MAX1202BC/D [MAXIM]

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE; 5V,8通道,串行, 12位ADC, 3V数字接口
MAX1202BC/D
型号: MAX1202BC/D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
5V,8通道,串行, 12位ADC, 3V数字接口

转换器 模数转换器
文件: 总24页 (文件大小:310K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1173; Rev 2; 5/98  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
Ge n e ra l De s c rip t io n  
Fe a t u re s  
The MAX1202/MAX1203 are 12-bit data-acquisition  
systems specifically designed for use in applications  
with mixed +5V (analog) and +3V (digital) supply volt-  
ages. They operate with a single +5V analog supply or  
dual ±5V analog supplies, and combine an 8-channel  
multiplexer, high-bandwidth track/hold, and serial inter-  
face with high conversion speed and low power con-  
sumption.  
8-Channel Single-Ended or 4-Channel  
Differential Inputs  
Operates from Single +5V or Dual ±5V Supplies  
User-Adjustable Output Logic Levels  
(2.7V to 5.25V)  
Low Power: 1.5mA (operating mode)  
2µA (power-down mode)  
A 4-wire s e ria l inte rfa c e c onne c ts d ire c tly to  
SPI™/MICROWIRE™ devices without external logic,  
and a serial strobe output allows direct connection to  
TMS320-fa mily d ig ita l s ig na l p roc e s s ors . The  
MAX1202/MAX1203 use either the internal clock or an  
external serial-interface clock to perform successive-  
approximation analog-to-digital conversions. The serial  
interface operates at up to 2MHz.  
Internal Track/Hold, 133kHz Sampling Rate  
Internal 4.096V Reference (MAX1202)  
SPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
Software-Configurable Unipolar/Bipolar Inputs  
20-Pin DIP/SSOP  
The MAX1202 features an internal 4.096V reference,  
while the MAX1203 requires an external reference. Both  
parts have a reference-buffer amplifier that simplifies  
gain trim. They also have a VL pin that is the power  
supply for the digital outputs. Output logic levels (3V,  
3.3V, or 5V) are determined by the value of the voltage  
applied to this pin.  
Ord e rin g In fo rm a t io n  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
MAX1202ACPP 0°C to +70°C 20 Plastic DIP  
MAX1202BCPP 0°C to +70°C 20 Plastic DIP  
MAX1202ACAP 0°C to +70°C 20 SSOP  
MAX1202BCAP 0°C to +70°C 20 SSOP  
MAX1202BC/D 0°C to +70°C Dice*  
±1/2  
±1  
These devices provide a hard-wired SHDN pin and two  
software-selectable power-down modes. Accessing the  
serial interface automatically powers up the devices. A  
quick turn-on time enables the MAX1202/MAX1203 to  
be shut down between conversions, allowing the user  
to optimize supply currents. By customizing power-  
down between conversions, supply current can drop  
below 10µA at reduced sampling rates.  
±1/2  
±1  
±1  
Ordering Information continued at end of data sheet.  
*Dice are specified at T = +25°C, DC parameters only.  
A
P in Co n fig u ra t io n  
The MAX1202/MAX1203 are available in 20-pin SSOP  
and DIP packages, and are specified for the commer-  
cial, extended, and military temperature ranges.  
TOP VIEW  
20  
V
DD  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
1
2
Ap p lic a t io n s  
5V/3V Mixed-Supply Systems  
Data Acquisition  
19 SCLK  
18 CS  
3
MAX1202  
MAX1203  
4
17 DIN  
5
SSTRB  
16  
High-Accuracy Process Control  
Battery-Powered Instruments  
Medical Instruments  
6
15 DOUT  
14 VL  
7
8
13 GND  
V
9
12 REFADJ  
11 REF  
SS  
Typical Operating Circuit appears at end of data sheet.  
SPI is a registered trademark of Motorola, Inc.  
MICROWIRE is a registered trademark of National  
Semiconductor Corp.  
SHDN  
10  
DIP/SSOP  
________________________________________________________________ Maxim Integrated Products  
1
For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
ABSOLUTE MAXIMUM RATINGS  
V
DD  
to GND ................................................................-0.3V to 6V  
Continuous Power Dissipation (T = +70°C)  
A
VL ...............................................................-0.3V to (V + 0.3V)  
Plastic DIP (derate 11.11mW/°C above +70°C) ...........889mW  
SSOP (derate 8.00mW/°C above +70°C) .....................640mW  
CERDIP (derate 11.11mW°C above +70°C).................889mW  
Operating Temperature Ranges  
DD  
V
SS  
to GND.................................................................0.3V to -6V  
V
DD  
to V ................................................................-0.3V to 12V  
SS  
CH0–CH7 to GND............................(V - 0.3V) to (V + 0.3V)  
SS  
DD  
CH0–CH7 Total Input Current...........................................±20mA  
REF to GND................................................-0.3V to (V + 0.3V)  
MAX1202_C_P/MAX1203_C_P ............................0°C to +70°C  
MAX1202_E_P/MAX1203_E_P..........................-40°C to +85°C  
MAX1202BMJP/MAX1203BMJP .....................-55°C to +125°C  
Storage Temperature Range .............................-60°C to +150°C  
Lead Temperature (soldering, 10sec) .............................+300°C  
DD  
REFADJ to GND .........................................-0.3V to (V + 0.3V)  
DD  
Digital Inputs to GND .................................-0.3V to (V + 0.3V)  
DD  
Digital Outputs to GND.................................-0.3V to (VL + 0.3V)  
Digital Output Sink Current .................................................25mA  
Stresses beyond those listed under Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = +5V ±5%, VL = 2.7V to 3.6V; V = 0V or -5V ±5%; f = 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion  
DD  
SS  
SCLK  
/MAX1203  
cycle (133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin;  
REF  
T
A
= T  
to T ; unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY (Note 1)  
Resolution  
12  
Bits  
MAX1202A/MAX1203A  
±0.5  
±1.0  
±1.0  
±3.0  
±3  
Relative Accuracy (Note 2)  
INL  
LSB  
MAX1202B/MAX1203B  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
LSB  
LSB  
MAX1202 (all grades)  
Gain Error (Note 3)  
MAX1203A  
±1.5  
±3  
LSB  
External reference, 4.096V  
External reference, 4.096V  
MAX1203B  
Gain Temperature Coefficient  
±0.8  
±0.1  
ppm/°C  
LSB  
Channel-to-Channel  
Offset Matching  
DYNAMIC SPECIFICATIONS (10kHz sine-wave input, 4.096Vp-p, 133ksps, 2.0MHz external clock, bipolar-input mode)  
Signal-to-Noise + Distortion Ratio  
SINAD  
70  
dB  
dB  
Total Harmonic Distortion  
(up to the 5th harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Channel-to-Channel Crosstalk  
Small-Signal Bandwidth  
SFDR  
80  
dB  
dB  
V
= 4.096Vp-p, 65kHz (Note 4)  
-85  
4.5  
IN  
-3dB rolloff  
MHz  
kHz  
Full-Power Bandwidth  
800  
2
_______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%, VL = 2.7V to 3.6V; V = 0V or -5V ±5%; f = 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion  
DD  
SS  
SCLK  
cycle (133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin;  
REF  
T
A
= T  
to T ; unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CONVERSION RATE  
Internal clock  
5.5  
6
10  
Conversion Time (Note 5)  
t
µs  
CONV  
External clock, 2MHz, 12 clocks/conversion  
Track/Hold Acquisition Time  
Aperture Delay  
t
1.5  
µs  
ns  
ACQ  
10  
<50  
1.7  
Aperture Jitter  
ps  
Internal Clock Frequency  
MHz  
External compensation mode, 4.7µF  
Internal compensation mode (Note 6)  
Used for data transfer only  
0.1  
0.1  
0
2.0  
0.4  
2.0  
External Clock Frequency Range  
MHz  
ANALOG INPUT  
Unipolar, V = 0V  
V
REF  
SS  
Input Voltage Range, Single-  
Ended and Differential (Note 7)  
V
Bipolar, V = -5V  
±V  
/ 2  
SS  
REF  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= ±5V  
±0.01  
16  
±1  
µA  
pF  
CH_  
(Note 6)  
INTERNAL REFERENCE (MAX1202 only, reference-buffer enabled)  
REF Output Voltage  
T
A
= +25°C  
4.076  
4.096  
4.116  
30  
V
REF Short-Circuit Current  
mA  
MAX1202AC  
±30  
±30  
±30  
2.5  
±50  
±60  
V
REF  
Temperature Coefficient  
MAX1202AE  
ppm/°C  
MAX1202B  
Load Regulation (Note 8)  
Capacitive Bypass at REF  
0mA to 0.5mA output load  
Internal compensation mode  
External compensation mode  
mV  
µF  
0
4.7  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
0.01  
µF  
%
±1.5  
EXTERNAL REFERENCE AT REF (Reference buffer disabled, V  
= 4.096V)  
REF  
2.50  
12  
V
50mV  
+
DD  
Input Voltage Range  
V
Input Current  
200  
20  
350  
µA  
kΩ  
µA  
Input Resistance  
REF Input Current in Shutdown  
1.5  
10  
SHDN = 0V  
V
50mV  
-
DD  
REFADJ Buffer Disable Threshold  
V
_______________________________________________________________________________________  
3
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%, VL = 2.7V to 3.6V; V = 0V or -5V ±5%; f = 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion  
DD  
SS  
SCLK  
cycle (133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin;  
REF  
T
A
= T  
to T ; unless otherwise noted.)  
MAX  
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
EXTERNAL REFERENCE AT REFADJ  
Internal compensation mode  
External compensation mode  
MAX1202  
0
Capacitive Bypass at REF  
µF  
V/V  
µA  
4.7  
1.68  
1.64  
Reference-Buffer Gain  
MAX1203  
MAX1202  
±50  
±5  
REFADJ Input Current  
MAX1203  
POWER REQUIREMENTS  
V
Positive Supply Voltage  
Negative Supply Voltage  
V
5 ±5%  
DD  
V
SS  
0 or -5 ±5%  
V
Operating mode  
1.5  
30  
2
2.5  
70  
mA  
/MAX1203  
Positive Supply Current  
I
DD  
Fast power-down (Note 9)  
Full power-down (Note 9)  
Operating mode and fast power-down  
Full power-down  
µA  
10  
50  
Negative Supply Current  
I
SS  
µA  
10  
Logic Supply Voltage  
VL  
2.70  
5.25  
10  
V
Logic Supply Current (Notes 6, 10)  
I
VL  
VL = V = 5V  
µA  
DD  
Positive Supply Rejection  
(Note 11)  
V
= 5V ±5%; external reference, 4.096V;  
DD  
PSR  
PSR  
PSR  
±0.06  
±0.01  
±0.06  
±0.5  
±0.5  
±0.5  
mV  
mV  
mV  
full-scale input  
Negative Supply Rejection  
(Note 11)  
V
SS  
= -5V ±5%; external reference, 4.096V;  
full-scale input  
Logic Supply Rejection  
(Note 12)  
External reference, 4.096V; full-scale input  
4
_______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
ELECTRICAL CHARACTERISTICS (continued)  
(V = +5V ±5%, VL = 2.7V to 3.6V; V = 0V or -5V ±5%; f = 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion  
DD  
SS  
SCLK  
cycle (133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin;  
REF  
T
= T  
to T  
; unless otherwise noted.)  
PARAMETER SYMBOL  
DIGITAL INPUTS: DIN, SCLK, CS, SHDN  
A
MIN MAX  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
2.0  
V
V
DIN, SCLK, CS Input High Voltage  
DIN, SCLK, CS Input Low Voltage  
DIN, SCLK, CS Input Hysteresis  
DIN, SCLK, CS Input Leakage  
DIN, SCLK, CS Input Capacitance  
SHDN Input High Voltage  
IH  
V
IL  
0.8  
V
HYST  
0.15  
V
I
IN  
V
= 0V or V  
DD  
±1  
15  
µA  
pF  
V
IN  
C
(Note 6)  
IN  
V
SH  
V
- 0.5  
DD  
V
SM  
1.5  
V
DD  
- 1.5  
V
SHDN Input Mid-Voltage  
V
FLT  
2.75  
V
SHDN Voltage, Floating  
SHDN = open  
V
0.5  
4.0  
V
SHDN Input Low Voltage  
SL  
I
SH  
µA  
µA  
SHDN Input Current, High  
SHDN Input Current, Low  
SHDN = V  
DD  
I
SL  
-4.0  
SHDN = 0V  
SHDN Maximum Allowed  
Leakage, Mid-Input  
-100  
100  
0.4  
nA  
SHDN = open  
DIGITAL OUTPUTS: DOUT, SSTRB (VL = 2.7V to 3.6V)  
I
= 3mA  
= 6mA  
SINK  
Output Voltage Low  
V
OL  
V
I
0.3  
SINK  
Output Voltage High  
V
OH  
I
= 1mA  
VL - 0.5  
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
±10  
15  
µA  
pF  
CS = VL  
CS = VL (Note 6)  
L
C
OUT  
DIGITAL OUTPUTS: DOUT, SSTRB (VL = 4.75V to 5.25V)  
I
= 5mA  
= 8mA  
0.4  
SINK  
Output Voltage Low  
V
OL  
V
I
0.3  
SINK  
Output Voltage High  
V
OH  
I
= 1mA  
4
V
SOURCE  
Three-State Leakage Current  
Three-State Output Capacitance  
I
±10  
15  
µA  
pF  
CS = 5V  
CS = 5V (Note 6)  
L
C
OUT  
_______________________________________________________________________________________  
5
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
TIMING CHARACTERISTICS  
(V = +5V ±5%, VL = 2.7V to 3.6V, V = 0V or -5V ±5%, T = T  
to T , unless otherwise noted.)  
MAX  
DD  
SS  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
1.5  
TYP  
MAX  
UNITS  
µs  
Acquisition Time  
t
ACQ  
DIN to SCLK Setup  
t
100  
ns  
DS  
DH  
DO  
DIN to SCLK Hold  
t
0
ns  
SCLK Fall to Output Data Valid  
CS Fall to Output Enable  
CS Rise to Output Disable  
CS to SCLK Rise Setup  
CS to SCLK Rise Hold  
SCLK Pulse Width High  
SCLK Pulse Width Low  
SCLK Fall to SSTRB  
t
C
C
C
= 100pF  
= 100pF  
= 100pF  
20  
240  
240  
240  
ns  
LOAD  
LOAD  
LOAD  
t
ns  
DV  
t
ns  
TR  
t
100  
0
ns  
CSS  
CSH  
t
ns  
t
200  
200  
ns  
CH  
t
ns  
CL  
t
C
= 100pF  
240  
240  
ns  
SSTRB  
LOAD  
CS Fall to SSTRB Output Enable  
(Note 6)  
/MAX1203  
t
External-clock mode only, C  
External-clock mode only, C  
Internal-clock mode only  
= 100pF  
= 100pF  
ns  
ns  
ns  
SDV  
LOAD  
LOAD  
CS Rise to SSTRB Output  
Disable (Note 6)  
t
240  
STR  
SSTRB Rise to SCLK Rise  
(Note 6)  
t
0
SCK  
Note 1: Tested at V = 5.0V; V = 0V; unipolar-input mode.  
DD  
SS  
Note 2: Relative accuracy is the analog values deviation (at any code) from its theoretical value after the full-scale range is calibrated.  
Note 3: MAX1202—internal reference, offset nulled; MAX1203—external reference (V = 4.096V), offset nulled.  
REF  
Note 4: On-channel grounded; sine wave applied to all off-channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle.  
Note 6: Guaranteed by design. Not subject to production testing.  
Note 7: Common-mode range for analog inputs is from V to V  
.
SS  
DD  
Note 8: External load should not change during the conversion for specified accuracy.  
Note 9: Shutdown supply current is measured with VL at 3.3V, and with all digital inputs tied to either VL or GND;  
REFADJ = GND. Shutdown supply current is also dependent on V (Figure 12c).  
IH  
Note 10: Logic supply current is measured with the digital outputs (DOUT and SSTRB) disabled (CS high). When the outputs are  
active (CS low), the logic supply current depends on f , and on the static and capacitive load at DOUT and SSTRB.  
SCLK  
Note 11: Measured at V  
+ 5% and V  
- 5% only.  
SUPPLY  
SUPPLY  
Note 12: Measured at VL = 2.7V and VL = 3.6V.  
6
_______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
__________________________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s  
(V  
DD  
= 5V ±5%; VL = 2.7V to 3.6V; V = 0V; f  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle  
SS  
SCLK  
(133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin; T = +25°C;  
A
REF  
unless otherwise noted.)  
SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
6
2.0  
REFADJ = GND  
FULL POWER-DOWN  
5
1.8  
1.6  
4
3
MAX1202  
MAX1202  
1.4  
1.2  
1.0  
MAX1203  
2
1
0.5  
0
MAX1203  
0
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
4.5  
4.7  
4.9  
5.1  
5.3  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
INTEGRAL NONLINEARITY  
vs. TEMPERATURE  
OFFSET ERROR  
vs. TEMPERATURE  
GAIN ERROR  
vs. TEMPERATURE  
5
4
0.8  
0.7  
0.6  
2.0  
1.5  
1.0  
3
2
DIFFERENTIAL  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.5  
0
1
0
SINGLE-ENDED  
-1  
-2  
-3  
-0.5  
-1.0  
-1.5  
-2.0  
-4  
-5  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
CHANNEL-TO-CHANNEL GAIN-ERROR  
MATCHING vs. TEMPERATURE  
CHANNEL-TO-CHANNEL OFFSET-ERROR  
MATCHING vs. TEMPERATURE  
5
4
3
2
3
2
1
0
1
0
-1  
-2  
-3  
-1  
-2  
-3  
-4  
-5  
-60  
-20  
20  
60  
100  
140  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
____________________________Typ ic a l Op e ra t in g Ch a ra c t e ris t ic s (c o n t in u e d )  
(V  
DD  
= 5V ±5%; VL = 2.7V to 3.6V; V = 0V; f  
= 2.0MHz, external clock (50% duty cycle); 15 clocks/conversion cycle  
SS  
SCLK  
(133ksps); MAX1202—4.7µF capacitor at REF pin; MAX1203—external reference, V  
= 4.096V applied to REF pin; T = +25°C;  
A
REF  
unless otherwise noted.)  
INTEGRAL NONLINEARITY  
vs. DIGITAL  
FFT PLOT  
1.0  
0.8  
20  
0
V
SS  
= -5V  
0.6  
-20  
-40  
-60  
-80  
-100  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-120  
/MAX1203  
0
750 1500 2250 3000 3750 4500  
DIGITAL CODE  
0
33.25  
66.50  
FREQUENCY (kHz)  
______________________________________________________________P in De s c rip t io n  
PIN  
NAME  
FUNCTION  
1–8  
9
CH0–CH7  
Sampling Analog Inputs  
V
SS  
Negative Supply Voltage. Tie V to -5V ±5% or to GND.  
SS  
Three-Level Shutdown Input. Pulling SHDN low shuts the MAX1202/MAX1203 down to 10µA (max)  
supply current; otherwise, the MAX1202/MAX1203 are fully operational. Pulling SHDN to V puts the  
reference-buffer amplifier in internal compensation mode. Letting SHDN float puts the reference-  
DD  
10  
SHDN  
buffer amplifier in external compensation mode.  
Reference-Buffer Output/ADC Reference Input. In internal reference mode (MAX1202 only), the refer-  
ence buffer provides a 4.096V nominal output, externally adjustable at REFADJ. In external reference  
11  
REF  
mode, disable the internal buffer by pulling REFADJ to V  
DD.  
12  
13  
REFADJ  
GND  
Input to the Reference-Buffer Amplifier. Tie REFADJ to V to disable the reference-buffer amplifier.  
DD  
Ground; IN- Input for Single-Ended Conversions  
Supply Voltage for Digital Output Pins. Voltage applied to VL determines the positive output swing of  
the Digital Outputs (DOUT, SSTRB). 2.7V VL 5.25V.  
14  
15  
VL  
DOUT  
Serial-Data Output. Data is clocked out at SCLK’s falling edge. High impedance when CS is high.  
Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX1202/MAX1203 begin  
the analog-to-digital conversion, and goes high when the conversion is finished. In external clock  
mode, SSTRB pulses high for one clock period before the MSB decision. High impedance when CS  
is high (external clock mode).  
16  
SSTRB  
17  
18  
DIN  
Serial-Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is  
high impedance.  
CS  
Serial-Clock Input. SCLK clocks data in and out of the serial interface. In external clock mode, SCLK  
also sets the conversion speed. (Duty cycle must be 40% to 60% in external clock mode.)  
19  
20  
SCLK  
V
DD  
Positive Supply Voltage, +5V ±5%  
8
_______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
+3.3V  
18  
19  
3k  
CS  
DOUT  
DOUT  
SCLK  
INPUT  
SHIFT  
INT  
17  
10  
3k  
DIN  
C
C
LOAD  
LOAD  
CLOCK  
REGISTER  
CONTROL  
LOGIC  
SHDN  
GND  
a. High-Z to V and V to V  
OH  
GND  
1
2
3
4
5
6
7
8
CH0  
CH1  
CH2  
CH3  
15  
16  
OUTPUT  
SHIFT  
REGISTER  
DOUT  
b. High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
SSTRB  
ANALOG  
INPUT  
MUX  
Figure 1. Load Circuits for Enable Time  
T/H  
CH4  
CH5  
CH6  
CH7  
CLOCK  
IN  
12-BIT  
SAR  
ADC  
+3.3V  
OUT  
MAX1202  
MAX1203  
20  
14  
9
13  
REF  
3k  
V
DD  
GND  
DOUT  
DOUT  
A 1.68  
+2.44V  
REFERENCE  
(MAX1202)  
VL  
20k  
V
SS  
3k  
C
LOAD  
12  
11  
C
LOAD  
REFADJ  
REF  
+4.096V  
GND  
GND  
a. V to High-Z  
OH  
b. V to High-Z  
OL  
Figure 2. Load Circuits for Disable Time  
Figure 3. Block Diagram  
with respect to GND during a conversion. To do this,  
connect a 0.1µF capacitor from IN- (of the selected  
analog input) to GND.  
_______________De t a ile d De s c rip t io n  
The MAX1202/MAX1203 analog-to-digital converters  
(ADCs) use a successive-approximation conversion  
technique and input track/hold (T/H) circuitry to convert  
an analog signal to a 12-bit digital output. A flexible ser-  
ial interface provides easy interface to 3V microproces-  
sors (µPs). Figure 3 is the MAX1202/MAX1203 block  
diagram.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the input control words  
last bit is entered. The T/H switch opens at the end of  
the acquisition interval, retaining charge on C  
sample of the signal at IN+.  
as a  
HOLD  
P s e u d o -Diffe re n t ia l In p u t  
Figure 4 shows the ADCs analog comparators sam-  
pling architecture. In single-ended mode, IN+ is inter-  
na lly s witc he d to CH0–CH7 a nd IN- is s witc he d to  
GND. In differential mode, IN+ and IN- are selected  
from p a irs of CH0/CH1, CH2/CH3, CH4/CH5, a nd  
CH6/CH7. Config ure the c ha nne ls us ing Ta b le s 3  
and 4.  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
HOLD  
negative input (IN-). In single-ended mode, IN- is sim-  
ply GND. This unbalances node ZERO at the compara-  
tors inp ut. The c a p a c itive DAC a d jus ts d uring the  
re ma ind e r of the c onve rs ion c yc le to re s tore nod e  
ZERO to 0V within the limits of 12-b it re s olution.  
This action is equivalent to transferring a charge of  
In differential mode, IN- and IN+ are internally switched  
to either of the analog inputs. This configuration is  
pseudo-differential such that only the signal at IN+ is  
sampled. The return side (IN-) must remain stable (typi-  
cally within ±0.5LSB, within ±0.1LSB for best results)  
16p F x [(V +) - (V -)] from C to the b ina ry-  
IN  
IN  
HOLD  
weighted capacitive DAC, which in turn forms a digital  
representation of the analog input signal.  
_______________________________________________________________________________________  
9
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
be used if an input capacitor is connected to the analog  
Tra c k /Ho ld  
The T/H enters tracking mode on the falling clock edge  
after the fifth bit of the 8-bit control word is shifted in. The  
T/H enters hold mode on the falling clock edge after the  
eighth bit of the control word is shifted in. IN- is con-  
nected to GND if the converter is set up for single-ended  
inputs, and the converter samples the “+input. IN- con-  
nects to the “-” input if the converter is set up for differen-  
tial inputs, and the difference of |N+ - IN- is sampled.  
The positive input connects back to IN+, at the end of  
inputs, as shown in Figure 5. Note that the input capaci-  
tor forms an RC filter with the input source impedance,  
limiting the ADCs signal bandwidth.  
12-BIT CAPACITIVE DAC  
REF  
COMPARATOR  
INPUT  
MUX  
C
HOLD  
ZERO  
the conversion, and C  
charges to the input signal.  
+
HOLD  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
GND  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
a c q uis ition time inc re a s e s a nd more time mus t b e  
allowed between conversions. The acquisition time,  
16pF  
9k  
R
IN  
C
SWITCH  
HOLD  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
t
, is the maximum time the device takes to acquire  
ACQ  
T/H  
SWITCH  
the signal, and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following:  
/MAX1203  
SINGLE-ENDED MODE: IN+ = CHOCH7, IN- = GND.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, CH6/CH7.  
t
= 9 x (R + R ) x 16pF  
S IN  
ACQ  
where RIN = 9k, RS = the source impedance of the  
input signal, and t is never less than 1.5µs. Source  
impedances below 1kdo not significantly affect the  
ACQ  
Figure 4. Equivalent Input Circuit  
ADCs AC performance. Higher source impedances can  
+3V  
VL  
V
DD  
+5V  
OSCILLOSCOPE  
0.1µF  
0.1µF  
4.7µF  
GND  
SCLK  
V
SS  
MAX1202  
MAX1203  
SSTRB  
DOUT*  
0V TO  
4.096V  
ANALOG  
INPUT  
CH7  
CS  
0.01µF  
SCLK  
CH4  
2MHz  
OSCILLATOR  
CH3  
CH1  
CH2  
+3V  
DIN  
SSTRB  
DOUT  
REFADJ  
REF  
SHDN  
N.C.  
C1  
4.7µF  
C2  
0.01µF  
+2.5V  
**  
+2.5V  
REFERENCE  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX).  
**REQUIRED FOR MAX1203 ONLY.  
Figure 5. Quick-Look Circuit  
10 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
Table 1a. Unipolar Full Scale and Zero  
Scale  
Table 1b. Bipolar Full Scale, Zero Scale,  
and Negative Full Scale  
ZERO  
SCALE  
NEGATIVE  
FULL SCALE SCALE  
ZERO  
REFERENCE  
FULL SCALE  
REFERENCE  
Internal  
External  
FULL SCALE  
Internal  
0V  
0V  
0V  
+4.096V  
-4.096V / 2  
-1/2 V  
0V  
0V  
0V  
+4.096V / 2  
at REFADJ  
at REF  
V
x A*  
REFADJ  
at  
+1/2 V  
REFADJ  
REFADJ  
External  
REFADJ  
x A*  
x A*  
V
REF  
at REF  
-1/2 V  
+1/2 V  
REF  
REF  
*A = 1.68 for the MAX1202, 1.64 for the MAX1203.  
*A = 1.68 for the MAX1202, 1.64 for the MAX1203.  
without powering down between conversions. In exter-  
nal clock mode, the SSTRB output pulses high for one  
clock period before the most significant bit of the 12-bit  
conversion result shifts out of DOUT. Varying the ana-  
log inp ut to CH7 a lte rs the s e q ue nc e of b its from  
DOUT. A total of 15 clock cycles per conversion is  
required. All SSTRB and DOUT output transitions occur  
on SCLK’s falling edge.  
In p u t Ba n d w id t h  
The ADCs inp ut tra c king c irc uitry ha s a 4.5MHz  
small-signal bandwidth. Therefore it is possible to digi-  
tize high-speed transient events and measure periodic  
signals with bandwidths exceeding the ADCs sampling  
ra te b y us ing und e rs a mp ling te c hniq ue s . To a void  
high-frequency signals being aliased into the frequency  
band of interest, anti-alias filtering is recommended.  
Ho w t o S t a rt a Co n ve rs io n  
Clocking a control byte into DIN starts conversion on  
the MAX1202/MAX1203. With CS low, each rising edge  
on SCLK c loc ks a b it from DIN into the MAX1202/  
MAX1203s internal shift register. After CS falls, the first  
logic “1 bit defines the control bytes MSB. Until this  
first start” bit arrives, any number of logic “0” bits can  
be clocked into DIN with no effect. Table 2 shows the  
control-byte format.  
An a lo g In p u t Ra n g e a n d In p u t P ro t e c t io n  
Internal protection diodes, which clamp the analog  
inputs to V  
and V , allow the analog input pins to  
DD  
SS  
swing from (V - 0.3V) to (V  
+ 0.3V) without dam-  
SS  
DD  
age. However, for accurate conversions near full scale,  
the inputs must not exceed V by more than 50mV, or  
DD  
be lower than V by 50mV.  
SS  
If the analog input exceeds 50mV beyond the sup-  
plies, do not forward bias the protection diodes of  
off-channels more than 2mA.  
The MAX1202/MAX1203 a re fully c omp a tib le with  
SPI/MICROWIRE devices. For SPI, select the correct  
clock polarity and sampling edge in the SPI control reg-  
isters: set CPOL = 0 and CPHA = 0. MICROWIRE and  
SPI both transmit and receive a byte at the same time.  
Using the Typical Operating Circuit, the simplest soft-  
ware interface requires only three 8-bit transfers to per-  
form a conversion (one 8-bit transfer to configure the  
ADC, and two more 8-bit transfers to clock out the  
12-bit conversion result).  
The full-scale input voltage depends on the voltage at  
REF (Tables 1a and 1b).  
Qu ic k Lo o k  
Us e the c irc uit of Fig ure 5 to q uic kly e va lua te the  
MAX1202/MAX1203s a na log p e rforma nc e . The  
MAX1202/MAX1203 require a control byte to be written  
to DIN before each conversion. Tying DIN to +3V feeds  
in control byte $FF hex, which triggers single -ended  
unipolar conversions on CH7 in external clock mode  
______________________________________________________________________________________ 11  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
Table 2. Control-Byte Format  
Bit 7  
(MSB)  
Bit 0  
(LSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
START  
SEL 2  
SEL 1  
SEL 0  
PD1  
PD0  
UNI/BIP  
SGL/DIF  
Bit  
Name  
Description  
7 (MSB)  
START  
The first logic 1 bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels is used for the conversion  
(Tables 3 and 4).  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0V to V can be converted; in bipolar mode, the signal can range  
3
2
UNI/BIP  
SGL/DIF  
REF  
from -V  
/ 2 to +V  
/ 2.  
REF  
REF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to GND. In differential mode, the voltage dif-  
ference between two channels is measured. (Tables 3 and 4.)  
Selects clock and power-down modes.  
/MAX1203  
PD1  
0
0
PD0  
0
1
Mode  
Full power-down (I = 2µA, internal reference)  
Fast power-down (I = 30µA, internal reference)  
DD  
1
PD1  
PD0  
DD  
0 (LSB)  
1
1
0
1
Internal clock mode  
External clock mode  
DIF  
Table 3. Channel Selection in Single-Ended Mode (SGL/  
= 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
GND  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
+
+
+
+
+
+
+
+
DIF  
Table 4. Channel Selection in Differential Mode (SGL/  
= 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
12 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
Simple Software Interface  
Make sure the CPUs serial interface runs in master  
mode so the CPU generates the serial clock. Choose a  
clock frequency from 100kHz to 2MHz.  
Digital Output  
In unipolar-input mode, the output is straight binary  
(Fig ure 15); for b ip ola r inp uts , the outp ut is twos -  
complement (Figure 16). Data is clocked out at SCLK’s  
falling edge in MSB-first format. The digital output logic  
level is adjusted with the VL pin. This allows DOUT and  
SSTRB to interface with 3V logic without the risk of  
overdrive. The MAX1202/MAX1203s digital inputs are  
designed to be compatible with 5V CMOS logic as well  
as 3V logic.  
1) Set up the control byte for external clock mode and  
call it TB1. TB1s format should be: 1XXXXX11 binary,  
where the Xs denote the particular channel and  
conversion mode selected.  
2) Use a general-purpose I/O line on the CPU to pull  
CS on the MAX1202/MAX1203 low.  
In t e rn a l a n d Ex t e rn a l Clo c k Mo d e s  
The MAX1202/MAX1203 can use either an external ser-  
ial clock or the internal clock to perform the successive-  
approximation conversion. In both clock modes, the  
external clock shifts data in and out of the MAX1202/  
MAX1203. The T/H acquires the input signal as the last  
three bits of the control byte are clocked into DIN. Bits  
PD1 and PD0 of the control byte program the clock  
mode. Figures 7–10 show the timing characteristics  
common to both modes.  
3) Transmit TB1 and simultaneously receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB2.  
5) Transmit a byte of all zeros ($00 hex) and simulta-  
neously receive byte RB3.  
6) Pull CS on the MAX1202/MAX1203 high.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion padded with  
one leading zero and three trailing zeros. The total conver-  
sion time is a function of the serial-clock frequency and  
the amount of idle time between 8-bit transfers. To avoid  
excessive T/H droop, make sure that the total conversion  
time does not exceed 120µs.  
External Clock  
In external clock mode, the external clock not only shifts  
data in and out, but it also drives the A/D conversion  
steps. SSTRB pulses high for one clock period after the  
last bit of the control byte. Successive-approximation bit  
decisions are made and appear at DOUT on each of the  
next 12 SCLK falling edges (Figure 6). SSTRB and  
DOUT go into a high-impedance state when CS goes  
high; after the next CS falling edge, SSTRB outputs a  
logic low. Figure 8 shows SSTRB timing in external clock  
mode.  
CS  
t
ACQ  
SCLK  
1
4
8
12  
16  
20  
24  
UNI/ SGL/  
BIP DIF  
DIN  
SSTRB  
DOUT  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
RB2  
B8  
RB3  
B0  
LSB  
RB1  
FILLED WITH  
ZEROS  
B11  
MSB  
B10 B9  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
ACQUISITION  
1.5µs  
CONVERSION  
IDLE  
ADC STATE  
IDLE  
(SCLK = 2MHz)  
Figure 6. 24-Bit External Clock Mode Conversion Timing (MICROWIRE and SPI Compatible)  
______________________________________________________________________________________ 13  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
• • •  
CS  
t
t
CH  
t
CSH  
CSS  
t
t
CL  
CSH  
SCLK  
• • •  
t
DS  
t
DH  
DIN  
• • •  
t
DV  
t
DO  
t
TR  
DOUT  
• • •  
/MAX1203  
Figure 7. Detailed Serial-Interface Timing  
CS  
• • •  
• • •  
t
t
STR  
SDV  
SSTRB  
SCLK  
• • •  
• • •  
t
t
SSTRB  
SSTRB  
• • •  
• • •  
PD0 CLOCKED IN  
Figure 8. External Clock Mode SSTRB Detailed Timing  
The conversion must complete in some minimum time or  
droop on the sample-and-hold capacitors might degrade  
conversion results. Use internal clock mode if the clock  
period exceeds 10µs or if serial-clock interruptions could  
cause the conversion interval to exceed 120µs.  
convenience, at any clock rate from zero to 2MHz.  
SSTRB goes low at the start of the conversion, then goes  
high when the conversion is complete. SSTRB is low for  
a maximum of 10µs, during which time SCLK should  
remain low for best noise performance. An internal regis-  
ter stores data while the conversion is in progress. SCLK  
clocks the data out at this register at any time after the  
conversion is complete. After SSTRB goes high, the next  
falling clock edge produces the MSB of the conversion  
at DOUT, followed by the remaining bits in MSB-first for-  
mat (Figure 9). CS does not need to be held low once a  
Internal Clock  
In internal clock mode, the MAX1202/MAX1203 generate  
their own conversion clock. This frees the µP from run-  
ning the SAR conversion clock, and allows the con-  
ve rs ion re s ults to b e re a d b a c k a t the p roc e s s ors  
14 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
CS  
SCLK  
DIN  
1
4
8
18  
24  
2
3
5
6
7
9
10  
11  
12  
19  
20  
21  
22  
23  
UNI/ SGL/  
BIP DIF  
SEL2 SEL1 SEL0  
PD1 PD0  
START  
SSTRB  
t
CONV  
FILLED WITH  
ZEROS  
B11  
MSB  
B0  
LSB  
DOUT  
B10 B9  
B2  
B1  
ACQUISITION  
1.5µs  
(SCLK = 2MHz)  
CONVERSION  
10µs MAX  
ADC STATE  
IDLE  
IDLE  
Figure 9. Internal Clock Mode Timing  
CS • • •  
t
t
CONV  
CSS  
t
t
SCK  
CSH  
SSTRB • • •  
t
SSTRB  
SCLK • • •  
PD0 CLOCK IN  
NOTE: KEEP SCLK LOW DURING CONVERSION FOR BEST NOISE PERFORMANCE.  
Figure 10. Internal Clock Mode SSTRB Detailed Timing  
after the eighth bit of the control byte (the PD0 bit) is  
clocked into DIN. The start bit is defined as one of the  
following:  
conversion is started. Pulling CS high prevents data from  
being clocked into the MAX1202/MAX1203 and three-  
states DOUT, but it does not adversely affect an internal  
c loc k mod e c onve rs ion a lre a d y in p rog re s s . Whe n  
internal clock mode is selected, SSTRB does not go into  
a high-impedance state when CS goes high.  
The first high bit clocked into DIN with CS low any-  
time the converter is idle (e.g., after V is applied).  
DD  
or  
Figure 10 shows SSTRB timing in internal clock mode.  
Data can be shifted in and out of the MAX1202/MAX1203  
The first high bit clocked into DIN after bit 5 (B5) of a  
conversion in progress appears at DOUT.  
at clock rates up to 2.0MHz, if t  
is kept above 1.5µs.  
ACQ  
Da t a Fra m in g  
If a falling edge on CS forces a start bit before B5  
becomes available, the current conversion is termi-  
nated and a new one started. Thus, the fastest the  
MAX1202/MAX1203 can run is 15 clocks/conversion.  
CSs falling edge does not start a conversion on the  
MAX1202/MAX1203. The first logic high clocked into DIN  
is interpreted as a start bit and defines the first bit of the  
control byte. A conversion starts on SCLK’s falling edge  
______________________________________________________________________________________ 15  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
Figure 11a shows the serial-interface timing necessary  
to perform a conversion every 15 SCLK cycles in exter-  
nal clock mode. If CS is low and SCLK is continuous,  
guarantee a start bit by first clocking in 16 zeros.  
For the MAX1202, fast power-down mode turns off all  
c irc uitry e xc e p t the b a nd g a p re fe re nc e . With fa s t  
power-down mode, the supply current is 30µA. Power-up  
time can be shortened to 5µs in internal compensation  
mode.  
Most microcontrollers (µCs) require that data transfers  
occur in multiples of eight clock cycles; 16 clocks per  
conversion is typically the fastest that a µC can drive  
the MAX1202/MAX1203. Fig ure 11b s hows the  
serial-interface timing necessary to perform a conver-  
sion every 16 SCLK cycles in external clock mode.  
Since the MAX1203 does not have an internal reference,  
power-up times coming out of full or fast power-down are  
identical.  
I
DD  
shutdown current can increase if any digital input  
(DIN, SCLK, CS) is held high in either power-down  
mode. The actual shutdown current depends on the  
state of the digital inputs, the voltage applied to the digi-  
tal inputs (V ), the supply voltage (V ), and the operat-  
__________ Ap p lic a t io n s In fo rm a t io n  
P o w e r-On Re s e t  
When power is first applied and if SHDN is not pulled  
low, inte rna l p owe r-on re s e t c irc uitry a c tiva te s the  
MAX1202/MAX1203 in internal clock mode, ready to  
convert with SSTRB = high. After the power supplies  
are stabilized, the internal reset time is 100µs. No con-  
ve rs ions s hould b e p e rforme d d uring this p ha s e .  
SSTRB is high on power-up, and if CS is low, the first  
logical 1 on DIN is interpreted as a start bit. Until a con-  
version takes place, DOUT shifts out zeros.  
IH  
DD  
ing temperature. Figure 12c shows the maximum I  
DD  
increase for each digital input held high in power-down  
mode for different operating conditions. This current is  
cumulative, so if all three digital inputs are held high, the  
additional shutdown current is three times the value  
shown in Figure 12c.  
/MAX1203  
In both software power-down modes, the serial interface  
remains operational, but the ADC does not convert.  
Table 5 shows how the choice of reference-buffer com-  
pensation and power-down mode affects both power-up  
delay and maximum sample rate. In external compensa-  
tion mode, power-up time is 20ms with a 4.7µF compen-  
sation capacitor (200ms with a 33µF capacitor) when the  
c a p a c itor is initia lly fully d is c ha rg e d . From fa s t  
power-down, start-up time can be eliminated by using  
low-leakage capacitors that do not discharge more than  
1/2LSB while shut down. In power-down, the capacitor  
has to supply the current into the reference (typically  
1.5µA) and the transient currents at power-up.  
Re fe re n c e -Bu ffe r Co m p e n s a t io n  
In addition to its shutdown function, SHDN also selects  
internal or external compensation. The compensation  
affects both power-up time and maximum conversion  
speed. Compensated or not, the minimum clock rate is  
100kHz due to droop on the sample-and-hold.  
Floa t SHDN to s e le c t e xte rna l c omp e ns a tion. The  
Typical Operating Circuit uses a 4.7µF capacitor at REF.  
A value of 4.7µF or greater ensures stability and allows  
c onve rte r op e ra tion a t the 2MHz full c loc k s p e e d .  
External compensation increases power-up time (see  
the section Choosing Power-Down Mode, and Table 5).  
Figures 12a and 12b show the various power-down  
sequences in both external and internal clock modes.  
Internal compensation requires no external capacitor at  
REF, and is selected by pulling SHDN high. Internal  
compensation allows for the shortest power-up times,  
but the external clock must be limited to 400kHz during  
the conversion.  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. As shown in Table 6, PD1 and  
PD0 a ls o s p e c ify the c loc k mod e . Whe n s oftwa re  
power-down is asserted, the ADC continues to operate  
in the last specified clock mode until the conversion is  
complete. The ADC then powers down into a low quies-  
cent-current state. In internal clock mode, the interface  
remains active and conversion results can be clocked  
out even though the MAX1202/MAX1203 have already  
entered software power-down.  
P o w e r-Do w n  
Choosing Power-Down Mode  
You can save power by placing the converter in a low-  
current shutdown state between conversions. Select full  
power-down or fast power-down mode via bits 1 and 0  
of the DIN c ontrol b yte with SHDN hig h or floa ting  
(Tables 2 and 6). Pull SHDN low at any time to shut  
down the converter completely. SHDN overrides bits 1  
and 0 of the control byte.  
The first logical 1 on DIN is interpreted as a start bit and  
powers up the MAX1202/MAX1203. Following the start  
b it, the c ontrol b yte a ls o d e te rmine s c loc k a nd  
power-down modes. For example, if the DIN word con-  
tains PD1 = 1, the chip remains powered up. If PD1 = 0,  
power-down resumes after one conversion.  
Full power-down mode turns off all chip functions that draw  
quiescent current, reducing I and I typically to 2µA.  
DD  
SS  
16 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
CS  
1
8
1
8
1
SCLK  
DIN  
S
CONTROL BYTE 2  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DOUT  
SSTRB  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 1  
Figure 11a. External Clock Mode, 15 Clocks/Conversion Timing  
• • •  
• • •  
• • •  
• • •  
CS  
SCLK  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
DIN  
DOUT  
B11 B10 B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
CONVERSION RESULT 0  
B11 B10 B9 B8 B7 B6 B5  
CONVERSION RESULT 1  
Figure 11b. External Clock Mode, 16 Clocks/Conversion Timing  
Hardware Power-Down  
The SHDN pin places the converter into full power-down  
mode. Unlike the software power-down modes, conver-  
sion is not completed; it stops coincidentally with SHDN  
being brought low. There is no power-up delay if an  
external reference, which is not shut down, is used.  
SHDN also selects internal or external reference com-  
pensation (Table 7).  
bypass capacitor at REFADJ forms an RC filter with the  
internal 20kreference resistor, with a 0.2ms time con-  
stant. To achieve full 12-bit accuracy, 10 time constants  
(or 2ms in this example) are required for the reference  
buffer to settle. When exiting FULLPD, waiting this 2ms in  
FASTPD mode (instead of just exiting FULLPD mode and  
returning to normal operating mode) reduces power con-  
sumption by a factor of 10 or more (Figure 13).  
P o w e r-Do w n S e q u e n c in g  
The MAX1202/MAX1203s a utoma tic p owe r-d own  
modes can save considerable power when operating  
at less than maximum sample rates. The following sec-  
tions discuss the various power-down sequences.  
Lowest Power at Higher Throughputs  
Figure 14b shows power consumption with external-  
reference compensation in fast power-down, with one  
and eight channels converted. The external 4.7µF com-  
pensation requires a 50µs wait after power-up. This cir-  
cuit combines fast multichannel conversion with the  
lowest power consumption possible. Full power-down  
mode can increase power savings in applications where  
the MAX1202/MAX1203 are inactive for long periods of  
time, but where intermittent bursts of high-speed conver-  
sion are required.  
Lowest Power at up to  
500 Conversions per Channel per Second  
Figure 14a depicts MAX1202 power consumption for one  
or eight channel conversions using full power-down  
mode and internal reference compensation. A 0.01µF  
______________________________________________________________________________________ 17  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
CLOCK  
MODE  
INTERNAL  
EXTERNAL  
EXTERNAL  
SHDN  
SETS FAST  
POWER-DOWN  
MODE  
SETS EXTERNAL  
CLOCK MODE  
SETS EXTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 1  
S X X X X X 0 1  
S X X X X X 1 1  
DOUT  
DATA VALID  
(12 DATA BITS)  
DATA VALID  
(12 DATA BITS)  
DATA  
INVALID  
POWERED  
UP  
FULL  
POWER-  
DOWN  
POWERED UP  
POWERED UP  
MODE  
FAST  
POWER-DOWN  
Figure 12a. Timing Diagram for Power-Down Modes, External Clock  
/MAX1203  
Table 5. Typical Power-Up Delay Times  
REF  
CAPACITOR  
(µF)  
POWER-UP  
DELAY  
(µs)  
MAXIMUM  
SAMPLING RATE  
(ksps)  
REFERENCE  
BUFFER  
REFERENCE-BUFFER  
COMPENSATION MODE  
POWER-DOWN  
MODE  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Internal  
Internal  
External  
Fast  
Full  
5
26  
26  
300  
4.7  
Fast/Full  
Fast  
See Figure 14c  
133  
133  
133  
2
2
Full  
Table 7. Hard-Wired Shutdown  
and Compensation Mode  
Table 6. Software Shutdown  
and Clock Mode  
SHDN  
STATE  
DEVICE  
MODE  
REFERENCE-BUFFER  
COMPENSATION  
PD1  
PD0  
DEVICE MODE  
0
0
1
1
0
1
0
1
Full power-down mode  
Fast power-down mode  
Internal clock mode  
External clock mode  
V
Enabled  
Internal compensation  
External compensation  
DD  
Floating  
Enabled  
Full  
Power-Down  
GND  
N/A  
18 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
CLOCK  
MODE  
INTERNAL CLOCK MODE  
SETS FULL  
POWER-DOWN  
SETS INTERNAL  
CLOCK MODE  
DIN  
S X X X X X 1 0  
S X X X X X 0 0  
S
DOUT  
DATA VALID  
DATA VALID  
SSTRB  
MODE  
CONVERSION  
CONVERSION  
FULL  
POWER-DOWN  
POWERED UP  
POWERED  
UP  
Figure 12b. Timing Diagram for Power-Down Modes, Internal Clock  
40  
35  
Ex t e rn a l a n d In t e rn a l Re fe re n c e s  
The MAX1202 can be used with an internal or external  
reference, whereas an external reference is required for  
the MAX1203. An external reference can be connected  
directly at the REF terminal, or at the REFADJ pin.  
(V - V ) = 2.55V  
DD IH  
30  
25  
20  
15  
10  
5
An internal buffer is designed to provide 4.096V at  
REF for both the MAX1202 a nd the MAX1203. The  
MAX1202s inte rna lly trimme d 2.44V re fe re nc e is  
buffered with a gain of 1.68. The MAX1203s REFADJ  
pin is buffered with a gain of 1.64, to scale an external  
2.5V reference at REFADJ to 4.096V at REF.  
(V - V ) = 2.25V  
DD IH  
(V - V ) = 1.95V  
DD IH  
0
MAX1202 Internal Reference  
The MAX1202s full-s c a le ra ng e us ing the inte rna l  
reference is 4.096V with unipolar inputs and ±2.048V  
with bipolar inputs. The internal reference voltage is  
adjustable to ±1.5% with the circuit of Figure 17.  
-60  
-20  
20  
60  
100  
140  
TEMPERATURE (°C)  
Figure 12c. Additional I  
for Each Digital Input at a Logic 1  
Shutdown Supply Current vs. V  
IH  
DD  
COMPLETE CONVERSION SEQUENCE  
2ms WAIT  
(ZEROS)  
CH1  
CH7  
(ZEROS)  
DIN  
1
0 0  
FULLPD  
2.5V  
1
0 1  
FASTPD  
1
1 1  
1
0 0  
FULLPD  
1
0 1  
FASTPD  
NOPD  
REFADJ  
REF  
0V  
4V  
0V  
τ = RC = 20kx C  
REFADJ  
t
15µs  
BUFFEN  
Figure 13. MAX1202 FULLPD/FASTPD Power-Up Sequence  
______________________________________________________________________________________ 19  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
MAX1202/MAX1203  
FAST POWER-DOWN  
FULL POWER-DOWN  
1000  
10,000  
2ms FASTPD WAIT  
400kHz EXTERNAL CLOCK  
INTERNAL COMPENSATION  
8 CHANNELS  
1 CHANNEL  
8 CHANNELS  
100  
10  
1000  
100  
1 CHANNEL  
2MHz EXTERNAL CLOCK  
EXTERNAL COMPENSATION  
50µs WAIT  
1
10  
0
50 100 150 200 250 300 350 400 450 500  
CONVERSIONS PER CHANNEL PER SECOND  
0
2k  
4k  
6k  
8k 10k 12k 14k 16k 18k  
CONVERSIONS PER CHANNEL PER SECOND  
Figure 14b. MAX1202/MAX1203 Supply Current vs. Sample  
Rate/Second, FASTPD, 2MHz Clock  
Figure 14a. MAX1202 Supply Current vs. Sample Rate/Second,  
FULLPD, 400kHz Clock  
/MAX1203  
External Reference  
With both the MAX1202 and MAX1203, an external refer-  
ence can be placed at either the input (REFADJ) or the  
output (REF) of the internal reference-buffer amplifier. The  
REFADJ inp ut imp e d a nc e is typ ic a lly 20kfor the  
MAX1202, and higher than 100kfor the MAX1203,  
where the internal reference is omitted. At REF, the DC  
input resistance is a minimum of 12k. During conversion,  
an external reference at REF must deliver up to 350µA DC  
load current and have an output impedance of 10or  
less. If the reference has higher output impedance or is  
noisy, bypass it close to the REF pin with a 4.7µF capacitor.  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Using the buffered REFADJ input makes buffering of the  
external reference unnecessary. When connecting an  
external reference directly at REF, disable the internal  
0.0001 0.001  
0.01  
0.1  
1
10  
buffer by tying REFADJ to V . In power-down, the input  
DD  
TIME IN SHUTDOWN (sec)  
bias current to REFADJ can be as much as 25µA with  
REFADJ tied to V  
(MAX1202 only). Pull REFADJ to  
DD  
GND to minimize the input bias current in power-down.  
Figure 14c. Typical Power-Up Delay vs. Time in Shutdown  
Tra n s fe r Fu n c t io n a n d Ga in Ad ju s t  
Figure 15 depicts the nominal, unipolar input/output  
(I/O) transfer function, and Figure 16 shows the bipolar  
I/O transfer function. Code transitions occur halfway  
between successive-integer LSB values. Output coding  
is binary with 1LSB = 1.00mV (4.096V/4096) for unipo-  
lar operation, and 1LSB = 1.00mV [(4.096V/2 - -4.096V/  
2)/4096] for bipolar operation.  
La yo u t , Gro u n d in g , a n d Byp a s s in g  
For b e s t p e rforma nc e , us e p rinte d c irc uit b oa rd s .  
Wire-wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
Figure 17 shows how to adjust the ADC gain in applica-  
tions that use the internal reference. The circuit provides  
±1.5% (±65LSBs) of gain adjustment range.  
Figure 18 shows the recommended system ground  
connections. Establish a single-point analog ground  
20 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
OUTPUT CODE  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
011 . . . 111  
011 . . . 110  
FS = +2.048V  
+4.096V  
11 . . . 110  
11 . . . 101  
1LSB =  
4096  
000 . . . 010  
000 . . . 001  
000 . . . 000  
FS = +4.096V  
4.096V  
4096  
1LSB = +  
111 . . . 111  
111 . . . 110  
111 . . . 101  
00 . . . 011  
00 . . . 010  
100 . . . 001  
100 . . . 000  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
0V  
-FS  
+FS - 1LSB  
INPUT VOLTAGE (LSBs)  
FS - 3/2LSB  
INPUT VOLTAGE (LSBs)  
Figure 15. Unipolar Transfer Function, 4.096V = Full Scale  
Figure 16. Bipolar Transfer Function, ±4.096V/2 = Full Scale  
(“starground point) at GND. Connect all other analog  
grounds to this ground. No other digital system ground  
s hould b e c onne c te d to this s ing le -p oint a na log  
ground. The ground return to the power supply for this  
ground should be low impedance and as short as pos-  
sible for noise-free operation.  
+5V  
MAX1202  
510k  
100k  
REFADJ  
12  
High-frequency noise in the power supplies can affect  
the ADCs high-speed comparator. Bypass these sup-  
plies to the single-point analog ground with 0.1µF and  
0.01µF  
24k  
4.7µF  
b yp a s s  
c a p a c itors  
c los e  
to  
the  
MAX1202/MAX1203. Minimize capacitor lead lengths  
for best supply-noise rejection. If the +5V power supply  
is very noisy, a 10resistor can be connected as a  
lowpass filter, as shown in Figure 18.  
Figure 17. MAX1202 Reference-Adjust Circuit  
______________________________________________________________________________________ 21  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
3) Write an 8-bit word (1XXXXX11) to the MAX1202/  
TMS 3 2 0 CL3 x t o MAX1 2 0 2 /  
MAX1 2 0 3 In t e rfa c e  
Figure 19 shows an application circuit to interface the  
MAX1202/MAX1203 to the TMS320 in external clock mode.  
Figure 20 shows the timing diagram for this interface circuit.  
MAX1203 to initia te a c onve rs ion a nd p la c e the  
device into external clock mode. Refer to Table 2 to  
select the proper XXXXX bit values for your specific  
application.  
4) The MAX1202/MAX1203s SSTRB output is moni-  
tored via the TMS320s FSR input. A falling edge on  
the SSTRB output indicates that the conversion is in  
progress and data is ready to be received from the  
MAX1202/MAX1203.  
Use the following steps to initiate a conversion in the  
MAX1202/MAX1203 and to read the results:  
1) The TMS320 should be configured with CLKX (trans-  
mit clock) as an active-high output clock and CLKR  
(TMS320 receive clock) as an active-high input clock.  
The TMS320s CLKX and CLKR are tied together with  
the MAX1202/MAX1203s SCLK input.  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits repre-  
sent the 12-bit conversion result followed by four  
trailing bits, which should be ignored.  
2) The MAX1202/MAX1203s CS is driven low by the  
TMS320s XF_ I/O port to enable data to be clocked  
into the MAX1202/MAX1203s DIN.  
6) Pull CS high to disable the MAX1202/MAX1203 until  
the next conversion is initiated.  
/MAX1203  
SUPPLIES  
XF  
CLKX  
CLKR  
DX  
CS  
+5V  
-5V  
+3V  
GND  
SCLK  
TMS320LC3x  
R* = 10Ω  
MAX1202  
MAX1203  
DIN  
V
DD  
GND  
V
SS  
VL  
+3V DGND  
DR  
DOUT  
DIGITAL  
CIRCUITRY  
FSR  
SSTRB  
MAX1202  
MAX1203  
*OPTIONAL  
Figure 18. Power-Supply Grounding Connection  
Figure 19. MAX1202/MAX1203-to-TMS320 Serial Interface  
CS  
SCLK  
DIN  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP SGL/DIF  
PD1  
PD0  
HIGH  
IMPEDANCE  
SSTRB  
HIGH  
IMPEDANCE  
DOUT  
MSB  
B10  
B1  
LSB  
Figure 20. TMS320 Serial-Interface Timing Diagram  
22 ______________________________________________________________________________________  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
/MAX1203  
_Ord e rin g In fo rm a t io n (c o n t in u e d )  
__________Typ ic a l Op e ra t in g Circ u it  
INL  
(LSB)  
PART  
TEMP. RANGE PIN-PACKAGE  
+5V  
+3V  
MAX1202AEPP  
MAX1202BEPP  
MAX1202AEAP  
MAX1202BEAP  
MAX1202BMJP  
MAX1203ACPP  
MAX1203BCPP  
MAX1203ACAP  
MAX1203BCAP  
MAX1203BC/D  
MAX1203AEPP  
MAX1203BEPP  
MAX1203AEAP  
MAX1203BEAP  
MAX1203BMJP  
-40°C to +85°C 20 Plastic DIP  
-40°C to +85°C 20 Plastic DIP  
-40°C to +85°C 20 SSOP  
-40°C to +85°C 20 SSOP  
-55°C to +125°C 20 CERDIP**  
0°C to +70°C 20 Plastic DIP  
0°C to +70°C 20 Plastic DIP  
0°C to +70°C 20 SSOP  
±1/2  
±1  
V
CH0  
DD  
V
DD  
VL  
0V to  
4.096V  
±1/2  
±1  
C3  
0.1µF  
C4  
4.7µF  
C5  
0.1µF  
ANALOG  
INPUTS  
MAX1202  
±1  
GND  
V
SS  
CPU  
±1/2  
±1  
CH7  
I/O  
CS  
±1/2  
±1  
SCLK  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
0°C to +70°C 20 SSOP  
REF  
DIN  
C1  
4.7µF  
0°C to +70°C Dice*  
±1  
DOUT  
-40°C to +85°C 20 Plastic DIP  
-40°C to +85°C 20 Plastic DIP  
-40°C to +85°C 20 SSOP  
-40°C to +85°C 20 SSOP  
-55°C to +125°C 20 CERDIP**  
±1/2  
±1  
SSTRB  
SHDN  
REFADJ  
C2  
0.01µF  
V
SS  
±1/2  
±1  
±1  
*Dice are specified at T = +25°C, DC parameters only.  
A
**Contact factory for availability.  
___________________Ch ip In fo rm a t io n  
TRANSISTOR COUNT: 2503  
SUBSTRATE CONNECTED TO V  
SS  
______________________________________________________________________________________ 23  
5 V, 8 -Ch a n n e l, S e ria l, 1 2 -Bit ADCs  
w it h 3 V Dig it a l In t e rfa c e  
________________________________________________________P a c k a g e In fo rm a t io n  
/MAX1203  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 __________________Ma x im In t e g ra t e d P ro d u c t s , 1 2 0 S a n Ga b rie l Drive , S u n n yva le , CA 9 4 0 8 6 (4 0 8 ) 7 3 7 -7 6 0 0  
© 1998 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1202BCAP

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
MAXIM

MAX1202BCAP+

暂无描述
MAXIM

MAX1202BCAP+T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, 5.30 MM, 0.65 MM PITCH, LEAD FREE, PLASTIC, SSOP-20
MAXIM

MAX1202BCPP

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
MAXIM

MAX1202BEAP

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
MAXIM

MAX1202BEAP+

暂无描述
MAXIM

MAX1202BEAP-T

ADC, Successive Approximation, 12-Bit, 1 Func, 8 Channel, Serial Access, CMOS, PDSO20, 5.30 MM, 0.65 MM PITCH, PLASTIC, SSOP-20
MAXIM

MAX1202BEPP

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
MAXIM

MAX1202BEPP+

5V, 8-Channel, Serial, 12-Bit ADCs with 3V Digital Interface
MAXIM

MAX1202BMJP

5v, 8-cHANNEL, sERIAL, 12-bIT adcS WITH 3v dIGITAL iNTERFACE
MAXIM

MAX1202EVKIT

Fully Assembled and Tested
MAXIM

MAX1202EVKIT-DIP

Fully Assembled and Tested
MAXIM