MAX1218EVKIT [MAXIM]

On-Board LVDS/LVPECL Differential Level Translators;
MAX1218EVKIT
型号: MAX1218EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

On-Board LVDS/LVPECL Differential Level Translators

文件: 总21页 (文件大小:982K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4018; Rev 0; 3/06  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
General Description  
Features  
ADC Sampling Rates from 125Msps to 210Msps  
Low Voltage and Power Operation  
The MAX1217/MAX1218/MAX1219 evaluation kits (EV kits)  
are fully assembled and tested circuit boards that contain  
all the components necessary to evaluate the perfor-  
mance of the MAX1217/MAX1218/MAX1219 dual, 12-bit,  
125Msps/170Msps/210Msps analog-to-digital converters  
(ADCs). These ADCs accept differential analog inputs,  
which the EV kit generates from user-provided single-  
ended input sources. The digital outputs produced by the  
ADC can be easily sampled using a high-speed logic  
analyzer or data-acquisition system. The EV kit operates  
from 1.8V/3.3V power supplies and includes circuitry that  
generates a differential clock signal from a single-ended  
AC source provided by the user.  
On-Board Clock-Shaping Circuitry  
On-Board LVDS/LVPECL Differential Level  
Translators  
Fully Assembled and Tested  
Ordering Information  
PART  
TEMP RANGE  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
IC PACKAGE  
100 TQFP-EP  
100 TQFP-EP  
100 TQFP-EP  
MAX1217EVKIT  
MAX1218EVKIT  
MAX1219EVKIT  
EV Kit Specific Component List  
EV KIT PART  
NUMBER  
DESIGNATION  
DESCRIPTION  
Maxim MAX1217ECQ  
(100-pin TQFP)  
Part Selection Table  
MAX1217EVKIT  
PART  
SPEED (Msps)  
Maxim MAX1218ECQ  
(100-pin TQFP)  
MAX1218EVKIT  
MAX1219EVKIT  
U1  
MAX1219ECQ  
210  
170  
125  
MAX1218ECQ  
MAX1217ECQ  
Maxim MAX1219ECQ  
(100-pin TQFP)  
Common Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
220µF 20ꢀ, 6.3V tantalum  
capacitors (C-case)  
AVX TPSC227M006ꢁ0250  
C1, C3, C5, C6,  
C12, C13, C18,  
C42, C43  
0.1µF 20ꢀ, 25V X7ꢁ ceramic  
capacitors (0603)  
TDK C1608X7ꢁ1E104M  
0.1µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0201)  
C71–C74  
C76–C79  
C81–C84  
4
0
4
9
Not installed (C-case)  
C2, C4,  
C115–C123  
11  
10µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0805)  
TDK C0603X5ꢁ0J104M  
C7, C19, C20,  
C33–C41,  
C112, C113,  
C114  
TDK C2012X5ꢁ0J106M  
0.1µF 20ꢀ, 10V X5ꢁ ceramic  
capacitors (0402)  
TDK C1005X5ꢁ1A104M  
1.0µF 20ꢀ, 6.3V X5ꢁ ceramic  
17 capacitors (0402)  
15  
C86–C89,  
C91–C103  
TDK C1005X5ꢁ0J105M  
2.0pF 0.25pF, 50V C0ꢂ ceramic  
capacitors (0402)  
TDK C1005C0ꢂ1H2ꢁ0C  
4.7µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0603)  
TDK C1608X5ꢁ0J475M  
C14–C17  
4
C104–C107  
4
0.01µF 5ꢀ, 25V C0ꢂ ceramic  
capacitors (0603)  
TDK C1608C0ꢂ1E103J  
J1, J3, J7, J15  
J5, J6, J14  
J8, J10, J11, J13  
J9, J12  
4
3
4
2
2
1
2
SMA PC mount connectors  
2-pin headers  
C21–C32,  
C108–C111  
16  
Dual-row, 50-pin headers  
Dual-row, 6-pin headers  
Triple-row, 75-pin headers  
Triple-row, 9-pin header  
Jumpers, dual-row, 8-pin headers  
0.01µF 10ꢀ, 25V X7ꢁ ceramic  
27 capacitors (0402)  
TDK C1005X7ꢁ1E103K  
C44–C70  
J16, J18  
J17  
JU1, JU2  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Common Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
ꢁ122–ꢁ147, ꢁ153 27 100Ω 1ꢀ resistors (0603)  
JU3–JU8  
6
Jumpers, 3-pin headers  
ꢁ1, ꢁ3,  
ꢁ23–ꢁ26, ꢁ121,  
ꢁ148, ꢁ151, ꢁ152  
ꢁ149, ꢁ156  
ꢁ154, ꢁ155  
2
0
510Ω 5ꢀ resistors (0603)  
10 49.9Ω 1ꢀ resistors (0603)  
Not installed (T93YB)  
1:1, 800MHz ꢁF transformers  
Mini-Circuits ADT1-1WT  
ꢁ2, ꢁ4, ꢁ5–ꢁ10,  
ꢁ13–ꢁ18,  
ꢁ112, ꢁ113, ꢁ150  
T1–T4  
TP1–TP6  
U1  
4
6
1
1
0
4
Not installed (0603)  
Test points (black)  
24.9Ω 0.1ꢀ resistors (0603)  
Vishay/Dale TNPW060324ꢁ9BEEA  
IꢁC PFC-W0603ꢁ-02-24ꢁ9-B  
Note: See the EV Kit Specific  
Component List  
ꢁ19–ꢁ22  
U2  
Maxim MAX9388EUP (20-pin TSSOP)  
ꢁ27–ꢁ107  
81 49.9Ω 1ꢀ resistors (0402)  
3.3V, ECL, quad differential  
receivers (SO-20)  
On Semiconductor  
MC100LVEL17DW  
10Ω 0.1ꢀ resistors (0603)  
Vishay/Dale TNPW060310ꢁ0BEEA  
ꢁ108–ꢁ111  
4
U3–U9  
7
ꢁ114  
ꢁ115  
1
1
1
2
2
4.02kΩ 1ꢀ resistor (0603)  
2kΩ 1ꢀ resistor (0603)  
Y1  
0
8
Not installed (VF561E)  
Shunts  
ꢁ116  
5kΩ potentiometer, 19-turn, 3/8in  
13.0kΩ 1ꢀ resistors (0603)  
100kΩ potentiometers, 19-turn, 3/8in  
MAX1217/MAX1218/MAX1219  
PC board  
ꢁ117, ꢁ118  
ꢁ119, ꢁ120  
1
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.avxcorp.com  
www.irctt.com  
AVX  
843-946-0238  
361-992-7900  
718-934-4500  
847-803-6100  
402-564-3131  
843-626-3123  
IꢁC  
361-992-3377  
718-332-4661  
847-390-4405  
402-563-6296  
Mini-Circuits  
TDK  
www.minicircuits.com  
www.component.tdk.com  
www.vishay.com  
Vishay  
Note: Indicate that you are using the MAX1217/MAX1218/MAX1219 when contacting these component suppliers.  
Analog bandpass filters (e.g., Allen Avionics, K&L  
Quick Start  
Recommended Equipment  
Microwave) for input signal and clock signal  
Digital voltmeter  
DC power supplies:  
Procedure  
Analog (AVCC)  
Output drive (OVCC)  
Clock (VCLK)  
1.8V, 1A  
The MAX1217/MAX1218/MAX1219 EV kits are fully  
assembled and tested surface-mount boards. Follow  
the steps below for board operation. Do not turn on  
power supplies or enable function generators until  
all connections are completed.  
1.8V, 250mA  
3.3V, 100mA  
3.3V, 1A  
Buffer (VPECL)  
Signal generator with low phase noise and low jitter  
for clock input (e.g., HP/Agilent 8644B)  
1) Verify that shunts are installed in the following locations:  
JU1 (3-4) Internal reference enabled (channel A)  
JU2 (3-4) Internal reference enabled (channel B)  
Two signal generators for analog signal inputs  
(e.g., HP/Agilent 8644B)  
Logic analyzer or data-acquisition system  
(e.g., HP/Agilent 16500C, TLA621)  
JU3 (2-3) Channel A output in two’s-comple-  
ment format  
2
_______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
JU4 (2-3) Channel B output in two’s-comple-  
18) Set the analog input signal generators to output the  
desired test frequency. The amplitude of the gener-  
ator should produce a signal that is no larger than  
ment format  
JU5 (1-2) Divide-by-two clock disabled  
JU6, JU7 (2-3) Variable duty-cycle input selected  
2) Connect a 1.8V, 1A power supply to AVCC.  
Connect the ground terminal of this supply to ꢂND.  
11dBm (793mV ) as measured at the SMA input  
P-P  
of the EV kit. Insertion losses due to the series-con-  
nected filter (steps 8 and 10) and the interconnect-  
ing cables decrease the amount of power seen at  
the EV kit input. Account for these losses when set-  
ting the signal generator amplitude.  
3) Connect a 1.8V, 250mA power supply to OVCC.  
Connect the ground terminal of this supply to ꢂND.  
19) Enable the logic analyzer.  
4) Connect a 3.3V, 100mA power supply to VCLK.  
Connect the ground terminal of this supply to ꢂND.  
20) Collect data using the logic analyzer.  
5) Connect a 3.3V, 1A power supply to VPECL.  
Connect the ground terminal of this supply to ꢂND.  
Detailed Description  
The MAX1217/MAX1218/MAX1219 EV kits are fully  
assembled and tested circuit boards that contain all the  
components necessary to evaluate the performance of  
the MAX1217/MAX1218/MAX1219 dual, 12-bit parallel  
output ADCs.  
6) Connect the clock signal generator to the input of  
the clock bandpass filter.  
7) Connect the output of the clock bandpass filter to  
the EV kit SMA connector labeled J7. Monitor the  
clock signal using a differential oscilloscope probe  
at connector J14.  
The MAX1217/MAX1218/MAX1219 accept differential  
inputs; however, on-board transformers (T1, T3) con-  
vert readily available single-ended source outputs to  
the required differential signals. Measure the inputs of  
the MAX1217/MAX1218/MAX1219 at headers J5 and  
J6 using a differential oscilloscope probe.  
8) Connect the first analog signal generator to the  
input of the desired bandpass filter.  
9) Connect the output of the first bandpass filter to the  
EV kit SMA connector labeled J1.  
Output level translators (U3–U8) buffer and convert the  
LVDS output signals of the MAX1217/MAX1218/MAX1219  
to higher-voltage LVPECL signals, which can be captured  
by a wide variety of logic analyzers. The LVDS outputs  
are accessed at headers J8, J9, J10. The LVPECL out-  
puts are accessed at headers J11, J12, J13. Additionally,  
the LVPECL outputs can be captured with a single-ended  
logic-analyzer probe at headers J16, J17, and J18.  
10) Connect the second analog signal generator to the  
input of the desired bandpass filter.  
11) Connect the output of the second bandpass filter to  
the EV kit SMA connector labeled J3.  
12) Ensure that all signal generators are phase-locked  
to a common reference frequency.  
13) Connect the logic analyzer to either headers J8 to  
J10 (LVDS-compatible signals), J11 to J13  
(LVPECL-compatible signals), or J16 to J18 (single-  
ended capture). See the Output Bit Locations sec-  
tion for header descriptions and connections.  
The EV kit is designed as a four-layer PC board to opti-  
mize the performance of the MAX1217/MAX1218/  
MAX1219. Separate analog, digital, clock, and buffer  
power planes minimize noise coupling between analog  
and digital signals. 50Ω coplanar transmission lines are  
used for analog and clock inputs. 100Ω-differential  
coplanar transmission lines are used for all digital LVDS  
outputs. All differential outputs are properly terminated  
with 100Ω termination resistors between true and com-  
plementary digital outputs. The trace lengths of the  
100Ω-differential LVDS lines are matched to within a  
few thousandths of an inch to minimize layout-depen-  
dent data skew.  
14) Turn on all the power supplies.  
15) With a voltmeter, verify that 1.32V is measured  
across test points TP3 and TP4. If the voltage is not  
1.32V, adjust potentiometer ꢁ116 until 1.32V is  
obtained.  
16) Enable the function generators.  
17) Set the clock signal generator to output a 210MHz  
signal. The amplitude of the generator should be  
sufficient to produce a 13.8dBm (1.09V ) signal  
P-P  
Power Supplies  
The MAX1217/MAX1218/MAX1219 EV kits require sep-  
arate analog, output-drive, clock, and buffer power  
supplies for best performance. Two 1.8V power sup-  
plies are used to power the analog (AVCC) and output-  
driver (OVCC) circuitry of the MAX1217/MAX1218/  
at the SMA input of the EV kit. Insertion losses due  
to the series-connected filter (step 7) and the inter-  
connecting cables decrease the amount of power  
seen at the EV kit input. Account for these losses  
when setting the signal generator amplitude.  
_______________________________________________________________________________________  
3
MAX1217/MAX1218/MAX1219 Evaluation Kits  
MAX1219. The clock circuitry (VCLK) is powered by a  
3.3V power supply. A separate 3.3V power supply  
(VPECL) is used to power the output buffers (U3–U9) of  
the EV kit.  
crystal oscillator. To use this function, install a three-pin  
header at location JU8. Also, install a crystal oscillator with  
the desired frequency at location Y1.  
Jumper JU8 controls the enable function of the oscilla-  
tor. See Table 3 for shunt settings. To improve perfor-  
mance of the EV kit, disable the crystal oscillator when  
not in use.  
Clock  
The MAX1217/MAX1218/MAX1219 EV kits feature a  
variety of clock input methods. A differential clock signal  
can be generated from a single-ended sine wave  
applied to J15. A variable-duty-cycle differential clock  
signal can be generated from a single-ended sine wave  
applied to J7 (see the Variable-Duty-Cycle Clock-  
Shaping Circuit section). Alternatively, the on-board  
crystal oscillator can be utilized instead of a user-pro-  
vided signal source (see the On-Board Crystal Oscillator  
section). U2 multiplexes all three of these inputs onto  
the MAX1217/MAX1218/MAX1219 clock input lines.  
Jumpers JU6 and JU7 control the multiplexer. See Table  
1 for shunt settings.  
Table 3. Crystal Oscillator Shunt Settings  
(JU8)  
SHUNT POSITION  
DESCRIPTION  
Crystal oscillator enabled.  
Crystal oscillator disabled.  
1-2  
2-3*  
*Default configuration: JU8 (2-3).  
Variable-Duty-Cycle Clock-Shaping Circuit  
A differential multiplexer (U2) processes the single-  
ended sine wave (applied at J7) and generates the  
required differential clock signal. The clock signal’s duty  
cycle can be adjusted with potentiometer ꢁ116. A clock  
signal with a 50ꢀ duty cycle (recommended setting)  
can be achieved by adjusting ꢁ116 until 1.32V is pro-  
duced across test points TP3 and TP4 when the clock  
voltage supply (VCLK) is set to 3.3V. Measure the clock  
signal with a differential oscilloscope probe at J14.  
Table 1. Clock Multiplexer Shunt Settings  
(JU6, JU7)  
JUMPER  
DESCRIPTION  
JU6  
JU7  
Variable-duty-cycle clock selected.  
Apply a signal to J7. Measure the duty  
cycle at J14.  
Input Signal  
The MAX1217/MAX1218/MAX1219 accept differential  
analog input signals; however, the EV kits only require  
a single-ended analog input signal, with an amplitude  
2-3*  
2-3*  
Differential clock signal selected.  
Apply a signal to J15.  
1-2  
2-3  
1-2  
1-2  
1-2  
2-3  
of less than 11dBm (793mV ) provided by the user.  
P-P  
On-board transformers (T1, T3) convert the single-  
ended analog inputs and generate differential analog  
signals at the ADC’s differential input pins.  
Clock disabled.  
On-board crystal oscillator selected.  
Enable crystal using JU8.  
Reference Voltage  
There are three methods to set the full-scale range of the  
MAX1217/MAX1218/MAX1219. The EV kits can be con-  
figured to use the MAX1217/MAX1218/MAX1219’s inter-  
nal reference, a stable low-noise external reference, or  
the on-board reference adjustment circuitry.  
*Default configuration: JU6 (2-3), JU7 (2-3).  
Divide-by-Two Clock  
The MAX1217/MAX1218/MAX1219 feature internal  
divide-by-two clock circuitry. Jumper JU5 controls this  
function. See Table 2 for shunt settings.  
The MAX1217/MAX1218/MAX1219 feature an internal  
1.23V bandgap reference circuit, which, in combination  
with an internal reference-scaling amplifier, determines  
the full-scale range of the MAX1217/MAX1218/MAX1219.  
To compensate for gain errors or increase/decrease the  
ADC’s full-scale range, the voltage of this bandgap refer-  
ence can be indirectly adjusted by configuring JU1/JU2  
and adjusting potentiometer ꢁ119/ꢁ120 on the  
MAX1217/MAX1218/MAX1219 EV kits. Connecting a  
potentiometer between ꢁEFADJ and ꢁEFIO increases  
the full-scale range of the ADC. Conversely, connecting  
the potentiometer between ꢁEFADJ and ꢂND decreases  
Table 2. Divide-by-Two Shunt Settings (JU5)  
MAX1217/  
MAX1218/MAX1219  
CLKDIV PIN  
SHUNT  
POSITION  
DESCRIPTION  
1-2*  
2-3  
AVCC  
ꢂND  
Clock signal is divided by 1.  
Clock signal is divided by 2.  
*Default configuration: JU5 (1-2).  
On-Board Crystal Oscillator  
To facilitate easy evaluation, the MAX1217/MAX1218/  
MAX1219 EV kits feature an open location for an on-board  
4
_______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
the full-scale range. The MAX1217/MAX1218/MAX1219  
feature two sets of pins to calibrate each channel  
independently; thus, the MAX1217/MAX1218/MAX1219  
EV kits feature two sets of reference circuitry. Jumper  
JU1 and potentiometer ꢁ119 control the reference of  
channel A. Jumper JU2 and potentiometer ꢁ120 control  
the reference of channel B. See Table 4 for shunt settings.  
improve the dynamic performance of the device. In addi-  
tion, seven drivers (U3–U9) buffer and level-translate the  
ADC’s digital outputs to LVPECL-compatible signals.  
The drivers increase the differential voltage swing, and  
are able to support large capacitive loads, which may be  
present at the logic analyzer connection. The outputs of  
the buffers are connected to headers J11, J12, and J13.  
See Table 6 for bit location of headers J8–J13.  
Table 4. Reference Shunt Settings (JU1, JU2)  
Table 6. Output Bit Locations (Differential  
Capture)  
SHUNT  
DESCRIPTION  
POSITION  
CHANNEL A  
CHANNEL B  
Internal reference disabled. Apply a  
reference voltage at the ꢁEFIO pad.  
1-2  
SIGNAL  
UNBUFFERED = J8  
BUFFERED = J11  
UNBUFFERED = J10  
BUFFERED = J13  
3-4*  
5-6  
Internal reference enabled.  
P
1
49  
50  
45  
46  
41  
42  
37  
38  
33  
34  
29  
30  
25  
26  
21  
22  
17  
18  
13  
14  
9
ꢁEFADJ connected through potentiometer  
ꢁ119/ꢁ120 to ꢁEFIO.  
Oꢁ  
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
2
5
ꢁEFADJ connected through potentiometer  
ꢁ119/ꢁ120 to ꢂND.  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
7-8  
6
9
*Default configuration: JU1 (3-4), JU2 (3-4).  
10  
13  
14  
17  
18  
21  
22  
25  
26  
29  
30  
33  
34  
37  
38  
41  
42  
45  
46  
Output Signal  
The MAX1217/MAX1218/MAX1219 feature two, parallel  
LVDS-compatible, digital output buses. Each output  
bus transmits the digitized analog input signals of  
channels A and B. An additional output (CLK) is provid-  
ed for data synchronization. ꢁefer to the MAX1217,  
MAX1218, MAX1219 data sheets for more details.  
Output Format  
The digital output coding can be set to either two’s  
complement or straight offset binary by configuring  
jumper JU3 and JU4. Each channel can be set inde-  
pendently. Jumper JU3 controls the output format of  
channel A. Jumper JU4 controls the output format of  
channel B. See Table 5 for shunt positions.  
Table 5. Output Format Shunt Settings  
(JU3, JU4)  
SHUNT  
POSITION  
T/B PIN  
AVCC  
ꢂND  
DESCRIPTION  
10  
5
Digital output in straight  
offset binary format.  
1-2  
6
49  
50  
1
2
Digital output in two’s-  
complement format.  
2-3*  
SIGNAL  
UNBUFFERED  
J9-3  
BUFFERED  
J12-3  
*Default configuration: JU3 (2-3), JU4 (2-3).  
P
CLK  
Output Bit Locations  
N
J9-4  
J12-4  
The digital outputs of the MAX1217/MAX1218/MAX1219  
are connected to headers J8, J9, and J10. PC board  
trace lengths are matched to minimize data skew and  
P: True.  
N: Complementary.  
Note: Requires differential logic analyzer.  
_______________________________________________________________________________________  
5
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Output Bit Locations (Single-Ended Capture)  
The MAX1217/MAX1218/MAX1219 EV kits feature a third  
set of headers (J16, J17, J18) that allow a single-ended  
logic analyzer to capture the output data of the MAX1217/  
MAX1218/MAX1219. The single-ended outputs are  
buffered by U3–U9. The output data has a typical 2V com-  
mon-mode voltage and a single-ended 750mV voltage  
swing. For best results, adjust the logic analyzer’s trigger  
threshold to the common-mode voltage. See Table 7 for  
single-ended bit locations.  
P-P  
Table 7. Output Bit Locations (Single-Ended Capture)  
CHANNEL A  
CHANNEL B  
SIGNAL  
J16  
J18  
73  
67  
61  
55  
49  
43  
37  
31  
25  
19  
13  
7
Oꢁ  
D11  
D10  
D9  
1
7
13  
19  
25  
31  
37  
43  
49  
55  
61  
67  
73  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
SIGNAL  
CLK  
CHANNEL A AND B  
J17-4  
6
_______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
O G N D  
O G N D  
C C  
O V  
O V  
O V  
C C  
C C  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
C C  
A V  
A V  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
A V  
C C  
C C  
C C  
C C  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
C C  
C C  
C C  
C C  
C C  
Figure 1a. MAX1217 EV Kit Schematic (Sheet 1 of 7)  
_______________________________________________________________________________________  
7
MAX1217/MAX1218/MAX1219 Evaluation Kits  
O G N D  
O G N D  
C C  
O V  
O V  
O V  
C C  
C C  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
C C  
A V  
A V  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
A V  
C C  
C C  
C C  
C C  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
AM2X18  
C C  
C C  
C C  
C C  
C C  
Figure 1b. MAX1218 EV Kit Schematic (Sheet 1 of 7)  
_______________________________________________________________________________________  
8
MAX1217/MAX1218/MAX1219 Evaluation Kits  
O G N D  
O G N D  
C C  
O V  
O V  
O V  
C C  
C C  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
C C  
A V  
A V  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
C C  
A V  
C C  
C C  
C C  
C C  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
AM2X19  
C C  
C C  
C C  
C C  
C C  
Figure 1c. MAX1219 EV Kit Schematic (Sheet 1 of 7)  
_______________________________________________________________________________________  
9
MAX1217/MAX1218/MAX1219 Evaluation Kits  
AM9X38  
FV651E  
Figure 1d. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 2 of 7)  
10 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 1e. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 3 of 7)  
______________________________________________________________________________________ 11  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 1f. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 4 of 7)  
12 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 1g. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 5 of 7)  
______________________________________________________________________________________ 13  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 1h. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 6 of 7)  
14 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
VPECL  
C39  
0.1μF  
C30  
0.01μF  
1
20  
VCC  
VCC  
2
3
19  
DA00P  
DA00N  
BDA00P  
D0  
D0  
Q0  
C68  
0.01μF  
R99  
49.9Ω  
1%  
R101  
49.9Ω  
1%  
R100  
49.9Ω  
1%  
18  
17  
BDA00N  
BDC0P  
Q0  
Q1  
4
5
DC0P  
DC0N  
D1  
D1  
C69  
0.01μF  
U9  
MC100LVEL17  
R102  
49.9Ω  
1%  
R104  
49.9Ω  
1%  
R103  
49.9Ω  
1%  
16  
15  
BDC0N  
Q1  
Q2  
6
7
D2  
D2  
14  
13  
Q2  
Q3  
8
9
DB00N  
DB00P  
BDB00N  
C70  
D3  
D3  
0.01μF  
R105  
49.9Ω  
1%  
R107  
49.9Ω  
1%  
R106  
49.9Ω  
1%  
12  
BDB00P  
Q3  
VBB  
10  
VEE  
11  
Figure 1i. MAX1217/MAX1218/MAX1219 EV Kit Schematic (Sheet 7 of 7)  
______________________________________________________________________________________ 15  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 2. MAX1217/MAX1218/MAX1219 EV Kit Component Placement Guide—Component Side  
16 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 3. MAX1217/MAX1218/MAX1219 EV Kit PC Board Layout—Component Side  
______________________________________________________________________________________ 17  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 4. MAX1217/MAX1218/MAX1219 EV Kit PC Board Layout—Ground Planes  
18 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 5. MAX1217/MAX1218/MAX1219 EV Kit PC Board Layout—Power Planes  
______________________________________________________________________________________ 19  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 6. MAX1217/MAX1218/MAX1219 EV Kit PC Board Layout—Solder Side  
20 ______________________________________________________________________________________  
MAX1217/MAX1218/MAX1219 Evaluation Kits  
Figure 7. MAX1217/MAX1218/MAX1219 EV Kit Component Placement Guide—Solder Side  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 21  
© 2006 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY