MAX1262BCEI [MAXIM]

400ksps, 5V, 8-/4-Channel, 12-Bit ADCs with 2.5V Reference and Parallel Interface;
MAX1262BCEI
型号: MAX1262BCEI
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

400ksps, 5V, 8-/4-Channel, 12-Bit ADCs with 2.5V Reference and Parallel Interface

光电二极管 转换器
文件: 总20页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2720; Rev 0; 04/03  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
General Description  
Features  
The MAX1262/MAX1264 low-power, 12-bit analog-to-  
digital converters (ADCs) feature a successive-approxi-  
mation ADC, automatic power-down, fast wake-up  
(2µs), an on-chip clock, +2.5V internal reference, and a  
high-speed, byte-wide parallel interface. The devices  
operate with a single +5V analog supply and feature a  
o 12-Bit Resolution, ±±0. ꢀLB ꢀineꢁaitꢂ  
o +.V Lingle-Lupplꢂ Opeaꢁtion  
o Usea-Adjustꢁble ꢀogic ꢀevel (+207V to +.0.V)  
o Inteanꢁl +20.V Refeaence  
o Loftwꢁae-Configuaꢁble Anꢁlog Input Multiplexea  
8-Chꢁnnel Lingle Ended/  
V
pin that allows them to interface directly with a  
+2.7V to +5.5V digital supply.  
LOGIC  
4-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1262)  
4-Chꢁnnel Lingle Ended/  
2-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1264)  
Power consumption is only 10mW (V  
= V  
) at a  
DD  
LOGIC  
400ksps max sampling rate. Two software-selectable  
power-down modes enable the MAX1262/MAX1264 to  
be shut down between conversions; accessing the par-  
allel interface returns them to normal operation.  
Powering down between conversions can cut supply  
current to under 10µA at reduced sampling rates.  
o Loftwꢁae-Configuaꢁble Unipolꢁa/Bipolꢁa Anꢁlog  
Inputs  
o ꢀow Cuaaent  
20.mA (4±±ksps)  
10±mA (1±±ksps)  
4±±µA (1±ksps)  
2µA (Lhutdown)  
Both devices offer software-configurable analog inputs  
for unipolar/bipolar and single-ended/pseudo-differen-  
tial operation. In single-ended mode, the MAX1262 has  
eight input channels and the MAX1264 has four input  
channels (four and two input channels, respectively,  
when in pseudo-differential mode).  
o Inteanꢁl 6MHz Full-Powea Bꢁndwidth Taꢁck/Hold  
o Bꢂte-Wide Pꢁaꢁllel (8 + 4) Inteafꢁce  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size, make  
these converters ideal for battery-powered and data-  
acquisition applications or for other circuits with demand-  
ing power consumption and space requirements.  
o Lmꢁll Footpaint  
28-Pin QLOP (MAX1262)  
24-Pin QLOP (MAX1264)  
Pin Configurations  
The MAX1262 is available in a 28-pin QSOP package,  
while the MAX1264 comes in a 24-pin QSOP. For pin-  
compatible +3V, 12-bit versions, refer to the MAX1261/  
MAX1263 data sheet.  
TOP VIEW  
HBEN  
D7  
1
2
3
4
5
6
7
8
9
24  
23  
V
V
LOGIC  
DD  
Applications  
D6  
22 REF  
21 REFADJ  
20 GND  
19 COM  
18 CH0  
17 CH1  
16 CH2  
15 CH3  
14 CS  
Industrial Control Systems  
Energy Management  
Data Logging  
D5  
Patient Monitoring  
Touch Screens  
D4  
MAX1264  
Data-Acquisition Systems  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
Ordering Information  
INT 10  
RD 11  
WR 12  
INꢀ  
TEMP RANGE PIN-PACKAGE  
(ꢀLB)  
PART  
13 CLK  
28 QSOP  
28 QSOP  
28 QSOP  
28 QSOP  
MAX1262ACEI  
MAX1262BCEI  
MAX1262AEEI  
MAX1262BEEI  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
0.5  
1
QLOP  
0.5  
1
Pin Configurations continued at end of data sheet.  
Ordering Information continued at end of data sheet.  
Typical Operating Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
ABLOꢀUTE MAXIMUM RATINGL  
V
DD  
V
to GꢁD..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
to GꢁD.........................................................-0.3V to +6V  
24-Pin QSOP (derate 9.5mW/°C above +70°C)...........762mW  
28-Pin QSOP (derate 8.0mW/°C above +70°C)...........667mW  
Operating Temperature ꢂanges  
LOGIC  
CH0–CH7, COM to GꢁD............................-0.3V to (V  
ꢂEF, ꢂEFADꢃ to GꢁD.................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
Digital Inputs to GꢁD ...............................................-0.3V to +6V  
MAX1262_C_ _/MAX1264_C_ _......................... 0°C to +70°C  
MAX1262_E_ _/MAX1264_E_ _ .......................-40°C to +85°C  
Storage Temperature ꢂange.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
Digital Outputs (D0–D11, INT)  
to GꢁD ..............................................-0.3V to (V  
+ 0.3V)  
LOGIC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERILTICL  
(V  
= V  
= +5V 10ꢀ, COM = GꢁD, ꢂEFADꢃ = V , V  
= +2.5V, 4.7µF capacitor at ꢂEF pin, f  
= 7.6MHz (50ꢀ duty  
DD  
LOGIC  
CLK  
DD ꢂEF  
cycle), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIꢁ  
PARAMETER  
DC ACCURACY (ꢁote 1)  
ꢂesolution  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
ꢂES  
IꢁL  
12  
Bits  
MAX126_A  
MAX126_B  
0.5  
1
ꢂelative Accuracy (ꢁote 2)  
LSB  
Differential ꢁonlinearity  
Offset Error  
DꢁL  
ꢁo missing codes over temperature  
1
LSB  
LSB  
4
Gain Error  
(ꢁote 3)  
4
LSB  
Gain Temperature Coefficient  
2
ppm/°C  
Channel-to-Channel Offset  
Matching  
0.2  
LSB  
DYNAMIC LPECIFICATIONL (f  
= 50kHz, V = 2.5V , 400ksps, external f  
= 7.6MHz, bipolar input mode)  
Iꢁ  
Iꢁ  
P-P  
CLK  
(sine wave)  
SIꢁAD  
Signal-to-ꢁoise Plus Distortion  
67  
80  
70  
dB  
dB  
Total Harmonic Distortion  
(Including 5th-Order Harmonic)  
THD  
-80  
Spurious-Free Dynamic ꢂange  
Intermodulation Distortion  
Channel-to-Channel Crosstalk  
Full-Linear Bandwidth  
SFDꢂ  
IMD  
dB  
dB  
f
f
= 49kHz, f  
= 52kHz  
76  
-78  
350  
6
Iꢁ1  
Iꢁ2  
= 175kHz, V = 2.5V  
(ꢁote 4)  
dB  
P-P  
Iꢁ  
Iꢁ  
SIꢁAD > 68dB  
-3dB rolloff  
kHz  
MHz  
Full-Power Bandwidth  
CONVERLION RATE  
External clock mode  
2.1  
2.5  
3.2  
Conversion Time (ꢁote 5)  
t
External acquisition/internal clock mode  
Internal acquisition/internal clock mode  
3.0  
3.6  
3.5  
4
µs  
COꢁV  
T/H Acquisition Time  
Aperture Delay  
t
400  
ns  
ns  
ACQ  
External acquisition or external clock mode  
External acquisition or external clock mode  
Internal acquisition/internal clock mode  
25  
<50  
<200  
Aperture ꢃitter  
ps  
External Clock Frequency  
Duty Cycle  
f
0.1  
30  
7.6  
70  
MHz  
CLK  
2
_______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(V  
= V  
= +5V 10ꢀ, COM = GꢁD, ꢂEFADꢃ = V , V  
= +2.5V, 4.7µF capacitor at ꢂEF pin, f  
= 7.6MHz (50ꢀ duty  
DD  
LOGIC  
CLK  
DD ꢂEF  
cycle), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIꢁ  
PARAMETER  
ANAꢀOG INPUTL  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
Analog Input Voltage ꢂange  
Single Ended and Differential  
(ꢁote 6)  
Unipolar, V  
= 0  
0
V
ꢂEF  
COM  
V
Iꢁ  
V
Bipolar, V  
= V  
/ 2  
-V  
/2  
+V  
/2  
ꢂEF  
COM  
ꢂEF  
ꢂEF  
Multiplexer Leakage Current  
Input Capacitance  
On-/off-leakage current, V = 0 or V  
Iꢁ  
0.01  
12  
1
µA  
pF  
DD  
C
Iꢁ  
INTERNAꢀ REFERENCE  
ꢂEF Output Voltage  
2.49  
2.5  
15  
2.51  
V
mA  
ꢂEF Short-Circuit Current  
ꢂEF Temperature Coefficient  
ꢂEFADꢃ Input ꢂange  
TC  
20  
ppm/°C  
mV  
ꢂEF  
For small adjustments  
100  
ꢂEFADꢃ High Threshold  
Load ꢂegulation  
To power down the internal reference  
0 to 0.5mA output load (ꢁote 7)  
V
- 1  
V
DD  
0.2  
mV/mA  
µF  
Capacitive Bypass at ꢂEFADꢃ  
Capacitive Bypass at ꢂEF  
EXTERNAꢀ REFERENCE AT REF  
0.01  
1
4.7  
10  
µF  
V
+
DD  
1.0  
ꢂEF Input Voltage ꢂange  
V
ꢂEF  
V
50mV  
V
= 2.5V, f  
= 400ksps  
SAMPLE  
200  
300  
2
ꢂEF  
Shutdown ꢂEF Input Current  
DIGITAꢀ INPUTL AND OUTPUTL  
Input Voltage High  
I
µA  
ꢂEF  
Shutdown mode  
V
V
= 4.5V  
= 2.7V  
4.0  
2.0  
LOGIC  
V
V
IH  
LOGIC  
Input Voltage Low  
Input Hysteresis  
V
0.8  
1
V
mV  
µA  
pF  
V
IL  
V
HYS  
200  
0.1  
15  
Input Leakage Current  
Input Capacitance  
Output Voltage Low  
Output Voltage High  
I
Iꢁ  
V
= 0 or V  
DD  
Iꢁ  
C
Iꢁ  
OL  
OH  
V
I
I
= 1.6mA  
0.4  
1
SIꢁK  
V
= 1mA  
V
- 0.5  
V
SOUꢂCE  
LOGIC  
Tri-State Leakage Current  
I
0.1  
15  
µA  
pF  
CS = V  
CS = V  
LEAKAGE  
DD  
DD  
Tri-State Output Capacitance  
C
OUT  
_______________________________________________________________________________________  
3
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(V  
= V  
= +5V 10ꢀ, COM = GꢁD, ꢂEFADꢃ = V , V  
= +2.5V, 4.7µF capacitor at ꢂEF pin, f  
= 7.6MHz (50ꢀ duty  
DD  
LOGIC  
CLK  
DD ꢂEF  
cycle), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIꢁ  
PARAMETER  
POWER REQUIREMENTL  
Analog Supply Voltage  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
V
DD  
4.5  
2.7  
5.5  
V
V
V
DD  
+
Digital Supply Voltage  
V
LOGIC  
0.3  
Internal reference  
2.9  
2.5  
1.0  
0.5  
2
3.4  
2.9  
1.2  
0.8  
10  
Operating mode,  
= 400ksps  
f
SAMPLE  
External reference  
Internal reference  
External reference  
mA  
Positive Supply Current  
I
DD  
Standby mode  
Shutdown mode  
µA  
µA  
mV  
f
= 400ksps  
200  
10  
SAMPLE  
V
Current  
I
C = 20pF  
L
LOGIC  
LOGIC  
ꢁonconverting  
= +5V 10ꢀ, full-scale input  
2
Power-Supply ꢂejection  
PSꢂ  
V
DD  
0.3  
0.9  
TIMING CHARACTERILTICL  
(V  
= V  
= +5V 10ꢀ, COM = GꢁD, ꢂEFADꢃ = V , V  
= +2.5V, 4.7µF capacitor at ꢂEF pin, f  
= 7.6MHz (50ꢀ duty  
DD  
LOGIC  
CLK  
DD ꢂEF  
cycle), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIꢁ  
PARAMETER  
CLK Period  
LYMBOꢀ  
CONDITIONL  
MIN  
132  
40  
40  
40  
0
TYP  
MAX  
UNITL  
ns  
t
CP  
CH  
CLK Pulse Width High  
t
ns  
CLK Pulse Width Low  
t
ns  
CL  
DS  
t
t
ns  
Data Valid to WR ꢂise Time  
WR ꢂise to Data Valid Hold Time  
WR to CLK Fall Setup Time  
CLK Fall to WR Hold Time  
CS to CLK or WR Setup Time  
CLK or WR to CS Hold Time  
CS Pulse Width  
ns  
DH  
t
t
40  
40  
60  
0
ns  
CWS  
ns  
CWH  
t
ns  
CSWS  
t
ns  
CSWH  
t
100  
60  
ns  
CS  
t
(ꢁote 8)  
ns  
WR Pulse Width  
Wꢂ  
4
_______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
TIMING CHARACTERILTICL (continued)  
(V  
= V  
= +5V 10ꢀ, COM = GꢁD, ꢂEFADꢃ = V , V  
= +2.5V, 4.7µF capacitor at ꢂEF pin, f  
= 7.6MHz (50ꢀ duty  
DD  
LOGIC  
CLK  
DD ꢂEF  
cycle), T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIꢁ  
PARAMETER  
LYMBOꢀ  
CONDITIONL  
= 20pF, Figure 1  
MIN  
10  
TYP  
MAX  
60  
UNITL  
ns  
t
TC  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
CS ꢂise to Output Disable  
RD ꢂise to Output Disable  
RD Fall to Output Data Valid  
HBEꢁ ꢂise to Output Data Valid  
HBEꢁ Fall to Output Data Valid  
RD Fall to INT High Delay  
CS Fall to Output Data Valid  
t
Tꢂ  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
10  
40  
ns  
t
10  
50  
ns  
DO  
t
t
t
10  
50  
ns  
DO1  
DO1  
10  
80  
ns  
50  
ns  
IꢁT1  
t
100  
ns  
DO2  
Note 1: Tested at V  
= +5V, COM = GꢁD, = 0, unipolar single-ended input mode.  
DD  
Note 2: ꢂelative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 3: Offset nulled.  
Note 4: On channel is grounded; sine wave applied to off channels.  
Note .: Conversion time is defined as the number of clock cycles times the clock period; clock has 50ꢀ duty cycle.  
Note 6: Input voltage range referenced to negative input. The absolute range for the analog inputs is from GꢁD to V  
Note 7: External load should not change during conversion for specified accuracy.  
.
DD  
Note 8: When bit 5 is set low for internal acquisition, WR must not return low until after the first falling clock edge of the conversion.  
V
LOGIC  
3kΩ  
DOUT  
DOUT  
C
LOAD  
20pF  
C
LOAD  
20pF  
3kΩ  
a) HIGH-Z TO V AND V TO V  
OH  
b) HIGH-Z TO V AND V TO V  
OL  
OH  
OL  
OL  
OH  
Figure 1. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
.
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics  
(V  
= V  
= +5V, V  
= +2.500V, f  
= 7.6MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
LOGIC  
CLK L A  
ꢂEF  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLE FREQUENCY  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
0.5  
0.4  
0.5  
0.4  
10k  
1k  
0.3  
0.3  
WITH INTERNAL  
REFERENCE  
0.2  
0.2  
0.1  
0.1  
0
0
100  
10  
1
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
WITH EXTERNAL  
REFERENCE  
0
1000  
2000  
3000  
4000  
5000  
0.1  
1
10 100  
f
1k 10k 100k 1000k  
(Hz)  
0
1000  
2000  
3000  
4000  
5000  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
SAMPLE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
STANDBY CURRENT vs. SUPPLY VOLTAGE  
2.2  
2.1  
2.0  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
990  
980  
970  
960  
950  
940  
930  
R = ∞  
R = ∞  
L
L
CODE = 101010100000  
CODE = 101010100000  
1.9  
1.8  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
V
TEMPERATURE (°C)  
V
DD  
DD  
POWER-DOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER-DOWN CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT vs. TEMPERATURE  
990  
980  
970  
960  
950  
940  
930  
3.0  
2.5  
2.0  
1.5  
1.0  
2.2  
2.1  
2.0  
1.9  
1.8  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
DD  
6
_______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics (continued)  
(V  
= V  
= +5V, V  
= +2.500V, f  
= 7.6MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
LOGIC  
CLK L A  
ꢂEF  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
1.0  
0.5  
0
2.53  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
2.52  
2.51  
2.50  
2.49  
2.48  
-0.5  
-1.0  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
V
V
TEMPERATURE (°C)  
DD  
DD  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
2
1
2.0  
1.5  
1.0  
0.5  
0
2
1
0
0
-1  
-2  
-1  
-2  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
V
TEMPERATURE (°C)  
DD  
LOGIC SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
LOGIC SUPPLY CURRENT  
vs. TEMPERATURE  
FFT PLOT  
250  
200  
150  
250  
200  
150  
100  
50  
20  
0
V
= 5V  
DD  
= 50kHz  
f
f
IN  
SAMPLE  
= 400ksps  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
100  
50  
0
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
0
200  
400  
600  
800 1000 1200  
V
TEMPERATURE (°C)  
FREQUENCY (kHz)  
DD  
_______________________________________________________________________________________  
7
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1262 MAX1264  
High Byte Enable. Used to multiplex the 12-bit conversion result.  
1: Four MSBs are multiplexed on the data bus.  
1
1
HBEꢁ  
0: Eight LSBs are available on the data bus.  
2
3
2
3
D7  
D6  
Tri-State Digital I/O Line (D7)  
Tri-State Digital I/O Line (D6)  
4
4
D5  
Tri-State Digital I/O Line (D5)  
5
5
D4  
Tri-State Digital I/O Line (D4)  
6
6
D3/D11  
D2/D10  
D1/D9  
D0/D8  
INT  
Tri-State Digital I/O Line (D3, HBEꢁ = 0; D11, HBEꢁ = 1)  
Tri-State Digital I/O Line (D2, HBEꢁ = 0; D10, HBEꢁ = 1)  
Tri-State Digital I/O Line (D1, HBEꢁ = 0; D9, HBEꢁ = 1)  
Tri-State Digital I/O Line (D0, HBEꢁ = 0; D8, HBEꢁ = 1)  
INT goes low when the conversion is complete and the output data is ready.  
7
7
8
8
9
9
10  
10  
Active-Low ꢂead Select. If CS is low, a falling edge on RD enables the read operation on the  
data bus.  
11  
12  
13  
11  
12  
13  
RD  
Active-Low Write Select. When CS is low in internal acquisition mode, a rising edge on WR  
latches in configuration data and starts an acquisition plus a conversion cycle. When CS is  
low in external acquisition mode, the first rising edge on WR ends acquisition and starts a  
conversion.  
WR  
Clock Input. In external clock mode, drive CLK with a TTL-/CMOS-compatible  
CLK  
clock. In internal clock mode, connect this pin to either V  
or GꢁD.  
DD  
14  
15  
16  
17  
18  
19  
20  
21  
22  
14  
15  
16  
17  
18  
CS  
Active-Low Chip Select. When CS is high, digital outputs (D7–D0) are high impedance.  
Analog Input Channel 7  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
Analog Input Channel 6  
Analog Input Channel 5  
Analog Input Channel 4  
Analog Input Channel 3  
Analog Input Channel 2  
Analog Input Channel 1  
Analog Input Channel 0  
Ground ꢂeference for Analog Inputs. Sets zero-code voltage in single-ended mode and  
must be stable to 0.5 LSB during conversion.  
23  
24  
19  
20  
COM  
GꢁD  
Analog and Digital Ground  
Bandgap ꢂeference Output/Bandgap ꢂeference Buffer Input. Bypass to GꢁD with a 0.01µF  
25  
21  
ꢂEFADꢃ  
ꢂEF  
capacitor. When using an external reference, connect ꢂEFADꢃ to V  
bandgap reference.  
to disable the internal  
DD  
Bandgap ꢂeference Buffer Output/External ꢂeference Input. Add a 4.7µF capacitor to GꢁD  
when using the internal reference.  
26  
27  
28  
22  
23  
24  
V
DD  
Analog +5V Power Supply. Bypass with a 0.1µF capacitor to GꢁD.  
Digital Power Supply. V  
powers the digital outputs of the data converter and can range  
LOGIC  
V
LOGIC  
from +2.7V to (V  
+ 300mV).  
DD  
8
_______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
REF  
REFADJ  
17kΩ  
1.22V  
REFERENCE  
A =  
V
2.05  
(CH7)  
(CH6)  
(CH5)  
(CH4)  
CH3  
CH2  
CH1  
CH0  
ANALOG  
INPUT  
MULTIPLEXER  
T/H  
CHARGE REDISTRIBUTION  
12-BIT DAC  
COMP  
12  
SUCCESSIVE-  
COM  
APPROXIMATION  
REGISTER  
CLK  
CLOCK  
4
8
MAX1262  
MAX1264  
CS  
WR  
RD  
4
8
CONTROL LOGIC  
&
MUX  
8
LATCHES  
HBEN  
INT  
V
DD  
8
V
LOGIC  
TRI-STATE, BIDIRECTIONAL  
I/O INTERFACE  
GND  
D0–D7  
8-BIT DATA BUS  
( ) ARE FOR MAX1262 ONLY.  
Figure 2. Simplified Functional Diagram of 8-/4-Channel MAX1262/MAX1264  
In differential mode, Iꢁ- and Iꢁ+ are internally switched to  
either of the analog inputs. This configuration is pseudo-  
differential in that only the signal at Iꢁ+ is sampled. The  
return side (Iꢁ-) must remain stable within 0.5 LSB  
( 0.1 LSB for best performance) with respect to GꢁD  
during a conversion. To accomplish this, connect a  
0.1µF capacitor from Iꢁ- (the selected input) to GꢁD.  
Detailed Description  
Converter Operation  
The MAX1262/MAX1264 ADCs use a successive-  
approximation (SAꢂ) conversion technique and an input  
track-and-hold (T/H) stage to convert an analog input  
signal to a 12-bit digital output. Their parallel (8 + 4)  
output format provides an easy interface to standard  
microprocessors (µPs). Figure 2 shows the simplified  
internal architecture of the MAX1262/MAX1264.  
During the acquisition interval, the channel selected as  
the positive input (Iꢁ+) charges capacitor C  
. At  
HOLD  
the end of the acquisition interval, the T/H switch  
opens, retaining charge on C  
signal at Iꢁ+.  
as a sample of the  
HOLD  
Single-Ended and  
Pseudo-Differential Operation  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in the equivalent input circuits in  
Figures 3a and 3b. In single-ended mode, Iꢁ+ is inter-  
nally switched to channels CH0–CH7 for the MAX1262  
(Figure 3a) and to CH0–CH3 for the MAX1264 (Figure  
3b), while Iꢁ- is switched to COM (Table 3). In differen-  
tial mode, Iꢁ+ and Iꢁ- are selected from analog input  
pairs (Table 4).  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (Iꢁ+) to the  
HOLD  
negative input (Iꢁ-). This unbalances node zero at the  
comparator’s positive input. The capacitive digital-to-  
analog converter (DAC) adjusts during the remainder of  
the conversion cycle to restore node zero to 0V within  
the limits of 12-bit resolution. This action is equivalent to  
transferring a 12pF [(V ) - (V )] charge from C  
HOLD  
Iꢁ+  
Iꢁ-  
to the binary-weighted capacitive DAC, which in turn  
forms a digital representation of the analog input signal.  
_______________________________________________________________________________________  
9
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
12-BIT CAPACITIVE DAC  
12-BIT CAPACITIVE DAC  
REF  
REF  
COMPARATOR  
COMPARATOR  
INPUT  
MUX  
INPUT  
MUX  
C
C
HOLD  
HOLD  
ZERO  
ZERO  
+
+
CH0  
CH1  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
12pF  
12pF  
R
R
IN  
IN  
800Ω  
800Ω  
C
C
SWITCH  
SWITCH  
CH2  
CH3  
HOLD  
HOLD  
TRACK  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
T/H  
SWITCH  
T/H  
SWITCH  
COM  
SINGLE-ENDED MODE: IN+ = CH0CH3, IN- = COM  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS  
CH0/CH1 AND CH2/CH3  
SINGLE-ENDED MODE: IN+ = CH0CH7, IN- = COM  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS  
CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7  
Figure 3a. MAX1262 Simplified Input Structure  
Figure 3b. MAX1264 Simplified Input Structure  
allowed between conversions. The acquisition time,  
ACQ  
the signal and is also the minimum time required for the  
signal to be acquired. Calculate this with the following  
equation:  
Analog Input Protection  
t
, is the maximum time the device takes to acquire  
Internal protection diodes, which clamp the analog  
input to V  
and GꢁD, allow each input channel to  
DD  
swing within (GꢁD - 300mV) to (V  
+ 300mV) without  
DD  
damage. However, for accurate conversions near full  
scale, both inputs must not exceed (V  
less than (GꢁD - 50mV).  
+ 50mV) or be  
DD  
t
= 9(ꢂ + ꢂ )C  
S Iꢁ Iꢁ  
ACQ  
where ꢂ is the source impedance of the input signal,  
S
If an off-channel analog input voltage exceeds the sup-  
plies by more than 50mV, limit the forward-bias input  
current to 4mA.  
(800) is the input resistance, and C (12pF) is  
Iꢁ  
Iꢁ  
the input capacitance of the ADC. Source impedances  
below 3khave no significant impact on the MAX1262/  
MAX1264s’ AC performance.  
Track/Hold  
The MAX1262/MAX1264 T/H stage enters its tracking  
mode on the rising edge of WR. In external acquisition  
mode, the part enters its hold mode on the next rising  
edge of WR. In internal acquisition mode, the part enters  
its hold mode on the fourth falling edge of clock after  
writing the control byte. ꢁote that, in internal clock mode,  
this is approximately 1µs after writing the control byte.  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Along with the input impedance, this capacitor forms  
an ꢂC filter, limiting the ADC’s signal bandwidth.  
Input Bandwidth  
The MAX1262/MAX1264 T/H stage offers a 350kHz full-  
linear and a 6MHz full-power bandwidth that make it  
possible to digitize high-speed transients and measure  
periodic signals with bandwidths exceeding the ADC’s  
sampling rate by using undersampling techniques. To  
avoid aliasing high-frequency signals into the frequen-  
cy band of interest, anti-alias filtering is recommended.  
In single-ended operation, Iꢁ- is connected to COM  
and the converter samples the positive (+) input. In  
pseudo-differential operation, Iꢁ- connects to the nega-  
tive (-) input and the difference of (Iꢁ+) - (Iꢁ-) is sam-  
|
|
pled. At the beginning of the next conversion, the  
positive input connects back to Iꢁ+ and C  
charges to the input signal.  
HOLD  
Starting a Conversion  
Initiate a conversion by writing a control byte that  
selects the multiplexer channel and configures the  
MAX1262/MAX1264 for either unipolar or bipolar opera-  
tion. A write pulse (WR + CS) can either start an acqui-  
The time required for the T/H stage to acquire an input  
signal depends on how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens and more time must be  
1± ______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
sition interval or initiate a combined acquisition plus  
conversion. The sampling interval occurs at the end of  
the acquisition interval. The ACQMOD (acquisition  
mode) bit in the input control byte (Table 1) offers two  
options for acquiring the signal: an internal and an  
external acquisition. The conversion period lasts for 13  
clock cycles in either the internal or external clock or  
acquisition mode. Writing a new control byte during a  
conversion cycle aborts the conversion and starts a  
new acquisition interval.  
The first pulse, written with ACQMOD = 1, starts an  
acquisition interval of indeterminate length. The second  
write pulse, written with ACQMOD = 0 (all other bits in  
the control byte are unchanged), terminates acquisition  
and starts conversion on WR rising edge (Figure 5).  
The address bits for the input multiplexer must have the  
same values on the first and second write pulses.  
Power-down mode bits (PD0, PD1) can assume new  
values on the second write pulse (see the Power-Down  
Modes section). Changing other bits in the control byte  
corrupts the conversion.  
Internal Acquisition  
Select internal acquisition by writing the control byte  
with the ACQMOD bit cleared (ACQMOD = 0). This  
causes the write pulse to initiate an acquisition interval  
whose duration is internally timed. Conversion starts  
when this acquisition interval (three external clock  
cycles or approximately 1µs in internal clock mode)  
ends (Figure 4). ꢁote that, when the internal acquisition  
is combined with the internal clock, the aperture jitter  
can be as high as 200ps. Internal clock users wishing  
to achieve the 50ps jitter specification should always  
use external acquisition mode.  
Reading a Conversion  
A standard interrupt signal, INT, is provided to allow the  
MAX1262/MAX1264 to flag the µP when the conversion  
has ended and a valid result is available. INT goes low  
when the conversion is complete and the output data is  
ready (Figures 4 and 5). INT returns high on the first  
read cycle or if a new control byte is written.  
Selecting Clock Mode  
The MAX1262/MAX1264 operate with an internal or  
external clock. Control bits D6 and D7 select either  
internal or external clock mode. The part retains the  
last-requested clock mode if a power-down mode is  
selected in the current input word. For both internal and  
external clock mode, internal or external acquisition  
can be used. At power-up, the MAX1262/MAX1264  
enter the default external clock mode.  
External Acquisition  
Use external acquisition mode for precise control of the  
sampling aperture and/or dependent control of acquisi-  
tion and conversion times. The user controls acquisition  
and start-of-conversion with two separate write pulses.  
Tꢁble 10 Contaol Bꢂte Functionꢁl Descaiption  
BIT  
NAME  
FUNCTION  
PD1 and PD± select the various clock and power-down modes.  
±
±
1
1
±
1
±
1
Full power-down mode. Clock mode is unaffected.  
D7, D6  
PD1, PD0  
Standby power-down mode. Clock mode is unaffected.  
ꢁormal operation mode. Internal clock mode is selected.  
ꢁormal operation mode. External clock mode is selected.  
ACQMOD = 0: Internal acquisition mode  
ACQMOD = 1: External acquisition mode  
D5  
D4  
ACQMOD  
SGL/DIF = 0: Pseudo-differential analog input mode  
SGL/DIF = 1: Single-ended analog input mode  
In single-ended mode, input signals are referred to COM. In pseudo-differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
SGL/DIF  
UꢁI/BIP = 0: Bipolar mode  
UꢁI/BIP = 1: Unipolar mode  
In unipolar mode, an analog input signal from 0 to V  
D3  
UꢁI/BIP  
can be converted; in bipolar mode, the  
ꢂEF  
signal can range from -V /2 to +V  
ꢂEF  
/2.  
ꢂEF  
Address bits A2, A1, A0 select which of the 8/4 (MAX1262/MAX1264) channels are to be converted  
(Tables 3 and 4).  
D2, D1, D0  
A2, A1, A0  
______________________________________________________________________________________ 11  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
t
CS  
CS  
t
ACQ  
t
CONV  
t
t
CSWH  
CSWS  
t
WR  
WR  
t
DH  
t
DS  
CONTROL  
BYTE  
D7D0  
ACQMOD = 0  
t
INT1  
INT  
RD  
HBEN  
t
t
t
TR  
D0  
D01  
HIGH-Z  
HIGH-Z  
HIGH/LOW  
HIGH/LOW  
BYTE VALID  
BYTE VALID  
DOUT  
Figure 4. Conversion Timing Using Internal Acquisition Mode  
t
CS  
CS  
t
t
t
CONV  
CSWS  
ACQ  
t
WR  
t
t
CSHW  
WR  
DH  
t
DS  
CONTROL  
BYTE  
ACQMOD = 1  
CONTROL  
BYTE  
ACQMOD = 0  
D7D0  
INT  
t
INT1  
RD  
HBEN  
t
D01  
t
D0  
t
TR  
HIGH-Z  
HIGH-Z  
HIGH/LOW  
BYTE VALID  
HIGH/LOW  
BYTE VALID  
DOUT  
Figure 5. Conversion Timing Using External Acquisition Mode  
12 ______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Internal Clock Mode  
Select internal clock mode to release the µP from the  
burden of running the SAꢂ conversion clock. To select  
this mode, bit D7 of the control byte must be set to 1  
and bit D6 must be set to 0; the internal clock frequency  
is then selected, resulting in a 3.6µs conversion time.  
When using the internal clock mode, connect the CLK  
pin either high or low to prevent the pin from floating.  
External Clock Mode  
To select the external clock mode, bits D6 and D7 of  
the control byte must be set to 1. Figure 6a shows the  
clock and WR timing relationship for internal and exter-  
nal (Figure 6b) acquisition modes with an external  
clock. Proper operation requires a 100kHz to 7.6MHz  
clock frequency with 30ꢀ to 70ꢀ duty cycle. Operating  
the MAX1262/MAX1264 with clock frequencies lower  
than 100kHz is not recommended, because it causes a  
voltage droop across the hold capacitor in the T/H  
stage that results in degraded performance.  
ACQUISITION STARTS  
CONVERSION STARTS  
ACQUISITION ENDS  
t
CP  
CLK  
WR  
t
t
CL  
CH  
t
CWS  
WR GOES HIGH WHEN CLK IS HIGH.  
ACQMOD = 0  
ACQUISITION STARTS  
t
CWH  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
ACQMOD = 0  
WR GOES HIGH WHEN CLK IS LOW.  
Figure 6a. External Clock and WR Timing (Internal Acquisition Mode)  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
t
CWS  
t
DH  
WR  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS HIGH.  
ACQMOD = 1  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
tCWH  
t
DH  
ACQMOD = 1  
WR GOES HIGH WHEN CLK IS LOW.  
ACQMOD = "0"  
Figure 6b. External Clock and WR Timing (External Acquisition Mode)  
______________________________________________________________________________________ 13  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Input Format  
Digital Interface  
Input (control byte) and output data are multiplexed on  
a tri-state parallel interface. This parallel interface (I/O)  
can easily be interfaced with standard µPs. Signals CS,  
WR, and RD control the write and read operations. CS  
represents the chip-select signal, which enables a µP  
to address the MAX1262/MAX1264 as an I/O port.  
When high, CS disables the CLK, WR, and RD inputs  
and forces the interface into a high-impedance (high-Z)  
state.  
The control byte is latched into the device on pins D7–  
D0 during a write command. Table 2 shows the control  
byte format.  
Output Format  
The output format for the MAX1262/MAX1264 is binary in  
unipolar mode and two’s complement in bipolar mode.  
When reading the output data, CS and RD must be low.  
When HBEꢁ = 0, the lower 8 bits are read. With HBEꢁ =  
1, the upper 4 bits are available and the output data bits  
D7–D4 are set either low in unipolar mode or to the value  
of the MSB in bipolar mode (Table 5).  
Tꢁble 20 Contaol Bꢂte Foamꢁt  
D7 (MLB)  
D6  
D.  
D4  
D3  
D2  
D1  
D± (ꢀLB)  
PD1  
PD0  
ACQMOD  
A2  
A1  
A0  
SGL/DIF  
UꢁI/BIP  
Tꢁble 30 Chꢁnnel Lelection foa Lingle-Ended Opeaꢁtion (LGꢀ/DIF = 1)  
A2  
A1  
A±  
CH±  
CH1  
CH2  
CH3  
CH4*  
CH.*  
CH6*  
CH7*  
COM  
0
0
0
+
-
-
-
-
-
-
-
-
0
0
1
+
0
1
0
+
0
1
1
+
1
0
0
+
1
0
1
+
1
1
0
+
1
1
1
+
*Channels CH4CH7 apply to MAX1262 only.  
Tꢁble 40 Chꢁnnel Lelection foa Pseudo-Diffeaentiꢁl Opeaꢁtion (LGꢀ/DIF = ±)  
A2  
A1  
A±  
CH±  
CH1  
CH2  
CH3  
CH4*  
CH.*  
CH6*  
CH7*  
0
0
0
+
-
-
0
0
1
+
0
1
0
+
-
-
0
1
1
+
1
0
0
+
-
-
1
0
1
+
1
1
0
+
-
-
1
1
1
+
*Channels CH4CH7 apply to MAX1262 only.  
14 ______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble .0 Dꢁtꢁ-Bus Output (8 + 4 Pꢁaꢁllel  
Inteafꢁce)  
V
= +5V  
DD  
50kΩ  
50kΩ  
PIN  
D0  
D1  
D2  
D3  
HBEN = ±  
HBEN = 1  
Bit 8  
MAX1262  
MAX1264  
Bit 0 (LSB)  
Bit 1  
330kΩ  
Bit 9  
REFADJ  
REF  
Bit 2  
Bit 10  
4.7µF  
Bit 3  
Bit 11 (MSB)  
GND  
0.01µF  
BIPOꢀAR  
UNIPOꢀAR  
(UNI/BIP = ±)  
(UNI/BIP = 1)  
D4  
D5  
D6  
D7  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Bit 11  
Bit 11  
Bit 11  
Bit 11  
0
0
0
0
Figure 7. Reference Voltage Adjustment with External  
Potentiometer  
Using the ꢂEFADꢃ input makes buffering the external  
reference unnecessary. The ꢂEFADꢃ input impedance  
is typically 17k.  
When applying an external reference to ꢂEF, disable  
the internal reference buffer by connecting ꢂEFADꢃ to  
___________Applications Information  
Power-On Reset  
When power is first applied, internal power-on reset cir-  
cuitry activates the MAX1262/MAX1264 in external  
clock mode and sets INT high. After the power supplies  
stabilize, the internal reset time is 10µs, and no conver-  
sions should be attempted during this phase. When  
using the internal reference, 500µs are required for  
V
. The DC input resistance at ꢂEF is 25k.  
DD  
Therefore, an external reference at ꢂEF must deliver up  
to 200µA DC load current during a conversion and  
have an output impedance less than 10. If the refer-  
ence has higher output impedance or is noisy, bypass  
it close to the ꢂEF pin with a 4.7µF capacitor.  
V
to stabilize.  
ꢂEF  
Power-Down Modes  
To save power, place the converter in a low-current  
shutdown state between conversions. Select standby  
mode or shutdown mode using bits D6 and D7 of the  
control byte (Tables 1 and 2). In both software power-  
down modes, the parallel interface remains active, but  
the ADC does not convert.  
Internal and External Reference  
The MAX1262/MAX1264 can be used with an internal  
or external reference voltage. An external reference  
can be connected directly to ꢂEF or ꢂEFADꢃ.  
An internal buffer is designed to provide +2.5V at ꢂEF  
for both devices. The internally trimmed +1.22V refer-  
ence is buffered with a +2.05V/V gain.  
Standby Mode  
While in standby mode, the supply current is 1mA (typ).  
The part powers up on the next rising edge on WR and  
is ready to perform conversions. This quick turn-on time  
allows the user to realize significantly reduced power  
consumption for conversion rates below 400ksps.  
Internal Reference  
The full-scale range with the internal reference is +2.5V  
with unipolar inputs and 1.25V with bipolar inputs. The  
internal reference buffer allows for small adjustments  
( 100mV) in the reference voltage (Figure 7).  
Note: The reference buffer must be compensated with  
an external capacitor (4.7µF min) connected between  
ꢂEF and GꢁD to reduce reference noise and switching  
spikes from the ADC. To further minimize reference  
noise, connect a 0.01µF capacitor between ꢂEFADꢃ  
and GꢁD.  
Shutdown Mode  
Shutdown mode turns off all chip functions that draw  
quiescent current, reducing the typical supply current  
to 2µA immediately after the current conversion is com-  
pleted. A rising edge on WR causes the MAX1262/  
MAX1264 to exit shutdown mode and return to normal  
operation. To achieve full 12-bit accuracy with a 4.7µF  
reference bypass capacitor, 500µs is required after  
power-up. Waiting 500µs in standby mode instead of in  
full-power mode can reduce power consumption by a  
factor of 3 or more. When using an external reference,  
External Reference  
With the MAX1262/MAX1264, an external reference can  
be placed at either the input (ꢂEFADꢃ) or the output  
(ꢂEF) of the internal reference-buffer amplifier.  
______________________________________________________________________________________ 1.  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
only 50µs is required after power-up. Enter standby  
OUTPUT CODE  
mode by performing a dummy conversion with the con-  
FULL-SCALE  
TRANSITION  
trol byte specifying standby mode.  
111 . . . 111  
111 . . . 110  
FS = REF + COM  
ZS = COM  
Note: Bypass capacitors larger than 4.7µF between  
ꢂEF and GꢁD result in longer power-up delays.  
REF  
4096  
1 LSB =  
Transfer Function  
Table 6 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
100 . . . 010  
100 . . . 001  
100 . . . 000  
Figure 8 depicts the nominal, unipolar input/output (I/O)  
transfer function, and Figure 9 shows the bipolar I/O  
transfer function. Code transitions occur halfway  
between successive-integer LSB values. Output coding  
011 . . . 111  
011 . . . 110  
011 . . . 101  
is binary, with 1 LSB = (V  
/ 4096).  
ꢂEF  
000 . . . 001  
000 . . . 000  
Maximum Sampling Rate/  
Achieving 475ksps  
When running at the maximum clock frequency of  
7.6MHz, the specified 400ksps throughput is achieved  
by completing a conversion every 19 clock cycles: 1  
write cycle, 3 acquisition cycles, 13 conversion cycles,  
and 2 read cycles. This assumes that the results of the  
last conversion are read before the next control byte is  
written. It’s possible to achieve higher throughputs  
(Figure 10), up to 475ksps, by first writing a control  
word to begin the acquisition cycle of the next conver-  
sion, then reading the results of the previous conver-  
sion from the bus. This technique allows a conversion  
to be completed every 16 clock cycles. ꢁote that  
switching the data bus during acquisition or conversion  
can cause additional supply noise that can make it diffi-  
cult to achieve true 12-bit performance.  
0
1
2
2048  
FS  
(COM)  
FS - 3/2 LSB  
INPUT VOLTAGE (LSB)  
Figure 8. Unipolar Transfer Function  
OUTPUT CODE  
REF  
FS  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
2
ZS = COM  
-REF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
REF  
4096  
1 LSB =  
Layout, Grounding, and Bypassing  
For best performance, use PC boards. Wire-wrap config-  
urations are not recommended since the layout should  
ensure proper separation of analog and digital traces. Do  
not run analog and digital lines parallel to each other, and  
do not lay out digital signal paths underneath the ADC  
package. Use separate analog and digital PC board  
ground sections with only one star point (Figure 11) con-  
necting the two ground systems (analog and digital). For  
lowest noise operation, ensure the ground return to the  
star ground’s power supply is low impedance and as  
short as possible. ꢂoute digital signals far away from sen-  
sitive analog and reference inputs.  
111 . . . 111  
111 . . . 110  
111 . . . 101  
100 . . . 001  
100 . . . 000  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1 LSB  
*COM  
V
/ 2  
REF  
Figure 9. Bipolar Transfer Function  
Tꢁble 60 Full Lcꢁle ꢁnd Zeao Lcꢁle foa Unipolꢁa ꢁnd Bipolꢁa Opeaꢁtion  
UNIPOꢀAR MODE  
BIPOꢀAR MODE  
Full scale  
Zero scale  
V
ꢂEF  
+ COM  
Positive full scale  
Zero scale  
V
/2 + COM  
ꢂEF  
COM  
COM  
/2 + COM  
ꢁegative full scale  
-V  
ꢂEF  
16 ______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
High-frequency noise in the power supply (V ) could  
DD  
MAX1262/MAX1264s’ IꢁL is measured using the end-  
point method.  
influence the proper operation of the ADC’s fast com-  
parator. Bypass V  
to the star ground with a network  
DD  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DꢁL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
of two parallel capacitors, 0.1µF and 4.7µF, located as  
close as possible to the MAX1262/MAX1264s’ power-  
supply pin. Minimize capacitor lead length for best sup-  
ply-noise rejection, and add an attenuation resistor (5)  
if the power supply is extremely noisy.  
Aperture Jitter  
__________________________Definitions  
Aperture jitter (t ) is the sample-to-sample variation in  
Aꢃ  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
the time between the samples.  
Aperture Delay  
Aperture delay (t ) is the time between the rising  
AD  
edge of the sampling clock and the instant when an  
actual sample is taken.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLK  
WR  
RD  
HBEN  
CONTROL  
BYTE  
D11D8  
D7D0 D11D8  
D7D0  
CONTROL BYTE  
CONVERSION  
D7D0  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
ACQUISITION  
STATE  
ACQUISITION  
SAMPLING INSTANT  
Figure 10. Timing Diagram for Fastest Conversion  
______________________________________________________________________________________ 17  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
the ratio of the ꢂMS signal to the ꢂMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
SUPPLIES  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SIꢁAD) is the ratio of the  
3V/5V  
V
LOGIC  
= 3V/5V  
GND  
fundamental input frequency’s ꢂMS amplitude to the  
ꢂMS equivalent of all other ADC output signals.  
SIꢁAD (dB) = 20 log (Signal  
/ ꢁoise  
)
ꢂMS  
ꢂMS  
4.7µF  
0.1µF  
R* = 5Ω  
Effective Number of Bits  
Effective number of bits (EꢁOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC error consists of quantiza-  
tion noise only. With an input range equal to the ADC’s  
full-scale range, calculate the EꢁOB as follows:  
GND  
V
3V/5V DGND  
DD  
DIGITAL  
CIRCUITRY  
MAX1262  
MAX1264  
EꢁOB = (SIꢁAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the ꢂMS  
sum of the input signal’s first five harmonics to the fun-  
damental itself. This is expressed as:  
*OPTIONAL  
Figure 11. Power-Supply and Grounding Connections  
2
2
2
2
THD = 20 × log  
V
+ V + V + V  
/ V  
1
2
3
4
5
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (Sꢁꢂ) is the ratio of the  
full-scale analog input (ꢂMS value) to the ꢂMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly from the ADC’s resolution  
(ꢁ bits):  
where V is the fundamental amplitude, and V through  
5
harmonics.  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDꢂ) is the ratio of the  
ꢂMS amplitude of the fundamental (maximum signal  
component) to the ꢂMS value of the next-largest distor-  
tion component.  
Sꢁꢂ = (6.02 ꢁ + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, Sꢁꢂ is computed by taking  
18 ______________________________________________________________________________________  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Circuits  
+2.7V TO +5.5V  
+5V  
+2.7V TO +5.5V  
+5V  
CLK  
CLK  
V
V
LOGIC  
LOGIC  
MAX1262  
V
MAX1264  
V
DD  
DD  
+2.5V  
+2.5V  
CS  
REF  
CS  
REF  
µP  
CONTROL  
INPUTS  
µP  
CONTROL  
INPUTS  
WR  
REFADJ  
WR  
REFADJ  
4.7µF  
4.7µF  
0.1µF  
0.1µF  
RD  
RD  
HBEN  
HBEN  
INT  
OUTPUT STATUS  
INT  
OUTPUT STATUS  
CH7  
CH6  
CH5  
D7  
D6  
D7  
D6  
CH4  
D5  
D5  
ANALOG  
INPUTS  
CH3  
CH2  
CH1  
CH3  
CH2  
CH1  
D4  
D4  
ANALOG  
INPUTS  
D3/D11  
D3/D11  
D2/D10  
D2/D10  
CH0  
CH0  
D1/D9  
D0/D8  
D1/D9  
D0/D8  
COM  
COM  
GND  
GND  
GND  
GND  
µP DATA BUS  
µP DATA BUS  
Pin Configurations (continued)  
Ordering Information (continued)  
INꢀ  
(ꢀLB)  
PART  
TEMP RANGE PIN-PACKAGE  
TOP VIEW  
HBEN  
D7  
1
2
3
4
5
6
7
8
9
28  
27  
V
V
LOGIC  
DD  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
MAX1264ACEG*  
0°C to +70°C  
0°C to +70°C  
0ꢀ.  
1
MAX1264BCEG*  
MAX1264AEEG* -40°C to +8.°C  
MAX1264BEEG* -40°C to +8.°C  
0ꢀ.  
1
D6  
26 REF  
25 REFADJ  
24 GND  
23 COM  
22 CH0  
21 CH1  
20 CH2  
19 CH3  
18 CH4  
17 CH5  
16 CH6  
15 CH7  
D5  
*Future Product—contact factory for availability.  
D4  
MAX1262  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
Chip Information  
TꢂAꢁSISTOꢂ COUꢁT: 5781  
SUBSTꢂATE COꢁꢁECTED TO GꢁD  
INT 10  
RD 11  
WR 12  
CLK 13  
CS 14  
QLOP  
______________________________________________________________________________________ 19  
400ksps, +5V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specificationsꢀ For the latest package outline information  
go to www0mꢁxim-ic0com/pꢁckꢁgesꢀ)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Productsꢀ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY