 0.1μF  
NOTE: ONE FRONT-END REFERENCE CIRCUIT DESIGN MAY BE USED WITH UP TO 32 ADCs.  
Figure 9. External Unbuffered Reference Drive with MAX4252 and MAX6066  
MAX2451  
INA+  
INA-  
0°  
DSP  
POST-  
PROCESSING  
90°  
MAX1190  
INB+  
INB-  
DOWNCONVERTER  
÷
8
Figure 10. Typical QAM Application Using the MAX1190  
______________________________________________________________________________________ 19  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
line can be either a best-straight-line fit or a line drawn  
Grounding, Bypassing, and  
between the endpoints of the transfer function, once off-  
Board Layout  
set and gain errors have been nullified. The static linearity  
The MAX1190 requires high-speed board layout design  
techniques. Locate all bypass capacitors as close to the  
device as possible, preferably on the same side as the  
ADC, using surface-mount devices for minimum induc-  
parameters for the MAX1190 are measured using the  
best-straight-line fit method.  
Differential Nonlinearity (DNL)  
Differential nonlinearity is the difference between an actu-  
al step width and the ideal value of 1 LSB. A DNL error  
specification of less than 1 LSB guarantees no missing  
codes and a monotonic transfer function.  
tance. Bypass V , REFP, REFN, and COM with two  
DD  
parallel 0.1µF ceramic capacitors and a 2.2µF bipolar  
capacitor to GND. Follow the same rules to bypass the  
digital supply (OV ) to OGND. Multilayer boards with  
DD  
separated ground and power planes produce the  
highest level of signal integrity. Consider the use of a split  
ground plane arranged to match the physical location of  
the analog ground (GND) and the digital output driver  
ground (OGND) on the ADC’s package. The two ground  
planes should be joined at a single point such that the  
noisy digital ground currents do not interfere with the ana-  
log ground plane. The ideal location of this connection  
can be determined experimentally at a point along the  
gap between the two ground planes, which produces  
optimum results. Make this connection with a low-value,  
surface-mount resistor (1Ω to 5Ω), a ferrite bead, or a  
direct short. Alternatively, all ground pins could share the  
same ground plane if the ground plane is sufficiently iso-  
lated from any noisy, digital systems ground plane (e.g.,  
downstream output buffer or DSP ground plane). Route  
high-speed digital signal traces away from the sensitive  
analog traces of either channel. Make sure to isolate the  
analog input lines to each respective converter to mini-  
mize channel-to-channel crosstalk. Keep all signal lines  
short and free of 90° turns.  
Dynamic Parameter Definitions  
Aperture Jitter  
Figure 11 depicts the aperture jitter (t ), which is the  
AJ  
sample-to-sample variation in the aperture delay.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken (Figure 11).  
Signal-to-Noise Ratio (SNR)  
For a waveform perfectly reconstructed from digital  
samples, the theoretical maximum SNR is the ratio of  
the full-scale analog input (RMS value) to the RMS  
quantization error (residual error). The ideal, theoretical  
minimum analog-to-digital noise is caused by quantiza-  
tion error only and results directly from the ADC’s reso-  
lution (N bits):  
SNR  
= 6.02 N + 1.76  
dB dB  
dB[max]  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. SNR is computed by taking the ratio of the RMS  
signal to the RMS noise, which includes all spectral  
components minus the fundamental, the first five har-  
monics, and the DC offset.  
Static Parameter Definitions  
Integral Nonlinearity (INL)  
Integral nonlinearity is the deviation of the values on an  
actual transfer function from a straight line. This straight  
Signal-to-Noise Plus Distortion (SINAD)  
SINAD is computed by taking the ratio of the RMS sig-  
nal to all spectral components minus the fundamental  
and the DC offset.  
CLK  
ANALOG  
INPUT  
Effective Number of Bits (ENOB)  
ENOB specifies the dynamic performance of an ADC at a  
specific input frequency and sampling rate. An ideal  
ADC’s error consists of quantization noise only. ENOB for  
a full-scale sinusoidal input waveform is computed from:  
t
AD  
t
AJ  
SAMPLED  
DATA (T/H)  
SINAD1.76  
ENOB=  
6.02  
HOLD  
TRACK  
TRACK  
T/H  
Figure 11. T/H Aperture Timing  
20 ______________________________________________________________________________________  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Total Harmonic Distortion (THD)  
THD is typically the ratio of the RMS sum of the first four  
harmonics of the input signal to the fundamental itself.  
This is expressed as:  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio expressed in decibels of the RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next largest spurious  
component, excluding DC offset.  
2
2
2
2
V
+ V + V + V  
3 4 5  
Intermodulation Distortion (IMD)  
The two-tone IMD is the ratio expressed in decibels of  
either input tone to the worst 3rd-order (or higher) inter-  
modulation products. The individual input tone levels are  
at -6.5dB full scale and their envelope is at -0.5dB full  
scale.  
2
THD = 20 × log  
V
1
where V is the fundamental amplitude, and V through  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
harmonics.  
5
Functional Diagram  
V
DD  
OGND  
OV  
DD  
GND  
INA+  
10  
10  
OUTPUT  
DRIVERS  
D9A–D0A  
ADC  
DEC  
T/H  
INA-  
CLK  
CONTROL  
OE  
INB+  
INB-  
10  
10  
OUTPUT  
DRIVERS  
DEC  
T/H  
ADC  
D9B–D0B  
T/B  
REFERENCE  
PD  
MAX1190  
SLEEP  
REFOUT  
REFN COM REFP  
REFIN  
Revision History  
Pages changed at Rev 1: 1–15, 17, 19, 20, 21.  
______________________________________________________________________________________ 21  
Dual 10-Bit, 120Msps, 3.3V, Low-Power ADC  
with Internal Reference and Parallel Outputs  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE,  
48L TQFP, 7x7x1.0mm EP OPTION  
1
21-0065  
G
2
MAX1190 Package Code: C48E-7  
PACKAGE OUTLINE,  
48L TQFP, 7x7x1.0mm EP OPTION  
2
21-0065  
G
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2006 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
ENGL ISH ? ? ? ? ? ? ? ? ? ?  
WH AT 'S NEW  
PR OD UC TS  
SO LUTI ONS  
D ES IG N  
A PPNOTES  
SU PPORT  
B U Y  
COM PA N Y  
M EMB ERS  
M A X 1 1 9 0  
Pa rt Nu m ber T abl e  
N
o
t
e
s
:
1 . S e e t h e M A X 1 1 9 0 Q u i c k V i e w D a t a S h e e t f o r f u r t h e r i n f o r m a t i o n o n t h i s p r o d u c t f a m i l y o r d o w n l o a d t h e  
M A X 1 1 9 0 f u l l d a t a s h e e t ( P D F , 4 2 8 k B ) .  
2 . O t h e r o p t i o n s a n d l i n k s f o r p u r c h a s i n g p a r t s a r e l i s t e d a t : h t t p : / / w w w . m a x i m - i c . c o m / s a l e s .  
3
.
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
A
s
k
o
u
r
a
p
p
l
i
c
a
t
i
o
n
s
e
n
g
i
n
e
e
r
s
.
E
x
p
e
r
t
a
s
s
i
s
t
a
n
c
e
i
n
f
i
n
d
i
n
g
p
a
r
t
s
,
u
s
u
a
l
l
y
w
i
t
h
i
n
o
n
e
b
u
s
i
n
e
s
s
d
a
y
.
4 . P a r t n u m b e r s u f f i x e s : T o r T & R = t a p e a n d r e e l ; + = R o H S / l e a d - f r e e ; # = R o H S / l e a d - e x e m p t . M o r e : S e e f u l l  
d a t a s h e e t o r P a r t N a m i n g C o n v e n t i o n s .  
5 . * S o m e p a c k a g e s h a v e v a r i a t i o n s , l i s t e d o n t h e d r a w i n g . " P k g C o d e / V a r i a t i o n " t e l l s w h i c h v a r i a t i o n t h e  
p r o d u c t u s e s .  
P
a
r
t
N
u
m
b
e
r
F r e e  
S a m p l e  
B u y  
D i r e c t  
T
e
m
p
R o H S / L e a d - F r e e ?  
M a t e r i a l s A n a l y s i s  
P a c k a g e : T Y P E P I N S S I Z E  
D R A W I N G C O D E / V A R *  
M
A
X
1
1
9
0
E
C
M
+
T
D
-
4
0
C
t
o
+
8
5
C
R
o
H
S
/
L
e
a
d
-
F
r
e
e
:
Y
e
s
M A X 1 1 9 0 E C M - D  
M A X 1 1 9 0 E C M - T D  
M A X 1 1 9 0 E C M + D  
T Q F P ; 4 8 p i n ; 7 x 7 x 1 m m  
D w g : 2 1 - 0 0 6 5 G ( P D F )  
U s e p k g c o d e / v a r i a t i o n : C 4 8 E - 7 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T Q F P ; 4 8 p i n ; 7 x 7 x 1 m m  
D w g : 2 1 - 0 0 6 5 G ( P D F )  
U s e p k g c o d e / v a r i a t i o n : C 4 8 E - 7 *  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : N o  
M a t e r i a l s A n a l y s i s  
T Q F P ; 4 8 p i n ; 7 x 7 x 1 m m  
D w g : 2 1 - 0 0 6 5 G ( P D F )  
- 4 0 C t o + 8 5 C R o H S / L e a d - F r e e : Y e s  
M a t e r i a l s A n a l y s i s  
U
s
e
p
k
g
c
o
d
e
/
v
a
r
i
a
t
i
o
n
:
C
4
8
E
+
7
*
D
i
d
n
'
t
F
i
n
d
W
h
a
t
Y
o
u
N
e
e
d
?
C
O
N
T
A
C
T
U
S
:
S
E
N
D
U
S
A
N
E
M
A
I
L
C
o
p
y
r
i
g
h
t
2
0
0
7
b
y
M
a
x
i
m
I
n
t
e
g
r
a
t
e
d
P
r
o
d
u
c
t
s
,
D
a
l
l
a
s
S
e
m
i
c
o
n
d
u
c
t
o
r
L
e
g
a
l
N
o
t
i
c
e
s
P
r
i
v
a
c
y
P
o
l
i
c
y

相关型号:

MAX1190ECM+TD

ADC, Proprietary Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, LEAD FREE, MS-026ABA-HD, TQFP-48
MAXIM

MAX1190ECM-T

ADC, Flash Method, 10-Bit, 2 Func, 1 Channel, Parallel, Word Access, CMOS, PQFP48, 7 X 7 MM, 1.0 MM HEIGHT, MS-026ABA-HD, TQFP-48
MAXIM

MAX1191

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC
MAXIM

MAX1191ETI

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM

MAX1191ETI+

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM

MAX1191ETI+T

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, MO-220, TQFN-28
MAXIM

MAX1191ETI-T

Ultra-Low-Power, 7.5Msps, Dual 8-Bit ADC
MAXIM

MAX1192

Ultra-Low-Power, 22Msps, Dual 8-Bit ADC
MAXIM

MAX1192ETI

IC,A/D CONVERTER,DUAL,8-BIT,CMOS,LLCC,28PIN
ROCHESTER

MAX1192ETI-T

Ultra-Low-Power, 22Msps, Dual 8-Bit ADC
MAXIM

MAX1193

Ultra-Low-Power, 45Msps, Dual 8-Bit ADC
MAXIM

MAX1193ETI+

ADC, Flash Method, 8-Bit, 1 Func, 2 Channel, Parallel, 8 Bits Access, CMOS, 5 X 5 MM, 0.80 MM HEIGHT, EXPOSED PAD, THIN, QFN-28
MAXIM