MAX1294ACEI+T [MAXIM]

ADC, Successive Approximation, 12-Bit, 1 Func, 6 Channel, Parallel, Word Access, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28;
MAX1294ACEI+T
型号: MAX1294ACEI+T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

ADC, Successive Approximation, 12-Bit, 1 Func, 6 Channel, Parallel, Word Access, PDSO28, 0.150 INCH, 0.025 INCH PITCH, QSOP-28

光电二极管 转换器
文件: 总19页 (文件大小:391K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1533; Rev 2; 12/02  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
General Description  
Features  
The MAX1294/MAX1296 low-power, 12-bit analog-to-  
digital converters (ADCs) feature a successive-approxi-  
mation ADC, automatic power-down, fast wake-up  
(2µs), an on-chip clock, +2.5V internal reference, and a  
high-speed 12-bit parallel interface. They operate with  
a single +5V analog supply.  
12-Bit Resolution, ±±0. ꢀLB ꢀineꢁaitꢂ  
Lingle +.V Opeaꢁtion  
Inteanꢁl +20.V Refeaence  
Loftwꢁae-Configuaꢁble Anꢁlog Input Multiplexea  
6-Chꢁnnel Lingle-Ended/  
Power consumption is only 10mW at the maximum sam-  
pling rate of 420ksps. Two software-selectable power-  
down modes enable the MAX1294/MAX1296 to be shut  
down between conversions; accessing the parallel  
interface returns them to normal operation. Powering  
down between conversions can reduce supply below  
10µA at lower sampling rates.  
3-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1294)  
2-Chꢁnnel Lingle-Ended/  
1-Chꢁnnel Pseudo-Diffeaentiꢁl (MAX1296)  
Loftwꢁae-Configuaꢁble Unipolꢁa/Bipolꢁa  
Anꢁlog Inputs  
ꢀow Cuaaent  
208mA (42±ksps)  
10±mA (1±±ksps)  
4±±µA (1±ksps)  
2µA (Lhutdown)  
Both devices offer software-configurable analog inputs for  
unipolar/bipolar and single-ended/pseudo-differential  
operation. In single-ended mode, the MAX1294 has six  
input channels and the MAX1296 has two (three input  
channels and one input channel, respectively, when in  
pseudo-differential mode).  
Inteanꢁl 6MHz Full-Powea Bꢁndwidth Taꢁck/Hold  
Pꢁaꢁllel 12-Bit Inteafꢁce  
Excellent dynamic performance and low power, com-  
bined with ease of use and small package size, make  
these converters ideal for battery-powered and data-  
acquisition applications or for other circuits with demand-  
ing power-consumption and space requirements.  
Lmꢁll Footpaint  
28-Pin QLOP (MAX1294)  
24-Pin QLOP (MAX1296)  
The MAX1294/MAX1296 tri-states INT when CS goes  
high. Refer to MAX1266/MAX1268 if tri-stating INT is not  
desired.  
Pin Configurations  
TOP VIEW  
The MAX1294 is offered in a 28-pin QSOP package, while  
the MAX1296 is available in a 24-pin QSOP. For pin-com-  
patible +3V, 12-bit versions, see the MAX1295/MAX1297.  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
1
2
3
4
5
6
7
8
9
24 D10  
23 D11  
Applications  
Data Logging  
22  
V
DD  
Industrial Control Systems  
Energy Management  
21 REF  
20 REFADJ  
19 GND  
18 COM  
17 CH0  
16 CH1  
15 CS  
Patient Monitoring  
Touchscreens  
Data-Acquisition Systems  
MAX1296  
Ordering Information  
INꢀ  
TEMP RANGE PIN-PACKAGE  
(ꢀLB)  
PART  
MAX1294ACEI  
0°C to +70°C  
0°C to +70°C  
28 QSOP  
28 QSOP  
28 QSOP  
28 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
24 QSOP  
0.5  
1
D0 10  
INT 11  
RD 12  
MAX1294BCEI  
MAX1294AEEI -40°C to +85°C  
MAX1294BEEI -40°C to +85°C  
0.5  
1
14 CLK  
13 WR  
MAX1296ACEG  
0°C to +70°C  
0°C to +70°C  
0.5  
1
QLOP  
MAX1296BCEG  
MAX1296AEEG -40°C to +85°C  
MAX1296BEEG -40°C to +85°C  
0.5  
1
Pin Configurations continued at end of data sheet.  
Typical Operating Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
ABLOꢀUTE MAXIMUM RATINGL  
DD  
V
to GꢁD..............................................................-0.3V to +6V  
Operating Temperature Ranges  
CH0–CH5, COM to GꢁD............................-0.3V to (V  
REF, REFADꢂ to GꢁD.................................-0.3V to (V  
Digital Inputs to GꢁD ...............................................-0.3V to +6V  
+ 0.3V)  
+ 0.3V)  
MAX1294_C_ _/MAX1296_C_ _.........................0°C to +70°C  
MAX1294_E_ _/MAX1296_E_ _ ......................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
DD  
DD  
Digital Outputs (D0–D11, INT) to GꢁD.......-0.3V to (V + 0.3V)  
DD  
Continuous Power Dissipation (T = +70°C)  
A
24-Pin QSOP (derate 9.5mW/°C above +70°C)..........762mW  
28-Pin QSOP (derate 8.00mW/°C above +70°C)........667mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRICAꢀ CHARACTERILTICL  
(V  
T
= +5V 10ꢀ, COM = GꢁD, REFADꢂ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 7.6MHz (50ꢀ duty cycle),  
CLK  
DD  
DD  
REF  
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIꢁ  
PARAMETER  
LYMBOꢀ  
CONDITIONL  
MIN  
12  
TYP  
MAX  
UNITL  
DC ACCURACY (ꢁote 1)  
Resolution  
RES  
IꢁL  
Bits  
MAX129_A  
MAX129_B  
0.5  
1
Relative Accuracy (ꢁote 2)  
LSB  
Differential ꢁonlinearity  
Offset Error  
DꢁL  
ꢁo missing codes over temperature  
1
LSB  
LSB  
4
Gain Error (ꢁote 3)  
Gain Temperature Coefficient  
4
LSB  
2.0  
0.2  
ppm/°C  
Channel-to-Channel Offset  
Matching  
LSB  
DYNAMIC LPECIFICATIONL (f  
= 50kHz, V = 2.5V , 420ksps, external f  
= 7.6MHz, bipolar input mode)  
P-P  
Iꢁ(sine wave)  
SIꢁAD  
Iꢁ  
CLK  
Signal-to-ꢁoise Plus Distortion  
67  
70  
dB  
dB  
Total Harmonic Distortion  
(including 5th-order harmonic)  
THD  
-80  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Channel-to-Channel Crosstalk  
Full-Linear Bandwidth  
SFDR  
IMD  
-80  
dB  
dB  
f
f
= 49kHz, f  
= 52kHz  
76  
-78  
350  
6
Iꢁ1  
Iꢁ2  
= 175kHz (ꢁote 4)  
dB  
Iꢁ  
SIꢁAD > 68dB  
-3dB rolloff  
kHz  
MHz  
Full-Power Bandwidth  
CONVERLION RATE  
External clock mode  
2.1  
2.5  
3.2  
Conversion Time (ꢁote 5)  
t
External acquisition/internal clock mode  
Internal acquisition/internal clock mode  
3.0  
3.6  
3.5  
4
µs  
COꢁV  
T/H Acquisition Time  
Aperture Delay  
t
400  
ns  
ns  
ACQ  
External acquisition or external clock mode  
External acquisition or external clock mode  
Internal acquisition/internal clock mode  
25  
<50  
<200  
Aperture ꢂitter  
ps  
External Clock Frequency  
Duty Cycle  
f
0.1  
30  
7.6  
70  
MHz  
CLK  
2
_______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
EꢀECTRICAꢀ CHARACTERILTICL (continued)  
(V  
T
= +5V 10ꢀ, COM = GꢁD, REFADꢂ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 7.6MHz (50ꢀ duty cycle),  
CLK  
DD  
DD  
REF  
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIꢁ  
PARAMETER  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
ANAꢀOG INPUTL  
Unipolar, V  
= 0  
0
V
REF  
COM  
Analog Input Voltage Range  
Single-Ended and Differential  
(ꢁote 6)  
V
Iꢁ  
V
Bipolar, V  
= V  
/ 2  
-V  
/2  
+V /2  
REF  
COM  
REF  
REF  
Multiplexer Leakage Current  
Input Capacitance  
On/off-leakage current, V = 0 or V  
Iꢁ  
0.01  
12  
1
µA  
pF  
DD  
C
Iꢁ  
INTERNAꢀ REFERENCE  
REF Output Voltage  
2.49  
2.5  
15  
2.51  
V
mA  
REF Short-Circuit Current  
REF Temperature Coefficient  
REFADꢂ Input Range  
TC  
20  
ppm/°C  
mV  
REF  
For small adjustments  
100  
REFADꢂ High Threshold  
Load Regulation (ꢁote 7)  
Capacitive Bypass at REFADꢂ  
Capacitive Bypass at REF  
EXTERNAꢀ REFERENCE AT REF  
To power down the internal reference  
0 to 0.5mA output load  
V
- 1  
V
DD  
0.2  
mV/mA  
µF  
0.01  
1
4.7  
10  
µF  
V
+
DD  
1.0  
REF Input Voltage Range  
REF Input Current  
V
V
REF  
50mV  
V
= 2.5V, f  
= 420ksps  
SAMPLE  
200  
300  
2
µA  
µA  
REF  
I
REF  
Shutdown mode  
DIGITAꢀ INPUTL AND OUTPUTL  
Input Voltage High  
V
4.0  
V
V
IH  
Input Voltage Low  
V
0.8  
1
IL  
Input Hysteresis  
V
HYS  
200  
0.1  
15  
mV  
µA  
pF  
V
Input Leakage Current  
Input Capacitance  
I
Iꢁ  
V
= 0 or V  
DD  
Iꢁ  
C
Iꢁ  
OL  
OH  
Output Voltage Low  
Output Voltage High  
V
I
I
= 1.6mA  
0.4  
1
SIꢁK  
V
= 1mA  
V
- 0.5  
V
SOURCE  
DD  
Three-State Leakage Current  
Three-State Output Capacitance  
POWER REQUIREMENTL  
Analog Supply Voltage  
I
0.1  
15  
µA  
pF  
CS = V  
CS = V  
LEAKAGE  
DD  
DD  
C
OUT  
V
DD  
4.5  
5.5  
3.6  
3.1  
1.2  
0.8  
10  
V
Internal reference  
External reference  
Internal reference  
External reference  
3.3  
2.8  
1.0  
0.5  
2
Operating mode,  
= 420ksps  
f
SAMPLE  
mA  
DD  
Positive Supply Current  
Power-Supply Rejection  
I
Standby mode  
Shutdown mode  
µA  
PSR  
V
DD  
= 5V 10ꢀ, full-scale input  
0.3  
0.9  
mV  
_______________________________________________________________________________________  
3
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
TIMING CHARACTERILTICL  
(V  
T
= +5V 10ꢀ, COM = GꢁD, REFADꢂ = V , V  
= +2.5V, 4.7µF capacitor at REF pin, f  
= 7.6MHz (50ꢀ duty cycle),  
CLK  
DD  
DD  
REF  
= T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
MAX  
A
MIꢁ  
PARAMETER  
LYMBOꢀ  
CONDITIONL  
MIN  
TYP  
MAX  
UNITL  
ns  
CLK Period  
t
132  
40  
40  
40  
0
CP  
CH  
CLK Pulse Width High  
t
ns  
CLK Pulse Width Low  
t
ns  
CL  
DS  
t
t
ns  
Data Valid to WR Rise Time  
WR Rise to Data Valid Hold Time  
WR to CLK Fall Setup Time  
CLK Fall to WR Hold Time  
CS to CLK or WR Setup Time  
CLK or WR to CS Hold Time  
CS Pulse Width  
ns  
DH  
t
t
60  
40  
40  
0
ns  
CWS  
ns  
CWH  
t
ns  
CSWS  
t
ns  
CSWH  
t
100  
60  
10  
10  
10  
ns  
CS  
t
ns  
WR Pulse Width (ꢁote 8)  
CS Rise to Output Disable  
RD Rise to Output Disable  
RD Fall to Output Data Valid  
RD Fall to INT High Delay  
CS Fall to Output Data Valid  
WR  
t
TC  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
C
LOAD  
= 20pF, Figure 1  
60  
40  
ns  
t
TR  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
= 20pF, Figure 1  
ns  
t
50  
ns  
DO  
t
50  
ns  
IꢁT1  
t
100  
ns  
DO2  
Note 1: Tested at V  
= +5V, COM = GꢁD, unipolar single-ended input mode.  
DD  
Note 2: Relative accuracy is the deviation of the analog value at any code from its theoretical value after offset and gain errors have  
been removed.  
Note 3: Offset nulled.  
Note 4: On channel is grounded; sine wave applied to off channels.  
Note .: Conversion time is defined as the number of clock cycles times the clock period; clock has a 50ꢀ duty cycle.  
Note 6: Input voltage range referenced to negative input. The absolute range for the analog inputs is from GꢁD to V  
Note 7: External load should not change during conversion for specified accuracy.  
.
DD  
Note 8: When bit 5 is set low for internal acquisition, WR must not return low until after the first falling clock edge of the conversion.  
V
DD  
3k  
DOUT  
DOUT  
C
LOAD  
20pF  
C
LOAD  
20pF  
3kΩ  
a) High-Z to V and V to V  
OH  
b) High-Z to V and V to V  
OL  
OH  
OL  
OL  
OH  
Figure 1. Load Circuits for Enable/Disable Times  
4
_______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics  
(V  
= +5V, V  
= +2.500V, f  
= 7.6MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
REF  
CLK  
L
A
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
SUPPLY CURRENT  
vs. SAMPLE FREQUENCY  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
0.5  
0.5  
0.4  
10,000  
1000  
100  
10  
0.4  
0.3  
WITH INTERNAL REFERENCE  
0.3  
0.2  
0.2  
0.1  
0.1  
0
0
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
WITH EXTERNAL REFERENCE  
0
1k  
0
1000  
2000  
3000  
4000  
5000  
1
10k 100k  
0
1000  
2000  
3000  
4000  
5000  
0.1  
10  
100  
1M  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
f
(Hz)  
SAMPLE  
SUPPLY CURRENT vs. SUPPLY VOLTAGE  
STANDBY CURRENT vs. SUPPLY VOLTAGE  
SUPPLY CURRENT vs. TEMPERATURE  
2.2  
2.1  
2.0  
990  
980  
970  
960  
950  
940  
930  
2.3  
2.2  
2.1  
2.0  
1.9  
1.8  
1.7  
R =   
R = ∞  
L
L
CODE = 101010100000  
CODE = 101010100000  
1.9  
1.8  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
V
V
TEMPERATURE (°C)  
DD  
DD  
POWER-DOWN CURRENT  
vs. SUPPLY VOLTAGE  
POWER-DOWN CURRENT  
vs. TEMPERATURE  
STANDBY CURRENT vs. TEMPERATURE  
3.0  
2.5  
2.0  
1.5  
1.0  
990  
980  
970  
960  
950  
940  
930  
2.2  
2.1  
2.0  
1.9  
1.8  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DD  
_______________________________________________________________________________________  
.
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Characteristics (continued)  
(V  
= +5V, V  
= +2.500V, f  
= 7.6MHz, C = 20pF, T = +25°C, unless otherwise noted.)  
DD  
REF  
CLK L A  
REFERENCE VOLTAGE  
vs. TEMPERATURE  
INTERNAL REFERENCE VOLTAGE  
vs. SUPPLY VOLTAGE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
2.53  
2.53  
1.0  
0.5  
0
2.52  
2.51  
2.50  
2.49  
2.48  
2.52  
2.51  
2.50  
2.49  
2.48  
-0.5  
-1.0  
-40  
-15  
10  
35  
60  
85  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
TEMPERATURE (°C)  
V
V
DD  
DD  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
OFFSET ERROR vs. TEMPERATURE  
2
1
0
2.0  
1.5  
1.0  
0.5  
0
2
1
0
-1  
-2  
-1  
-2  
4.50  
4.75  
5.00  
(V)  
5.25  
5.50  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
V
TEMPERATURE (°C)  
DD  
TEMPERATURE (°C)  
FFT PLOT  
20  
0
V
f
= 5V  
DD  
= 50kHz  
IN  
f
= 400ksps  
SAMPLE  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
0
200  
400  
600  
800  
1000  
FREQUENCY (kHz)  
6
_______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX1294  
MAX1296  
1
2
1
2
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INT  
Three-State Digital Output (D9)  
Three-State Digital Output (D8)  
Three-State Digital I/O Line (D7)  
Three-State Digital I/O Line (D6)  
Three-State Digital I/O Line (D5)  
Three-State Digital I/O Line (D4)  
Three-State Digital I/O Line (D3)  
Three-State Digital I/O Line (D2)  
Three-State Digital I/O Line (D1)  
Three-State Digital I/O Line (D0)  
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
10  
11  
INT goes low when the conversion is complete and output data is ready.  
Active-Low Read Select. If CS is low, a falling edge on RD enables the read  
operation on the data bus.  
12  
12  
RD  
Active-Low Write Select. When CS is low in the internal acquisition mode, a rising  
edge on WR latches in configuration data and starts an acquisition plus a conver-  
sion cycle. When CS is low in external acquisition mode, the first rising edge on WR  
ends acquisition and starts a conversion.  
13  
13  
WR  
Clock Input. In external clock mode, drive CLK with a TTL/CMOS-compatible clock.  
14  
15  
14  
15  
CLK  
In internal clock mode, connect this pin to either V  
or GꢁD.  
DD  
Active-Low Chip Select. When CS is high, digital outputs (INT, D11–D0) are high  
impedance.  
CS  
16  
17  
18  
19  
20  
21  
16  
17  
CH5  
CH4  
CH3  
CH2  
CH1  
CH0  
Analog Input Channel 5  
Analog Input Channel 4  
Analog Input Channel 3  
Analog Input Channel 2  
Analog Input Channel 1  
Analog Input Channel 0  
Ground Reference for Analog Inputs. Sets zero-code voltage in single-ended mode  
and must be stable to 0.5 LSB during conversion.  
22  
23  
18  
19  
COM  
GꢁD  
Analog and Digital Ground  
Bandgap Reference Output/Bandgap Reference Buffer Input. Bypass to GꢁD with  
24  
20  
REFADꢂ  
a 0.01µF capacitor. When using an external reference, connect REFADꢂ to V  
to  
DD  
disable the internal bandgap reference.  
_______________________________________________________________________________________  
7
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Pin Description (continued)  
PIN  
NAME  
FUNCTION  
MAX1294  
MAX1296  
Bandgap Reference Buffer Output/External Reference Input. Add a 4.7µF capacitor  
to GꢁD when using the internal reference.  
25  
21  
REF  
26  
27  
28  
22  
23  
24  
V
Analog +5V Power Supply. Bypass with a 0.1µF capacitor to GꢁD.  
Three-State Digital Output (D11)  
DD  
D11  
D10  
Three-State Digital Output (D10)  
REF  
T/H  
REFADJ  
17kΩ  
1.22V  
REFERENCE  
A =  
V
2.05  
(CH5)  
(CH4)  
(CH3)  
(CH2)  
CH1  
ANALOG  
INPUT  
MULTIPLEXER  
CHARGE REDISTRIBUTION  
12-BIT DAC  
COMP  
CH0  
12  
SUCCESSIVE-  
APPROXIMATION  
REGISTER  
COM  
CLK  
CLOCK  
CS  
WR  
RD  
CONTROL LOGIC  
&
MAX1294  
MAX1296  
LATCHES  
INT  
V
DD  
12  
THREE-STATE, BIDIRECTIONAL  
I/O INTERFACE  
GND  
D0D11  
12-BIT DATA BUS  
( ) ARE FOR MAX1294 ONLY.  
Figure 2. Simplified Functional Diagram  
track/hold (T/H) stage to convert an analog input signal to  
a 12-bit digital output. This output format provides easy  
interface to standard microprocessors (µPs). Figure 2  
shows the simplified internal architecture of the MAX1294/  
MAX1296.  
_______________Detailed Description  
Converter Operation  
The MAX1294/MAX1296 ADCs use a successive-approx-  
imation (SAR) conversion technique and an input  
8
_______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
tial mode, Iꢁ+ and Iꢁ- are selected from analog input  
pairs (Table 3) and are internally switched to either of  
the analog inputs. This configuration is pseudo-differen-  
tial to the effect that only the signal at Iꢁ+ is sampled.  
The return side (Iꢁ-) must remain stable within 0.5  
LSB ( 0.1 LSB for best performance) with respect to  
GꢁD during a conversion. To accomplish this, connect  
a 0.1µF capacitor from Iꢁ- (the selected input) to GꢁD.  
Single-Ended and  
Pseudo-Differential Operation  
The sampling architecture of the ADCs’ analog com-  
parator is illustrated in the equivalent input circuits of  
Figure 3. In single-ended mode, Iꢁ+ is internally  
switched to channels CH0–CH5 for the MAX1294  
(Figure 3a) and to CH0–CH1 for the MAX1296 (Figure  
3b), while Iꢁ- is switched to COM (Table 2). In differen-  
12-BIT CAPACITIVE DAC  
12-BIT CAPACITIVE DAC  
V
V
REF  
REF  
COMPARATOR  
COMPARATOR  
INPUT  
MUX  
INPUT  
MUX  
C
C
HOLD  
HOLD  
ZERO  
ZERO  
+
+
CH0  
CH1  
CH0  
CH1  
12pF  
12pF  
R
R
IN  
IN  
800Ω  
800Ω  
CH2  
CH3  
CH4  
CH5  
C
C
SWITCH  
SWITCH  
HOLD  
HOLD  
TRACK  
TRACK  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
AT THE SAMPLING INSTANT,  
THE MUX INPUT SWITCHES  
FROM THE SELECTED IN+  
CHANNEL TO THE SELECTED  
IN- CHANNEL.  
T/H  
SWITCH  
T/H  
SWITCH  
COM  
COM  
SINGLE-ENDED MODE: IN+ = CH0CH5, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF  
CH0/CH1 AND CH2/CH3, AND CH4/CH5  
SINGLE-ENDED MODE: IN+ = CH0CH1, IN- = COM.  
DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIR  
CH0/CH1.  
Figure 3a. MAX1294 Simplified Input Structure  
Figure 3b. MAX1296 Simplified Input Structure  
Tꢁble 10 Contaol-Bꢂte Functionꢁl Descaiption  
BIT  
NAME  
FUNCTIONAꢀ DELCRIPTION  
PD1 and PD± select the various clock and power-down modes.  
±
±
1
1
±
1
±
1
Full Power-Down Mode. Clock mode is unaffected.  
D7, D6  
PD1, PD0  
Standby Power-Down Mode. Clock mode is unaffected.  
ꢁormal Operation Mode. Internal clock mode selected.  
ꢁormal Operation Mode. External clock mode selected.  
ACQMOD = 0: Internal Acquisition Mode  
ACQMOD = 1: External Acquisition Mode  
D5  
D4  
ACQMOD  
SGL/DIF = 0: Pseudo-Differential Analog Input Mode  
SGL/DIF = 1: Single-Ended Analog Input Mode  
In single-ended mode, input signals are referred to COM. In pseudo-differential mode, the voltage  
difference between two channels is measured (see Tables 2, 4).  
SGL/DIF  
UꢁI/BIP = 0: Bipolar Mode  
UꢁI/BIP = 1: Unipolar Mode  
In unipolar mode, an analog input signal from 0V to V  
D3  
UꢁI/BIP  
can be converted; in bipolar mode, the  
REF  
signal can range from -V /2 to +V  
REF  
/2.  
REF  
Address bits A2, A1, A0 select which of the 6/2 (MAX1294/MAX1296) channels is to be converted  
(see Tables 2, 3).  
D2, D1, D0  
A2, A1, A0  
_______________________________________________________________________________________  
9
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble 20 Chꢁnnel Lelection foa Lingle-Ended Opeaꢁtion (LGꢀ/DIF = 1)  
A2  
A1  
A±  
CH±  
CH1  
CH2*  
CH3*  
CH4*  
CH.*  
COM  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
+
-
-
-
-
-
-
+
+
+
+
+
*Channels CH2–CH5 apply to MAX1294 only.  
Tꢁble 30 Chꢁnnel Lelection foa Pseudo-Diffeaentiꢁl Opeaꢁtion (LGꢀ/DIF = ±)  
A2  
0
A1  
0
A±  
0
CH±  
CH1  
CH2*  
CH3*  
CH4*  
CH.*  
+
0
0
1
+
0
1
0
+
-
0
1
1
+
1
0
0
+
-
-
1
0
1
+
*Channels CH2–CH5 apply to MAX1294 only.  
During the acquisition interval, the channel selected as  
the positive input (Iꢁ+) charges capacitor C . At  
If an analog input voltage exceeds the supplies by  
more than 50mV, limit the forward-bias input current to  
4mA.  
HOLD  
the end of the acquisition interval, the T/H switch  
opens, retaining charge on C  
signal at Iꢁ+.  
as a sample of the  
HOLD  
Track/Hold  
The MAX1294/MAX1296 T/H stage enters its tracking  
mode on the rising edge of WR. In external acquisition  
mode, the part enters its hold mode on the next on ris-  
ing edge of WR. In internal acquisition mode, the part  
enters its hold mode on the fourth falling edge of clock  
after writing the control byte. ꢁote that, in internal clock  
mode, this is approximately 1µs after writing the control  
byte.  
The conversion interval begins with the input multiplex-  
er switching C from the positive input (Iꢁ+) to the  
HOLD  
negative input (Iꢁ-). This unbalances node ZERO at the  
comparator’s positive input. The capacitive digital-to-  
analog converter (DAC) adjusts during the remainder of  
the conversion cycle to restore node ZERO to 0V within  
the limits of 12-bit resolution. This action is equivalent to  
transferring a 12pF [(V + - V -)] charge from C  
HOLD  
Iꢁ  
Iꢁ  
In single-ended operation, Iꢁ- is connected to COM  
and the converter samples the positive “+” input. In  
pseudo-differential operation, Iꢁ- connects to the nega-  
to the binary-weighted capacitive DAC, which in turn  
forms a digital representation of the analog input signal.  
Analog Input Protection  
Internal protection diodes, which clamp the analog  
tive input “-”, and the difference of (Iꢁ+) - (Iꢁ-) is sam-  
|
|
pled. At the beginning of the next conversion, the  
input to V  
and GꢁD, allow each input channel to  
positive input connects back to Iꢁ+ and C  
charges to the input signal.  
DD  
HOLD  
swing within (GꢁD - 300mV) to (V  
+ 300mV) without  
DD  
damage. However, for accurate conversions near full  
scale, both inputs must not exceed (V  
less than (GꢁD - 50mV).  
The time required for the T/H stage to acquire an input  
signal depends on how quickly its input capacitance is  
charged. If the input signal’s source impedance is high,  
+ 50mV) or be  
DD  
1± ______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
the acquisition time lengthens and more time must be  
allowed between conversions. The acquisition time,  
ACQ  
the signal, and is also the minimum time required for  
the signal to be acquired. Calculate this with the follow-  
ing equation:  
ends (Figure 4). ꢁote that, when the internal acquisition  
is combined with the internal clock, the aperture jitter  
can be as high as 200ps. Internal clock users wishing  
to achieve the 50ps jitter specification should always  
use external acquisition mode.  
t
, is the maximum time the device takes to acquire  
External Acquisition  
Use external acquisition mode for precise control of the  
sampling aperture and/or dependent control of acquisi-  
tion and conversion times. The user controls acquisition  
and start-of-conversion with two separate write pulses.  
The first pulse, written with ACQMOD = 1, starts an  
acquisition interval of indeterminate length. The second  
write pulse, written with ACQMOD = 0 (all other bits in  
control byte unchanged), terminates acquisition and  
starts conversion on WR rising edge (Figure 5).  
t
= 9 (R + R ) C  
S Iꢁ Iꢁ  
ACQ  
where R is the source impedance of the input signal,  
S
R
(800) is the input resistance, and C (12pF) is  
Iꢁ  
Iꢁ  
the ADC’s input capacitance. Source impedances  
below 3khave no significant impact on the MAX1294/  
MAX1296’s AC performance.  
Higher source impedances can be used if a 0.01µF  
capacitor is connected to the individual analog inputs.  
Together with the input impedance, this capacitor  
forms an RC filter, limiting the ADC’s signal bandwidth.  
The address bits for the input multiplexer must have the  
same values on the first and second write pulse.  
Power-down mode bits (PD0, PD1) can assume new  
values on the second write pulse (see Power-Down  
Modes section). Changing other bits in the control byte  
corrupts the conversion.  
Input Bandwidth  
The MAX1294/MAX1296 T/H stage offers a 350kHz full-  
linear and a 6MHz full-power bandwidth. This makes it  
possible to digitize high-speed transients and measure  
periodic signals with bandwidths exceeding the ADC’s  
sampling rate by using undersampling techniques. To  
avoid high-frequency signals being aliased into the fre-  
quency band of interest, anti-alias filtering is recom-  
mended.  
Reading a Conversion  
A standard interrupt signal INT is provided to allow the  
MAX1294/MAX1296 to flag the µP when the conversion  
has ended and a valid result is available. INT goes low  
when the conversion is complete and the output data is  
ready (Figures 4 and 5). It returns high on the first read  
cycle or if a new control byte is written.  
Starting a Conversion  
Initiate a conversion by writing a control byte, which  
selects the multiplexer channel and configures the  
MAX1294/MAX1296 for either unipolar or bipolar opera-  
tion. A write pulse (WR + CS) can either start an acqui-  
sition interval or initiate a combined acquisition plus  
conversion. The sampling interval occurs at the end of  
the acquisition interval. The ACQMOD (acquisition  
mode) bit in the input control byte (Table 1) offers two  
options for acquiring the signal: an internal and an  
external acquisition. The conversion period lasts for 13  
clock cycles in either the internal or external clock or  
acquisition mode. Writing a new control byte during a  
conversion cycle aborts the conversion and starts a  
new acquisition interval.  
Selecting Clock Mode  
The MAX1294/MAX1296 operate with either an internal  
or an external clock. Control bits D6 and D7 select  
either internal or external clock mode. The part retains  
the last-requested clock mode if a power-down mode is  
selected in the current input word. For both internal and  
external clock mode, internal or external acquisition  
can be used. At power-up, the MAX1294/MAX1296  
enter the default external clock mode.  
Internal Clock Mode  
Select internal clock mode to release the µP from the  
burden of running the SAR conversion clock. Bit D7 of  
the control byte must be set to 1 and bit D6 must be set  
to 0. The internal clock frequency is then selected,  
resulting in a conversion time of 3.6µs. When using the  
internal clock mode, tie the CLK pin either high or low  
to prevent the pin from floating.  
Internal Acquisition  
Select internal acquisition by writing the control byte  
with the ACQMOD bit cleared (ACQMOD = 0). This  
causes the write pulse to initiate an acquisition interval  
whose duration is internally timed. Conversion starts  
when this acquisition interval (three external clock  
cycles or approximately 1µs in internal clock mode)  
______________________________________________________________________________________ 11  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
t
CS  
CS  
t
t
t
CSWS  
ACQ  
CONV  
t
t
CSWH  
WR  
WR  
t
DH  
t
DS  
CONTROL  
BYTE  
D7D0  
ACQMOD = "0"  
HIGH-Z  
HIGH-Z  
HIGH-Z  
INT  
RD  
t
INT1  
t
t
D0  
TR  
HIGH-Z  
DOUT  
VALID DATA  
Figure 4. Conversion Timing Using Internal Acquisition Mode  
t
CS  
CS  
t
CSWS  
t
t
CONV  
ACQ  
t
CSHW  
t
WR  
WR  
t
DH  
t
t
OH  
DS  
CONTROL  
BYTE  
ACQMOD = "1"  
CONTROL  
BYTE  
ACQMOD = "0"  
D7D0  
INT  
HIGH-Z  
HIGH-Z  
t
INT1  
RD  
t
t
TR  
D0  
HIGH-Z  
HIGH-Z  
VALID DATA  
DOUT  
Figure 5. Conversion Timing Using External Acquisition Mode  
12 ______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
External Clock Mode  
To select external clock mode, bits D6 and D7 of the  
control byte must be set to 1. Figure 6 shows the clock  
and WR timing relationship for internal (Figure 6a) and  
external (Figure 6b) acquisition modes with an external  
clock. For proper operation, a 100kHz to 7.6MHz clock  
frequency with 30ꢀ to 70ꢀ duty cycle is recommended.  
Operating the MAX1294/MAX1296 with clock frequen-  
cies lower than 100kHz is not recommended because  
the resulting voltage droop across the hold capacitor in  
the T/H stage degrades performance.  
Digital Interface  
The input and output data are multiplexed on a three-  
state parallel interface (I/O) that can easily be inter-  
faced with standard µPs. The signals CS, WR, and RD  
control the write and read operations. CS represents  
the chip-select signal, which enables a µP to address  
the MAX1294/MAX1296 as an I/O port. When high, CS  
disables the CLK, WR, and RD inputs and forces the  
interface into a high-impedance (high-Z) state.  
ACQUISITION STARTS  
CONVERSION STARTS  
ACQUISITION ENDS  
t
CP  
CLK  
WR  
t
t
CL  
CH  
t
CWS  
WR GOES HIGH WHEN CLK IS HIGH  
ACQMOD = "0"  
ACQUISITION STARTS  
t
CWH  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
WR  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS LOW  
Figure 6a. External Clock and WR Timing (Internal Acquisition Mode)  
ACQUISITION STARTS  
ACQUISITION ENDS  
CONVERSION STARTS  
CLK  
t
CWS  
t
DH  
WR  
ACQMOD = "1"  
ACQMOD = "0"  
WR GOES HIGH WHEN CLK IS HIGH  
ACQUISITION ENDS  
ACQUISITION STARTS  
CONVERSION STARTS  
CLK  
WR  
t
CWH  
t
DH  
ACQMOD = "1"  
WR GOES HIGH WHEN CLK IS LOW  
ACQMOD = "0"  
Figure 6b. External Clock and WR Timing (External Acquisition Mode)  
______________________________________________________________________________________ 13  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble 40 Contaol-Bꢂte Foamꢁt  
D7  
(MLB)  
D±  
(ꢀLB)  
D6  
D.  
D4  
D3  
D2  
D1  
PD1  
PD0  
ACQMOD  
A2  
A1  
A0  
SGL/DIF  
UꢁI/BIP  
Input Format  
The control bit sequence is latched into the device on  
pins D7–D0 during a write command. Table 4 shows  
the control-byte format.  
V
= +5V  
DD  
50kΩ  
50kΩ  
MAX1294  
MAX1296  
Output Data Format  
The 12-bit-wide output format for both the MAX1294/  
MAX1296 is binary in unipolar mode and two’s comple-  
ment in bipolar mode. CS, RD, WR, INT, and the 12 bits  
of output data can interface directly to a 16-bit data bus.  
When reading the output data, CS and RD must be low.  
330kΩ  
REFADJ  
REF  
4.7µF  
0.01µF  
Applications Information  
Power-On Reset  
When power is first applied, internal power-on reset cir-  
cuitry activates the MAX1294/MAX1296 in external clock  
mode and sets INT high. After the power supplies stabi-  
lize, the internal reset time is 10µs; no conversions  
should be attempted during this phase. When using the  
Figure 7. Reference Adjustment with External Potentiometer  
Using the REFADꢂ input makes buffering the external  
reference unnecessary. The REFADꢂ input impedance  
is typically 17k.  
When applying an external reference to REF, disable the  
internal reference buffer by connecting REFADꢂ to V  
internal reference, 500µs is required for V  
to stabilize.  
REF  
.
DD  
Internal and External Reference  
The MAX1294/MAX1296 can be used with an internal  
or external reference voltage. An external reference  
can be connected directly to REF or REFADꢂ.  
The DC input resistance at REF is 25k. Therefore, an  
external reference at REF must deliver up to 200µA DC  
load current during a conversion and have an output  
impedance less than 10. If the reference has higher  
output impedance or is noisy, bypass it close to the REF  
pin with a 4.7µF capacitor.  
An internal buffer is designed to provide +2.5V at REF for  
both devices. The internally trimmed +1.22V reference is  
buffered with a +2.05V/V gain.  
Power-Down Modes  
To save power, place the converter in a low-current  
shutdown state between conversions. Select standby  
mode or shutdown mode using bits D6 and D7 of the  
control byte (Tables 1 and 4). In both software power-  
down modes, the parallel interface remains active, but  
the ADC does not convert.  
Internal Reference  
The full-scale range with the internal reference is +2.5V  
with unipolar inputs and 1.25V with bipolar inputs. The  
internal reference buffer allows for small adjustments  
( 100mV) in the reference voltage (Figure 7).  
Note: The reference buffer must be compensated with  
an external capacitor (4.7µF min) connected between  
REF and GꢁD to reduce reference noise and switching  
spikes from the ADC. To further minimize reference  
noise, connect a 0.01µF capacitor between REFADꢂ  
and GꢁD.  
Standby Mode  
While in standby mode, the supply current is typically  
1mA. The part powers up on the next rising edge of WR  
and is ready to perform conversions. This quick turn-on  
time allows the user to realize significantly reduced  
power consumption for conversion rates below  
420ksps.  
External Reference  
With the MAX1294/MAX1296, an external reference can  
be placed at either the input (REFADꢂ) or the output  
(REF) of the internal-reference buffer amplifier.  
14 ______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Tꢁble .0 Full Lcꢁle ꢁnd Zeao Lcꢁle foa Unipolꢁa ꢁnd Bipolꢁa Opeaꢁtion  
UNIPOꢀAR MODE  
BIPOꢀAR MODE  
Positive Full Scale  
Full Scale  
Zero Scale  
V
REF  
+ COM  
V
/2 + COM  
COM  
REF  
COM  
Zero Scale  
ꢁegative Full Scale  
-V  
/2 + COM  
REF  
OUTPUT CODE  
REF  
OUTPUT CODE  
FULL-SCALE  
TRANSITION  
FS  
FS = REF + COM  
ZS = COM  
=
+ COM  
+ COM  
011 . . . 111  
011 . . . 110  
111 . . . 111  
2
111 . . . 110  
ZS = COM  
-REF  
2
-FS =  
000 . . . 010  
000 . . . 001  
000 . . . 000  
100 . . . 010  
100 . . . 001  
100 . . . 000  
REF  
4096  
REF  
4096  
1 LSB =  
1 LSB =  
111 . . . 111  
111 . . . 110  
111 . . . 101  
011 . . . 111  
011 . . . 110  
011 . . . 101  
100 . . . 001  
100 . . . 000  
000 . . . 001  
000 . . . 000  
COM*  
INPUT VOLTAGE (LSB)  
0
1
2
FS  
- FS  
+FS - 1 LSB  
2048  
INPUT VOLTAGE (LSB)  
(COM)  
FS - 3/2 LSB  
*COM V / 2  
REF  
Figure 9. Bipolar Transfer Functions  
Figure 8. Unipolar Transfer Functions  
Shutdown Mode  
unipolar input/output (I/O) transfer function, and Figure 9  
shows the bipolar I/O transfer function. Code transitions  
occur halfway between successive-integer LSB values.  
Shutdown mode turns off all chip functions that draw  
quiescent current, reducing the typical supply current  
to 2µA immediately after the current conversion is com-  
pleted. A rising edge on WR causes the MAX1294/  
MAX1296 to exit shutdown mode and return to normal  
operation. To achieve full 12-bit accuracy with a 4.7µF  
reference bypass capacitor, 500µs is required after  
power-up. Waiting 500µs in standby mode, instead of  
in full-power mode, can reduce power consumption by  
a factor of three or more. When using an external refer-  
ence, only 50µs is required after power-up. Enter  
standby mode by performing a dummy conversion with  
the control byte specifying standby mode.  
Output coding is binary, with 1 LSB = (V  
/ 4096).  
REF  
Maximum Sampling Rate/  
Achieving 475ksps  
When running at the maximum clock frequency of  
7.6MHz, the specified throughput of 420ksps is  
achieved by completing a conversion every 18 clock  
cycles: 1 write cycle, 3 acquisition cycles, 13 conver-  
sion cycles, and 1 read cycle. This assumes that the  
results of the last conversion are read before the next  
control byte is written. It is possible to achieve higher  
throughputs, up to 475ksps, by first writing a control  
byte to begin the acquisition cycle of the next conver-  
sion, and then reading the results of the previous con-  
version from the bus. This technique (Figure 10) allows  
a conversion to be completed every 16 clock cycles.  
ꢁote that the switching of the data bus during acquisi-  
Note: Bypass capacitors larger than 4.7µF between  
REF and GꢁD result in longer power-up delays.  
Transfer Function  
Table 5 shows the full-scale voltage ranges for unipolar  
and bipolar modes. Figures 8 depicts the nominal  
______________________________________________________________________________________ 1.  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
CLK  
WR  
RD  
CONTROL  
WORD  
D11–  
D0  
D11D0  
CONTROL WORD  
CONVERSION  
D7D0  
STATE  
ACQUISITION  
ACQUISITION  
SAMPLING INSTANT  
Figure 10. Timing Diagram for Fastest Conversion  
tion or conversion can cause additional supplynoise,  
which can make it difficult to achieve true 12-bit perfor-  
mance.  
SUPPLIES  
Layout, Grounding, and Bypassing  
For best performance, use printed circuit boards. Wire-  
wrap configurations are not recommended, since the  
layout should ensure proper separation of analog and  
digital traces. Do not run analog and digital lines paral-  
lel to each other, and don’t lay out digital signal paths  
underneath the ADC package. Use separate analog  
and digital PC board ground sections with only one star  
point (Figure 11) connecting the two ground systems  
(analog and digital). For lowest noise operation, ensure  
the ground return to the star ground’s power supply is  
low impedance and as short as possible. Route digital  
signals far away from sensitive analog and reference  
inputs.  
+5V  
+5V  
GND  
4.7µF  
0.1µF  
R* = 5Ω  
V
GND  
COM  
+5V  
DGND  
DD  
DIGITAL  
CIRCUITRY  
MAX1294  
MAX1296  
High-frequency noise in the power supply, V , could  
DD  
*OPTIONAL  
impair operation of the ADC’s fast comparator. Bypass  
Figure 11. Power-Supply and Grounding Connections  
V
to the star ground with a network of two parallel  
DD  
capacitors, 0.1µF and 4.7µF, located as close to the  
MAX1294/MAX1296’s power-supply pin as possible.  
Minimize capacitor lead length for best supply-noise  
rejection and add an attenuation resistor (5) if the  
power supply is extremely noisy.  
16 ______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SIꢁAD) is the ratio of the  
Definitions  
Integral Nonlinearity  
Integral nonlinearity (IꢁL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nullified. IꢁL for  
the MAX1294/MAX1296 is measured using the end-  
point method.  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
SIꢁAD (dB) = 20 x log (Signal  
/ ꢁoise  
)
RMS  
RMS  
Effective Number of Bits  
Effective number of bits (EꢁOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the effective number  
of bits as follows:  
Differential Nonlinearity  
Differential nonlinearity (DꢁL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DꢁL error specification of less than 1 LSB guarantees  
no missing codes and a monotonic transfer function.  
EꢁOB = (SIꢁAD - 1.76) / 6.02  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
Aꢂ  
the time between the samples.  
Aperture Delay  
2
2
2
2
Aperture delay (t ) is the time between the rising  
AD  
THD = 20 × log  
V
+ V + V + V  
/ V  
1
2
3
4
5
edge of the sampling clock and the instant when an  
actual sample is taken.  
where V1 is the fundamental amplitude, and V2 through  
V5 are the amplitudes of the 2nd- through 5th-order  
harmonics.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital sam-  
ples, signal-to-noise ratio (SꢁR) is the ratio of the full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The ideal, theoretical minimum ana-  
log-to-digital noise is caused by quantization error only  
and results directly from the ADC’s resolution (ꢁ bits):  
Spurious-Free Dynamic Range  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
SꢁR = (6.02 x ꢁ + 1.76)dB  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SꢁR is calculated by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
Chip Information  
TRAꢁSISTOR COUꢁT: 5781  
SUBSTRATE COꢁꢁECTED TO GꢁD  
______________________________________________________________________________________ 17  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Typical Operating Circuits  
CLK  
CLK  
+5V  
+5V  
MAX1294  
V
DD  
MAX1296  
V
DD  
+2.5V  
+2.5V  
CS  
WR  
RD  
REF  
CS  
WR  
RD  
REF  
µP  
CONTROL  
INPUTS  
µP  
CONTROL  
INPUTS  
0.1µF  
0.1µF  
REFADJ  
INT  
REFADJ  
4.7µF  
4.7µF  
OUTPUT STATUS  
INT  
D11  
D10  
D9  
OUTPUT STATUS  
D11  
D10  
D9  
D8  
D8  
D7  
D6  
D7  
D6  
CH5  
CH4  
D5  
D4  
D3  
D5  
D4  
D3  
CH3  
CH2  
CH1  
ANALOG  
INPUTS  
CH1  
D2  
D2  
ANALOG  
INPUTS  
CH0  
CH0  
D1  
D0  
D1  
D0  
COM  
COM  
GND  
GND  
µP DATA BUS  
µP DATA BUS  
Pin Configurations (continued)  
TOP VIEW  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
1
2
3
4
5
6
7
8
9
28 D10  
27 D11  
26  
V
DD  
25 REF  
24 REFADJ  
23 GND  
22 COM  
21 CH0  
20 CH1  
19 CH2  
18 CH3  
17 CH4  
16 CH5  
15 CS  
MAX1294  
D0 10  
INT 11  
RD 12  
WR 13  
CLK 14  
QLOP  
18 ______________________________________________________________________________________  
420ksps, +5V, 6-/2-Channel, 12-Bit ADCs  
with +2.5V Reference and Parallel Interface  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www0mꢁxim-ic0com/pꢁckꢁges.)  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600_____________________19  
© 2002 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY