MAX1207ETL [MAXIM]

Fully Differential or Single-Ended Signal Input Configuration;
MAX1207ETL
型号: MAX1207ETL
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Fully Differential or Single-Ended Signal Input Configuration

文件: 总13页 (文件大小:544K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3078; Rev 1; 6/05  
MAX1211 Evaluation Kit  
General Description  
Features  
Up to 65Msps Sampling Rate with the MAX1211  
Low Voltage and Power Operation  
The MAX1211 evaluation kit (EV kit) is a fully assembled  
and tested circuit board that contains all the components  
for evaluating the MAX1211, MAX1206–MAX1209, and  
MAX19538 12-bit, analog-to-digital converters (ADCs).  
The MAX1211 accepts differential or single-ended analog  
input signals. The EV kit allows for evaluation of each ADC  
with both types of signals from one single-ended analog  
signal source. The digital output produced by the ADC  
can be easily captured with a user-provided high-speed  
logic analyzer or data-acquisition system. The EV kit oper-  
ates from 2.0V and 3.3V power supplies. It includes cir-  
cuitry that generates a differential clock signal from an AC  
signal provided by the user. The EV kit comes with the  
MAX1211 installed. Contact the factory for free samples  
of the pin-compatible MAX1206–MAX1209 or MAX19538  
to evaluate these parts.  
Fully Differential or Single-Ended Signal Input  
Configuration  
Differential or Single-Ended Clock Configuration  
On-Board Clock-Shaping Circuit with Variable  
Duty Cycle  
Also Evaluates MAX1206–MAX1209 and MAX19538  
Fully Assembled and Tested  
Part Selection Table  
Ordering Information  
PART  
MAX1206ETL  
MAX1207ETL  
MAX1208ETL  
MAX1209ETL  
MAX1211ETL  
MAX19538ETL  
SPEED (Msps)  
APPLICATION  
Baseband sampling  
Baseband sampling  
Baseband sampling  
IF sampling  
PART  
TEMP RANGE  
IC PACKAGE  
40  
65  
80  
80  
65  
95  
MAX1211EVKIT  
0°C to +70°C  
40 Thin QFN  
Note: To evaluate the MAX1206–MAX1209 or MAX19538,  
request a free sample with the MAX1211 EV kit.  
IF sampling  
IF/Baseband  
Component List  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
C32, C34, C40,  
C41, C45, C47  
22µF 20%, 10V tantalum  
capacitors (B case)  
0
Not installed (0603)  
C1, C2, C7, C55  
4
AVX TAJB226M010  
4.7µF 20%, 6.3V X5R ceramic  
capacitors (0603)  
TDK C1608X5R0J475M  
C39, C58  
C42, C43, C54  
C46, C59  
2
3
2
2
1.0µF 20%, 10V X5R ceramic  
capacitors (0603)  
TDK C1608X5R1A105M  
C3C6,  
C8C12, C56  
10  
0.01µF 20%, 25V X7R ceramic  
capacitors (0402)  
TDK C1005X7R1E103M  
C13, C15, C17,  
C21C29,  
C33, C44,  
C50C53, C57  
0.1µF 20%, 10V X5R ceramic  
19 capacitors (0402)  
TDK C1005X5R1A104M  
1.0µF 20%, 6.3V X5R ceramic  
capacitor (0402)  
TDK C1005X5R0J105M  
C14, C16,  
C18, C19, C20,  
C38  
0
6
Not installed (0402)  
18pF 5%, 50V C0G ceramic  
capacitors (0402)  
TDK C1005C0G1H180J  
C48, C49  
C30, C31,  
C35, C36, C37,  
C61  
2.2µF 20%, 6.3V X5R ceramic  
capacitors (0603)  
TDK C1608X5R0J225M  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX1211 Evaluation Kit  
Component List (continued)  
DESIGNATION  
QTY  
DESCRIPTION  
DESIGNATION  
QTY  
DESCRIPTION  
1:1 RF transformers  
Mini-Circuits ADT1-1WT  
10µF 20%, 4V X5R ceramic  
capacitor (0603)  
T1, T2  
2
C60  
1
TDK C1608X5R0G106M  
2:1 RF transformer  
Mini-Circuits T2-1T-KK81  
T3  
1
Dual Schottky diode (SOT23)  
Zetex BAS70-04  
D1  
1
TP1TP5  
5
0
Test points (black)  
Not installed (SMA)  
CLOCK4  
J1  
1
0
Dual-row, 40-pin header  
Not installed  
JU1, JU7, JU8  
CLOCK, AINP,  
AINN, ACOM  
4
1
SMA PC-mount connectors  
JU2, JU4, JU5,  
JU6, JU9, JU10,  
JU11  
U1  
Maxim MAX1211ETL (TQFN-40)  
6
4
Jumper, 3-pin headers  
Low-voltage 16-bit register (48-pin  
TSSOP)  
Texas Instruments  
EMI filters  
Murata NFM41PC204F1H3B  
U2  
1
L1L4  
SN74AVC16374DGG  
R1, R8, R13R24,  
R26, R32R35  
0
0
2
2
2
Not installed (0603)  
Not installed (0402)  
U3  
U4  
U5  
0
1
0
Not installed (5-pin SC70)  
TinyLogic UHS buffer (5-pin SC70)  
Fairchild NC7SZ125P5  
R2, R11, R12  
750.1% resistors (0603)  
IRC PFC-W0603R-03-75R0-B  
R3, R4  
Not installed (8-pin SO)  
TinyLogic dual UHS inverter  
(6-pin SC70)  
Fairchild NC7WZ04P6  
R5, R6  
1.0k5% resistors (0402)  
U6  
1
49.90.1% resistors (0603)  
IRC PFC-W0603R-03-49R9-B  
R7, R9  
None  
None  
6
1
Shunts  
R10  
R27  
1
1
10kpotentiometer, 12 turn, 1/4in  
51.11% resistor (0603)  
MAX1211 PC board  
1100.1% resistors (0603)  
IRC PFC-W0603R-03-1100-B  
R30, R31  
2
4
2205% resistor arrays  
Panasonic EXB-2HV-221J  
RA1RA4  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.avxcorp.com  
www.fairchildsemi.com  
www.irctt.com  
AVX  
843-946-0238  
888-522-5372  
361-992-7900  
718-934-4500  
770-436-1300  
714-373-7366  
847-803-6100  
631-543-7100  
843-626-3123  
Fairchild  
IRC  
361-992-3377  
718-332-4661  
770-436-3030  
714-737-7323  
847-390-4405  
631-864-7630  
Mini-Circuits  
Murata  
Panasonic  
TDK  
www.minicircuits.com  
www.murata.com  
www.panasonic.com  
www.component.tdk.com  
www.zetex.com  
Zetex  
Note: Indicate that you are using the MAX1211 when contacting these component suppliers.  
2
_______________________________________________________________________________________  
MAX1211 Evaluation Kit  
9) Connect a 2.0V (1.8V, for the MAX19538), 100mA  
power supply to VL. Connect the ground terminal of  
this supply to the GND pad.  
Quick Start  
Recommended Equipment  
DC power supplies:  
10) Connect a 2.0V (1.8V, for the MAX19538), 50mA  
power supply to VLDUT. Connect the ground termi-  
nal of this supply to the GND pad.  
Digital (VLDUT) 2.0V, 50mA  
1.8V, 50mA for the MAX19538  
Logic (VL) 2.0V, 100mA  
1.8V, 100mA for the MAX19538  
Analog (VDUT) 3.3V, 250mA  
Clock (VCLK) 3.3V, 200mA  
11) If evaluating the single-ended clock mode, connect  
a 3.3V, 200mA power supply to VCLK. Connect the  
ground terminal of this supply to the corresponding  
GND pad. If evaluating the differential clock mode,  
short VCLK to GND.  
Signal generator with low phase noise and low jitter  
for clock input (e.g., HP 8662A, HP 8644B)  
12) Turn on the 3.3V power supplies.  
13) Turn on the 2.0V power supplies.  
Signal generator for analog signal input (e.g.,  
HP 8662A, HP 8644B)  
14) Enable the signal generators. Set the clock signal  
generator for an output amplitude of 2V  
or higher  
CLK  
Logic analyzer or data-acquisition system (e.g.,  
HP 16500C, TLA621, TLA5201)  
P-P  
(10dBm or higher) and the frequency (f  
) to  
65MHz. Set the analog input signal generators for  
Analog bandpass filters (e.g., Allen Avionics, K&L  
Microwave) for input signal and clock signal  
an output amplitude of 1V  
and to the desired  
P-P  
frequency. The two signal generators should be  
synchronized to each other. Adjust the input signal  
level to overcome cable and bandpass filter losses.  
Digital voltmeter  
Procedure  
15) Enable the logic analyzer.  
The MAX1211 EV kit is a fully assembled and tested  
surface-mount board. Follow the steps below for board  
operation. Do not turn on power supplies or enable  
signal generators until all connections are completed:  
16) Collect data using the logic analyzer.  
Detailed Description  
The MAX1211 EV kit is a fully assembled and tested cir-  
cuit board that contains all the components necessary  
to evaluate the performance of the MAX1211,  
MAX1206MAX1209 and the MAX19538. Data generat-  
ed by the MAX1211 is captured on a single 12-bit bus.  
The EV kit comes with the MAX1211 installed, which  
can be evaluated with a maximum clock frequency  
1) Verify that shunts are installed across pins 2-3 of  
jumpers JU2 (MAX1211 enabled) and JU6 (two's  
complement digital output), and across pins 1-2 of  
JU5 (differential clock input) and JU4 (fixed for  
MAX1211).  
2) Verify that shunts are installed across pins 2-3 of  
jumpers JU9 and JU10, and across pins 1-2  
of JU11.  
(f  
) of 65MHz. The MAX1211 accepts differential or  
CLK  
single-ended analog input signals and differential or  
single-ended clock signals. With the proper board con-  
figuration (as specified below), the ADC can be evalu-  
ated with both types of signals by supplying only one  
single-ended analog signal to the EV kit.  
3) Connect the output of the 65MHz clock generator to  
the input of the clock bandpass filter.  
4) Connect the output of the clock bandpass filter to  
the CLOCK SMA connector.  
The EV kit is designed as a four-layer PC board to opti-  
mize the performance of the MAX1211. For simple  
operation, the EV kit is specified to have 3.3V and 2.0V  
power supplies applied to analog and digital power  
planes, respectively. However, the digital plane can be  
operated down to 1.7V without compromising the  
boards performance. The logic analyzers threshold  
must be adjusted accordingly.  
5) Connect the output of the analog signal generator  
to the input of the signal bandpass filter.  
6) Connect the output of the signal bandpass filter to  
the AINP SMA connector.  
7) Connect the logic analyzer to the square pin header  
(J1). See the Output Signal section for bit locations  
and J1 header designations. The system clock is  
available on pin J1-3.  
Access to the digital outputs is provided through con-  
nector J1. The 40-pin connector easily interfaces direct-  
ly with a user-provided logic analyzer or data-acquisi-  
tion system. The DAV output clock signal is available at  
8) Connect a 3.3V, 250mA power supply to VDUT.  
Connect the ground terminal of this supply to the  
corresponding GND pad.  
_______________________________________________________________________________________  
3
MAX1211 Evaluation Kit  
pin J1-3 (CLK), which can be used to synchronize the  
output data to the logic analyzer.  
Measure the clock signal at pin 2 of JU7 and adjust  
potentiometer R10 to obtain the desired duty cycle. See  
Table 2 for shunt positions.  
Power Supplies  
The MAX1211 EV kit requires separate analog and digi-  
tal power supplies for best performance. Separate 3.3V  
power supplies are used to power the analog portion of  
the MAX1211 (VDUT) and the clock-shaping circuit  
(VCLK). To evaluate the clock-shaping circuit, 3.3V must  
be supplied to VCLK. When evaluating the differential  
clock, reduce interference from the unused clock-shap-  
ing circuit by shorting VCLK to GND. Separate 2.0V  
power supplies are used to power the digital portion of  
the MAX1211 (VLDUT) and the buffer/driver (VL). The  
digital portions of the EV kit operate with voltage sup-  
plies as low as 1.7V and as high as 3.6V.  
Input Signal  
The MAX1211 accepts differential or single-ended ana-  
log input signals. However, the EV kit requires only a sin-  
gle-ended analog input signal. Because the amplitude of  
the received signal at the ADC depends on the actual  
cable loss and bandpass filter loss; account for these  
losses when configuring the signal input generator.  
Direct-Connect Single-Ended Input  
To evaluate the MAX1211 with a single-ended input sig-  
nal directly connected to the ADC input terminal, modi-  
fy the EV kit as follows:  
1) Remove transformers T1 and T2.  
2) Remove resistor R3.  
Clock  
The MAX1211 allows for either differential or single-  
ended signals to drive the clock inputs. The MAX1211  
EV kit supports both methods.  
3) Short resistor R20.  
4) Install a 0.1µF capacitor at the location designated  
by R14.  
In single-ended operation, the signal is applied to the  
ADC through a buffer (U6). In differential mode, an on-  
board transformer takes the single-ended analog input  
and generates a differential analog signal at the ADCs  
input pins.  
5) Connect the input signal source to AINP.  
MAX1211 Power-Down  
Jumper JU2 controls the power-down function of the  
MAX1211 only. Other ICs on the MAX1211 EV kit con-  
tinue to draw quiescent current from the power sup-  
plies. See Table 3 for power-down jumper settings.  
MAX1211 Clock Input  
The MAX1211 is capable of accepting either differential  
or single-ended clock input signals. Jumper JU5 con-  
trols this feature. See Table 1 for jumper settings.  
Reference Voltage  
The MAX1211 requires an input voltage reference at its  
REFIN pin to set the full-scale analog signal voltage  
input. The ADC has a stable on-chip voltage reference  
of 2.048V, which can be accessed at REFOUT. The EV  
kit was designed to use the on-chip voltage reference  
by shorting REFIN to REFOUT through resistor R12.  
Transformer-Coupled Clock  
A single-ended signal can be converted to a differential  
signal through transformer T3. In this mode, diode D1  
limits the amplitude of the clock signal, thereby over-  
driving the CLOCK SMA input. This can increase the  
slew rate of the differential signal, thereby reducing  
clock jitter. See Table 2 for clock-drive jumper settings.  
Ensure that jumper JU5 (see the MAX1211 Clock Input  
section) is set correctly.  
The user can externally adjust the reference level, and  
hence the full-scale range, by cutting the trace-shorting  
Table 2. CLOCK SMA Drive Settings  
Clock-Shaping Circuit with Variable Duty Cycle  
An on-board, variable duty cycle, clock-shaping circuit  
generates a single-ended clock signal from an AC-cou-  
pled sine wave applied to the CLOCK SMA connector.  
SHUNT  
POSITION  
JUMPER  
DESCRIPTION  
JU9  
JU10  
JU11  
1-2  
1-2  
2-3  
Single-ended clock mode  
(see the Clock-Shaping Circuit with  
Variable Duty-Cycle section)  
Table 1. MAX1211 Clock Input Settings (JU5)  
SHUNT  
POSITION  
MAX1211  
CLKTYP PIN  
MAX1211 CLOCK  
INPUT  
JU9*  
JU10*  
JU11*  
2-3  
2-3  
1-2  
Differential lock mode; a single-  
ended signal is converted to a  
differential signal that drives the  
MAX1211 clock inputs  
1-2*  
2-3  
Connected to VLDUT  
Connected to GND  
Differential  
Single ended  
*Default configuration: JU5 (1-2).  
*Default configuration: JU9 (2-3), JU10 (2-3), JU11 (1-2).  
4
_______________________________________________________________________________________  
MAX1211 Evaluation Kit  
resistor R12 and installing resistors at locations R2 and  
R12 (located on the board's component side). Calculate  
the resistor values using the following equation:  
Output Signal  
The MAX1211 features a 12-bit, parallel, CMOS-compat-  
ible output bus. The outputs of the ADC are fed into a  
buffer capable of driving large capacitive loads, which  
may be present at the logic analyzer connection. The  
outputs of the buffer are connected to a 40-pin header  
(J1), located on the right side of the EV kit, where the  
user can connect a logic analyzer or data-acquisition  
system. See Table 5 for bit locations of header J1.  
V
V
REFOUT  
R
= R  
-1  
12  
2
REFIN  
where:  
R2 = 10k, 1%.  
Duty-Cycle Equalizer (DCE)  
A 50% duty cycle applied to the clock inputs of the  
MAX1211 EV kit is recommended to improve the dynamic  
performance. Enabling the DCE function can correct clock  
signals with less than ideal clock duty cycles ranging from  
40% to 60%. Jumper JU4 configures the DCE function of  
the MAX1211 EV kit. See Table 6 for shunt positions.  
V
V
= 2.048V.  
REFOUT  
= desired REFIN voltage.  
REFIN  
Alternatively, resistors R12 and R2 can be opened, and  
the ADC's full-scale range can be set by applying a  
stable, low-noise, external voltage reference directly at  
the REFIN pad.  
Output Coding  
The digital output coding of the MAX1211 can be cho-  
sen to be either in twos complement format or Gray  
code by configuring jumper JU6. See Table 4 for shunt  
positions.  
Evaluating the  
MAX1206–MAX1209, MAX19538  
To evaluate the MAX1206/MAX1207/MAX1208,  
MAX1209, or the MAX19538 remove IC U1 from the EV  
kit and install a free sample of the desired ADC.  
Table 4. Output Code Settings (JU6)  
Table 3. Power-Down Settings (JU2)  
SHUNT  
POSITION  
MAX1211  
G/T PIN  
OPERATION  
SHUNT  
POSITION  
MAX1211  
PD PIN  
MAX1211 POWER-DOWN  
STATUS  
Connected to  
VLDUT  
1-2  
Digital output in Gray code  
Connected to  
VLDUT  
1-2  
Powered down  
Connected to Digital output in two's  
2-3*  
GND  
complement  
2-3*  
Connected to GND  
Normal operation  
*Default configuration: JU2 (2-3).  
*Default configuration: JU6 (2-3).  
Table 5. Output Bit Locations (J1)  
BIT  
D11  
BIT  
D10  
BIT  
D9  
BIT  
D8  
BIT  
D7  
BIT  
D6  
BIT  
D5  
BIT  
D4  
BIT  
D3  
BIT  
D2  
BIT  
D1  
BIT  
D0  
CLOCK DOR  
J1-3  
J1-7  
J1-11  
J1-13  
J1-15  
J1-17  
J1-19  
J1-21  
J1-23  
J1-25  
J1-27  
J1-29  
J1-31  
J1-33  
CLK  
Table 6. Duty-Cycle-Equalizer Settings (JU4)  
SHUNT  
POSITION  
DUTY-CYCLE  
EQUALIZER  
DCE PIN  
Connected to  
VDUT  
1-2*  
2-3  
Enabled  
Disabled  
Connected to GND  
*Default configuration: JU4 (1-2).  
_______________________________________________________________________________________  
5
MAX1211 Evaluation Kit  
G N D  
3 9  
G N D  
4 5  
G N D  
3 4  
G N D  
2 8  
2 C L K  
2 5  
C C  
V
4 2  
C C  
V
3 1  
G N D  
2 1  
G N D  
1 5  
G N D  
1 0  
G N D  
C C  
V
C C  
V
1 8  
7
1 C L K  
4 8  
4
D A V  
3 3  
G N D  
1 6  
G N D  
3 5  
D D  
O V  
3 4  
D D  
O V  
1 7  
D D  
V
D D  
V
D D  
V
3 6  
1 5  
1 4  
1 3  
G N D  
4
D D  
V
G N D  
7
D D  
V
1 2  
Figure 1. MAX1211 EV Kit Schematic (Sheet 1 of 2)  
6
_______________________________________________________________________________________  
MAX1211 Evaluation Kit  
Figure 1. MAX1211 EV Kit Schematic (Sheet 2 of 2)  
_______________________________________________________________________________________  
7
MAX1211 Evaluation Kit  
Figure 2. MAX1211 EV Kit Component Placement GuideComponent Side  
8
_______________________________________________________________________________________  
MAX1211 Evaluation Kit  
Figure 3. MAX1211 EV Kit PC Board LayoutComponent Side  
_______________________________________________________________________________________  
9
MAX1211 Evaluation Kit  
Figure 4. MAX1211 EV Kit PC Board Layout (Inner Layer 2)Ground Planes  
10 ______________________________________________________________________________________  
MAX1211 Evaluation Kit  
Figure 5. MAX1211 EV Kit PC Board Layout (Inner Layer 3)Power Planes  
______________________________________________________________________________________ 11  
MAX1211 Evaluation Kit  
Figure 6. MAX1211 EV Kit PC Board LayoutSolder Side  
12 ______________________________________________________________________________________  
MAX1211 Evaluation Kit  
Figure 7. MAX1211 EV Kit Component Placement GuideSolder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13  
© 2005 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY