MAX1281BEUP+ [MAXIM]

400ksps/300ksps, Single-Supply, Low-Power, 8-Channel, Serial 12-Bit ADCs with Internal Reference;
MAX1281BEUP+
型号: MAX1281BEUP+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

400ksps/300ksps, Single-Supply, Low-Power, 8-Channel, Serial 12-Bit ADCs with Internal Reference

信息通信管理 光电二极管 转换器
文件: 总24页 (文件大小:450K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1684; Rev 2; 10/10  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
General Description  
Features  
8-Channel Single-Ended or 4-Channel  
The MAX1280/MAX1281 12-bit ADCs combine an 8-chan-  
nel analog-input multiplexer, high-bandwidth track/hold,  
and serial interface with high conversion speed and low  
power consumption. The MAX1280 operates from a single  
+4.5V to +5.5V supply; the MAX1281 operates from a sin-  
gle +2.7V to +3.6V supply. Both devices’ analog inputs  
are software configurable for unipolar/bipolar and single-  
ended/pseudo-differential operation.  
Pseudo-Differential Inputs  
Internal Multiplexer and Track/Hold  
Single-Supply Operation  
+4.5V to +5.5V (MAX1280)  
+2.7V to +3.6V (MAX1281)  
Internal +2.5V Reference  
The 4-wire serial interface connects directly to  
SPI™/QSPI™/MICROWIRE™ devices without external  
logic. A serial strobe output allows direct connection to  
TMS320-family digital signal processors. The MAX1280/  
MAX1281 use an external serial-interface clock to per-  
form successive-approximation analog-to-digital con-  
versions. Both parts feature an internal +2.5V reference  
and a reference-buffer amplifier with a 1.5ꢀ voltage-  
adjustment range. An external reference with a 1V to  
400ksps Sampling Rate (MAX1280)  
Low Power 2.5mA (400ksps)  
1.3mA (Reduced-Power Mode)  
0.9mA (Fast Power-Down Mode)  
2µA (Full Power-Down)  
SPI/QSPI/MICROWIRE/TMS320-Compatible  
4-Wire Serial Interface  
V
range may also be used.  
DD1  
Software-Configurable Unipolar or Bipolar Inputs  
20-Pin TSSOP Package  
The MAX1280/MAX1281 provide a hard-wired SHDN  
pin and four software-selectable power modes (normal  
operation, reduced power, fast power-down, and full  
power-down). These devices can be programmed to  
automatically shut down at the end of a conversion or to  
operate with reduced power. When using the power-  
down modes, accessing the serial interface automatical-  
ly powers up the devices, and the quick turn-on time  
allows them to be powered down between all conver-  
sions. This technique can cut supply current to under  
100µA at reduced sampling rates.  
Ordering Information  
TEMP  
RANGE  
PIN-  
PACKAGE  
INL  
(LSB)  
PART  
MAX1280BCUP+  
MAX1280BEUP+  
MAX1281BCUP+  
MAX1281BEUP+  
0°C to +70°C  
-40°C to +85°C  
0°C to +70°C  
20 TSSOP  
20 TSSOP  
20 TSSOP  
20 TSSOP  
1
1
1
1
-40°C to +85°C  
The MAX1280/MAX1281 are available in 20-pin TSSOP  
packages. These devices are higher-speed versions of  
the MAX146/MAX147 (for more information, see the  
respective data sheet).  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Pin Configuration  
Applications  
TOP VIEW  
+
Portable Data Logging  
Data Acquisition  
CH0  
CH1  
1
2
V
DD1  
20  
19  
18  
17  
V
DD2  
Medical Instruments  
Battery-Powered Instruments  
Pen Digitizers  
SCLK  
CS  
CH2  
3
MAX1280  
MAX1281  
CH3  
4
5
CH4  
16 DIN  
CH5  
6
15 SSTRB  
Process Control  
CH6  
14  
13  
12  
11  
DOUT  
7
8
CH7  
GND  
REFADJ  
9
COM  
SHDN  
REF  
10  
SPI and QSPI are trademarks of Motorola, Inc.  
TSSOP  
MICROWIRE is a trademark of National Semiconductor Corp.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
ABSOLUTE MAXIMUM RATINGS  
V
V
to GND............................................................ -0.3V to +6V  
20-Pin TSSOP (derate 7.0mW/°C above +70°C) .........559mW  
Operating Temperature Ranges  
DD_  
to V  
........................................................ -0.3V to +0.3V  
DD1  
DD2  
CH0–CH7, COM to GND.......................... -0.3V to (V  
REF, REFADJ to GND .............................. -0.3V to (V  
Digital Inputs to GND .............................................. -0.3V to +6V  
Digital Outputs to GND ............................ -0.3V to (V + 0.3V)  
+ 0.3V)  
+ 0.3V)  
MAX128_BCUP.................................................. 0°C to +70°C  
MAX128_BEUP............................................... -40°C to +85°C  
Storage Temperature Range............................ -60°C to +150°C  
Lead Temperature (soldering, 10s) ................................ +300°C  
Soldering Temperature (reflow) ...................................... +260°C  
DD1  
DD1  
DD2  
Digital Output Sink Current .................................................25mA  
Continuous Power Dissipation (T = +70°C)  
A
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1280  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
1.0  
1.0  
6.0  
7.0  
DNL  
No missing codes over temperature  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
0.8  
0.1  
ppm/°C  
LSB  
Channel-to-Channel Offset-Error  
Matching  
DYNAMIC SPECIFICATIONS (100kHz sine-wave input, 2.5Vp-p, 400ksps, 6.4MHz clock, bipolar input mode)  
Signal-to-Noise plus Distortion  
Ratio  
SINAD  
70  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-81  
80  
76  
dB  
dB  
dB  
f
f
= 99kHz, f  
= 102kHz  
2
IN  
1
IN  
Channel-to-Channel Crosstalk  
(Note 4)  
= 200kHz, V = 2.5Vp-p  
-78  
dB  
IN  
IN  
Full-Power Bandwidth  
Full-Linear Bandwidth  
CONVERSION RATE  
Conversion Time (Note 5)  
Track/Hold Acquisition Time  
Aperture Delay  
-3dB point  
6
MHz  
kHz  
SINAD > 68dB  
350  
t
2.5  
µs  
ns  
CONV  
t
468  
ACQ  
10  
ns  
Aperture Jitter  
<50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
0.5  
40  
6.4  
60  
MHz  
SCLK  
2
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1280 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUTS (CH7–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
CH_  
V
Bipolar, V  
or V  
= V  
/2,  
REF  
COM  
CH_  
V /2  
REF  
referenced to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0 or V  
µA  
pF  
0.001  
18  
1
CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
REF  
T
A
= +25°C  
2.480  
2.500 2.520  
30  
V
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 1mA output load  
0.1  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
50  
V
For small adjustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.33  
1.0  
V
V
DD1  
Buffer Voltage Gain  
2.05  
200  
V/V  
EXTERNAL REFERENCE (Reference buffer disabled, reference applied to REF)  
V
+
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= 6.4MHz  
= 0  
350  
320  
5
REF  
SCLK  
REF Input Current  
µA  
REF  
SCLK  
In power-down, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
3.0  
V
V
INH  
V
0.8  
1
INL  
V
HYST  
0.2  
15  
V
I
V
IN  
= 0 or V  
DD2  
µA  
pF  
IN  
Input Capacitance  
C
IN  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
I
I
= 5mA  
0.4  
10  
V
V
OL  
SINK  
Output Voltage High  
V
OH  
= 1mA  
SOURCE  
4
Three-State Leakage Current  
I
µA  
pF  
CS = 5V  
CS = 5V  
L
Three-State Output Capacitance  
C
15  
OUT  
_______________________________________________________________________________________  
3
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1280 (continued)  
(V  
= V  
= +4.5V to +5.5V, COM = GND, f  
= 6.4MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (400ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
POWER SUPPLY  
Positive Supply Voltage  
(Note 9)  
V
DD1  
,
4.5  
5.5  
V
DD2  
Operating mode (Note 10)  
Reduced-power mode (Note 11)  
Fast power-down (Note 11)  
Full power-down (Note 11)  
= 5V 10ꢀ, midscale input  
DD2  
2.5  
1.3  
0.9  
2
4.0  
2.0  
1.5  
10  
mA  
I
V
V
=
VDD1 +  
DD1  
DD2  
Supply Current  
I
= 5.5V  
VDD2  
µA  
Power-Supply Rejection  
PSR  
V
DD1  
= V  
0.5  
2.0  
mV  
ELECTRICAL CHARACTERISTICS—MAX1281  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy (Note 2)  
Differential Nonlinearity  
Offset Error  
INL  
1.0  
1.0  
6.0  
7.0  
DNL  
No missing codes over temperature  
Gain Error (Note 3)  
Gain-Error Temperature  
Coefficient  
1.6  
0.2  
ppm/°C  
LSB  
Channel-to-Channel Offset-  
Error Matching  
DYNAMIC SPECIFICATIONS (75kHz sine-wave input, 2.5Vp-p, 300ksps, 4.8MHz clock, bipolar input mode)  
Signal-to-Noise plus  
Distortion Ratio  
SINAD  
THD  
70  
-81  
80  
dB  
dB  
dB  
dB  
dB  
Total Harmonic Distortion  
Up to the 5th harmonic  
Spurious-Free Dynamic  
Range  
SFDR  
IMD  
Intermodulation Distortion  
f
f
= 73kHz, f  
= 77kHz  
76  
IN2  
IN1  
Channel-to-Channel Crosstalk  
(Note 4)  
= 150kHz, V = 2.5Vp-p  
-78  
IN  
IN  
Full-Power Bandwidth  
Full-Linear Bandwidth  
-3dB point  
3
MHz  
kHz  
SINAD > 68dB  
250  
4
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1281 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
CONVERSION RATE  
Conversion Time (Note 5)  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t
Normal operating mode  
3.3  
µs  
ns  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
Normal operating mode  
625  
ACQ  
10  
ns  
Aperture Jitter  
< 50  
ps  
Serial Clock Frequency  
Duty Cycle  
f
Normal operating mode  
0.5  
40  
4.8  
60  
MHz  
SCLK  
ANALOG INPUTS (CH7–CH0, COM)  
Unipolar, V  
= 0  
V
REF  
COM  
Input Voltage Range, Single-  
Ended and Differential (Note 6)  
V
CH_  
V
Bipolar, V  
or V  
= V  
/2,  
REF  
COM  
CH_  
V /2  
REF  
referenced to COM or CH_  
Multiplexer Leakage Current  
Input Capacitance  
On/off leakage current, V  
= 0 or V  
µA  
pF  
0.001  
18  
1
CH_  
DD1  
INTERNAL REFERENCE  
REF Output Voltage  
V
REF  
T
A
= +25°C  
2.480  
2.500 2.520  
15  
V
REF Short-Circuit Current  
mA  
REF Output Temperature  
Coefficient  
TC V  
15  
ppm/°C  
REF  
Load Regulation (Note 7)  
Capacitive Bypass at REF  
Capacitive Bypass at REFADJ  
REFADJ Output Voltage  
REFADJ Input Range  
0 to 0.75mA output load  
0.1  
2.0  
10  
10  
mV/mA  
µF  
4.7  
0.01  
µF  
1.22  
50  
V
For small adjustments, from 1.22V  
To power down the internal reference  
mV  
REFADJ Buffer Disable  
Threshold  
1.33  
1.0  
V
- 1  
+
V
DD1  
Buffer Voltage Gain  
2.05  
200  
V/V  
EXTERNAL REFERENCE (Reference buffer disabled, reference applied to REF)  
V
DD1  
50mV  
REF Input Voltage Range  
(Note 8)  
V
V
V
= 2.500V, f  
= 2.500V, f  
= 4.8MHz  
= 0  
350  
320  
5
REF  
SCLK  
REF Input Current  
µA  
REF  
SCLK  
In power-down, f  
= 0  
SCLK  
DIGITAL INPUTS (DIN, SCLK, CS, SHDN)  
Input High Voltage  
Input Low Voltage  
Input Hysteresis  
Input Leakage  
V
2.0  
V
V
INH  
V
0.8  
1
INL  
V
HYST  
0.2  
15  
V
I
V
IN  
= 0 or V  
DD2  
µA  
pF  
IN  
Input Capacitance  
C
IN  
_______________________________________________________________________________________  
5
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
ELECTRICAL CHARACTERISTICS—MAX1281 (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, f  
= 4.8MHz, 50ꢀ duty cycle, 16 clocks/conversion cycle (300ksps), external  
DD1  
DD2  
SCLK  
+2.5V at REF, REFADJ = V  
, T = T  
DD1  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX  
A
MIN  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
UNITS  
DIGITAL OUTPUTS (DOUT, SSTRB)  
Output Voltage Low  
V
OL  
I
I
= 5mA  
= 0.5mA  
V
V
SINK  
Output Voltage High  
V
OH  
V
- 0.5V  
SOURCE  
DD2  
Three-State Leakage Current  
I
L
10  
µA  
CS = 3V  
Three-State Output  
Capacitance  
C
OUT  
15  
pF  
CS = 3V  
POWER SUPPLY  
Positive Supply Voltage  
(Note 9)  
V
V
,
DD1  
2.7  
3.6  
V
DD2  
Operating mode  
2.5  
1.3  
0.9  
2
3.5  
2.0  
1.5  
10  
Reduced-power mode (Note 11)  
Fast power-down (Note 11)  
Full power-down (Note 11)  
= 2.7V to 3.6V, midscale input  
DD2  
mA  
I
+
VDD2  
V
V
=
VDD1  
I
DD1  
DD2  
Supply Current (Note 10)  
Power-Supply Rejection  
= 3.6V  
µA  
mV  
PSR  
V
DD1  
= V  
0.5  
2.0  
TIMING CHARACTERISTICS—MAX1280  
(Figures 1, 2, 6, 7; V  
= V  
= +4.5V to +5.5V; T = T  
to T  
; unless otherwise noted.)  
MAX  
DD1  
DD2  
A
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
156  
62  
62  
35  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
CH  
t
CL  
DS  
DH  
t
t
t
35  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall Ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
t
CSH  
CSO  
t
35  
35  
10  
10  
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
80  
80  
65  
65  
65  
65  
DOV  
t
STV  
10  
10  
DOD  
t
STD  
t
DOE  
t
STE  
t
100  
CSW  
6
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
TIMING CHARACTERISTICS—MAX1281  
(Figures 1, 2, 6, 7; V  
= V  
= +2.7V to +3.6V; T = T  
to T  
; unless otherwise noted.)  
MAX  
DD1  
DD2  
A
MIN  
PARAMETER  
SCLK Period  
SYMBOL  
CONDITIONS  
MIN  
208  
83  
83  
45  
0
TYP  
MAX  
UNITS  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
CP  
SCLK Pulse Width High  
SCLK Pulse Width Low  
DIN to SCLK Setup  
DIN to SCLK Hold  
t
CH  
t
CL  
DS  
DH  
t
t
t
45  
0
CS Fall to SCLK Rise Setup  
SCLK Rise to CS Rise Hold  
SCLK Rise to CS Fall ignore  
CS Rise to SCLK Rise Ignore  
SCLK Rise to DOUT Hold  
SCLK Rise to SSTRB Hold  
SCLK Rise to DOUT Valid  
SCLK Rise to SSTRB Valid  
CS Rise to DOUT Disable  
CS Rise to SSTRB Disable  
CS Fall to DOUT Enable  
CS Fall to SSTRB Enable  
CS Pulse Width High  
CSS  
t
CSH  
CSO  
t
45  
45  
13  
1
t
CS1  
t
t
t
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
= 20pF  
20  
20  
DOH  
t
STH  
100  
100  
85  
DOV  
t
STV  
13  
13  
DOD  
t
85  
STD  
t
85  
DOE  
t
85  
STE  
t
100  
CSW  
Note 1: MAX1280 tested at V  
= V  
= +5V, MAX1281 tested at V  
= V  
= +3V; COM = GND; unipolar single-ended  
DD2  
DD1  
DD2  
DD1  
input mode.  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and offset  
error have been nulled.  
Note 3: Offset nulled.  
Note 4: Ground “on” channel; sine wave applied to all “off” channels.  
Note 5: Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50ꢀ duty cycle.  
Note 6: The absolute voltage range for the analog inputs (CH7–CH0, and COM) is from GND to V  
.
DD1  
Note 7: External load should not change during conversion for specified accuracy. Guaranteed specification of 2mV/mA is a result  
of production test limitations.  
Note 8: ADC performance is limited by the converter’s noise floor, typically 300µVp-p.  
Note 9: Electrical characteristics are guaranteed from V  
= V  
to V  
= V  
. For operations beyond  
DD2(MAX)  
DD1(MIN)  
DD2(MIN)  
DD1(MAX)  
this range, see the Typical Operating Characteristics. For guaranteed specifications beyond the limits, contact the factory.  
Note 10: A = midscale. Unipolar mode MAX1280 tested with 20pF on DOUT, 20pF on SSTRB, and f = 6.4MHz, 0 to 5V.  
IN  
.
SCLK  
MAX1281 tested with same loads, f  
= 4.8MHz, 0 to 3V. DOUT = FFF hex.  
SCLK  
Note 11:  
PD1  
PD0  
MODE  
0
0
1
1
0
1
0
1
Full power-down.  
Fast power-down.  
Reduced power mode.  
Normal operation (operating mode).  
_______________________________________________________________________________________  
7
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Typical Operating Characteristics  
(MAX1280: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1281: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
LOAD  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (CONVERTING)  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.4  
0.2  
0
3.5  
3.0  
2.5  
2.0  
-0.2  
-0.4  
-0.6  
-0.1  
-0.2  
-0.3  
1.5  
2.5  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT vs. TEMPERATURE  
(STATIC)  
SUPPLY CURRENT vs. SUPPLY  
VOLTAGE (STATIC)  
SUPPLY CURRENT vs. TEMPERATURE  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX1280 (PD1 = 1, PD0 = 1)  
MAX1281 (PD1 = 1, PD0 = 1)  
MAX1280 (PD1 = 1, PD0 = 0)  
MAX1281 (PD1 = 1, PD0 = 0)  
NORMAL OPERATION (PD1 = PD0 = 1)  
REDP (PD1 = 1, PD0 = 0)  
MAX1280  
FASTDP (PD1 = 0, PD0 = 1)  
MAX1281  
MAX1280 (PD1 = 0, PD0 = 1)  
MAX1281 (PD1 = 0, PD0 = 1)  
-40 -20  
0
20  
40  
60  
80 100  
-40 -20  
0
20  
40  
60  
80 100  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
SHUTDOWN SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
5
4
3
2
1
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5005  
2.5003  
2.5001  
2.4999  
2.4997  
2.4995  
(PD1 = PD0 = 0)  
(PD1 = PD0 = 0)  
MAX1280  
MAX1281  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
-40 -20  
0
20  
40  
60  
80 100  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
8
_______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Typical Operating Characteristics (continued)  
(MAX1280: V  
= V  
= 5.0V, f  
= 6.4MHz; MAX1281: V  
= V  
= 3.0V, f  
= 4.8MHz; C  
= 20pF, 4.7µF capacitor  
DD1  
DD2  
SCLK  
DD1  
DD2  
SCLK  
LOAD  
at REF, 0.01µF capacitor at REFADJ, T = +25°C, unless otherwise noted.)  
A
REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. TEMPERATURE  
2.5002  
2.5000  
2.4998  
2.4996  
2.4994  
2.4992  
2.4990  
2.4988  
0.5  
0
0
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
MAX1280  
MAX1281  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40 -20  
0
20  
40  
60  
80 100  
V
DD  
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
1
0
0.5  
0
MAX1281  
-0.5  
-1.0  
-1.5  
-2.0  
-1  
-2  
-3  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
V
(V)  
TEMPERATURE (°C)  
DD  
_______________________________________________________________________________________  
9
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Pin Description  
PIN  
NAME  
FUNCTION  
1–8  
CH0–CH7  
Sampling Analog Inputs  
Ground Reference for Analog Inputs. COM sets zero-code voltage in single-ended mode. Must be  
stable to 0.5LSB.  
9
COM  
Active-Low Shutdown Input. Pulling SHDN low shuts down the device, reducing supply current to 2µA  
(typ).  
10  
SHDN  
Reference-Buffer Output/ADC Reference Input. Reference voltage for analog-to-digital conversion.  
In internal reference mode, the reference buffer provides a +2.500V nominal output, externally  
adjustable at REFADJ. In external reference mode, disable the internal buffer by pulling REFADJ to  
11  
REF  
V
.
DD1  
12  
13  
14  
REFADJ  
GND  
Input to the Reference-Buffer Amplifier. To disable the reference-buffer amplifier, tie REFADJ to V  
.
DD1  
Analog and Digital Ground  
DOUT  
Serial Data Output. Data is clocked out at SCLK’s rising edge. High impedance when CS is high.  
Serial Strobe Output. SSTRB pulses high for one clock period before the MSB decision. High imped-  
ance when CS is high.  
15  
16  
17  
SSTRB  
DIN  
Serial Data Input. Data is clocked in at SCLK’s rising edge.  
Active-Low Chip Select. Data will not be clocked into DIN unless CS is low. When CS is high, DOUT  
and SSTRB are high impedance.  
CS  
Serial Clock Input. Clocks data in and out of the serial interface and sets the conversion speed. (Duty  
cycle must be 40ꢀ to 60ꢀ.)  
18  
SCLK  
19  
20  
V
V
Positive Supply Voltage  
Positive Supply Voltage  
DD2  
DD1  
V
DD2  
V
DD2  
6k  
6k  
DOUT  
DOUT  
DOUT  
DOUT  
C
20pF  
C
LOAD  
20pF  
LOAD  
C
20pF  
C
LOAD  
20pF  
LOAD  
6k  
6k  
GND  
GND  
GND  
a) High-Z to V and V to V  
GND  
b) High-Z to V and V to V  
OL  
OL  
OH  
OH  
OL  
OH  
a) V to High-Z  
b) V to High-Z  
OL  
OH  
Figure 1. Load Circuits for Enable Time  
Figure 2. Load Circuits for Disable Time  
10 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
in order to maintain 0.5LSB accuracy. Assuming a sinu-  
soidal signal at IN-, the input voltage is determined by:  
Detailed Description  
The MAX1280/MAX1281 analog-to-digital converters  
(ADCs) use a successive-approximation conversion tech-  
nique and input track/hold (T/H) circuitry to convert an  
analog signal to a 12-bit digital output. A flexible serial  
interface provides easy interface to microprocessors  
(µPs). Figure 3 shows a functional diagram of the  
MAX1280/MAX1281.  
ν
= V  
sin(2πft)  
(
)
IN-  
IN-  
The maximum voltage variation is determined by:  
dν  
IN-  
1LSB  
t
CONV  
V
REF  
max  
= V  
2πf ≤  
=
(
)
IN-  
12  
d
t
2
t
CONV  
A 650mVp-p 60Hz signal at IN- will generate 0.5LSB  
of error when using a +2.5V reference voltage and a  
Pseudo-Differential Input  
The equivalent input circuit of Figure 4 shows the  
MAX1280/MAX1281’s input architecture, which is com-  
posed of a T/H, input multiplexer, input comparator,  
switched-capacitor DAC, and reference.  
2.5µs conversion time (15/f  
). When a DC reference  
SCLK  
voltage is used at IN-, connect a 0.1µF capacitor to  
GND to minimize noise at the input.  
During the acquisition interval, the channel selected as  
In single-ended mode, the positive input (IN+) is con-  
nected to the selected input channel and the negative  
input (IN-) is set to COM. In differential mode, IN+ and  
IN- are selected from the following pairs: CH0/CH1,  
CH2/CH3, CH4/CH5, and CH6/CH7. Configure the  
channels according to Tables 2 and 3.  
the positive input (IN+) charges capacitor C  
. The  
HOLD  
acquisition interval spans three SCLK cycles and ends  
on the falling SCLK edge after the last bit of the input  
control word has been entered. At the end of the acqui-  
sition interval, the T/H switch opens, retaining charge  
on C  
as a sample of the signal at IN+. The conver-  
HOLD  
The MAX1280/MAX1281 input configuration is pseudo-  
differential in that only the signal at IN+ is sampled. The  
return side (IN-) is connected to the sampling capacitor  
while converting and must remain stable within 0.5LSB  
( 0.1LSB for best results) with respect to GND during a  
conversion.  
sion interval begins with the input multiplexer switching  
from IN+ to IN-. This unbalances node ZERO at  
C
HOLD  
the comparator’s input. The capacitive DAC adjusts  
during the remainder of the conversion cycle to restore  
node ZERO to V  
/2 within the limits of 12-bit  
DD1  
resolution. This action is equivalent to transferring a  
12pF x (V + - V -) charge from C to the binary-  
If a varying signal is applied to the selected IN-, its ampli-  
tude and frequency must be limited to maintain accuracy.  
The following equations determine the relationship  
between the maximum signal amplitude and its frequency  
IN  
IN  
HOLD  
weighted capacitive DAC, which in turn forms a digital  
representation of the analog input signal.  
GND  
17  
18  
CS  
CAPACITATIVE  
SCLK  
DAC  
REF  
INPUT  
MUX  
INPUT  
SHIFT  
REGISTER  
INT  
CLOCK  
16  
10  
DIN  
C
12pF  
CONTROL  
LOGIC  
HOLD  
CH0  
CH1  
SHDN  
COMPARATOR  
ZERO  
1
2
3
4
5
6
7
8
14  
15  
CH2  
CH3  
CH4  
CH5  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
OUTPUT  
SHIFT  
DOUT  
C
*
SWITCH  
6pF  
R
IN  
REGISTER  
SSTRB  
800  
ANALOG  
INPUT  
MUX  
HOLD  
TRACK  
T/H  
CLOCK  
CH6  
CH7  
IN  
12-BIT  
SAR  
ADC  
AT THE SAMPLING INSTANT,  
CH6  
CH7  
THE MUX INPUT SWITCHES FROM  
THE SELECTED IN+ CHANNEL TO  
THE SELECTED IN- CHANNEL.  
OUT  
20  
19  
REF  
V
V
DD1  
DD2  
9
COM  
A 2.05*  
17kΩ  
+1.22V  
REFERENCE  
V
DD1  
/2  
13  
SINGLE-ENDED MODE: IN+ = CH0–CH7, IN- = COM.  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM  
PAIRS OF CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7.  
GND  
12  
11  
REFADJ  
REF  
MAX1280  
MAX1281  
+2.500V  
*INCLUDES ALL INPUT PARASITICS  
Figure 3. Functional Diagram  
Figure 4. Equivalent Input Circuit  
______________________________________________________________________________________ 11  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Track/Hold  
The T/H enters its tracking mode on the falling clock  
edge after the fifth bit of the 8-bit control word has been  
shifted in. It enters its hold mode on the falling clock  
edge after the eighth bit of the control word has been  
shifted in. If the converter is set up for single-ended  
inputs, IN- is connected to COM and the converter con-  
verts the “+” input. If the converter is set up for differen-  
tial inputs, the difference of [(IN+) - (IN-)] is converted.  
At the end of the conversion, the positive input con-  
Input Bandwidth  
The ADC’s input tracking circuitry has a 6MHz  
(MAX1280) or 3MHz (MAX1281) small-signal band-  
width, so it is possible to digitize high-speed transient  
events and measure periodic signals with bandwidths  
exceeding the ADC’s sampling rate by using under-  
sampling techniques. To avoid high-frequency signals  
being aliased into the frequency band of interest, anti-  
alias filtering is recommended.  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
nects back to IN+ and C  
nal.  
charges to the input sig-  
HOLD  
input to V  
and GND, allow the channel input pins to  
DD1  
The time required for the T/H to acquire an input signal  
is a function of how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
swing from GND - 0.3V to V  
+ 0.3V without dam-  
DD1  
age. However, for accurate conversions near full scale,  
the inputs must not exceed V  
be lower than GND by 50mV.  
by more than 50mV or  
DD1  
If the analog input exceeds 50mV beyond the sup-  
plies, do not allow the input current to exceed 2mA.  
t
, is the maximum time the device takes to acquire  
ACQ  
the signal and is also the minimum time needed for the  
signal to be acquired. It is calculated by the following  
equation:  
Quick Look  
To quickly evaluate the MAX1280/MAX1281’s analog  
performance, use the circuit of Figure 5. The MAX1280/  
MAX1281 require a control byte to be written to DIN  
t
= 9 (R + R ) 12pF  
S IN  
ACQ  
where R = 800, R = the source impedance of the  
IN  
S
before each conversion. Connecting DIN to V  
feeds  
DD2  
input signal; t  
is never less than 468ns (MAX1280)  
ACQ  
in control bytes of $FF (HEX), which trigger single-  
ended unipolar conversions on CH7 without powering  
down between conversions. The SSTRB output pulses  
or 625ns (MAX1281). Note that source impedances  
below 2kdo not significantly affect the ADC’s AC per-  
formance.  
OSCILLOSCOPE  
V
+3V or +5V  
DD1  
MAX1280  
MAX1281  
SCLK  
0.1µF  
10µF  
V
DD2  
0V TO  
2.500V  
ANALOG  
INPUT  
GND  
COM  
CH7  
0.01µF  
0.01µF  
SSTRB  
DOUT*  
CS  
SCLK  
DIN  
REFADJ  
REF  
TO V  
DD2  
EXTERNAL CLOCK  
DOUT  
SSTRB  
2.5V  
CH1  
CH2  
CH3  
CH4  
SHDN  
TO V  
4.7µF  
DD2  
*FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FFF (HEX)  
Figure 5. Quick-Look Circuit  
12 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
CS  
t
ACQ  
SCLK  
1
4
8
9
12  
16  
20  
24  
SGL/  
DIF  
SEL SEL SEL UNI/  
DIN  
PD1 PD0  
2
1
0
BIP  
START  
HIGH-Z  
HIGH-Z  
HIGH-Z  
HIGH-Z  
SSTRB  
RB1  
RB2  
RB3  
DOUT  
B11 B10 B9 B8 B7  
B6  
B5 B4 B3 B2 B1 B0  
ACQUISITION  
IDLE  
CONVERSION  
IDLE  
Figure 6. Single-Conversion Timing  
high for one clock period before the MSB of the 12-bit  
conversion result is shifted out of DOUT. Varying the  
analog input to CH7 will alter the sequence of bits from  
DOUT. A total of 16 clock cycles is required per con-  
version. All transitions of the SSTRB and DOUT outputs  
typically occur 20ns after the rising edge of SCLK.  
clock frequency from 500kHz to 6.4MHz (MAX1280) or  
4.8MHz (MAX1281).  
1) Set up the control byte and call it TB1. TB1 should  
be of the format 1XXXXXXX binary, where the Xs  
denote the particular channel, selected conversion  
mode, and power mode.  
2) Use a general-purpose I/O line on the CPU to pull  
Starting a Conversion  
Start a conversion by clocking a control byte into DIN.  
With CS low, each rising edge on SCLK clocks a bit from  
DIN into the MAX1280/MAX1281’s internal shift register.  
After CS falls, the first arriving logic “1” bit defines the  
control byte’s MSB. Until this first “start” bit arrives, any  
number of logic “0” bits can be clocked into DIN with no  
effect. Table 1 shows the control-byte format.  
CS low.  
3) Transmit TB1 and, simultaneously, receive a byte  
and call it RB1. Ignore RB1.  
4) Transmit a byte of all zeros ($00 hex) and, simultane-  
ously, receive byte RB2.  
5) Transmit a byte of all zeros ($00 hex) and, simultane-  
ously, receive byte RB3.  
The MAX1280/MAX1281 are compatible with SPI/QSPI  
and MICROWIRE devices. For SPI, select the correct  
clock polarity and sampling edge in the SPI control reg-  
isters: set CPOL = 0 and CPHA = 0. MICROWIRE, SPI,  
and QSPI all transmit a byte and receive a byte at the  
same time. Using the Typical Operating Circuit, the  
simplest software interface requires only three 8-bit  
transfers to perform a conversion (one 8-bit transfer to  
configure the ADC, and two more 8-bit transfers to  
clock out the 12-bit conversion result). See Figure 17  
for MAX1280/MAX1281 QSPI connections.  
6) Pull CS high.  
Figure 6 shows the timing for this sequence. Bytes RB2  
and RB3 contain the result of the conversion, padded  
with three leading zeros and one trailing zero. The total  
conversion time is a function of the serial-clock fre-  
quency and the amount of idle time between 8-bit  
transfers. To avoid excessive T/H droop, make sure the  
total conversion time does not exceed 120µs.  
Digital Output  
In unipolar input mode, the output is straight binary  
(Figure 14). For bipolar input mode, the output is two’s  
complement (Figure 15). Data is clocked out on the ris-  
ing edge of SCLK in MSB-first format.  
Simple Software Interface  
Make sure the CPU’s serial interface runs in master  
mode, so the CPU generates the serial clock. Choose a  
______________________________________________________________________________________ 13  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Table 1. Control-Byte Format  
BIT 7  
(MSB)  
BIT 6  
BIT 5  
BIT 4  
BIT 3  
BIT 2  
BIT 1  
BIT 0  
(LSB)  
START  
SEL2  
SEL1  
SEL0  
UNI/BIP  
SGL/DIF  
PD1  
PD0  
BIT  
NAME  
DESCRIPTION  
7 (MSB)  
START  
The first logic “1” bit after CS goes low defines the beginning of the control byte.  
6
5
4
SEL2  
SEL1  
SEL0  
These three bits select which of the eight channels are used for the conversion (Tables 2 and 3).  
3
UNI/BIP  
1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode. In unipolar mode, an  
analog input signal from 0 to V  
can be converted; in bipolar mode, the differential signal can  
REF  
range from -V  
/2 to +V  
REF  
/2.  
REF  
2
SGL/DIF  
1 = single ended, 0 = differential. Selects single-ended or differential conversions. In single-  
ended mode, input signal voltages are referred to COM. In differential mode, the voltage  
difference between two channels is measured (Tables 2 and 3).  
1
PD1  
PD0  
Select operating mode.  
0 (LSB)  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full power-down  
Fast power-down  
Reduced Power  
Normal Operation  
Table 2. Channel Selection in Single-Ended Mode (SGL/DIF = 1)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
0
0
0
+
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
+
+
+
+
+
+
+
Table 3. Channel Selection in Psuedo-Differential Mode (SGL/DIF = 0)  
SEL2  
SEL1  
SEL0  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
14 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
CS  
t
CSW  
t
CSS  
t
CH  
t
CP  
t
CSH  
t
t
t
CL  
CSO  
CS1  
SCLK  
t
DS  
t
DH  
t
DOH  
DIN  
t
t
DOV  
DOD  
t
DOE  
DOUT  
t
STH  
t
t
STD  
STV  
t
STE  
SSTRB  
Figure 7. Detailed Serial-Interface Timing  
Serial Clock  
The fastest the MAX1280/MAX1281 can run with CS  
held low between conversions is 16 clocks per conver-  
sion. Figure 8 shows the serial-interface timing neces-  
sary to perform a conversion every 16 SCLK cycles. If  
CS is tied low and SCLK is continuous, guarantee a  
start bit by first clocking in 16 zeros.  
The external serial clock not only shifts data in and out,  
but also drives the analog-to-digital conversion steps.  
SSTRB pulses high for one clock period after the last bit  
of the control byte. Successive-approximation bit deci-  
sions are made and appear at DOUT on each of the next  
12 SCLK falling edges (Figure 6). SSTRB and DOUT go  
into a high-impedance state when CS goes high; after  
the next CS rising edge, SSTRB outputs a logic low.  
Figure 7 shows the detailed serial-interface timing.  
Applications Information  
Power-On Reset  
When power is first applied, and if SHDN is not pulled  
low, internal power-on reset circuitry activates the  
MAX1280/MAX1281 in normal operating mode, ready to  
convert with SSTRB = low. The MAX1280/MAX1281  
require 10µs to reset after the power supplies stabilize;  
no conversions should be initiated during this time. If  
CS is low, the first logic 1 on DIN is interpreted as a  
start bit. Until a conversion takes place, DOUT shifts out  
zeros. Additionally, wait for the reference to stabilize  
when using the internal reference.  
The conversion must complete in 120µs or less, or  
droop on the sample-and-hold capacitors may degrade  
conversion results.  
Data Framing  
The falling edge of CS does not start a conversion. The  
first logic high clocked into DIN is interpreted as a start  
bit and defines the first bit of the control byte. A conver-  
sion starts on SCLK’s falling edge after the eighth bit of  
the control byte (the PD0 bit) is clocked into DIN. The  
start bit is defined as follows:  
Power Modes  
You can save power by placing the converter in one of  
the two low-current operating modes or in full power-  
down between conversions. Select the power mode  
through bit 1 and bit 0 of the DIN control byte (Tables 1  
and 4), or force the converter into hardware shutdown  
by driving SHDN to GND.  
The first high bit clocked into DIN with CS low any  
time the converter is idle, e.g., after V  
are applied.  
and V  
DD2  
DD1  
OR  
The first high bit clocked into DIN after bit 6 of a con-  
version in progress is clocked onto the DOUT pin.  
The software power-down modes take effect after the  
conversion is completed; SHDN overrides any software  
power mode and immediately stops any conversion in  
Once a start bit has been recognized, the current con-  
version may only be terminated by pulling SHDN low.  
______________________________________________________________________________________ 15  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
CS  
DIN  
S
CONTROL BYTE 0  
S
CONTROL BYTE 1  
S
CONTROL BYTE 2  
S
ETC  
1
8
12  
16 1  
5
8
12  
16  
1
5
8
12  
16  
1
5
SCLK  
HIGH-Z  
HIGH-Z  
B11  
B6  
CONVERSION RESULT 0  
B0  
B11  
B6  
CONVERSION RESULT 1  
B0  
B11  
B6  
DOUT  
SSTRB  
Figure 8. Continuous 16-Clock/Conversion Timing  
Table 4. Software-Controlled Power Modes  
TOTAL SUPPLY CURRENT  
CIRCUIT SECTIONS*  
PD1/PD0  
MODE  
AFTER  
CONVERSION  
CONVERTING  
INPUT COMPARATOR  
REFERENCE  
Full Power-Down  
(FULLPD)  
00  
01  
2.5mA  
2.5mA  
2µA  
Off  
Off  
Fast Power-Down  
(FASTPD)  
0.9mA  
Reduced Power  
On  
Reduced-Power  
Mode (REDPD)  
10  
11  
2.5mA  
2.5mA  
1.3mA  
2.0mA  
Reduced Power  
Full Power  
On  
On  
Operating Mode  
*Circuit operation between conversions; during conversion, all circuits are fully powered up.  
progress. In software power-down mode, the serial  
interface remains active, waiting for a new control byte  
to start conversion and switch to full-power mode.  
Once the conversion is completed, the device goes  
into the programmed power mode until a new control  
byte is written.  
up delay from a full power-down (software or hard-  
ware), as shown in Figure 9.  
Software Power-Down  
Software power-down is activated using bits PD1 and  
PD0 of the control byte. When software shutdown is  
asserted, the ADC completes the conversion in  
progress and powers down into the specified low-  
quiescent-current state (2µA, 0.9mA, or 1.3mA).  
The power-up delay is dependent on the power-down  
state. Software low-power modes will be able to start  
conversion immediately when running at decreased  
clock rates (see Power-Down Sequencing). During  
power-on reset, when exiting software full power-down  
mode or exiting hardware shutdown, the device goes  
immediately into full-power mode and is ready to con-  
vert after 2µs when using an external reference. When  
using the internal reference, wait for the typical power-  
The first logic 1 on DIN is interpreted as a start bit and  
puts the MAX1280/MAX1281 into their full-power mode.  
Following the start bit, the data input word or control  
byte also determines the next power-down state. For  
example, if the DIN word contains PD1 = 0 and PD0 =  
1, a 0.9mA power-down starts after the conversion.  
16 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Table 4 details the four power modes with the corre-  
sponding supply current and operating sections. For  
data rates achievable in software power-down modes,  
see Power-Down Sequencing section.  
less than maximum sample rates. Figures 10 and 11  
show the average supply current as a function of the  
sampling rate.  
Using Full Power-Down Mode  
Full power-down mode (FULLPD) achieves the lowest  
power consumption at up to 1000 conversions per  
channel per second. Figure 10a shows the MAX1281’s  
power consumption for 1- or 8-channel conversions  
using full power-down mode (PD1 = PD0 = 0), with the  
internal reference and the maximum clock speed. A  
0.01µF bypass capacitor plus the internal 17krefer-  
ence resistor at REFADJ forms an RC filter with a 200µs  
time constant. To achieve full 12-bit accuracy, 10 time  
constants or 2ms are required after power-up if the  
bypass capacitor is fully discharged between conver-  
sions. Waiting this 2ms in FASTPD mode or reduced-  
power mode (REDP) instead of full power-down mode  
can further reduce power consumption. This is  
achieved by using the sequence shown in Figure 12a.  
Hardware Power-Down  
Pulling SHDN low places the converter in hardware  
power-down. Unlike software power-down mode, the  
conversion is terminated immediately. When returning  
to normal operation from SHDN with an external refer-  
ence, the MAX1280/MAX1281 can be considered fully  
powered-up within 2µs of actively pulling SHDN high.  
When using the internal reference, the conversion  
should be initiated only after the reference has settled;  
its recovery time depends on the external bypass  
capacitors and shutdown duration.  
Power-Down Sequencing  
The MAX1280/MAX1281’s automatic power-down  
modes can save considerable power when operating at  
Figure 10b shows the MAX1281’s power consumption  
for 1- or 8-channel conversions using FULLPD mode  
(PD1 = PD0 = 0), an external reference, and the maxi-  
mum clock speed. One dummy conversion to power-up  
the device is needed, but no wait-time is necessary to  
start the second conversion, thereby achieving lower  
power consumption at up to the full sampling rate.  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
Using Fast Power-Down and  
Reduced-Power Modes  
FASTPD and REDP modes achieve the lowest power  
consumption at speeds close to the maximum sample  
rate. Figure 11 shows the MAX1281’s power consump-  
tion in FASTPD mode (PD1 = 0, PD0 = 1), REDP mode  
(PD1 = 1, PD0 = 0), and (for comparison) normal  
operating mode (PD1 = 1, PD0 = 1). The figure shows  
0.0001 0.001  
0.01  
0.1  
1
10  
TIME IN SHUTDOWN (s)  
Figure 9. Reference Power-Up Delay vs. Time in Shutdown  
10,000  
1000  
MAX1281  
MAX1281  
V
= V = 3.0V  
DD2  
V
= V  
= 3.0V  
= 20pF  
DD1  
DD1 DD2  
C
= 20pF  
C
LOAD  
LOAD  
1000  
100  
10  
CODE = 101010000000  
CODE = 101010000000  
100  
8 CHANNELS  
8 CHANNELS  
10  
1
1 CHANNEL  
1 CHANNEL  
1
1
10  
100  
1k  
10k  
100k  
0.1  
1
10  
100  
1k  
10k  
SAMPLING RATE (sps)  
SAMPLING RATE (sps)  
Figure 10a. Average Supply Current vs. Sample Rate (Using  
FULLPD and Internal Reference)  
Figure 10b. Average Supply Current vs. Sampling Rate (Using  
FULLPD and External Reference)  
______________________________________________________________________________________ 17  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
power consumption using the specified power-down  
mode, with the internal reference and the maximum  
clock speed. The clock speed in FASTPD or REDP  
should be limited to 4.8MHz for the MAX1280/  
MAX1281. FULLPD mode may provide increased power  
savings in applications where the MAX1280/  
MAX1281 are inactive for long periods of time, but  
where intermittent bursts of high-speed conversions are  
required.  
Internal and External References  
The MAX1280/MAX1281 can be used with an internal  
or external reference. An external reference can be  
connected directly at REF or at the REFADJ pin.  
2.5  
NORMAL OPERATION  
An internal buffer is designed to provide 2.5V at REF for  
both the MAX1280/MAX1281. The internally trimmed  
1.22V reference is buffered with a gain of +2.05V/V.  
2.0  
REDP  
FASTPD  
1.5  
1.0  
Internal Reference  
The MAX1280/MAX1281’s full-scale range with the inter-  
nal reference is 2.5V for unipolar inputs and 1.25V for  
bipolar inputs. The internal reference voltage is  
adjustable to 100mV with the circuit of Figure 13.  
MAX1281, V = V = 3.0V  
DD1  
DD2  
C
LOAD  
= 20pF  
CODE = 101010000000  
0.5  
External Reference  
An external reference can be placed at either the input  
(REFADJ) or the output (REF) of the internal reference-  
buffer amplifier. The REFADJ input impedance is typical-  
ly 17k. At REF, the DC input resistance is a minimum of  
50  
200  
SAMPLING RATE (sps)  
150  
250  
0
100  
300 350  
Figure 11. Average Supply Current vs. Sampling Rate (Using  
REPD, FASTPD, and Normal Operation and Internal Reference)  
WAIT 2ms (10 x RC)  
0
0
1
0
0
0
1
1
1
1
DIN  
FULLPD  
REDP  
FULLPD  
1.22V  
DUMMY CONVERSION  
1.22V  
2.5V  
RE FADJ  
0V  
0V  
γ = RC = 17kx 0.01µF  
2.5V  
REF  
2.5mA  
2.5mA  
2.5mA  
I
+ I  
VDD1 VDD2  
1.3mA OR 0.9mA  
0mA  
0mA  
Figure 12a. Full Power-Down Timing  
1
0
1
0
0
1
1
1
1
DIN  
REDPD  
REDP  
FASTPD  
2.5mA  
2.5V (ALWAYS ON)  
2.5mA  
REF  
2.5mA  
0.9mA  
1.3mA  
1.3mA  
I
+ I  
VDD1 VDD2  
Figure 12b. Reduced-Power/Fast Power-Down Timing  
18 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
+3.3V  
OUTPUT CODE  
24k  
V
REF  
2
FS  
=
+ V  
COM  
MAX1281  
REFADJ  
011 . . . 111  
011 . . . 110  
510kΩ  
ZS = COM  
100kΩ  
12  
-V  
2
REF  
-FS =  
+ V  
COM  
000 . . . 010  
000 . . . 001  
000 . . . 000  
0.01µF  
V
REF  
1 LSB =  
4096  
111 . . . 111  
111 . . . 110  
111 . . . 101  
Figure 13. MAX1281 Reference-Adjust Circuit  
100 . . . 001  
100 . . . 000  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
11 . . . 111  
COM*  
INPUT VOLTAGE (LSB)  
- FS  
+FS - 1LSB  
11 . . . 110  
11 . . . 101  
V
*V  
/ 2  
REF  
COM  
Figure 15. Bipolar Transfer Function, Full Scale (FS) =  
/ 2 + V , Zero Scale (ZS) = V  
FS = V + V  
REF  
COM  
V
REF  
COM  
COM  
ZS = V  
COM  
tions occur halfway between successive-integer LSB  
values. Output coding is binary, with 1LSB = 610µV  
for unipolar and bipolar operation.  
V
4096  
REF  
1 LSB =  
00 . . . 011  
00 . . . 010  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards; wire-  
wrap boards are not recommended. Board layout  
should ensure that digital and analog signal lines are  
separated from each other. Do not run analog and digi-  
tal (especially clock) lines parallel to one another, or  
digital lines underneath the ADC package.  
00 . . . 001  
00 . . . 000  
0
1
2
3
FS  
(COM)  
FS - 3/2LSB  
INPUT VOLTAGE (LSB)  
Figure 14. Unipolar Transfer Function, Full Scale (FS) = V  
REF  
+ V  
, Zero Scale (ZS) = V  
COM  
COM  
Figure 16 shows the recommended system ground  
connections. Establish a single-point analog ground  
(star ground point) at GND. Connect all analog grounds  
to the star ground. Connect the digital system ground  
to star ground at this point only. For lowest-noise opera-  
tion, the ground return to the star ground’s power sup-  
ply should be low impedance and as short as possible.  
18k. During conversion, an external reference at REF  
must deliver up to 350µA DC load current and have 10Ω  
or less output impedance. If the reference has a higher  
output impedance or is noisy, bypass it close to the REF  
pin with a 4.7µF capacitor.  
Using the REFADJ input makes buffering the external  
reference unnecessary. To use the direct REF input,  
disable the internal buffer by connecting REFADJ to  
High-frequency noise in the V  
power supply may  
DD1  
affect the high-speed comparator in the ADC. Bypass  
the supply to the star ground with 0.1µF and 10µF  
capacitors, located close to pin 20 of the MAX1280/  
MAX1281. Minimize capacitor lead lengths for best  
supply-noise rejection. If the power supply is very  
noisy, a 10resistor can be connected as a lowpass  
filter (Figure 16).  
V
.
DD1  
Transfer Function  
Table 5 shows the full-scale voltage ranges for unipolar  
and bipolar modes. Figure 14 depicts the nominal,  
unipolar input/output (I/O) transfer function, and Figure  
15 shows the bipolar I/O transfer function. Code transi-  
______________________________________________________________________________________ 19  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Table 5. Full Scale and Zero Scale  
UNIPOLAR MODE  
BIPOLAR MODE  
Positive  
Full Scale  
Zero  
Scale  
Negative  
Full Scale  
Full Scale  
+ V  
Zero Scale  
COM  
V
REF  
/ 2  
-V  
/ 2  
REF  
V
COM  
V
REF  
COM  
+ V  
+ V  
COM  
COM  
connected with the MAX1280/MAX1281’s SCLK  
input.  
2) The MAX1280/MAX1281’s CS pin is driven low by  
the TMS320’s XF_ I/O port to enable data to be  
clocked into the MAX1280/MAX1281’s DIN pin.  
SUPPLIES  
V
DD1  
V
DD2  
GND  
3) An 8-bit word (1XXXXX11) should be written to the  
MAX1280/MAX1281 to initiate a conversion and  
place the device into normal operating mode. See  
Table 1 to select the proper XXXXX bit values for  
your specific application.  
R* = 10Ω  
4) The MAX1280/MAX1281’s SSTRB output is moni-  
tored through the TMS320’s FSR input. A falling  
edge on the SSTRB output indicates that the conver-  
sion is in progress and data is ready to be received  
from the MAX1280/MAX1281.  
V
GND  
COM  
V
DD2  
V
DD  
DGND  
DD1  
DIGITAL  
CIRCUITRY  
MAX1280  
MAX1281  
5) The TMS320 reads in one data bit on each of the  
next 16 rising edges of SCLK. These data bits repre-  
sent the 12-bit conversion result followed by four  
trailing bits, which should be ignored.  
*OPTIONAL  
6) Pull CS high to disable the MAX1280/MAX1281 until  
Figure 16. Power-Supply Grounding Connection  
the next conversion is initiated.  
High-Speed Digital Interfacing with QSPI  
Definitions  
The MAX1280/MAX1281 can interface with QSPI using  
the circuit in Figure 17 (f  
= 4.0MHz, CPOL = 0,  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1280/MAX1281  
are measured using the endpoint method.  
SCLK  
CPHA = 0). This QSPI circuit can be programmed to do  
a conversion on each of the eight channels. The result  
is stored in memory without taxing the CPU, since QSPI  
incorporates its own microsequencer.  
TMS320LC3x Interface  
Figure 18 shows an application circuit that interfaces  
the MAX1280/MAX1281 to the TMS320 in external clock  
mode. The timing diagram for this interface circuit is  
shown in Figure 19.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1LSB. A  
DNL error specification of less than 1LSB guarantees  
no missing codes and a monotonic transfer function.  
Use the following steps to initiate a conversion in the  
MAX1280/MAX1281 and to read the results:  
1) The TMS320 should be configured with CLKX (trans-  
mit clock) as an active-high output clock and with  
CLKR (TMS320 receive clock) as an active-high  
input clock. CLKX and CLKR on the TMS320 are  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
20 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
+3V OR +5V +3V OR +5V  
V
V
DD1  
1
2
20  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SHDN  
0.1µF  
10µF  
(POWER SUPPLIES)  
DD2 19  
SCLK  
CS  
SCK  
18  
17  
16  
15  
14  
13  
3
4
PCS0  
ANALOG  
INPUTS  
MAX1280  
MAX1281  
DIN  
MC683XX  
5
6
MOSI  
SSTRB  
DOUT  
7
MISO  
8
GND  
9
REFADJ 12  
V
10  
11  
REF  
DD1  
4.7µF  
0.01µF  
(GND)  
Figure 17. QSPI Connections  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, Signal-to-noise ratio (SNR) is the ratio of full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The ideal theoretical minimum  
analog-to-digital noise is caused by quantization error  
only and results directly from the ADC’s resolution (N  
bits):  
XF  
CS  
CLKX  
SCLK  
TMS320LC3x  
MAX1280  
MAX1281  
CLKR  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
DX  
DR  
DIN  
DOUT  
SSTRB  
FSR  
Signal-to-Noise Plus Distortion  
Signal-to-noise ratio plus distortion (SINAD) is the ratio  
of the fundamental input frequency’s RMS amplitude to  
RMS equivalent of all other ADC output signals.  
Figure 18. MAX1280/MAX1281-to-TMS320 Serial Interface  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of the sampling clock and the instant when  
an actual sample is taken.  
______________________________________________________________________________________ 21  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
CS  
SCLK  
START  
SEL2  
SEL1  
SEL0 UNI/BIP SGI/DIF PD1  
PD0  
DIN  
SSTRB  
HIGH IMPEDANCE  
HIGH IMPEDANCE  
DOUT  
B10  
B1  
MSB  
B0  
Figure 19. MAX1280/MAX1281-to-TMS320 Serial Interface  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of RMS  
amplitude of the fundamental (maximum signal compo-  
nent) to the RMS value of the next-largest distortion  
component.  
Typical Operating Circuit  
ENOB = (SINAD - 1.76) / 6.02  
+5V OR  
+3V  
Total Harmonic Distortion (THD)  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
V
V
V
CH0  
DD  
DD1  
0.1µF  
0 TO  
+2.5V  
DD2  
ANALOG  
INPUTS  
MAX1280  
MAX1281  
CH8  
GND  
CPU  
COM  
CS  
2
2
2
2
2
V
+ V + V + V + V  
3 4 4 5  
2
I/O  
REF  
4.7µF  
THD = 20 × log  
SCLK  
DIN  
SCK (SK)  
MOSI (SO)  
MISO (SI)  
V
1
DOUT  
SSTRB  
SHDN  
REFADJ  
where V is the fundamental amplitude, and V through  
1
2
0.01µF  
V5 are the amplitudes of the 2nd- through 5th-order har-  
monics, respectively.  
V
SS  
22 ______________________________________________________________________________________  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
to www.maxim-ic.com/packages. Note that a “+”, “#”, or “-” in  
the package code indicates RoHS status only. Package draw-  
ings may show a different suffix character, but the drawing per-  
tains to the package regardless of RoHS status.  
PROCESS: BiCMOS  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
20 TSSOP  
U20+2  
21-0066  
______________________________________________________________________________________ 23  
400ksps/300ksps, Single-Supply, Low-Power, 8-Channel,  
Serial 12-Bit ADCs with Internal Reference  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
5/00  
Initial release  
Changed specifications due to single pass flow qualifications and added lead-  
free information  
1
2
4/10  
1–5  
Changed multiplexer leakage current condition, added note to supply current  
condition, changed Note 11, changed Figures 4 and 12b  
10/10  
5, 6, 7, 11, 18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
24 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY