MAX12528EVKIT [MAXIM]

Low-Voltage and Low-Power Operation;
MAX12528EVKIT
型号: MAX12528EVKIT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage and Low-Power Operation

文件: 总21页 (文件大小:753K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Click here to ask about the production status of specific part numbers.  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
General Description  
Features  
The  
MAX12527/MAX12528/MAX12529/MAX12557/  
Low-Voltage and Low-Power Operation  
On-Board Clock-Shaping Circuitry Option  
On-Board Output Drivers  
MAX12558/MAX12559 evaluation kits (EV kits) are fully  
assembled and tested circuit boards that contain all the  
components necessary to evaluate the performance of  
this family of 12-bit and 14-bit, dual analog-to-digital con-  
verters (ADCs). These ADCs accept differential analog  
input signals. The EV kits generate these signals from  
user-provided single-ended input sources. The digital  
outputs produced by the ADCs can be easily sampled  
with a user-provided high-speed logic analyzer or data-  
acquisition system. The EV kits operate from 2.0V and  
3.3V power supplies.  
Fully Assembled and Tested  
Ordering Information  
PART  
TEMP RANGE*  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
IC PACKAGE  
68 TQFN-EP**  
68 TQFN-EP**  
68 TQFN-EP**  
68 TQFN-EP**  
68 TQFN-EP**  
68 TQFN-EP**  
MAX12527EVKIT#  
MAX12528EVKIT  
MAX12529EVKIT  
MAX12557EVKIT  
MAX12558EVKIT  
MAX12559EVKIT  
Part Selection Table  
SAMPLING RATE  
(Msps)  
RESOLUTION  
(Bits)  
PART  
MAX12559ETK  
MAX12558ETK  
MAX12557ETK  
MAX12529ETK  
MAX12528ETK  
MAX12527ETK  
96  
80  
65  
96  
80  
65  
14  
14  
14  
12  
12  
12  
#Denotes ROHS compliant with exemption.  
*EV kit PC board temperature range only.  
**EP = Exposed paddle.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
Not installed (0603)  
DESIGNATION QTY  
DESCRIPTION  
C1–C4  
0
220μF ±20%, 6.3V tantalum  
capacitors (C case)  
AVX TPSC227M006R0250  
C33–C38,  
8
C47, C53  
C5, C6, C11,  
C13, C14, C16,  
C17, C28–C32,  
C45, C46,  
0.1μF ±20%, 10V X5R ceramic  
capacitors (0402)  
TDK C1005X5R1A104M  
10μF ±20%, 6.3V X5R ceramic  
capacitors (0805)  
TDK C2012X5R0J106M  
C39, C40, C41,  
6
22  
C55, C61, C66  
C57–C60,  
C62–C65  
1.0μF ±20%, 10V X5R ceramic  
capacitors (0603)  
TDK C1608X5R1A105M  
C42, C43,  
4
5.6pF ±0.5pF, 50V C0G ceramic  
capacitors (0402)  
TDK C1005C0G1H5R6D  
C44, C56  
C7–C10  
4
8
4
0.01μF ±5%, 25V C0G ceramic  
capacitors (0603)  
TDK C1608C0G1E103J  
C51, C52  
C67  
2
1
4.7μF ±20%, 6.3V X5R ceramic  
capacitors (0603)  
TDK C1608X5R0J475M  
C12,  
C21–C27  
1.0μF ±20%, 6.3V X5R ceramic  
capacitor (0402)  
TDK C1005X5R0J105M  
0.1μF ±20%, 6.3V X5R ceramic  
capacitors (0201)  
TDK C0603X5R0J104M  
C15, C18,  
C19, C20  
19-3920; Rev 2; 3/21  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
220Ω ±5% resistor arrays  
Panasonic EXB-2HV-221J  
Dual Schottky diode (SOT23)  
Central Semiconductor  
CMPD6263S  
Vishay BAS70-04  
Diodes Inc. BAS70-04  
RA1–RA8  
8
4
D1  
1
1:1 RF transformers  
Mini-Circuits ADT1-1WT  
T1–T4  
1:2 RF transformer  
Coilcraft TTWB-2-B  
T5  
TP1–TP6  
U1  
1
6
1
J1, J2, J7  
J3, J4, J8  
J5, J6  
3
3
2
6
SMA PC mount connectors  
2-pin headers  
Test points  
Dual-row, 40-pin headers (2 x 20)  
3-pin headers  
See the EV Kit Specific  
Component List  
JU1–JU6  
Low-voltage 16-bit registers  
(48-pin TSSOP)  
Pericom PI74ALVTC16374 or Texas  
Instruments SN74ALVCH16374DGGR  
EMI filters  
Murata NFM41PC155B1E3  
L1–L4  
4
U2, U3  
U4  
2
1
R1–R8,  
R13–R16,  
R21–R32,  
0
Not installed (0603)  
TinyLogic ULP-A buffer (SC70-5)  
Fairchild NC7SV125P5  
R37, R40–R45  
TinyLogic ULP-A inverter (SC70-6)  
Fairchild NC7WV04P6  
R9–R12  
R17–R20  
R33–R36  
R38, R39  
R46, R47  
R48  
4
4
0
2
2
1
4
75Ω ±0.5% resistors (0603)  
110Ω ±0.5% resistors (0603)  
Not installed (0402)  
U5  
1
6
None  
Shunts  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
PC board  
49.9Ω ±1% resistors (0603)  
100Ω ±1% resistors (0603)  
10kΩ potentiometer  
None  
1
R49–R52  
24.9Ω ±0.5% resistors (0402)  
EV Kit Specific Component List  
REFERENCE  
EV KIT PART NUMBER  
DESCRIPTION  
DESIGNATOR  
MAX12527EVKIT#  
MAX12528EVKIT  
Maxim MAX12527ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)  
Maxim MAX12528ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm  
Maxim MAX12529ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)  
Maxim MAX12557ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)  
Maxim MAX12558ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)  
Maxim MAX12559ETK (68-pin thin QFN, 10mm x 10mm x 0.8mm)  
MAX12529EVKIT  
U1  
MAX12557EVKIT  
MAX12558EVKIT  
MAX12559EVKIT  
Maxim Integrated  
2  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Component Suppliers  
SUPPLIER  
PHONE  
FAX  
WEBSITE  
www.avxcorp.com  
www.centralsemi.com  
www.coilcraft.com  
www.diodes.com  
AVX  
843-946-0238  
631-435-1110  
847-639-6400  
805-446-4800  
888-522-5372  
770-436-1300  
714-373-7366  
800-435-2336  
847-803-6100  
972-644-5580  
843-626-3123  
631-435-1824  
847-639-1469  
805-446-4850  
Central Semiconductor  
Coilcraft  
Diodes Inc.  
Fairchild  
www.fairchildsemi.com  
www.murata.com  
Murata  
770-436-3030  
714-737-7323  
408-435-1100  
847-390-4405  
214-480-7800  
Panasonic  
Pericom  
www.panasonic.com  
www.pericom.com  
www.component.tdk.com  
www.ti.com  
TDK  
Texas Instruments  
Note: Indicate that you are using the MAX12527, MAX12528, MAX12529, MAX12557, MAX12558, and MAX12559 when contacting  
these component suppliers.  
2) Connect the clock signal generator to the input of the  
clock bandpass filter.  
3) Connect the output of the clock bandpass filter to the  
Quick Start  
Recommended Equipment  
DC power supplies:  
SMA connector labeled J7.  
Analog (VDD)  
3.3V, 500mA  
2.0V, 50mA  
2.0V, 100mA  
4) Connect the analog input signal generators to the  
inputs of the desired analog bandpass filters. For best  
results, connect the bandpass filter directly to the  
SMA connector and forego any cables in between.  
5) Connect the output of the analog bandpass filters to  
the SMA connectors labeled J1 and J2. The analog  
input signals can be monitored at J3 and J4. Elimi-  
nate cables between bandpass filter outputs and  
SMA connectors. If cables must be used, they should  
be as short as possible. Add a 3dB to 6dB attenua-  
tor between bandpass filter and SMA connectors to  
control undesired distortion components induced by  
the signal generator.  
Digital (OVDD)  
Buffers (VLOGIC)  
Signal generator with low phase noise and low jitter for  
clock input signal (e.g., HP/Agilent 8644B)  
Two signal generators with low phase noise for  
analog signal inputs (e.g., HP/Agilent 8644B)  
● Logic analyzer or data-acquisition system (e.g., HP/  
Agilent 16500C)  
Narrow-band analog bandpass filters (e.g., Allen  
Avionics, K&L Microwave) for input signals and clock  
signal  
6) Connect the logic analyzer to headers J5 and J6 to  
collect digitized data from channels A and B. See  
the Output Bit Locations section in this document for  
header connections.  
7) Connect a 3.3V, 500mA power supply to VDD and  
connect its ground terminal to the GND pad.  
8) Connect a 2.0V, 50mA power supply to OVDD and  
Digital multimeter  
Procedure  
The EV kit is a fully assembled and tested printed circuit  
(PC) board. Follow the steps below to verify board opera-  
tion. Do not turn on power supplies or enable signal  
generators until all connections are completed.  
connect its ground terminal to the GND pad.  
9) Connect a 2.0V, 100mA power supply to VLOGIC and  
1) Verify that shunts are installed in the following locations:  
JU1 (2-3) Independent reference mode  
JU2 (2-3) ADC active (not in power-down mode)  
JU3 (2-3) Outputs in two’s-complement format  
JU4 (1-2) Differential clock input  
connect its ground terminal to the GND pad.  
10) Short the VCLK pad to the corresponding GND pad.  
Note: The VCLK supply is only required when the  
data converter is operating in single-ended clock  
mode. See the Configuring the EV Kit for Single-  
Ended Clock Operation section in this document for  
further details.  
JU5 (2-3) No clock division  
JU6 (2-3) No clock division  
Maxim Integrated  
3  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
11) Turn on all the power supplies.  
12) Enable the signal generators.  
Power Supplies  
For best performance, the EV kits require separate  
analog, digital, clock, and buffer power-supply sources.  
Individual 3.3V and 2.0V power supplies are recommend-  
ed to power the analog (VDD) and digital (OVDD) portions  
of the converter. A separate 2.0V power supply (VLOGIC)  
is used to power the output buffers (U2, U3) of the EV kit.  
The on-board clock circuitry (VCLK) is powered by a 3.3V  
power supply. The VCLK supply is only required when the  
ADC is operating in single-ended clock mode. See the  
Configuring the EV Kit for Single-Ended Clock Operation  
section for further details.  
13) Set the clock signal generator to the desired clock  
frequency. See the Part Selection Table for the appro-  
priate frequency settings for each EV kit. The ampli-  
tude of the generator should be sufficient to produce  
a 16dBm signal at the SMA input of the EV kit. Inser-  
tion losses due to the series-connected filter (step 2)  
and the interconnecting cables decrease the amount  
of power seen at the EV kit input. Account for these  
losses when setting the signal generator amplitude.  
14) Set the analog input signal generators to output the  
desired test frequency. The amplitude of the gen-  
erator should produce a signal that is no larger than  
7.5dBm as measured at the SMA input of the EV kit.  
Insertion losses due to the series-connected filter  
(step 5) and the interconnecting cables decrease the  
amount of power seen at the EV kit input. Account for  
these losses when setting the signal generator ampli-  
tude. Also account for the attenuation from the 3dB to  
6dB attenuator.  
Converter Power-Down  
The MAX12527, MAX12528, MAX12529, MAX12557,  
MAX12558, and MAX12559 each feature an active-high  
global device power-down pin. Jumper JU2 controls this  
feature. See Table 1 for shunt positions.  
Table 1. Power-Down Shunt Settings (JU2)  
SHUNT  
POSITION  
PD PIN  
DESCRIPTION  
15) All signal generators should be phase-locked to each  
other.  
1-2  
OVDD  
ADC powered down  
ADC active (normal operation)  
2-3*  
GND  
16) Enable the logic analyzer.  
*Default configuration: JU2 (2-3).  
17) Collect data using the logic analyzer.  
Clock  
Detailed Description  
Additionally, the data converter allows for either differ-  
ential or single-ended signals to drive the clock inputs.  
The EV kit is a fully assembled and tested circuit board  
that contains all the components necessary to evalu-  
ate the performance of the MAX12527, MAX12528,  
MAX12529, MAX12557, MAX12558, or MAX12559.  
The  
MAX12527/MAX12528/MAX12529/MAX12557/  
MAX12558/MAX12559 EV kits support both methods.  
In single-ended operation, the clock signal is applied to  
the ADC through a buffer (U5). In differential mode, an on-  
board transformer converts a user-provided single-ended  
analog input and generates a differential analog signal,  
which is then applied to the ADC’s input pins.  
The ADCs accept differential input signals; however, on-  
board transformers (T1–T4) convert a readily available  
single-ended source output to the required differential sig-  
nal. The input signals of the ADC can be measured using  
a differential oscilloscope probe at headers J3 and J4.  
Output drivers (U2 and U3) buffer the output signals of  
the data converter. The digital outputs of the EV kit are  
accessible at headers J5 and J6.  
Jumper JU4 controls the ADC clock input. See Table 2 for  
jumper configuration.  
Table 2. Clock Selection Shunt Settings (JU4)  
The EV kits are designed as a four-layer PC board to  
optimize the performance of this family of ADCs. Separate  
analog, digital, clock, and buffer power planes minimize  
noise coupling between analog and digital signals. 100Ω  
differential microstrip transmission lines are used for  
analog and clock inputs. 50Ω microstrip transmission  
lines are used for all digital outputs. The trace lengths of  
the 100Ω differential input lines are matched to within a  
few thousandths of an inch to minimize layout-dependent  
input-signal skew.  
SHUNT  
POSITION SECLK PIN  
DIFFCLK/  
DESCRIPTION  
1-2*  
2-3  
OVDD  
Differential clock mode.  
Single-ended clock mode.  
See the Configuring the EV Kit  
for Single-Ended Clock Operation  
section for further details.  
GND  
*Default configuration: JU4 (1-2).  
Maxim Integrated  
4  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Configuring the EV Kits for  
Single-Ended Clock Operation  
Optimizing the Analog Input Network for  
Different Input Frequencies  
To configure the MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559 EV kits for single-  
ended clock operation, the following modifications must  
be made to the clock circuit:  
The EV kits are designed for excellent AC performance  
across a broad 3MHz to 400MHz input frequency range.  
The design can be further optimized by adjusting com-  
ponents C7–C10 and R49–R52. See Table 4 for the  
appropriate component values for specific input frequency  
ranges.  
1) Cut the trace at locations R41, R43, and R44.  
2) Install 0Ω resistors at locations R40, R42, and R45.  
3) Install a 49.9Ω ±1% resistor at location R37.  
Table 4. Component Selection for  
Optimized AC Performance  
4) Connect a 3.3V power supply to VCLK (needs to  
be capable of sourcing up to 10mA output current).  
Connect the ground terminal of this supply to GND.  
INPUT  
FREQUENCY  
RANGE (MHz)  
C7–C10  
COMPONENT  
VALUES (pF)  
R49–R52  
COMPONENT  
VALUES (Ω)  
In single-ended clock configuration, potentiometer R48  
can be utilized to control the duty cycle of the clock input  
signal. Measure the clock input at J8 and adjust R48 until  
the desired duty cycle is achieved.  
3 to 400*  
< 10  
5.6  
12 to 22  
12  
25  
0
25 to 50  
0
Clock-Divider Control  
10 to 125  
> 125  
The MAX12527, MAX12528, MAX12529, MAX12557,  
MAX12558, and MAX12559 each feature internal divide-  
by-2/divide-by-4 clock-divider circuitry (DIV2, DIV4).  
Jumpers JU5 and JU6 control this circuitry. Refer to  
the individual ADC data sheets for a detailed explana-  
tion of the internal clock divider. See Table 3 for jumper  
configuration.  
5.6 to 12  
*Default EV kit configuration.  
Reference  
The MAX12527, MAX12528, MAX12529, MAX12557,  
MAX12558, and MAX12559 feature numerous refer-  
ence operation modes. The default EV kit configuration  
connects the ADC’s internal 2.048V reference output to  
the reference input. In this case, the converter generates  
the REFN, REFP, and COM voltages from this input (refer  
to the individual ADC’s data sheet for a more detailed  
explanation).  
Table 3. Clock-Divider Shunt Settings  
(JU5, JU6)  
SHUNT  
PD PIN  
POSITION  
DESCRIPTION  
JU5 JU6 DIV2  
DIV4  
To apply a user-supplied reference, cut the trace at  
location R33 and connect the desired external reference  
to the REFIN pad. Alternatively, the EV kit can be con-  
figured to use a divided internal reference value. If the  
desired reference voltage is less than 2.048V, cut the  
trace at location R33 and install resistors in locations R33  
and R34. Calculate the resistor values from the equations  
below:  
2-3* 2-3* GND  
GND Normal clock mode  
1-2  
2-3  
1-2  
2-3 OVDD GND Divide-by-2 clock mode (DIV2)  
1-2 GND OVDD Divide-by-4 clock mode (DIV4)  
1-2 OVDD OVDD INVALID  
*Default configuration: JU5 (2-3), JU6 (2-3).  
Input Signal  
V
Although this family of ADCs accepts differential analog  
input signals, the EV kit only requires single-ended analog  
input signals, with amplitudes less than 7.5dBm. Insertion  
losses due to a series-connected filter and the intercon-  
necting cables decrease the amount of power seen at  
the EV kit input. Account for these losses when setting  
the signal generator amplitude. On-board transformers  
(T1–T4) convert the single-ended analog input signals  
and generate the recommended differential analog sig-  
nals at the ADCs’ differential input pins.  
REF  
R34 =  
×R  
T
V
REFOUT  
R33 = R R34  
T
where:  
V
V
= desired reference voltage  
REF  
= ADC’s internal reference voltage of 2.048V  
REFOUT  
R = ADC’s minimum reference resistance ≈ 10kΩ  
T
Maxim Integrated  
5  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Shared Reference Mode  
Table 6. Reference Test Point Connections  
To maximize isolation between the two input channels,  
the MAX12527, MAX12528, MAX12529, MAX12557,  
MAX12558, and MAX12559 feature two independent  
references. To improve channel matching this family of  
ADCs provides a mode where both input channels share  
the same reference. Jumper JU1 controls this shared  
reference feature. See Table 5 for the desired jumper  
configuration.  
TEST POINT CONNECTION  
DESCRIPTION  
Common-mode voltage for  
channel A.  
TP1  
TP2  
TP3  
TP4  
TP5  
TP6  
COMA  
COMB  
REFPA  
REFNA  
REFPB  
REFNB  
Common-mode voltage for  
channel B.  
Positive voltage reference  
terminal for channel A.  
Negative voltage reference  
terminal for channel A.  
Table 5. Shared Reference Shunt  
Settings (JU1)  
Positive voltage reference  
terminal for channel B.  
SHUNT  
POSITION  
SHREF  
PIN  
DESCRIPTION  
Negative voltage reference  
terminal for channel B.  
Shared reference mode.  
Install 0Ω resistors at locations  
R35 and R36.  
1-2  
OVDD  
Note: Refer to the respective ADC data sheet for REFP, REFN,  
and COM voltage ranges.  
Independent reference mode.  
Remove any component at  
locations R35 and R36.  
Output Signal  
2-3*  
GND  
The MAX12527, MAX12528, and MAX12529 feature two  
12-bit, parallel, CMOS-compatible digital outputs that  
transmit the converted analog input signals. The higher-  
resolution MAX12557, MAX12558, and MAX12559 fea-  
ture two 14-bit, parallel, CMOS-compatible digital outputs  
that transmit the converted analog input signals. Each  
set of 12-bit or 14-bit digital outputs also includes a clock  
(CLK) bit and overrange (DORA/B) bit to accommodate  
data synchronization and error detection. See the Output  
Bit Locations section for more details on how to configure  
these 12-bit and 14-bit converter outputs.  
*Default configuration: JU1 (2-3).  
Alternative Reference Mode  
The MAX12527, MAX12528, MAX12529, MAX12557,  
MAX12558, and MAX12559 derive their REFP, REFN,  
and COM voltages from the REFIN input. To override  
these derived voltages, follow the board modifications  
given below.  
1) Cut the trace at location R33.  
Output Format  
2) Remove resistor R34 (not installed by default).  
3) Connect the REFIN pad to GND.  
Set the digital output coding to either two’s-complement  
or Gray code, by configuring jumper JU3. See Table 7 for  
the jumper configuration.  
4) Apply the desired voltages to test points TP1–TP6.  
See Table 6 for a detailed description of test point connections.  
Table 7. Output Format Shunt Settings (JU3)  
SHUNT  
POSITION  
G/T Pin  
DESCRIPTION  
Gray code selected.  
Digital output format is Gray code.  
1-2  
OVDD  
Two’s complement selected.  
Digital output format is two’s  
complement.  
2-3*  
GND  
*Default configuration: JU3 (2-3).  
Maxim Integrated  
6  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Note: Silkscreen markings on the EV kit PC board indi-  
cate pin markings for the MAX12557, MAX12558, and  
MAX12559. These pin markings are not valid for the  
MAX12527, MAX12528, or MAX12529. Use the connec-  
tions outlined in Table 9.  
Output Bit Locations  
Two drivers (U2 and U3) buffer the digital outputs of the  
individual ADCs. These drivers can drive large capacitive  
loads, which may be present at the logic analyzer connec-  
tion. The outputs of the buffers are connected to 40-pin  
headers J5 and J6. See Table 8 (14-bit ADCs) and Table  
9 (12-bit ADCs) for bit locations of headers J5 and J6.  
Table 8. Output Bit Locations (MAX12557,  
MAX12558, MAX12559—14-Bit, Dual ADCs)  
Table 9. Output Bit Locations (MAX12527,  
MAX12528, MAX12529—12-Bit, Dual ADCs)  
CHANNEL  
CHANNEL  
SIGNAL  
DESCRIPTION  
SIGNAL  
DESCRIPTION  
A
B
A
B
D0  
D1  
J5-37  
J5-35  
J5-33  
J5-31  
J5-29  
J5-27  
J5-25  
J5-23  
J5-21  
J5-19  
J5-17  
J5-15  
J5-13  
J5-11  
J5-9  
J6-37  
J6-35  
J6-33  
J6-31  
J6-29  
J6-27  
J6-25  
J6-23  
J6-21  
J6-19  
J6-17  
J6-15  
J6-13  
J6-11  
J6-9  
Data Bit 0 (LSB)  
Data Bit 1  
N.C.  
N.C.  
D0  
J5-37  
J5-35  
J5-33  
J5-31  
J5-29  
J5-27  
J5-25  
J5-23  
J5-21  
J5-19  
J5-17  
J5-15  
J5-13  
J5-11  
J5-9  
J6-37  
J6-35  
J6-33  
J6-31  
J6-29  
J6-27  
J6-25  
J6-23  
J6-21  
J6-19  
J6-17  
J6-15  
J6-13  
J6-11  
J6-9  
N.C.  
N.C.  
D2  
Data Bit 2  
Data Bit 0 (LSB)  
Data Bit 1  
D3  
Data Bit 3  
D1  
D4  
Data Bit 4  
D2  
Data Bit 2  
D5  
Data Bit 5  
D3  
Data Bit 3  
D6  
Data Bit 6  
D4  
Data Bit 4  
D7  
Data Bit 7  
D5  
Data Bit 5  
D8  
Data Bit 8  
D6  
Data Bit 6  
D9  
Data Bit 9  
D7  
Data Bit 7  
D10  
D11  
D12  
D13  
DOR  
CLK  
Data Bit 10  
Data Bit 11  
Data Bit 12  
Data Bit 13 (MSB)  
Over Range Bit  
Clock Bit  
D8  
Data Bit 8  
D9  
Data Bit 9  
D10  
D11  
DOR  
CLK  
Data Bit 10  
Data Bit 11 (MSB)  
Over Range Bit  
Clock Bit  
J5-3  
J6-3  
J5-3  
J6-3  
Note: Pins 1, 2, 5, 6, 39, and 40 of J5 and pins 1, 2, 5, 6, 7, 39,  
and 40 of J6 are open. All other pins that are not listed in Table  
8 are connected to GND.  
Note: Pins 1, 2, 5, 6, 39, and 40 of J5 and pins 1, 2, 5, 6, 7, 39,  
and 40 of J6 are open. All other pins that are not listed in Table  
9 are connected to GND.  
Maxim Integrated  
7  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
D D  
O V  
D D  
O V  
G N D  
G N D  
G N D  
G N D  
D D  
O V  
D D  
V
D D  
V
D D  
V
D D  
V
G N D  
G N D  
G N D  
D D  
V
D D  
V
D D  
V
Figure 1. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 1 of 4)  
Maxim Integrated  
8  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
V C C  
V C C  
V C C  
V C C  
Figure 2. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 2 of 4)  
Maxim Integrated  
9  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
V C C  
V C C  
V C C  
V C C  
Figure 3. MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 3 of 4)  
Maxim Integrated  
10  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
D D  
O V  
D D  
O V  
G N D  
G N D  
G N D  
G N D  
D D  
O V  
D D  
V
D D  
V
D D  
V
G N D  
G N D  
G N D  
D D  
V
D D  
V
D D  
V
D D  
V
Figure 4. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 1 of 4)  
Maxim Integrated  
11  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
V C C  
V C C  
V C C  
V C C  
Figure 5. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 2 of 4)  
Maxim Integrated  
12  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
G N D  
V C C  
V C C  
V C C  
V C C  
Figure 6. MAX12527/MAX12528/MAX12529 EV Kit Schematic (Sheet 3 of 4)  
Maxim Integrated  
13  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
R43  
SHORT  
(PC TRACE)  
C51  
0.01µF  
R41  
SHORT  
(PC TRACE)  
C45  
0.1µF  
CLKN  
J7  
T5  
R38  
49.9  
1%  
1
2
3
6
5
4
R45  
OPEN  
2
D1  
3
1
R37  
OPEN  
J8  
R39  
49.9Ω  
1%  
CLKP  
VCLK  
R44  
SHORT  
(PC TRACE)  
C52  
0.01µF  
R46  
100Ω  
1%  
VCLK  
R48  
10kΩ  
C46  
R47  
100Ω  
1%  
0.01µF  
5
2
U5–A  
6
U5–B  
1
3
4
R40  
OPEN  
R42  
OPEN  
VCLK  
L4  
VCLK  
GND  
1
3
C53  
220µF  
6.3V  
C47  
220µF  
6.3V  
C55  
10µF  
C56  
1µF  
2
Figure 7. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit Schematic (Sheet 4 of 4)  
Maxim Integrated  
14  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
www.maximintegrated.com  
1.0”  
Figure 8. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit Component Placement Guide—Component Side  
Maxim Integrated  
15  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
1.0”  
Figure 9. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout—Component Side  
Maxim Integrated  
16  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
1.0”  
Figure 10. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout (Inner Layer 2)—Ground Planes  
Maxim Integrated  
17  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
1.0”  
Figure 11. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout (Inner Layer 3)—Power Planes  
Maxim Integrated  
18  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
1.0”  
Figure 12. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Layout—Solder Side  
Maxim Integrated  
19  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
1.0”  
Figure 13. MAX12527/MAX12528/MAX12529/MAX12557/MAX12558/MAX12559 EV Kit PC Board Component Placement Guide—Solder Side  
Maxim Integrated  
20  
www.maximintegrated.com  
Evaluate: MAX12527/28/29/57/58/59  
MAX12527/MAX12528/MAX12529/  
MAX12557/MAX12558/MAX12559  
Evaluation Kits  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
12/05  
Initial Release  
Updated Ordering Information, Component List, and EV Kit Specific Component  
List  
1
2
1/21  
3/21  
1–19  
1, 2  
Updated Ordering Information and Component List  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2021 Maxim Integrated Products, Inc.  
21  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY