MAX1293BEEG-T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Parallel, 8 Bits Access, PDSO24, 0.150 INCH, QSOP-24;
MAX1293BEEG-T
型号: MAX1293BEEG-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 4 Channel, Parallel, 8 Bits Access, PDSO24, 0.150 INCH, QSOP-24

光电二极管 转换器
文件: 总20页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1532; Rev 3; 12/02  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
General Description  
Features  
The MAX1291/MAX1293 low-power, 12-bit analog-to-dig-  
ital converters (ADCs) feature a successive-approxima-  
tion ADC, automatic power-down, fast wake-up (2µs), an  
on-chip clock, +2.5V internal reference, and a high-  
speed, byte-wide parallel interface. They operate with a  
o 12-Bit Resolution, ±±0. ꢀLB ꢀineꢁaitꢂ  
o +3V Lingle Opeaꢁtion  
o Usea-Adjustꢁble ꢀogic ꢀevel (+108V to +306V)  
o Inteanꢁl +20.V Refeaence  
single +3V analog supply and feature a V  
pin that  
LOGIC  
allows them to interface directly with a +1.8V to +5.5V  
digital supply.  
o Loftwꢁae-Configuaꢁble, Anꢁlog Input Multiplexea  
8-Chꢁnnel Lingle-Ended/  
Power consumption is only 5.7mW (V = V  
) at the  
LOGIC  
DD  
4-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1291)  
4-Chꢁnnel Lingle-Ended/  
2-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1293)  
maximum sampling rate of 250ksps. Two software-selec-  
table power-down modes enable the MAX1291/  
MAX1293 to be shut down between conversions;  
accessing the parallel interface returns them to normal  
operation. Powering down between conversions can cut  
supply current to under 10µA at reduced sampling rates.  
o Loftwꢁae-Configuaꢁble, Unipolꢁa/Bipolꢁa Inputs  
o ꢀow Powea: 109mA (2.±ksps)  
10±mA (1±±ksps)  
Both devices offer software-configurable analog inputs  
for unipolar/bipolar and single-ended/pseudo-differen-  
tial operation. In single-ended mode, the MAX1291 has  
eight input channels and the MAX1293 has four input  
channels (four and two input channels, respectively,  
when in pseudo-differential mode).  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size, make  
these converters ideal for battery-powered and data-  
acquisition applications or for other circuits with demand-  
ing power consumption and space requirements.  
4±±µA (1±ksps)  
2µA (Lhutdown)  
o Inteanꢁl 3MHz Full-Powea Bꢁndwidth Taꢁck/Hold  
o Bꢂte-Wide Pꢁaꢁllel (8 + 4) Inteafꢁce  
o Lmꢁll Footpaint: 28-Pin QLOP (MAX1291)  
24-Pin QLOP (MAX1293)  
Pin Configurations  
The MAX1291/MAX1293 tri-states INT when CS goes  
high. Refer to MAX1261/MAX1263 if tri-stating INT is not  
desired.  
The MAX1291 is available in a 28-pin QSOP package,  
while the MAX1293 is available in a 24-pin QSOP. For  
pin-compatible +5V, 12-bit versions, refer to the  
MAX1290/MAX1292 data sheet.  
TOP VIEW  
HBEN  
D7  
1
2
3
4
5
6
7
8
9
28  
27  
V
V
LOGIC  
DD  
D6  
26 REF  
25 REFADJ  
24 GND  
23 COM  
22 CH0  
21 CH1  
20 CH2  
19 CH3  
18 CH4  
17 CH5  
16 CH6  
15 CH7  
D5  
D4  
MAX1291  
D3/D11  
D2/D10  
D1/D9  
D0/D8  
Applications  
Industrial Control Systems  
Energy Management  
Data Logging  
Patient Monitoring  
Touch Screens  
Data-Acquisition Systems  
INT 10  
RD 11  
WR 12  
CLK 13  
CS 14  
Ordering Information  
INꢀ  
PART  
PIN-PACKAGE  
TEMP RANGE  
(ꢀLB)  
0.5  
1
0°C to +70°C  
0°C to +70°C  
MAX1291ACEI  
MAX1291BCEI  
MAX1291AEEI  
MAX1291BEEI  
28 QSOP  
28 QSOP  
28 QSOP  
28 QSOP  
-40°C to +85°C  
-40°C to +85°C  
0.5  
1
QLOP  
Pin Configurations continued at end of data sheet.  
Ordering Information continued at end of data sheet.  
Typical Operating Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
ABLOꢀUTE MAXIMUM RATINGL  
V
V
to GND..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
LOGIC  
to GND.........................................................-0.3V to +6V  
24-Pin QSOP (derate 9.5mW/°C above +70°C) ...........762mW  
28-Pin QSOP (derate 8.00mW/°C above +70°C) .........667mW  
Operating Temperature Ranges  
CH0–CH7, COM to GND............................-0.3V to (V  
REF, REFADJ to GND ................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
DD  
DD  
Digital Inputs to GND ...............................................-0.3V to +6V  
Digital Outputs (D0–D11, INT) to GND...-0.3V to (V + 0.3V)  
MAX1291_C_ _/MAX1293_C_ _..............................0°C to +70°C  
MAX1291_E_ _/MAX1293_E_ _ ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
LOGIC  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERILTICL  
(V  
= V  
= +2.7V to +3.6V, COM = GND, REFADJ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 4.8MHz (50% duty  
DD  
LOGIC  
DD REF  
CLK  
cycle); T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
DC ACCURACY (Note 1)  
Resolution  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
RES  
INL  
12  
Bits  
MAX129_A  
MAX129_B  
0.5  
1
Relative Accuracy (Note 2)  
LSB  
Differential Nonlinearity  
Offset Error  
DNL  
No missing codes over temperature  
1
LSB  
LSB  
4
Gain Error (Note 3)  
Gain Temperature Coefficient  
4
LSB  
2.0  
0.2  
ppm/°C  
Channel-to-Channel Offset  
Matching  
LSB  
DYNAMIC LPECIFICATIONL (f  
= 50kHz, V = 2.5V , 250ksps, external f  
= 4.8MHz, bipolar input mode)  
IN(sine wave)  
SINAD  
IN  
P-P  
CLK  
Signal-to-Noise Plus Distortion  
67  
80  
70  
dB  
dB  
Total Harmonic Distortion  
(including 5th-order harmonic)  
THD  
-78  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Channel-to-Channel Crosstalk  
Full-Linear Bandwidth  
SFDR  
IMD  
dB  
dB  
f
f
= 49kHz, f  
= 52kHz  
2
IN  
76  
-78  
250  
3
IN1  
= 125kHz, V = 2.5V  
(Note 4)  
dB  
P-P  
IN  
IN  
SINAD > 68dB  
-3dB rolloff  
kHz  
MHz  
Full-Power Bandwidth  
CONVERLION RATE  
External clock mode  
3.3  
2.5  
3.2  
Conversion Time (Note 5)  
t
External acquisition/internal clock mode  
Internal acquisition/internal clock mode  
3.0  
3.6  
3.5  
4.1  
625  
µs  
CONV  
Track/Hold Acquisition Time  
Aperture Delay  
t
ns  
ns  
ACQ  
External acquisition or external clock mode  
External acquisition or external clock mode  
Internal acquisition/internal clock mode  
50  
<50  
<200  
Aperture Jitter  
ps  
External Clock Frequency  
Duty Cycle  
f
0.1  
30  
4.8  
70  
MHz  
%
CLK  
2
_______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, REFADJ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 4.8MHz (50% duty  
DD  
LOGIC  
DD REF  
CLK  
cycle); T = T  
to T  
unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
ANAꢀOG INPUTL  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
Analog Input Voltage Range  
Single-Ended and Differential  
(Note 6)  
Unipolar, V  
= 0  
0
V
REF  
COM  
V
IN  
V
Bipolar, V  
= V  
/ 2  
-V  
/2  
+V  
/2  
REF  
COM  
REF  
REF  
Multiplexer Leakage Current  
On/off-leakage current, V = 0 or V  
0.01  
12  
1
µA  
pF  
IN  
DD  
Input Capacitance  
C
IN  
INTERNAꢀ REFERENCE  
REF Output Voltage  
2.49  
2.5  
15  
2.51  
V
mA  
REF Short-Circuit Current  
REF Temperature Coefficient  
REFADJ Input Range  
TC  
T
= 0°C to +70°C  
20  
ppm/°C  
mV  
REF  
A
For small adjustments  
100  
REFADJ High Threshold  
Load Regulation (Note 7)  
Capacitive Bypass at REFADJ  
Capacitive Bypass at REF  
EXTERNAꢀ REFERENCE AT REF  
To power down the internal reference  
0 to 0.5mA output load  
V
DD  
- 1.0  
V
0.2  
mV/mA  
µF  
0.01  
1
4.7  
1.0  
10  
µF  
V
+
DD  
50mV  
REF Input Voltage Range  
V
REF  
V
V
= 2.5V, f  
= 250ksps  
SAMPLE  
200  
300  
2
REF  
REF Input Current  
I
µA  
REF  
Shutdown mode  
DIGITAꢀ INPUTL AND OUTPUTL  
Input High Voltage  
V
V
V
V
= 2.7V  
= 1.8V  
= 2.7V  
= 1.8V  
2.0  
1.5  
LOGIC  
LOGIC  
LOGIC  
LOGIC  
V
V
V
IH  
0.8  
0.5  
Input Low Voltage  
V
IL  
Input Hysteresis  
V
200  
0.1  
15  
mV  
µA  
pF  
V
HYS  
Input Leakage Current  
Input Capacitance  
Output Low Voltage  
Output High Voltage  
I
V
= 0 or V  
1
0.4  
1
IN  
DD  
IN  
C
IN  
OL  
OH  
V
I = 1.6mA  
SINK  
V
I
= 1mA  
V
- 0.5  
V
SOURCE  
LOGIC  
Three-State Leakage Current  
I
0.1  
15  
µA  
pF  
CS = V  
CS = V  
LEAKAGE  
DD  
DD  
Three-State Output Capacitance  
C
OUT  
_______________________________________________________________________________________  
3
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, REFADJ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 4.8MHz (50% duty  
DD  
LOGIC  
DD REF  
CLK  
cycle); T = T  
to T  
unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
POWER REQUIREMENTL  
Analog Supply Voltage  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
V
DD  
2.7  
1.8  
3.6  
V
V
V
+
DD  
Digital Supply Voltage  
V
LOGIC  
0.3  
Internal reference  
2.3  
1.9  
0.9  
0.5  
2.6  
2.3  
1.2  
0.8  
Operating mode,  
= 250ksps  
f
External reference  
Internal reference  
External reference  
SAMPLE  
mA  
Positive Supply Current  
I
DD  
Standby mode  
Shutdown mode  
2
10  
150  
10  
µA  
µA  
mV  
f
= 250ksps  
SAMPLE  
V
Current  
I
C = 20pF  
L
LOGIC  
LOGIC  
Not converting  
= 3V 10%, full-scale input  
2
Power-Supply Rejection  
PSR  
V
DD  
0.4  
0.9  
TIMING CHARACTERILTICL  
(V  
= V  
= +2.7V to +3.6V, COM = GND, REFADJ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 4.8MHz (50% duty  
DD  
LOGIC  
DD REF  
CLK  
cycle); T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
CLK Period  
LYMBOꢀ  
CONDITIONL  
MIN  
208  
40  
40  
40  
0
TYP  
MAX  
UNITL  
ns  
t
CP  
CH  
CLK Pulse Width High  
t
ns  
CLK Pulse Width Low  
t
ns  
CL  
DS  
t
t
ns  
Data Valid to WR Rise Time  
WR Rise to Data Valid Hold Time  
WR to CLK Fall Setup Time  
CLK Fall to WR Hold Time  
ns  
DH  
t
t
40  
40  
ns  
CWS  
ns  
CWH  
CS to CLK or WR  
Setup Time  
t
60  
0
ns  
ns  
CSWS  
CLK or WR to CS  
Hold Time  
t
CSWH  
t
100  
60  
ns  
ns  
ns  
CS Pulse Width  
CS  
t
WR Pulse Width (Note 8)  
CS Rise to Output Disable  
WR  
t
C
LOAD  
= 20pF (Figure 1)  
20  
100  
TC  
4
_______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
TIMING CHARACTERILTICL (continued)  
(V  
= V  
= +2.7V to +3.6V, COM = GND, REFADJ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 4.8MHz (50% duty  
DD  
LOGIC  
DD REF  
CLK  
cycle); T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
LYMBOꢀ  
CONDITIONL  
= 20pF, Figure 1  
MIN  
20  
TYP  
MAX  
70  
UNITL  
ns  
t
TR  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
RD Rise to Output Disable  
RD Fall to Output Data Valid  
HBEN to Output Data Valid  
RD Fall to INT High Delay  
CS Fall to Output Data Valid  
t
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
20  
70  
ns  
DO  
t
t
20  
110  
100  
110  
ns  
DO1  
ns  
INT1  
t
ns  
DO2  
Note 1: Tested at V  
= +3V, COM = GND, unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 3: Offset nulled.  
Note 4: On channel is grounded; sine wave applied to off channels.  
Note .: Conversion time is defined as the number of clock cycles times the clock period; clock has 50% duty cycle.  
Note 6: Input voltage range referenced to negative input. The absolute range for the analog inputs is from GND to V  
Note 7: External load should not change during conversion for specified accuracy.  
.
DD  
Note 8: When bit 5 is set low for internal acquisition, WR must not return low until after the first falling clock edge of the conversion.  
V
LOGIC  
3kΩ  
DOUT  
DOUT  
C
LOAD  
20pF  
C
LOAD  
20pF  
3kΩ  
a) HIGH-Z TO V AND V TO V  
OH  
b) HIGH-Z TO V AND V TO V  
OL  
OH  
OL  
OL  
OH  
Figure 1. Load Circuits for Enable/Disable Times  
_______________________________________________________________________________________  
.
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics  
(V  
= V  
= +3V, V  
= +2.500V, f  
= 4.8MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
LOGIC  
REF  
CLK L A  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLE FREQUENCY  
0.5  
0.4  
0.5  
0.4  
10,000  
1000  
100  
10  
0.3  
0.3  
WITH INTERNAL  
REFERENCE  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
WITH EXTERNAL  
REFERENCE  
1
0
1000  
2000  
3000  
4000  
5000  
0
1000  
2000  
3000  
4000  
5000  
0.1  
1
10 100  
1k 10k 100k 1M  
(Hz)  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
f
SAMPLE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
STANDBY CURRENT vs. SUPPLY VOLTAGE  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
1.6  
930  
920  
910  
900  
890  
880  
R = ∞  
R = ∞  
L
L
CODE = 101010100000  
CODE = 101010100000  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
DD  
DD  
POWER-DOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER-DOWN CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT vs. TEMPERATURE  
1.2  
1.1  
1.0  
0.9  
0.8  
930  
920  
910  
900  
890  
880  
1.50  
1.25  
1.00  
0.75  
0.50  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
DD  
6
_______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics (continued)  
(V  
= V  
= +3V, V  
= +2.500V, f  
= 4.8MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
LOGIC  
REF  
CLK L A  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
2.53  
2.53  
2.52  
2.51  
2.50  
2.49  
2.48  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
2.52  
2.51  
2.50  
2.49  
2.48  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
2.7  
3.0  
3.3  
3.6  
V
(V)  
TEMPERATURE (°C)  
V
(V)  
DD  
DD  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
1
0
0.5  
0.0  
0.5  
0.0  
-0.5  
-1.0  
-1.5  
-2.0  
-2.5  
-0.5  
-1.0  
-1.5  
-2.0  
-1  
-2  
-3  
2.7  
3.0  
3.3  
3.6  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
(V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DD  
LOGIC SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
LOGIC SUPPLY CURRENT  
vs. TEMPERATURE  
FFT PLOT  
250  
200  
20  
0
250  
200  
150  
100  
50  
V
= 3V  
DD  
= 50kHz  
f
f
IN  
SAMPLE  
= 250ksps  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
150  
100  
50  
2.7  
3.0  
3.3  
3.6  
0
200  
400  
600  
800 1000 1200  
-40  
-15  
10  
35  
60  
85  
V
(V)  
FREQUENCY (kHz)  
DD  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
7
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1291  
MAX1293  
High Byte Enable. Used to multiplex the 12-bit conversion result.  
1: Four MSBs are multiplexed on the data bus.  
1
1
HBEN  
0: Eight LSBs are available on the data bus.  
2
3
2
3
D7  
D6  
Three-State Digital I/O Line (D7)  
Three-State Digital I/O Line (D6)  
4
4
D5  
Three-State Digital I/O Line (D5)  
5
5
D4  
Three-State Digital I/O Line (D4)  
6
6
D3/D11  
D2/D10  
D1/D9  
D0/D8  
INT  
Three-State Digital I/O Line (D3, HBEN = 0; D11, HBEN = 1)  
Three-State Digital I/O Line (D2, HBEN = 0; D10, HBEN = 1)  
Three-State Digital I/O Line (D1, HBEN = 0; D9, HBEN = 1)  
Three-State Digital I/O Line (D0, HBEN = 0; D8, HBEN = 1)  
INT goes low when the conversion is complete and the output data is ready.  
7
7
8
8
9
9
10  
10  
Active-Low Read Select. If CS is low, a falling edge on RD enables the read operation on  
the data bus.  
11  
12  
11  
12  
RD  
Active-Low Write Select. When CS is low in internal acquisition mode, a rising edge on WR  
latches in configuration data and starts an acquisition plus a conversion cycle. When CS is  
low in external acquisition mode, the first rising edge on WR ends acquisition and starts a  
conversion.  
WR  
Clock Input. In external clock mode, drive CLK with a TTL/CMOS-compatible clock. In  
13  
14  
13  
14  
CLK  
internal clock mode, connect this pin to either V  
or GND.  
DD  
Active-Low Chip Select. When CS is high, digital outputs (INT, D7–D0) are high imped-  
ance.  
CS  
15  
16  
17  
18  
19  
20  
21  
22  
15  
16  
17  
18  
CH7  
CH6  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
Analog Input Channel 7  
Analog Input Channel 6  
Analog Input Channel 5  
Analog Input Channel 4  
Analog Input Channel 3  
Analog Input Channel 2  
Analog Input Channel 1  
Analog Input Channel 0  
Ground Reference for Analog Inputs. Sets zero-code voltage in single-ended mode and  
must be stable to 0.5 LSB during conversion.  
23  
24  
19  
20  
COM  
GND  
Analog and Digital Ground  
Bandgap Reference Output/Bandgap Reference Buffer Input. Bypass to GND with a  
25  
21  
REFADJ  
REF  
0.01µF capacitor. When using an external reference, connect REFADJ to V  
the internal bandgap reference.  
to disable  
DD  
Bandgap Reference Buffer Output/External Reference Input. Add a 4.7µF capacitor to  
GND when using the internal reference.  
26  
27  
28  
22  
23  
24  
V
DD  
Analog +5V Power Supply. Bypass with a 0.1µF capacitor to GND.  
Digital Power Supply. V  
powers the digital outputs of the data converter and can  
LOGIC  
V
LOGIC  
range from +1.8V to V + 300mV.  
DD  
8
_______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
The return side (IN-) must remain stable within 0.5 LSB  
( 0.1 LSB for best performance) with respect to GND  
Detailed Description  
Converter Operation  
The MAX1291/MAX1293 ADCs use a successive-  
approximation (SAR) conversion technique and an  
input track/hold (T/H) stage to convert an analog input  
signal to a 12-bit digital output. Their parallel (8 + 4)  
output format provides an easy interface to standard  
microprocessors (µPs). Figure 2 shows the simplified  
internal architecture of the MAX1291/MAX1293.  
during a conversion. To accomplish this, connect a  
0.1µF capacitor from IN- (the selected input) to GND.  
During the acquisition interval, the channel selected as  
the positive input (IN+) charges capacitor C  
. At  
HOLD  
the end of the acquisition interval, the T/H switch  
opens, retaining charge on C  
signal at IN+.  
as a sample of the  
HOLD  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (IN+) to the  
Single-Ended and  
Pseudo-Differential Operation  
HOLD  
negative input (IN-). This unbalances node ZERO at the  
comparator’s positive input. The capacitive digital-to-  
analog converter (DAC) adjusts during the remainder of  
the conversion cycle to restore node ZERO to 0V within  
the limits of 12-bit resolution. This action is equivalent to  
The sampling architecture of the ADC’s analog com-  
parator is illustrated in the equivalent input circuit in  
Figure 3. In single-ended mode, IN+ is internally  
switched to channels CH0–CH7 for the MAX1291  
(Figure 3a) and to CH0–CH3 for the MAX1293 (Figure  
3b), while IN- is switched to COM (Table 3).  
transferring a 12pF[(V ) - (V )] charge from C  
HOLD  
IN+  
IN-  
to the binary-weighted capacitive DAC, which in turn  
forms a digital representation of the analog input signal.  
In differential mode, IN+ and IN- are selected from ana-  
log input pairs (Table 4) and are internally switched to  
either of the analog inputs. This configuration is pseu-  
do-differential in that only the signal at IN+ is sampled.  
REF  
REFADJ  
17kΩ  
1.22V  
REFERENCE  
A =  
V
2.05  
(CH7)  
(CH6)  
(CH5)  
(CH4)  
CH3  
CH2  
CH1  
CH0  
ANALOG  
INPUT  
MULTIPLEXER  
T/H  
CHARGE REDISTRIBUTION  
12-BIT DAC  
COMP  
12  
SUCCESSIVE-  
COM  
APPROXIMATION  
REGISTER  
CLK  
CLOCK  
MAX1291  
MAX1293  
4
8
CS  
WR  
RD  
4
8
CONTROL LOGIC  
&
MUX  
8
LATCHES  
HBEN  
INT  
V
DD  
8
V
LOGIC  
THREE-STATE, BIDIRECTIONAL  
I/O INTERFACE  
GND  
D0D7  
8-BIT DATA BUS  
( ) ARE FOR MAX1291 ONLY.  
Figure 2. Simplified Internal Architecture for 8-/4-Channel MAX1291/MAX1293  
_______________________________________________________________________________________  
9
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Track/Hold  
The MAX1291/MAX1293 T/H stage enters its tracking  
mode on the rising edge of WR. In external acquisition  
mode, the part enters its hold mode on the next rising  
edge of WR. In internal acquisition mode, the part  
enters its hold mode on the fourth falling edge of clock  
after writing the control byte. Note that, in internal clock  
mode, this occurs approximately 1µs after writing the  
control byte. In single-ended operation, IN- is connect-  
ed to COM and the converter samples the positive (“+”)  
input. In pseudo-differential operation, IN- connects to  
the negative input (“-”), and the difference of (IN+) - (IN-)  
is sampled. At the beginning of the next conversion, the  
12-BIT CAPACITIVE DAC  
REF  
COMPARATOR  
INPUT  
MUX  
C
HOLD  
ZERO  
+
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
12pF  
R
IN  
800Ω  
C
SWITCH  
HOLD  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
T/H  
SWITCH  
positive input connects back to IN+ and C  
charges to the input signal.  
HOLD  
SINGLE-ENDED MODE: IN+ = CH0CH7, IN- = COM  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1, CH2/CH3, CH4/CH5, AND CH6/CH7  
The time required for the T/H stage to acquire an input  
signal depends on how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
the acquisition time lengthens, and more time must be  
allowed between conversions. The acquisition time,  
Figure 3a. MAX1291 Simplified Input Structure  
t
, is the maximum time the device takes to acquire  
ACQ  
the signal and is also the minimum time required for the  
signal to be acquired. Calculate this with the following  
equation:  
12-BIT CAPACITIVE DAC  
REF  
COMPARATOR  
INPUT  
MUX  
t
= 9 (R + R ) C  
S IN IN  
C
ACQ  
HOLD  
ZERO  
+
CH0  
CH1  
where R is the source impedance of the input signal,  
S
12pF  
R
(800) is the input resistance, and C (12pF) is  
IN  
IN  
R
the ADC’s input capacitance. Source impedances  
below 3khave no significant impact on the MAX1291/  
MAX1293’s AC performance.  
IN  
800Ω  
C
SWITCH  
CH2  
CH3  
HOLD  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Together with the input impedance, this capacitor  
forms an RC filter, limiting the ADC’s signal bandwidth.  
T/H  
SWITCH  
COM  
SINGLE-ENDED MODE: IN+ = CH0CH3, IN- = COM  
PSEUDO-DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1 AND CH2/CH3  
Input Bandwidth  
The MAX1291/MAX1293 T/H stage offers a 250kHz full-  
linear and a 3MHz full-power bandwidth, enabling  
these parts to use undersampling techniques to digitize  
high-speed transients and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate.  
To avoid high-frequency signals being aliased into the  
frequency band of interest, anti-alias filtering is recom-  
mended.  
Figure 3b. MAX1293 Simplified Input Structure  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
input to V and GND, allow each input channel to  
DD  
swing within (GND - 300mV) to (V  
+ 300mV) without  
DD  
damage. However, for accurate conversions near full  
Starting a Conversion  
Initiate a conversion by writing a control byte that  
selects the multiplexer channel and configures the  
MAX1291/MAX1293 for either unipolar or bipolar opera-  
tion. A write pulse (WR + CS) can either start an acqui-  
sition interval or initiate a combined acquisition plus  
scale, both inputs must not exceed (V  
less than (GND - 50mV).  
+ 50mV) or be  
DD  
If an off-channel analog input voltage exceeds the sup-  
plies by more than 50mV, limit the forward-bias input  
current to 4mA.  
1± ______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
conversion. The sampling interval occurs at the end of  
the acquisition interval. The ACQMOD (acquisition  
mode) bit in the input control byte (Table 1) offers two  
options for acquiring the signal: an internal and an  
external acquisition. The conversion period lasts for 13  
clock cycles in either the internal or external clock or  
acquisition mode. Writing a new control byte during a  
conversion cycle aborts the conversion and starts a  
new acquisition interval.  
External Acquisition  
Use external acquisition mode for precise control of the  
sampling aperture and/or dependent control of acquisi-  
tion and conversion times. The user controls acquisition  
and start-of-conversion with two separate write pulses.  
The first pulse, written with ACQMOD = 1, starts an  
acquisition interval of indeterminate length. The second  
write pulse, written with ACQMOD = 0, terminates  
acquisition and starts conversion on WR’s rising edge  
(Figure 5).  
Internal Acquisition  
Select internal acquisition by writing the control byte  
with the ACQMOD bit cleared (ACQMOD = 0). This  
causes the write pulse to initiate an acquisition interval  
whose duration is internally timed. Conversion starts  
when this acquisition interval ends (three external  
cycles or approximately 1µs in internal clock mode)  
(Figure 4). Note that, when the internal acquisition is  
combined with the internal clock, the aperture jitter can  
be as high as 200ps. Internal clock users wishing to  
achieve the 50ps jitter specification should always use  
external acquisition mode.  
The address bits for the input multiplexer must have the  
same values on the first and second write pulse.  
Power-down mode bits (PD0, PD1) can assume new  
values on the second write pulse (see the Power-Down  
Modes section). Changing other bits in the control byte  
corrupts the conversion.  
Reading a Conversion  
A standard interrupt signal INT is provided to allow the  
MAX1291/MAX1293 to flag the microprocessor when  
the conversion has ended and a valid result is avail-  
able. INT goes low when the conversion is complete  
and the output data is ready (Figures 4 and 5). It  
returns high on the first read cycle or if a new control  
byte is written.  
Tꢁble 10 Contaol Bꢂte Functionꢁl Descaiption  
BIT  
NAME  
FUNCTION  
PD1 and PD± select the various clock and power-down modes.  
±
±
1
1
±
1
±
1
Full Power-Down Mode. Clock mode is unaffected.  
D7, D6  
PD1, PD0  
Standby Power-Down Mode. Clock mode is unaffected.  
Normal Operation Mode. Internal clock mode selected.  
Normal Operation Mode. External clock mode selected.  
ACQMOD = 0: Internal Acquisition Mode  
ACQMOD = 1: External Acquisition Mode  
D5  
D4  
ACQMOD  
SGL/DIF = 0: Pseudo-Differential Analog Input Mode  
SGL/DIF = 1: Single-Ended Analog Input Mode  
In single-ended mode, input signals are referred to COM. In pseudo-differential mode, the voltage  
difference between two channels is measured (see Tables 2, 3).  
SGL/DIF  
UNI/BIP = 0: Bipolar Mode  
UNI/BIP = 1: Unipolar Mode  
In unipolar mode, an analog input signal from 0 to V  
D3  
UNI/BIP  
can be converted; in bipolar mode, the sig-  
REF  
nal can range from -V /2 to +V  
REF  
/2.  
REF  
Address bits A2, A1, A0 select which of the 8/4 (MAX1291/MAX1293) channels are to be converted  
(see Tables 3, 4).  
D2, D1, D0  
A2, A1, A0  
______________________________________________________________________________________ 11  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
t
CS  
CS  
t
t
t
CSWS  
ACQ  
CONV  
t
t
CSWH  
WR  
WR  
t
DH  
t
DS  
CONTROL  
BYTE  
D7D0  
ACQMOD = "0"  
HIGH-Z  
HIGH-Z  
INT  
RD  
t
INT1  
HBEN  
t
t
t
TR  
D0  
D01  
HIGH-Z  
HIGH-Z  
HIGH/LOW  
HIGH/LOW  
BYTE VALID  
BYTE VALID  
DOUT  
Figure 4. Conversion Timing Using Internal Acquisition Mode  
t
CS  
CS  
t
CSWS  
t
t
CONV  
ACQ  
t
CSHW  
t
WR  
WR  
t
t
DH  
DH  
t
DS  
CONTROL  
BYTE  
ACQMOD = "1"  
CONTROL  
BYTE  
ACQMOD = "0"  
D7D0  
INT  
HIGH-Z  
HIGH-Z  
t
INT1  
RD  
HBEN  
t
D01  
t
D0  
t
TR  
HIGH-Z  
HIGH-Z  
HIGH/LOW  
HIGH/LOW  
BYTE VALID  
BYTE VALID  
DOUT  
Figure 5. Conversion Timing Using External Acquisition Mode  
12 ______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
mended, because it causes a voltage droop across the  
hold capacitor in the T/H stage that results in degraded  
performance.  
Selecting Clock Mode  
The MAX1291/MAX1293 operate with either an internal  
or an external clock. Control bits D6 and D7 select  
either internal or external clock mode. The parts retain  
the last requested clock mode if a power-down mode is  
selected in the current input word. For both internal and  
external clock mode, internal or external acquisition  
can be used. At power-up, the MAX1291/MAX1293  
enter the default external clock mode.  
Digital Interface  
Input (control byte) and output data are multiplexed on  
a three-state parallel interface. This parallel interface  
(I/O) can easily be interfaced with standard µPs. The  
signals CS, WR, and RD control the write and read  
operations. CS represents the chip select signal, which  
enables a µP to address the MAX1291/MAX1293 as an  
I/O port. When high, CS disables the CLK WR and RD  
inputs and forces the interface into a high-impedance  
(high-Z) state.  
Internal Clock Mode  
Select internal clock mode to release the µP from the  
burden of running the SAR conversion clock. To select  
this mode, bit D7 of the control byte must be set to 1  
and bit D6 must be set to 0. The internal clock frequen-  
cy is then selected, resulting in a conversion time of  
3.6µs. When using the internal clock mode, tie the CLK  
pin either high or low to prevent the pin from floating.  
Input Format  
The control byte is latched into the device on pins  
D7–D0 during a write command. Table 2 shows the  
control byte format.  
External Clock Mode  
To select the external clock mode, bits D6 and D7 of  
the control byte must be set to 1. Figure 6 shows the  
clock and WR timing relationship for internal (Figure 6a)  
and external (Figure 6b) acquisition modes with an  
external clock. For proper operation, a 100kHz to  
4.8MHz clock frequency with 30% to 70% duty cycle is  
recommended. Operating the MAX1291/MAX1293 with  
clock frequencies lower than 100kHz is not recom-  
Output Format  
The output format for both the MAX1291/MAX1293 is  
binary in unipolar mode and two’s complement in bipo-  
lar mode. When reading the output data, CS and RD  
must be low. When HBEN = 0, the lower 8 bits are  
read. With HBEN = 1, the upper 4 bits are available  
and the output data bits D7–D4 are set either low in  
unipolar mode or set to the value of the MSB in bipolar  
mode (Table 5).  
ACQUISITION STARTS  
CONVERSION STARTS  
ACQUISITION ENDS  
t
CP  
CLK  
WR  
t
t
CL  
CH  
t
CWS  
WR GOES HIGH WHEN CLK IS HIGH.  
ACQMOD = "0"  
ACQUISITION STARTS  
t
CWH  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS LOW.  
Figure 6a. External Clock and WR Timing (Internal Acquisition Mode)  
______________________________________________________________________________________ 13  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
t
CWS  
t
DH  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS HIGH.  
ACQMOD = "1"  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
t
CWH  
t
DH  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS LOW.  
ACQMOD = "0"  
Figure 6b. External Clock and WR Timing (External Acquisition Mode)  
Tꢁble 20 Contaol Bꢂte Foamꢁt  
D7 (MLB)  
D6  
D.  
D4  
D3  
D2  
D1  
D± (ꢀLB)  
PD1  
PD0  
ACQMOD  
A2  
A1  
A0  
SGL/DIF  
UNI/BIP  
Tꢁble 30 Chꢁnnel Lelection foa Lingle-Ended Opeaꢁtion (LGꢀ/DIF = 1)  
A2  
0
A1  
0
A±  
0
CH±  
CH1  
CH2  
CH3  
CH4*  
CH.*  
CH6*  
CH7*  
COM  
+
-
-
-
-
-
-
-
-
0
0
1
+
0
1
0
+
0
1
1
+
1
0
0
+
1
0
1
+
1
1
0
+
1
1
1
+
*Channels CH4–CH7 apply to MAX1291 only.  
14 ______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble 40 Chꢁnnel Lelection foa Pseudo-Diffeaentiꢁl Opeaꢁtion (LGꢀ/DIF = ±)  
A2  
0
A1  
0
A±  
0
CH±  
CH1  
CH2  
CH3  
CH4*  
CH.*  
CH6*  
CH7*  
+
-
-
0
0
1
+
0
1
0
+
-
-
0
1
1
+
1
0
0
+
-
-
1
0
1
+
1
1
0
+
-
-
1
1
1
+
*Channels CH4–CH7 apply to MAX1291 only.  
Internal Reference  
Applications Information  
With the internal reference, the full-scale range is +2.5V  
with unipolar inputs and 1.25V with bipolar inputs. The  
internal reference buffer allows for small adjustments  
( 100mV) in the reference voltage. See Figure 7.  
Power-On Reset  
When power is first applied, internal power-on reset cir-  
cuitry activates the MAX1291/MAX1293 in external  
clock mode and sets INT high. After the power supplies  
stabilize, the internal reset time is 10µs, and no conver-  
sions should be attempted during this phase. When  
Note that the reference buffer must be compensated  
with an external capacitor (4.7µF min) connected  
between REF and GND to reduce reference noise and  
switching spikes from the ADC. To further minimize  
noise on the reference, connect a 0.01µF capacitor  
between REFADJ and GND.  
using the internal reference, 500µs is required for V  
to stabilize.  
REF  
Internal and External Reference  
The MAX1291/MAX1293 can be used with an internal  
or external reference voltage. An external reference  
can be connected directly to REF or REFADJ.  
External Reference  
With both the MAX1291 and MAX1293, an external ref-  
erence can be placed at either the input (REFADJ) or  
the output (REF) of the internal reference buffer amplifier.  
An internal buffer is designed to provide +2.5V at REF for  
the both the MAX1291 and the MAX1293. The internally  
trimmed +1.22V reference is buffered with a +2.05V/V  
gain.  
Using the REFADJ input makes buffering the external  
reference unnecessary. The REFADJ input impedance  
is typically 17k.  
Tꢁble .0 Dꢁtꢁ-Bus Output (8 + 4 Pꢁaꢁllel  
Inteafꢁce)  
+3V  
PIN  
D0  
D1  
D2  
D3  
HBEN = ±  
BIT 0 (LSB)  
BIT 1  
HBEN = 1  
50kΩ  
BIT 8  
MAX1291  
BIT 9  
MAX1293  
330kΩ  
BIT 2  
BIT 10  
50kΩ  
REFADJ  
REF  
BIT 3  
BIT 11 (MSB)  
4.7µF  
GND  
BIPOꢀAR  
UNIPOꢀAR  
0.01µF  
(UNI/BIP = ±)  
(UNI/BIP = 1)  
D4  
BIT 4  
BIT 11  
BIT 11  
BIT 11  
BIT 11  
0
0
0
0
GND  
D5  
D6  
D7  
BIT 5  
BIT 6  
BIT 7  
Figure 7. Reference Voltage Adjustment with External  
Potentiometer  
______________________________________________________________________________________ 1.  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
When applying an external reference to REF, disable  
the internal reference buffer by connecting REFADJ to  
DD  
Therefore, an external reference at REF must deliver up  
to 200µA DC load current during a conversion and  
have an output impedance less than 10. If the refer-  
ence has higher output impedance or is noisy, bypass  
it close to the REF pin with a 4.7µF capacitor.  
ed. A rising edge on WR causes the MAX1291/MAX1293  
to exit shutdown mode and return to normal operation.  
To achieve full 12-bit accuracy with a 4.7µF reference  
bypass capacitor, 500µs is required after power-up.  
Waiting 500µs in standby mode, instead of in full-power  
mode, can reduce power consumption by a factor of 3 or  
more. When using an external reference, only 50µs is  
required after power-up. Enter standby mode by per-  
forming a dummy conversion with the control byte speci-  
fying standby mode.  
V
. The DC input resistance at REF is 25k.  
Power-Down Modes  
Save power by placing the converter in a low-current  
shutdown state between conversions. Select standby  
mode or shutdown mode using bits D6 and D7 of the  
control byte (Tables 1 and 2). In both software power-  
down modes, the parallel interface remains active, but  
the ADC does not convert.  
Note: Bypassing capacitors larger than 4.7µF between  
REF and GND results in longer power-up delays.  
Transfer Function  
Table 6 shows the full-scale voltage ranges for unipolar  
and bipolar modes.  
Standby Mode  
While in standby mode, the supply current is 850µA  
(typ). The part powers up on the next rising edge on  
WR and is ready to perform conversions. This quick  
turn-on time allows the user to realize significantly  
reduced power consumption for conversion rates  
below 250ksps.  
Figure 8 depicts the nominal, unipolar input/output (I/O)  
transfer function and Figure 9 shows the bipolar I/O  
transfer function. Code transitions occur halfway  
between successive-integer LSB values. Output coding  
is binary, with 1 LSB = (V  
/ 4096).  
REF  
Maximum Sampling Rate/  
Achieving 300ksps  
When running at the maximum clock frequency of  
4.8MHz, the specified throughput of 250ksps is  
achieved by completing a conversion every 19 clock  
cycles: 1 write cycle, 3 acquisition cycles, 13 conver-  
Shutdown Mode  
Shutdown mode turns off all chip functions that draw qui-  
escent current, reducing the typical supply current to  
2µA immediately after the current conversion is complet-  
OUTPUT CODE  
REF  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
FS  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
111 . . . 111  
111 . . . 110  
FS = REF + COM  
ZS = COM  
2
ZS = COM  
-REF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
100 . . . 010  
100 . . . 001  
100 . . . 000  
REF  
4096  
REF  
4096  
1 LSB =  
1 LSB =  
111 . . . 111  
111 . . . 110  
111 . . . 101  
011 . . . 111  
011 . . . 110  
011 . . . 101  
100 . . . 001  
100 . . . 000  
000 . . . 001  
000 . . . 000  
COM*  
- FS  
+FS - 1 LSB  
0
1
2
2048  
FS  
INPUT VOLTAGE (LSB)  
(COM)  
FS - 3/2 LBS  
INPUT VOLTAGE (LSB)  
*COM V / 2  
REF  
Figure 8. Unipolar Transfer Function  
Figure 9. Bipolar Transfer Function  
16 ______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble 60 Full-Lcꢁle ꢁnd Zeao-Lcꢁle foa Unipolꢁa ꢁnd Bipolꢁa Opeaꢁtion  
UNIPOꢀAR MODE  
BIPOꢀAR MODE  
Positive Full Scale  
Full Scale  
Zero Scale  
V
REF  
+ COM  
V
/2 + COM  
COM  
REF  
COM  
Zero Scale  
Negative Full Scale  
-V  
/2 + COM  
REF  
sion cycles, and 2 read cycles. This assumes that the  
results of the last conversion are read before the next  
control byte is written. Throughputs up to 300ksps can  
be achieved by first writing a control word to begin the  
acquisition cycle of the next conversion, and then read-  
ing the results of the previous conversion from the bus  
(Figure 10). This technique allows a conversion to be  
completed every 16 clock cycles. Note that the switch-  
ing of the data bus during acquisition or conversion  
can cause additional supply noise, which can make it  
difficult to achieve true 12-bit performance.  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the endpoints of the transfer function,  
once offset and gain errors have been nullified. The  
static linearity parameters for the MAX1291/MAX1293  
are measured using the endpoint method.  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
Layout, Grounding, and Bypassing  
For best performance use printed circuit (PC) boards.  
Wire-wrap configurations are not recommended since  
the layout should ensure proper separation of analog  
and digital traces. Do not run analog and digital lines  
parallel to each other, and don’t lay out digital signal  
paths underneath the ADC package. Use separate  
analog and digital PC Board ground sections with only  
one starpoint (Figure 11) connecting the two ground  
systems (analog and digital). For lowest-noise opera-  
tion, ensure the ground return to the star ground’s  
power supply is low impedance and as short as possi-  
ble. Route digital signals far away from sensitive analog  
and reference inputs.  
Aperture Definitions  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples. Aperture delay (t ) is  
AD  
the time between the rising edge of the sampling clock  
and the instant when an actual sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of the  
full-scale analog input (RMS value) to the RMS quanti-  
zation error (residual error). The ideal, theoretical mini-  
mum analog-to-digital noise is caused by quantization  
error only and results directly from the ADC’s resolution  
(N bits):  
High-frequency noise in the power supply (VDD) could  
influence the proper operation of the ADC’s fast com-  
parator. Bypass V  
to the star ground with a network  
DD  
of two parallel capacitors, 0.1µF and 4.7µF, located as  
close as possible to the MAX1291/MAX1293s’ power  
supply pin. Minimize capacitor lead length for best sup-  
ply-noise rejection; add an attenuation resistor (5) if  
the power supply is extremely noisy.  
SNR = (6.02 N + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise: thermal noise, reference noise, clock jitter,  
etc. Therefore, SNR is computed by taking the ratio of  
the RMS signal to the RMS noise which includes all  
spectral components minus the fundamental, the first  
five harmonics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals.  
SINAD (dB) = 20 log (Signal  
/ Noise  
)
RMS  
RMS  
______________________________________________________________________________________ 17  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLK  
WR  
RD  
HBEN  
CONTROL  
BYTE  
D11D8  
D7D0 D11D8  
D7D0  
CONTROL BYTE  
CONVERSION  
D7D0  
HIGH  
BYTE  
LOW  
BYTE  
HIGH  
BYTE  
LOW  
BYTE  
ACQUISITION  
STATE  
ACQUISITION  
SAMPLING INSTANT  
Figure 10. Timing Diagram for Fastest Conversion  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
SUPPLIES  
+3V  
V
= +2V/+3V  
GND  
LOGIC  
ENOB = (SINAD - 1.76) / 6.02  
4.7µF  
0.1µF  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
R* = 5Ω  
GND  
V
DD  
COM  
+2V/+3V DGND  
2
2
2
2
THD = 20 × log  
V
+ V + V + V  
/ V  
1
DIGITAL  
CIRCUITRY  
2
3
4
5
MAX1291  
MAX1293  
where V is the fundamental amplitude, and V through  
5
monics.  
1
2
*OPTIONAL  
V are the amplitudes of the 2nd- through 5th-order har-  
Figure 11. Power-Supply and Grounding Connections  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
Chip Information  
TRANSISTOR COUNT: 5781  
SUBSTRATE CONNECTED TO GND  
18 ______________________________________________________________________________________  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Circuits  
+1.8V TO +3.6V  
+3V  
+1.8V TO +3.6V  
+3V  
CLK  
CLK  
V
V
LOGIC  
LOGIC  
MAX1291  
V
MAX1293  
V
DD  
DD  
+2.5V  
+2.5V  
CS  
REF  
CS  
REF  
µP  
CONTROL  
INPUTS  
µP  
CONTROL  
INPUTS  
WR  
REFADJ  
WR  
REFADJ  
4.7µF  
4.7µF  
0.1µF  
0.1µF  
RD  
RD  
HBEN  
HBEN  
INT  
OUTPUT STATUS  
INT  
OUTPUT STATUS  
CH7  
CH6  
CH5  
D7  
D6  
D7  
D6  
CH4  
D5  
D5  
ANALOG  
INPUTS  
CH3  
CH2  
CH1  
CH3  
CH2  
CH1  
D4  
D4  
ANALOG  
INPUTS  
D3/D11  
D3/D11  
D2/D10  
D2/D10  
CH0  
CH0  
D1/D9  
D0/D8  
D1/D9  
D0/D8  
COM  
COM  
GND  
GND  
µP DATA BUS  
µP DATA BUS  
Pin Configurations (continued)  
Ordering Information (continued)  
INꢀ  
(ꢀLB)  
PART  
TEMP RANGE  
PIN-PACKAGE  
TOP VIEW  
HBEN  
D7  
1
2
3
4
5
6
24  
23  
V
V
LOGIC  
DD  
MAX1293ACEG  
0°C to +70°C  
0°C to +70°C  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
0.5  
1
MAX1293BCEG  
MAX1293AEEG -40°C to +85°C  
MAX1293BEEG -40°C to +85°C  
0.5  
1
D6  
22 REF  
D5  
21 REFADJ  
20 GND  
19 COM  
D4  
MAX1293  
D3/D11  
D2/D10  
D1/D9  
7
8
18 CH0  
17 CH1  
D0/D8  
9
16 CH2  
15 CH3  
14 CS  
INT 10  
RD 11  
WR 12  
13 CLK  
QLOP  
______________________________________________________________________________________ 19  
250ksps, +3V, 8-/4-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www0mꢁxim-ic0com/pꢁckꢁges.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY