MAX1323 [MAXIM]

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs;
MAX1323
型号: MAX1323
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

526ksps, Single-Channel, 14-Bit, Parallel-Interface ADCs

文件: 总20页 (文件大小:256K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3592; Rev 0; 2/05  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
General Description  
Features  
The MAX1319/MAX1323/MAX1327 are single-channel,  
14-bit, 526ksps analog-to-digital converters (ADCs) with  
2 ꢀLS ꢁIꢀ and 1 ꢀLS DIꢀ with no ꢂissing codesꢃ The  
MAX1323 has a 5ꢄ inpꢅt range with 16ꢃ5ꢄ Vaꢅlt-toler-  
ant inpꢅtsꢃ The MAX1327 has a 1ꢆꢄ inpꢅt range with  
16ꢃ5ꢄ Vaꢅlt-tolerant inpꢅts and the MAX1319 has a ꢆ to  
+5ꢄ inpꢅt range with 6ꢃꢆꢄ Vaꢅlt-tolerant inpꢅtsꢃ ꢇther  
Veatꢅres inclꢅde a 1ꢆMHz track/hold (T/H) inpꢅt band-  
width, internal clock, internal (+2ꢃ5ꢄ) or external (+2ꢃꢆꢄ  
to +3ꢃꢆꢄ) reVerence, and shꢅtdown ꢂodeꢃ  
14-Bit ADCs  
526ksps  
2 ꢀLB ꢁIꢀꢂ 1 ꢀLB DIꢀꢂ Iꢃ oissiꢄꢅ Cꢃꢆꢇs  
90ꢆBc LFDRꢂ -86ꢆBc THDꢂ 76.5ꢆB LꢁIADꢂ 77ꢆB  
LIR at 100kHz ꢁꢄput  
Fast 1.6µs Cꢃꢄvꢇrsiꢃꢄ Timꢇ  
Flꢇxiblꢇ ꢁꢄput Raꢄꢅꢇs  
0 tꢃ +5V (oAX1319)  
5V (oAX1323)  
10V (oAX1327)  
A 16ꢃ6MHz, 14-bit, parallel interVace provides the con-  
version resꢅlts and accepts digital conVigꢅration inpꢅtsꢃ  
Iꢃ Calibratiꢃꢄ Iꢇꢇꢆꢇꢆ  
These devices operate Vroꢂ a +4ꢃ75ꢄ to +5ꢃ25ꢄ analog  
sꢅpply and a separate +2ꢃ7ꢄ to +5ꢃ25ꢄ digital sꢅpply,  
and consꢅꢂe less than 35ꢂA total sꢅpply cꢅrrentꢃ For  
ꢂꢅltichannel applications, reVer to the MAX1316–  
MAX1318/MAX132ꢆ–MAX1322/MAX1324–MAX1326  
data sheetꢃ  
14-Bit Hiꢅh-Lpꢇꢇꢆ Parallꢇl ꢁꢄtꢇrfacꢇ  
ꢁꢄtꢇrꢄal ꢃr Extꢇrꢄal Clꢃck  
+2.5V ꢁꢄtꢇrꢄal Rꢇfꢇrꢇꢄcꢇ ꢃr +2.0V tꢃ +3.0V  
Extꢇrꢄal Rꢇfꢇrꢇꢄcꢇ  
+5V Aꢄalꢃꢅ Lupplyꢂ +3V tꢃ +5V Diꢅital Lupply  
32mA Aꢄalꢃꢅ Lupply Currꢇꢄt (typ)  
These devices coꢂe in a 48-pin TQFP package and  
operate over the extended -4ꢆ°C to +85°C teꢂpera-  
tꢅre rangeꢃ  
550µA Diꢅital Lupply Currꢇꢄt (typ)  
Lhutꢆꢃwꢄ aꢄꢆ Pꢃwꢇr-Laviꢄꢅ oꢃꢆꢇs  
48-Piꢄ TQFP Packaꢅꢇ (7mm x 7mm Fꢃꢃtpriꢄt)  
Applications  
ꢄibration and WaveVorꢂ Analysis  
Pin Configuration  
Data-Acqꢅisition Lysteꢂs  
TOP VIEW  
ꢁndꢅstrial Process Control and Aꢅtoꢂation  
AV  
1
2
36 D12  
35 D11  
34 D10  
33 D9  
32 D8  
31 D7  
30 D6  
29 D5  
DD  
Ordering Information/  
Selector Guide  
AGND  
AGND  
3
A
4
IN  
ꢁIPUT  
PKG  
I.C.  
MSV  
I.C.  
5
PART  
PꢁI-PACKAGE  
RAIGE (V)  
CODE  
6
MAX1319  
MAX1323  
MAX1327  
ꢆ to +5  
7
oAX1319ECM 48 TQFP  
oAX1323ECM 48 TQFP  
oAX1327ECM 48 TQFP  
C48-6  
C48-6  
C48-6  
I.C.  
8
5
I.C.  
D4  
D3  
D2  
D1  
9
28  
27  
26  
25  
1ꢆ  
I.C.  
10  
11  
12  
Iꢃtꢇ: All devices operate over the -4ꢆ°C to +85°C teꢂperatꢅre  
I.C.  
rangeꢃ  
I.C.  
TQFP  
Typical Operating Circuits appear at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
ABLOꢀUTE oAXꢁoUo RATꢁIGL  
Aꢄ to AGID ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to +6ꢄ  
REF+, CꢇM, REF- to AGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Aꢄ + ꢆꢃ3ꢄ)  
DD  
DD  
Dꢄ  
to DGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to +6ꢄ  
Dꢆ–D13 to DGID ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Dꢄ  
+ ꢆꢃ3ꢄ)  
DD  
DD  
AGID to DGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to +ꢆꢃ3ꢄ  
CHꢆ, ꢁꢃCꢃ to AGID (MAX1319)ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ 6ꢃꢆꢄ  
CHꢆ, ꢁꢃCꢃ to AGID (MAX1323/MAX1327)ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ 16ꢃ5ꢄ  
ꢁITCꢀK/EXTCLK to AGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Aꢄ + ꢆꢃ3ꢄ)  
EOC, EOLC, WR, ꢁꢃCꢃ2, RD,  
CS to DGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Dꢄ + ꢆꢃ3ꢄ)  
CꢇIꢄLT, CꢀK, LHDI,  
AꢀꢀꢇI to DGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Dꢄ + ꢆꢃ3ꢄ)  
MLꢄ, REF , REF to AGIDꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-ꢆꢃ3ꢄ to (Aꢄ + ꢆꢃ3ꢄ)  
Maxiꢂꢅꢂ Cꢅrrent into Any Pin Except Aꢄ , Dꢄ  
,
DD  
DD  
AGID, DGID ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ 5ꢆꢂA  
Continꢅoꢅs Power Dissipation (T = +7ꢆ°C)  
A
TQFP (derate 22ꢃ7ꢂW/°C above +7ꢆ°C)ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ1818ꢂW  
ꢇperating Teꢂperatꢅre Range ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-4ꢆ°C to +85°C  
Jꢅnction Teꢂperatꢅreꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ+15ꢆ°C  
Ltorage Teꢂperatꢅre Rangeꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ-65°C to +15ꢆ°C  
ꢀead Teꢂperatꢅre (soldering, 1ꢆs) ꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃꢃ+3ꢆꢆ°C  
DD  
DD  
DD  
ML  
DD  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL  
(Aꢄ  
= +5ꢄ, Dꢄ  
= ꢆꢃ1µF, C  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), C  
= C  
= ꢆꢃ1µF, C  
=
DD  
REF-  
DD  
REF  
REFML  
REF  
REFML  
REF+  
C
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF (MAX1319; ꢅnipolar device), MLꢄ =  
REF+-to-REF-  
CꢇM  
MLꢄ  
AGID (MAX1323/MAX1327; bipolar devices), V  
= 1ꢆMHz 5ꢆ% dꢅty, t  
, ꢅnless otherwise notedꢃ Typical valꢅes are at T = +25°Cꢃ)  
= 2ꢆꢆns, t  
= 1ꢆns, ꢁITCꢀK/EXTCLK = AGID  
QUꢁET  
CꢀK  
ACQ  
(external clock), LHDI = DGID, T = T  
to T  
A
MꢁI  
MAX A  
PARAoETER  
LTATꢁC PERFORoAICE (Iꢃtꢇ 1)  
Resolꢅtion  
LYoBOꢀ  
COIDꢁTꢁOIL  
oꢁI  
TYP  
oAX  
UIꢁTL  
I
14  
Sits  
ꢀLS  
ꢀLS  
ꢁntegral Ionlinearity  
ꢁIꢀ  
DIꢀ  
(Iote 2)  
ꢆꢃ8  
ꢆꢃ5  
2
1
DiVVerential Ionlinearity  
Io ꢂissing codes  
Unipolar device  
Sipolar devices  
Unipolar device  
Sipolar devices  
(Iote 3)  
33  
33  
ꢇVVset Error  
ꢇVVset DriVt  
ꢀLS  
4
ppꢂ/°C  
4
Gain Error  
1ꢆ  
3
49  
ꢀLS  
Gain Teꢂperatꢅre CoeVVicient  
ppꢂ/°C  
DYIAoꢁC PERFORoAICE (at f = 100kHzꢂ -0.4ꢆBFL)  
ꢁI  
Unipolar  
74ꢃ5  
75  
76  
76ꢃ5  
76ꢃꢆ  
76ꢃ5  
93  
Lignal-to-Ioise Ratio  
LIR  
dS  
dS  
Sipolar  
Unipolar  
Sipolar  
74ꢃ5  
75  
Lignal-to-Ioise and Distortion  
Ratio  
LꢁIAD  
Lpꢅrioꢅs Free Dynaꢂic Range  
Total Harꢂonic Distortion  
LFDR  
THD  
83  
dSc  
dSc  
-9ꢆ  
-83  
AIAꢀOG ꢁIPUTL (CH0–CH7)  
MAX1319  
MAX1323  
MAX1327  
+5  
+5  
ꢁnpꢅt ꢄoltage Range  
-5  
-1ꢆ  
+1ꢆ  
2
_______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL (cꢃꢄtiꢄuꢇꢆ)  
(Aꢄ  
= +5ꢄ, Dꢄ  
= ꢆꢃ1µF, C  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), C  
= C  
= ꢆꢃ1µF, C  
=
DD  
DD  
REF  
REFML  
REF  
REFML  
REF+  
C
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF (MAX1319; ꢅnipolar device), MLꢄ =  
REF-  
REF+-to-REF-  
CꢇM  
MLꢄ  
AGID (MAX1323/MAX1327; bipolar devices), V  
= 1ꢆMHz 5ꢆ% dꢅty, t  
, ꢅnless otherwise notedꢃ Typical valꢅes are at T = +25°Cꢃ)  
= 2ꢆꢆns, t  
= 1ꢆns, ꢁITCꢀK/EXTCLK = AGID  
QUꢁET  
CꢀK  
ACQ  
(external clock), LHDI = DGID, T = T  
to T  
A
MꢁI  
MAX A  
PARAoETER  
LYoBOꢀ  
COIDꢁTꢁOIL  
oꢁI  
-ꢆꢃ157  
-1ꢃ16  
-1ꢃ13  
TYP  
ꢆꢃ54  
-ꢆꢃ12  
ꢆꢃ29  
-ꢆꢃ87  
ꢆꢃ56  
-ꢆꢃ85  
7ꢃ58  
8ꢃ66  
14ꢃ26  
15  
oAX  
UIꢁTL  
= +5ꢄ  
= ꢆꢄ  
ꢆꢃ72  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
MAX1319  
= +5ꢄ  
= -5ꢄ  
ꢆꢃ39  
ꢆꢃ74  
ꢁnpꢅt Cꢅrrent  
MAX1323  
MAX1327  
ꢂA  
= +1ꢆꢄ  
= -1ꢆꢄ  
MAX1319  
MAX1323  
MAX1327  
ꢁnpꢅt Resistance  
kΩ  
ꢁnpꢅt Capacitance  
pF  
TRACK/HOꢀD  
External Clock Throꢅghpꢅt Rate  
ꢁnternal Clock Throꢅghpꢅt Rate  
Lꢂall-Lignal Sandwidth  
Fꢅll-Power Sandwidth  
Apertꢅre Delay  
526  
526  
1ꢆ  
ksps  
ksps  
MHz  
MHz  
ns  
1ꢆ  
16  
Apertꢅre Jitter  
5ꢆ  
ps  
RML  
ꢁITERIAꢀ REFEREICE  
REF  
ML  
ꢄoltage  
2ꢃ475  
2ꢃ475  
2ꢃ5ꢆꢆ  
2ꢃ5ꢆꢆ  
3ꢆ  
2ꢃ525  
2ꢃ525  
REFML  
REF ꢄoltage  
REF  
REF Teꢂperatꢅre CoeVVicient  
EXTERIAꢀ REFEREICE (REF  
ꢁnpꢅt Cꢅrrent  
ppꢂ/°C  
aꢄꢆ REF ꢇxtꢇrꢄally ꢆrivꢇꢄ)  
oL  
-25ꢆ  
2ꢃꢆ  
+25ꢆ  
3ꢃꢆ  
µA  
REF  
ML  
ꢁnpꢅt ꢄoltage Range  
Unipolar device  
2ꢃ5  
2ꢃ5  
15  
REFML  
REF ꢁnpꢅt ꢄoltage Range  
REF ꢁnpꢅt Capacitance  
2ꢃꢆ  
3ꢃꢆ  
REF  
pF  
pF  
REF  
ML  
ꢁnpꢅt Capacitance  
15  
_______________________________________________________________________________________  
3
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
EꢀECTRꢁCAꢀ CHARACTERꢁLTꢁCL (cꢃꢄtiꢄuꢇꢆ)  
(Aꢄ  
= +5ꢄ, Dꢄ  
= ꢆꢃ1µF, C  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), C  
= C  
= ꢆꢃ1µF, C  
=
DD  
DD  
REF  
REFML  
REF  
REFML  
REF+  
C
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF, C  
= 2ꢃ2µF || ꢆꢃ1µF (MAX1319; ꢅnipolar device), MLꢄ =  
REF-  
REF+-to-REF-  
CꢇM  
MLꢄ  
AGID (MAX1323/MAX1327; bipolar devices), V  
= 1ꢆMHz 5ꢆ% dꢅty, t  
, ꢅnless otherwise notedꢃ Typical valꢅes are at T = +25°Cꢃ)  
= 2ꢆꢆns, t  
= 1ꢆns, ꢁITCꢀK/EXTCLK = AGID  
QUꢁET  
CꢀK  
ACQ  
(external clock), LHDI = DGID, T = T  
to T  
A
MꢁI  
MAX A  
PARAoETER  
LYoBOꢀ  
COIDꢁTꢁOIL  
oꢁI  
TYP  
oAX  
UIꢁTL  
DꢁGꢁTAꢀ ꢁIPUTL (D0–D7ꢂ RDCSꢂ CꢀKꢂ LHDIꢂ COIVLT)  
ꢆꢃ7 x  
ꢁnpꢅt-ꢄoltage High  
ꢁnpꢅt-ꢄoltage ꢀow  
ꢁH  
Dꢄ  
DD  
ꢆꢃ3 x  
ꢁꢀ  
Dꢄ  
DD  
ꢁnpꢅt Hysteresis  
ꢁnpꢅt Capacitance  
ꢁnpꢅt Cꢅrrent  
15  
15  
ꢂꢄ  
pF  
µA  
C
ꢁI  
= ꢆꢄ or Dꢄ  
ꢁI DD  
1
ꢁI  
CꢀOCK-LEꢀECT ꢁIPUT (ꢁITCꢀK/EXTCLK)  
ꢆꢃ7 x  
ꢁnpꢅt-ꢄoltage High  
Aꢄ  
DD  
ꢆꢃ3 x  
Aꢄ  
ꢁnpꢅt-ꢄoltage ꢀow  
DD  
DꢁGꢁTAꢀ OUTPUTL (D0–D13ꢂ EOCEOLC)  
Dꢄ  
ꢆꢃ6  
-
DD  
ꢇꢅtpꢅt-ꢄoltage High  
= ꢆꢃ8ꢂA  
ꢇH  
LꢇURCE  
= 1ꢃ6ꢂA  
LꢁIK  
ꢇꢅtpꢅt-ꢄoltage ꢀow  
ꢆꢃ4  
ꢇꢀ  
Tri-Ltate ꢀeakage Cꢅrrent  
Tri-Ltate ꢇꢅtpꢅt Capacitance  
POWER LUPPꢀꢁEL  
RD ꢄ or CS ꢄ  
ꢆꢃꢆ6  
15  
1
µA  
pF  
ꢁH  
ꢁH  
ꢁH  
RD ꢄ or CS ꢄ  
ꢁH  
Analog Lꢅpply ꢄoltage  
Digital Lꢅpply ꢄoltage  
Aꢄ  
Dꢄ  
4ꢃ75  
2ꢃ7ꢆ  
5ꢃ25  
5ꢃ25  
36  
DD  
DD  
MAX1319  
32  
28  
Analog Lꢅpply Cꢅrrent  
ꢂA  
AꢄDD  
MAX1323/MAX1327  
32  
Digital Lꢅpply Cꢅrrent  
Lhꢅtdown Cꢅrrent  
7ꢆꢆ  
1ꢆ  
2
µA  
µA  
µA  
dS  
DꢄDD  
= Dꢄ  
DD  
LHDI  
= Dꢄ , ꢄ  
= Dꢄ  
DD  
ꢆꢃ1  
5ꢆ  
RD  
DD LHDI  
Power-Lꢅpply Rejection Ratio  
PLRR  
Aꢄ  
= +4ꢃ75ꢄ to +5ꢃ75ꢄ (Iote 5)  
DD  
4
_______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
TꢁoꢁIG CHARACTERꢁLTꢁCL (Fiꢅurꢇs 3ꢂ 4ꢂ 5ꢂ aꢄꢆ 6) (Tablꢇs 1ꢂ 2)  
PARAoETER  
LYoBOꢀ  
COIDꢁTꢁOIL  
oꢁI  
TYP  
oAX  
UIꢁTL  
ꢁnternal clock  
1ꢃ6  
1ꢃ8  
ns  
Conversion Tiꢂe  
t
CꢇIꢄ  
Clock  
cycles  
External clock (Figꢅre 4)  
(Iote 4)  
16  
CꢇIꢄLT Pꢅlse-Width ꢀow  
(Acqꢅisition Tiꢂe)  
t
ꢆꢃ16  
1ꢆꢆ  
µs  
ACQ  
CS Pꢅlse Width  
t
2
t
3
t
8
t
9
3ꢆ  
3ꢆ  
ns  
ns  
ns  
ns  
RD Pꢅlse-Width ꢀow  
CS to RD Letꢅp Tiꢂe  
RD to CS Hold Tiꢂe  
Data Access Tiꢂe  
(RD ꢀow to ꢄalid Data)  
t
3ꢆ  
3ꢆ  
ns  
1ꢆ  
11  
Sꢅs Relinqꢅish Tiꢂe (RD High)  
EOC Pꢅlse Width  
t
t
ns  
ns  
ꢁnternal clock  
8ꢆ  
12  
Clock  
cycle  
External clock (Figꢅre 4)  
1
External CꢀK Period  
t
t
t
9ꢆ  
2ꢆ  
2ꢆ  
ꢆꢃ1  
ns  
ns  
16  
17  
18  
External CꢀK High Period  
External CꢀK ꢀow Period  
External Clock Freqꢅency  
ꢁnternal Clock Freqꢅency  
CꢇIꢄLT High to CꢀK Edge  
EOC ꢀow to RD  
ꢀogic sensitive to rising edges  
ꢀogic sensitive to rising edges  
(Iote 6)  
ns  
12ꢃ5  
MHz  
MHz  
ns  
1ꢆ  
t
t
(Iote 7)  
2ꢆ  
19  
ns  
2ꢆ  
Iꢃtꢇ 1: For the MAX1319, ꢄ = ꢆ to +5ꢄꢃ For the MAX1323, ꢄ = -5ꢄ to +5ꢄꢃ For the MAX1327, ꢄ = -1ꢆꢄ to +1ꢆꢄꢃ  
ꢁI  
ꢁI  
ꢁI  
Iꢃtꢇ 2: ꢁIꢀ is deVined as the deviation oV the analog valꢅe at any code Vroꢂ its theoretical valꢅe aVter oVVset and gain errors have  
been reꢂovedꢃ  
Iꢃtꢇ 3: ꢇVVset nꢅlledꢃ  
Iꢃtꢇ 4: CꢇIꢄLT ꢂꢅst reꢂain low Vor at least the acqꢅisition periodꢃ  
Iꢃtꢇ 5: DeVined as the change in positive Vꢅll scale caꢅsed by a 5% variation in the noꢂinal sꢅpply voltageꢃ  
Iꢃtꢇ 6: Miniꢂꢅꢂ clock Vreqꢅency is liꢂited only by the internal T/H droop rateꢃ ꢀiꢂit the tiꢂe between the Valling edge oV CꢇIꢄLT  
to the Valling edge oV EꢇꢀC to a ꢂaxiꢂꢅꢂ oV ꢆꢃ25ꢂsꢃ  
Iꢃtꢇ 7: To avoid T/H droop degrading the saꢂpled analog inpꢅt signals, the Virst clock pꢅlse shoꢅld occꢅr within 1ꢆµs oV the rising  
edge oV CꢇIꢄLT and have a ꢂiniꢂꢅꢂ clock Vreqꢅency oV 1ꢆꢆkHzꢃ  
_______________________________________________________________________________________  
5
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Typical Operating Characteristics  
(Aꢄ  
= +5ꢄ, Dꢄ  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), see the Typical Operating Circuits,  
REFML  
DD  
DD  
REF  
V
= 1ꢆMHz 5ꢆ% dꢅty, ꢁITCꢀK/EXTCLK = AGID (external clock), LHDI = DGID, T = +25°Cꢃ)  
A
CꢀK  
INTEGRAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
DIFFERENTIAL NONLINEARITY  
vs. DIGITAL OUTPUT CODE  
ANALOG SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
1.00  
1.00  
0.75  
0.50  
0.25  
0
50  
45  
40  
35  
30  
0.75  
0.50  
0.25  
0
-0.25  
-0.50  
-0.75  
-1.00  
-0.25  
-0.50  
-0.75  
-1.00  
f
= 250ksps  
4.87  
SAMPLE  
0
4096  
8192  
12,288  
16,384  
0
4096  
8192  
12,288  
16,384  
4.75  
5.00  
5.12  
5.25  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
SUPPLY VOLTAGE (V)  
ANALOG SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN CURRENT  
vs. SUPPLY VOLTAGE  
SHUTDOWN CURRENT  
vs. TEMPERATURE  
50  
45  
40  
35  
30  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
ANALOG  
SHUTDOWN  
CURRENT  
ANALOG  
SHUTDOWN  
CURRENT  
DIGITAL  
SHUTDOWN  
CURRENT  
DIGITAL  
SHUTDOWN  
CURRENT  
f
= 250ksps  
SAMPLE  
-40  
-15  
10  
35  
60  
85  
2.5  
3.5  
4.5  
5.5  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
TEMPERATURE (°C)  
INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
OFFSET ERROR vs. SUPPLY VOLTAGE  
2.5004  
2.5003  
2.5002  
2.5001  
2.5000  
2.4999  
2.4998  
2.4997  
2.4996  
1.5  
1.0  
2.504  
2.503  
2.502  
2.501  
2.500  
2.499  
2.498  
2.497  
2.496  
0.5  
0
-0.5  
-1.0  
-1.5  
-2.0  
NORMALIZED AT T = +25°C  
A
4.7  
4.8  
4.9  
5.0  
5.1  
5.2  
5.3  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
AV (V)  
DD  
AV (V)  
DD  
TEMPERATURE (°C)  
6
_______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Typical Operating Characteristics (continued)  
(Aꢄ  
= +5ꢄ, Dꢄ  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), see the Typical Operating Circuits,  
REFML  
DD  
DD  
REF  
V
= 1ꢆMHz 5ꢆ% dꢅty, ꢁITCꢀK/EXTCLK = AGID (external clock), LHDI = DGID, T = +25°Cꢃ)  
A
CꢀK  
OFFSET ERROR vs. TEMPERATURE  
GAIN ERROR vs. SUPPLY VOLTAGE  
GAIN ERROR vs. TEMPERATURE  
0.04  
16  
15  
14  
13  
12  
11  
10  
9
0.09  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.03  
0.02  
0.01  
0
-0.01  
-0.02  
-0.03  
-0.04  
NORMALIZED AT T = +25°C  
A
-40  
-15  
10  
35  
60  
85  
4.75  
4.85  
4.95  
5.05  
5.15  
5.25  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
AV (V)  
DD  
TEMPERATURE (°C)  
SIGNAL-TO-NOISE RATIO  
vs. CLOCK FREQUENCY  
SIGNAL-TO-NOISE PLUS DISTORTION  
vs. CLOCK FREQUENCY  
FFT  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
0
-20  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
f
f
f
= 103kHz  
= 490kHz  
= 10MHz  
ANALOG_IN  
SAMPLE  
CLK  
f
= 100kHz  
IN  
f = 100kHz  
IN  
SINAD = 76.7dB  
SNR = 77.0dB  
THD = -88.3dB  
SFDR = 91.0dB  
-40  
-60  
-80  
-100  
-120  
-140  
8
10  
12  
14  
16  
18  
20  
0
0.05  
0.10  
0.15  
0.20  
0.25  
8
10  
12  
14  
16  
18  
20  
f
(MHz)  
FREQUENCY (MHz)  
CLK  
f
(MHz)  
CLK  
EFFECTIVE NUMBER OF BITS  
vs. CLOCK FREQUENCY  
TOTAL HARMONIC DISTORTION  
vs. CLOCK FREQUENCY  
SPURIOUS-FREE DYNAMIC RANGE  
vs. CLOCK FREQUENCY  
-70  
-75  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
100  
95  
90  
85  
80  
75  
70  
65  
60  
f
= 100kHz  
IN  
-80  
-85  
-90  
-95  
-100  
8
10  
12  
14  
16  
18  
20  
8
10  
12  
14  
16  
18  
20  
8
10  
12  
14  
16  
18  
20  
f
(MHz)  
f
(MHz)  
f (MHz)  
CLK  
CLK  
CLK  
_______________________________________________________________________________________  
7
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Typical Operating Characteristics (continued)  
(Aꢄ  
= +5ꢄ, Dꢄ  
= +3ꢄ, AGID = DGID = ꢆꢄ, ꢄ  
= ꢄ  
= +2ꢃ5ꢄ (external reVerence), see the Typical Operating Circuits,  
REFML  
DD  
DD  
REF  
V
= 1ꢆMHz 5ꢆ% dꢅty, ꢁITCꢀK/EXTCLK = AGID (external clock), LHDI = DGID, T = +25°Cꢃ)  
A
CꢀK  
OUTPUT HISTOGRAM  
(DC INPUT)  
CONVERSION TIME  
vs. TEMPERATURE  
CONVERSION TIME  
vs. ANALOG SUPPLY VOLTAGE  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2.0  
t
INTERNAL CLOCK  
INTERNAL CLOCK  
t
CONV  
CONV  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
3815  
2306  
1562  
341  
154  
0
13  
1
0
0
-40  
-15  
10  
35  
60  
85  
8209 8210 8211 8212 8213 8214 8215 8216 8217  
DIGITAL OUTPUT CODE  
4.750  
4.875  
5.000  
5.125  
5.250  
TEMPERATURE (°C)  
ANALOG SUPPLY VOLTAGE (V)  
Pin Description  
PꢁI  
IAoE  
FUICTꢁOI  
Analog Lꢅpply ꢁnpꢅtꢃ Aꢄ  
is the power inpꢅt Vor the analog section oV the converterꢃ Apply +5ꢄ to  
DD  
1, 15, 17  
Aꢄ  
DD  
Aꢄ ꢃ Sypass Aꢄ  
to AGID with a ꢆꢃ1µF capacitor at each Aꢄ  
inpꢅtꢃ  
DD  
DD  
DD  
2, 3, 14,  
16, 23  
AGID  
Analog Groꢅndꢃ AGID is the power retꢅrn Vor Aꢄ ꢃ Connect all AGIDs togetherꢃ  
DD  
4
A
ꢁI  
Analog ꢁnpꢅt  
5, 7–12  
ꢁꢃCꢃ  
ꢁnternally Connectedꢃ Connect ꢁꢃCꢃ to AGIDꢃ  
Midscale ꢄoltage Sypassꢃ For the MAX1319, connect a 2ꢃ2µF and a ꢆꢃ1µF capacitor Vroꢂ MLꢄ to  
AGIDꢃ For the MAX1323/MAX1327, connect MLꢄ directly to AGIDꢃ  
6
MLꢄ  
Clock-Mode Lelect ꢁnpꢅtꢃ Use ꢁITCꢀK/EXTCLK to select the internal or external conversion clockꢃ  
ꢁITCꢀK/  
EXTCLK  
13  
Connect ꢁITCꢀK/EXTCLK to Aꢄ  
to select the internal clockꢃ Connect ꢁITCꢀK/EXTCLK to AGID to  
DD  
ꢅse an external clock connected to CꢀKꢃ  
Midscale ReVerence Sypass or ꢁnpꢅtꢃ REF  
is the bypass point Vor an internally generated reVerence  
ML  
voltageꢃ For the MAX1319, connect a ꢆꢃ1µF capacitor Vroꢂ REF to AGIDꢃ For the MAX1323/  
18  
19  
REF  
ML  
ML  
MAX1327, connect REF  
directly to REF and bypass with a ꢆꢃ1µF capacitor Vroꢂ REF to AGIDꢃ  
ML  
ML  
ADC ReVerence Sypass or ꢁnpꢅtꢃ REF is the bypass point Vor an internally generated reVerence  
voltageꢃ Sypass REF with a ꢆꢃꢆ1µF capacitor to AGIDꢃ REF can be driven externally by a precision  
external voltage reVerenceꢃ  
REF  
Positive ReVerence Sypassꢃ REF+ is the bypass point Vor an internally generated reVerence voltageꢃ Sypass  
REF+ with a ꢆꢃ1µF capacitor to AGIDꢃ Also bypass REF+ to REF- with a 2ꢃ2µF and a ꢆꢃ1µF capacitorꢃ  
2ꢆ  
21  
REF+  
CꢇM  
ReVerence Coꢂꢂon Sypassꢃ CꢇM is the bypass point Vor an internally generated reVerence voltageꢃ  
Sypass CꢇM to AGID with a 2ꢃ2µF and a ꢆꢃ1µF capacitorꢃ  
8
_______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Pin Description (continued)  
PꢁI  
IAoE  
FUICTꢁOI  
Iegative ReVerence Sypassꢃ REF- is the bypass point Vor an internally generated reVerence voltageꢃ Sypass  
REF- with a ꢆꢃ1µF capacitor to AGIDꢃ Also bypass REF- to REF+ with a 2ꢃ2µF and a ꢆꢃ1µF capacitorꢃ  
22  
REF-  
24  
25  
26  
27  
28  
29  
3ꢆ  
31  
32  
33  
34  
35  
36  
37  
38  
Dꢆ  
D1  
Digital ꢇꢅt Sit ꢆ oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 1 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 2 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 3 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 4 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 5 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 6 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 7 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 8 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 9 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 1ꢆ oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 11 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 12 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
Digital ꢇꢅt Sit 13 oV 14-Sit Parallel Data Sꢅsꢃ High iꢂpedance when RD = 1 or CS = 1ꢃ  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D1ꢆ  
D11  
D12  
D13  
Dꢄ  
Digital Lꢅpply ꢁnpꢅtꢃ Apply +2ꢃ7ꢄ to +5ꢃ25ꢄ to Dꢄ ꢃ Sypass Dꢄ  
to DGID with a ꢆꢃ1µF capacitorꢃ  
DD  
DD  
DD  
Digital Lꢅpply GIDꢃ DGID is the power retꢅrn Vor Dꢄ ꢃ Connect DGID to AGID at only one point  
DD  
(see the Layout, Grounding, and Bypassing section)ꢃ  
39  
4ꢆ  
DGID  
End-oV-Conversion ꢇꢅtpꢅtꢃ EOC goes low to indicate the end oV a conversionꢃ EOC retꢅrns high aVter  
one clock periodꢃ  
EOC  
End-oV-ꢀast-Conversion ꢇꢅtpꢅtꢃ EOLC goes low to indicate the end oV the last conversionꢃ EOLC  
retꢅrns high when CꢇIꢄLT goes low Vor the next conversion seqꢅenceꢃ For the MAX1319/MAX1323/  
MAX1327, EOLC gives the saꢂe inVorꢂation as EOCꢃ  
41  
EOLC  
Read ꢁnpꢅtꢃ Pꢅlling RD low initiates a read coꢂꢂand oV the parallel data bꢅses, Dꢆ–D13ꢃ Dꢆ–D13 are  
high iꢂpedance while either RD or CS is highꢃ  
42  
43  
44  
RD  
ꢁꢃCꢃ2  
CS  
ꢁnternally Connected 2ꢃ Connect ꢁꢃCꢃ2 to Dꢄ  
DD  
Chip-Lelect ꢁnpꢅtꢃ Pꢅlling CS low activates the digital interVaceꢃ Dꢆ–D13 are high iꢂpedance while  
either CS or RD is highꢃ  
Convert-Ltart ꢁnpꢅtꢃ Driving CꢇIꢄLT high places the device in hold ꢂode and initiates the  
conversion processꢃ The analog inpꢅts are saꢂpled on the rising edge oV CꢇIꢄLTꢃ When CꢇIꢄLT  
is low the analog inpꢅts are trackedꢃ  
45  
46  
CꢇIꢄLT  
CꢀK  
External-Clock ꢁnpꢅtꢃ CꢀK accepts an external clock signal ꢅp to 15MHzꢃ Connect CꢀK to DGID Vor  
internally clocked conversionsꢃ To select external clock ꢂode, set ꢁITCꢀK/EXTCLK = ꢆꢃ  
47  
48  
LHDI  
Lhꢅtdown ꢁnpꢅtꢃ Let LHDI = ꢆ Vor norꢂal operationꢃ Let LHDI = 1 Vor shꢅtdown ꢂodeꢃ  
AꢀꢀꢇI is not iꢂpleꢂentedꢃ Connect AꢀꢀꢇI to DGIDꢃ  
AꢀꢀꢇI  
_______________________________________________________________________________________  
9
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
MAX1319  
MAX1323  
MAX1327  
DV  
DD  
AV  
DD  
D13  
D0  
14  
SRAM  
OUTPUT  
DRIVERS  
14-BIT  
ADC  
A
S/H  
IN  
MSV  
*
CS  
INTERFACE  
AND  
CONTROL  
REF+  
COM  
REF-  
RD  
CONVST  
SHDN  
CLK  
5k  
5kΩ  
REF  
ALLON  
EOC  
REF  
MS  
EOLC  
DGND  
2.500V  
INTCLK/EXTCLK  
AGND  
*SWITCH CLOSED ON UNIPOLAR DEVICE, OPEN ON BIPOLAR DEVICES  
Figure 1. Functional Diagram  
Analog Inputs  
Detailed Description  
T/H  
The MAX1319/MAX1323/MAX1327 are 14-bit, 526ksps,  
1ꢃ6µs conversion-tiꢂe ADCsꢃ These devices are available  
with ꢆ to +5ꢄ, 5ꢄ, and 1ꢆꢄ inpꢅt rangesꢃ The ꢆ to +5ꢄ  
device Veatꢅres 6ꢄ Vaꢅlt-tolerant inpꢅts (see the Typical  
Operating Circuits)ꢃ The 5ꢄ and 1ꢆꢄ devices Veatꢅre  
16ꢃ5ꢄ Vaꢅlt-tolerant inpꢅts (see the Typical Operating  
Circuits)ꢃ ꢁnternal or external reVerence, and clock capa-  
bility oVVer great Vlexibility and ease oV ꢅseꢃ A 16ꢃ6MHz,  
14-bit, parallel data bꢅs oꢅtpꢅts the conversion resꢅltꢃ  
Figꢅre 1 shows the Vꢅnctional diagraꢂ oV these devicesꢃ  
The tiꢂe reqꢅired Vor the T/H to acqꢅire an inpꢅt signal  
depends on the inpꢅt soꢅrce iꢂpedanceꢃ ꢁV the inpꢅt sig-  
nal’s soꢅrce iꢂpedance is high, the acqꢅisition tiꢂe  
lengthens and ꢂore tiꢂe ꢂꢅst be allowed between con-  
versionsꢃ The acqꢅisition tiꢂe (t  
) is the ꢂaxiꢂꢅꢂ  
tiꢂe the device takes to acqꢅire the signalꢃ Use the Vol-  
lowing Vorꢂꢅla to calcꢅlate the acqꢅisition tiꢂe:  
ACQ  
t
= 1ꢆ (R + R ) x 6pF  
L ꢁI  
ACQ  
where R = 2ꢃ2k, R = the inpꢅt signal’s soꢅrce  
ꢁI  
L
iꢂpedance, and t  
is never less than 18ꢆnsꢃ A  
ACQ  
soꢅrce iꢂpedance oV less than 1ꢆꢆdoes not signiVi-  
cantly aVVect the ADC’s perVorꢂanceꢃ  
10 ______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
To iꢂprove the inpꢅt signal bandwidth ꢅnder AC condi-  
Power-Saving Modes  
tions, drive the inpꢅt with a wideband bꢅVVer (>5ꢆMHz)  
that can drive the ADC’s inpꢅt capacitance and settle  
qꢅicklyꢃ For exaꢂple, the MAX4265 can be ꢅsed Vor +5ꢄ  
ꢅnipolar devices, or the MAX435ꢆ can be ꢅsed Vor 5ꢄ  
bipolar inpꢅtsꢃ  
Shutdown Mode  
Dꢅring shꢅtdown, the analog and digital circꢅits in the  
device power down and the device draws less than  
1ꢆꢆµA Vroꢂ Aꢄ , and less than 1ꢆꢆµA Vroꢂ Dꢄ  
DD  
DD  
Lelect shꢅtdown ꢂode ꢅsing the LHDI inpꢅtꢃ Let  
LHDI high to enter shꢅtdown ꢂodeꢃ AVter coꢂing oꢅt  
oV shꢅtdown, allow the 1ꢂs wake-ꢅp beVore ꢂaking the  
Virst conversionꢃ When ꢅsing an external clock, apply at  
least 2ꢆ clock cycles with CꢇIꢄLT high beVore ꢂaking  
the Virst conversionꢃ When ꢅsing internal clock ꢂode,  
wait at least 2µs beVore ꢂaking the Virst conversionꢃ  
The T/H apertꢅre delay is typically 13nsꢃ Figꢅre 2 shows  
a siꢂpliVied eqꢅivalent inpꢅt circꢅit, illꢅstrating the ADC’s  
saꢂpling architectꢅreꢃ  
Input Bandwidth  
The inpꢅt tracking circꢅitry has a 1ꢆMHz sꢂall-signal  
bandwidth, ꢂaking it possible to digitize high-speed  
transient events and ꢂeasꢅre periodic signals with  
bandwidths exceeding the ADC’s saꢂpling rate by  
ꢅsing ꢅndersaꢂpling techniqꢅesꢃ To avoid high Vre-  
qꢅency signals being aliased into the Vreqꢅency band  
oV interest, anti-alias Viltering is recoꢂꢂendedꢃ  
Clock Modes  
These devices provide an internal clock oV 1ꢆMHz  
(typ)ꢃ Alternatively, an external clock can be ꢅsedꢃ  
Internal Clock  
ꢁnternal clock ꢂode Vrees the ꢂicroprocessor Vroꢂ the  
bꢅrden oV rꢅnning the ADC conversion clockꢃ For inter-  
Input Range and Protection  
These devices provide 1ꢆꢄ, 5ꢄ or ꢆ to +5ꢄ analog  
inpꢅt voltage rangesꢃ Figꢅre 2 shows the typical inpꢅt cir-  
cꢅitꢃ ꢇvervoltage protection circꢅitry at the analog inpꢅt  
provides 16ꢃ5ꢄ Vaꢅlt protection Vor the bipolar inpꢅt  
devices and 6ꢃꢆꢄ Vaꢅlt protection Vor the ꢅnipolar inpꢅt  
deviceꢃ This Vaꢅlt protection circꢅit liꢂits the cꢅrrent going  
into or oꢅt oV the device to less than 5ꢆꢂA, providing an  
added layer oV protection Vroꢂ ꢂoꢂentary overvoltage or  
ꢅndervoltage conditions at the analog inpꢅtꢃ  
nal clock operation, connect ꢁITCꢀK/EXTCLK to Aꢄ  
and connect CꢀK to DGIDꢃ  
DD  
External Clock  
For external clock operation, connect ꢁITCꢀK/EXTCLK  
to AGID and connect an external clock soꢅrce to CꢀKꢃ  
Iote that ꢁITCꢀK/EXTCLK is reVerenced to the analog  
power sꢅpply, Aꢄ ꢃ The external clock Vreqꢅency can  
DD  
be ꢅp to 15MHz, with a dꢅty cycle between 3ꢆ% and  
7ꢆ%ꢃ Clock Vreqꢅencies oV 1ꢆꢆkHz and lower can be  
ꢅsed, bꢅt the droop in the T/H circꢅits redꢅces linearityꢃ  
Selecting an Input Buffer  
Most applications reqꢅire an inpꢅt bꢅVVer to achieve 14-  
bit accꢅracyꢃ Althoꢅgh slew rate and bandwidth are  
iꢂportant, the ꢂost critical speciVication is settling tiꢂeꢃ  
The saꢂpling reqꢅires a relatively brieV saꢂpling inter-  
val oV 15ꢆnsꢃ At the beginning oV the acqꢅisition, the  
internal saꢂpling capacitor array connects to the  
aꢂpliVier oꢅtpꢅt, caꢅsing soꢂe oꢅtpꢅt distꢅrbanceꢃ  
Ensꢅre the aꢂpliVier is capable oV settling to at least 14-  
bit accꢅracy dꢅring this intervalꢃ Use a low-noise, low-  
distortion, wideband aꢂpliVier (sꢅch as the MAX433ꢆ or  
MAX4265), which settles qꢅickly and is stable with the  
ADC’s capacitive load (in parallel with any bypass  
capacitors on the analog inpꢅts)ꢃ  
MAX1319  
MAX1323  
MAX1327  
5pF  
R1  
A
IN  
C
PAR  
R2  
1pF  
V
BIAS  
INPUT RANGE (V) R1 (k) R2 (k)  
0 TO +5  
3.33  
6.67  
5.00  
2.86  
2.35  
5
10  
13.33  
Figure 2. Typical Input Circuit  
______________________________________________________________________________________ 11  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Vaceꢃ The parallel interVace goes high iꢂpedance when  
RD = 1 or CS = 1ꢃ  
Applications Information  
Digital Interface  
The parallel digital interVace oꢅtpꢅts the 14-bit conver-  
sion resꢅltꢃ The interVace inclꢅdes the Vollowing control  
signals: chip select (CS), read (RD), end oV conversion  
(EOC), end oV last conversion (EOLC), convert start  
(CꢇIꢄLT), shꢅtdown (LHDI), all on (AꢀꢀꢇI), internal  
clock select (ꢁITCꢀK /EXTCLK), and external clock  
inpꢅt (CꢀK)ꢃ Figꢅres 3 and 4, Table 1, and the Timing  
Characteristics table show the operation oV the inter-  
Starting a Conversion  
To start a conversion ꢅsing internal clock ꢂode, pꢅll  
CꢇIꢄLT low Vor at least the acqꢅisition tiꢂe (t )ꢃ The  
ACQ  
T/H acqꢅires the signal while CꢇIꢄLT is low, and con-  
version begins on the rising edge oV CꢇIꢄLTꢃ The end-  
oV-conversion signal (EOC) or the end-oV-last-conversion  
signal (EOLC) pꢅlses low when the conversion resꢅlt is  
available (Figꢅre 3)ꢃ  
SAMPLE  
t
t
13  
ACQ  
CONVST  
TRACK  
t
HOLD  
TRACK  
t
EOC1  
12  
EOC  
t
3
RD  
t
10  
D0–D13  
CH0  
t
11  
Figure 3. Reading a Conversion—Internal Clock  
Tablꢇ 1. Rꢇfꢇrꢇꢄcꢇ Bypass Capacitꢃrs  
ꢁIPUT VOꢀTAGE RAIGE  
ꢀOCATꢁOI  
UIꢁPOꢀAR (µF)  
2ꢃ2 || ꢆꢃ1  
ꢆꢃꢆ1  
BꢁPOꢀAR (µF)  
IA  
MLꢄ Sypass Capacitor to AGID  
REF  
Sypass Capacitor to AGID  
ꢆꢃꢆ1  
ML  
REF Sypass Capacitor to AGID  
REF+ Sypass Capacitor to AGID  
REF+ to REF- Capacitor  
ꢆꢃꢆ1  
ꢆꢃꢆ1  
ꢆꢃ1  
ꢆꢃ1  
2ꢃ2 || ꢆꢃ1  
ꢆꢃ1  
2ꢃ2 || ꢆꢃ1  
ꢆꢃ1  
REF- Sypass Capacitor to AGID  
CꢇM Sypass Capacitor to AGID  
2ꢃ2 || ꢆꢃ1  
2ꢃ2 || ꢆꢃ1  
NA = Not applicable (connect MSV directly to AGND).  
12 ______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
To start a conversion ꢅsing external clock ꢂode, pꢅll  
CꢇIꢄLT low Vor at least the acqꢅisition tiꢂe (t )ꢃ The  
low at all tiꢂes; it can be low dꢅring the RD cycles, or it  
can be the saꢂe as RDꢃ  
ACQ  
T/H acqꢅires the signal while CꢇIꢄLT is low, and con-  
version begins on the rising edge oV CꢇIꢄLTꢃ Apply an  
external clock to the CꢀK pinꢃ To avoid T/H droop  
degrading the saꢂpled analog inpꢅt signals, the Virst  
clock pꢅlse shoꢅld occꢅr within 1ꢆµs Vroꢂ the rising  
edge oV CꢇIꢄLT, and have a ꢂiniꢂꢅꢂ clock Vreqꢅency  
oV 1ꢆꢆkHzꢃ The conversion resꢅlt is available Vor read on  
the rising edge oV the 17th clock cycle (Figꢅre 4)ꢃ  
AVter initiating a conversion by bringing CꢇIꢄLT high,  
wait Vor EOC or EOLC to go low (aboꢅt 1ꢃ6µs in internal  
clock ꢂode or 17 clock cycles in external clock ꢂode)  
beVore reading the Virst conversion resꢅltꢃ Read the  
conversion resꢅlt by bringing RD low and latching the  
data to the parallel digital-oꢅtpꢅt bꢅsꢃ Sring RD high to  
release the digital bꢅsꢃ  
Power-Up Reset  
AVter applying power, allow the 1ꢃꢆꢂs wake-ꢅp tiꢂe to  
elapse beVore initiating the Virst conversionꢃ ꢁV ꢅsing an  
external clock, apply 2ꢆ clock pꢅlses to CꢀK with  
CꢇIꢄLT high beVore initiating the Virst conversionꢃ ꢁV  
ꢅsing an internal clock, hold CꢇIꢄLT high Vor at least  
2ꢃꢆµs aVter the wake-ꢅp tiꢂe is coꢂpleteꢃ  
ꢁn both internal and external clock ꢂodes, CꢇIꢄLT  
ꢂꢅst be held high ꢅntil the last conversion resꢅlt is  
readꢃ For best operation, the rising edge oV CꢇIꢄLT  
ꢂꢅst be a clean, high-speed, low-jitter digital signalꢃ  
ꢁt is necessary to have a period oV inactivity on the digi-  
tal bꢅs dꢅring signal aqꢅisitionꢃ t  
is the period  
QUꢁET  
between the RD rising edge and the Valling edge oV  
CꢇIꢄLT shown in Figꢅre 4ꢃ Allow a ꢂiniꢂꢅꢂ oV 5ꢆns  
Reference  
Vor t  
QUꢁET  
Internal Reference  
The internal reVerence circꢅits provide Vor analog inpꢅt  
voltages oV ꢆ to +5ꢄ ꢅnipolar (MAX1319), 5ꢄ bipolar  
(MAX1323) or 1ꢆꢄ bipolar (MAX1327)ꢃ ꢁnstall external  
capacitors Vor reVerence stability, as indicated in Table 1,  
and as shown in the Typical Operating Circuitsꢃ  
Reading a Conversion Result  
Reading During a Conversion  
Figꢅres 3 and 4 show the interVace signals Vor initiating  
a read operation dꢅring a conversion cycleꢃ CS can be  
SAMPLE  
SAMPLE  
t
t
13  
ACQ  
HOLD  
CONVST  
TRACK  
TRACK  
t
t
19  
t
16  
17  
2
1
3
16  
17  
18  
19  
20  
1
CLK  
EOC  
t
18  
t
QUIET  
t
12  
t
20  
CS  
RD  
t
2
t
t
9
8
t
3
t
10  
D0–D13  
t
11  
Figure 4. Reading a Conversion—External Clock  
______________________________________________________________________________________ 13  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
power sꢅpply is very noisy, a Verrite bead can be con-  
nected as a lowpass Vilter, as shown in Figꢅre 5ꢃ  
Transfer Functions  
SUPPLIES  
Bipolar ±1ꢀ0 Device  
Table 2 and Figꢅre 6 show the two’s coꢂpleꢂent trans-  
Ver Vꢅnction Vor the MAX1327 with a 1ꢆꢄ inpꢅt rangeꢃ  
The Vꢅll-scale inpꢅt range (FLR) is eight tiꢂes the volt-  
age at REFꢃ The internal +2ꢃ5ꢆꢆꢄ reVerence gives a  
+2ꢆꢄ FLR, while an external +2ꢄ to +3ꢄ reVerence  
allows an FLR oV +16ꢄ to +24ꢄ, respectivelyꢃ Calcꢅlate  
the ꢀLS size ꢅsing the Vollowing eqꢅation:  
+5V  
RETURN  
+3V TO +5V  
RETURN  
OPTIONAL  
FERRITE  
BEAD  
8 × ꢄ  
REFADC  
14  
1 ꢀLS =  
2
AV  
DV  
DD  
DD  
AGND  
DGND  
V
DD  
GND  
This eqꢅals 1ꢃ22ꢆ7ꢂꢄ with a +2ꢃ5ꢄ internal reVerenceꢃ  
The inpꢅt range is centered aboꢅt ꢄ ꢃ Iorꢂally, MLꢄ  
DIGITAL  
CIRCUITRY  
MLꢄ  
MAX1319  
MAX1323  
MAX1327  
= AGID, and the inpꢅt is syꢂꢂetrical at aboꢅt zeroꢃ For  
a cꢅstoꢂ ꢂidscale voltage, drive MLꢄ with an external  
voltage soꢅrceꢃ Ioise present on MLꢄ directly coꢅples  
into the ADC resꢅltꢃ Use a precision, low-driVt voltage reV-  
erence with adeqꢅate bypassing to prevent MLꢄ Vroꢂ  
degrading ADC perVorꢂanceꢃ For ꢂaxiꢂꢅꢂ Vꢅll-scale  
range, be careVꢅl not to violate the absolꢅte ꢂaxiꢂꢅꢂ  
voltage ratings oV the analog inpꢅts when choosing MLꢄꢃ  
Figure 5. Power-Supply Grounding and Bypassing  
External Reference  
Connect a +2ꢃꢆꢄ to +3ꢃꢆꢄ external reVerence at REF  
ML  
Deterꢂine the inpꢅt voltage as a Vꢅnction oV ꢄ  
MLꢄ  
ing eqꢅation:  
,
REF  
and/or REFꢃ When connecting an external reVerence,  
the inpꢅt iꢂpedance is typically 5kꢃ The external reV-  
erence ꢂꢅst be able to drive 2ꢆꢆµA oV cꢅrrent and be  
less than 3oꢅtpꢅt iꢂpedanceꢃ For ꢂore inVorꢂation  
aboꢅt ꢅsing external reVerences see the Transfer  
Functions sectionꢃ  
, and the oꢅtpꢅt code in deciꢂal ꢅsing the Vollow-  
= ꢀLS × CꢇDE + ꢄ  
1ꢆ MLꢄ  
CH_  
Bipolar ±±0 Device  
Table 3 and Figꢅre 7 show the two’s coꢂpleꢂent transVer  
Vꢅnction Vor the MAX1323 with a 5ꢄ inpꢅt rangeꢃ The  
FLR is Voꢅr tiꢂes the voltage at REFꢃ The internal +2ꢃ5ꢆꢆꢄ  
reVerence gives a +1ꢆꢄ FLR, while an external +2ꢄ to  
+3ꢄ reVerence allows an FLR oV +8ꢄ to +12ꢄ, respective-  
lyꢃ Calcꢅlate the ꢀLS size ꢅsing the Vollowing eqꢅation:  
Layout, Grounding, and Bypassing  
For best perVorꢂance ꢅse PC boardsꢃ Soard layoꢅt  
shoꢅld ensꢅre that digital and analog signal lines are  
separated Vroꢂ each otherꢃ Do not rꢅn analog and digi-  
tal lines parallel to one another (especially clock lines),  
or do not rꢅn digital lines ꢅnderneath the ADC pack-  
ageꢃ Figꢅre 5 shows the recoꢂꢂended systeꢂ groꢅnd  
connectionsꢃ A single-point analog groꢅnd (star groꢅnd  
point) shoꢅld be established at AGID, separate Vroꢂ  
the logic groꢅndꢃ All other analog groꢅnds and DGID  
shoꢅld be connected to this groꢅndꢃ Io other digital  
systeꢂ groꢅnd shoꢅld be connected to this single-point  
analog groꢅndꢃ The groꢅnd retꢅrn to the power sꢅpply  
Vor this groꢅnd shoꢅld be low iꢂpedance and as short  
as possible Vor noise-Vree operationꢃ High-Vreqꢅency  
4 × ꢄ  
REFADC  
14  
1 ꢀLS =  
2
This eqꢅals ꢆꢃ61ꢆ4ꢂꢄ when ꢅsing the internal reVerenceꢃ  
The inpꢅt range is centered aboꢅt ꢄ ꢃ Iorꢂally,  
MLꢄ  
MLꢄ = AGID, and the inpꢅt is syꢂꢂetrical at aboꢅt  
zeroꢃ For a cꢅstoꢂ ꢂidscale voltage, drive MLꢄ with an  
external voltage soꢅrceꢃ Ioise present on MLꢄ directly  
coꢅples into the ADC resꢅltꢃ Use a precision, low-driVt  
voltage reVerence with adeqꢅate bypassing to prevent  
MLꢄ Vroꢂ degrading ADC perVorꢂanceꢃ For ꢂaxiꢂꢅꢂ  
Vꢅll-scale range, be careVꢅl not to violate the absolꢅte  
noise in the ꢄ  
power sꢅpply ꢂay aVVect the high-  
DD  
speed coꢂparator in the ADCꢃ Sypass these sꢅpplies  
to the single-point analog groꢅnd with ꢆꢃ1µF and 2ꢃ2µF  
bypass capacitors close to the deviceꢃ ꢁV the +5ꢄ  
14 ______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Tablꢇ 2. 10V Bipꢃlar Cꢃꢆꢇ Tablꢇ  
8 x V  
REFADC  
DECꢁoAꢀ  
EQUꢁVAꢀEIT VOꢀTAGE (V)  
ꢁIPUT  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
TWO’L COoPꢀEoEIT  
BꢁIARY OUTPUT CODE  
OUTPUT  
(CODE  
(V  
= 2.5Vꢂ  
= 0V)  
REF  
V
oLV  
)
10  
ꢆ1 1111 1111 1111  
8191  
819ꢆ  
1
9ꢃ9988  
9ꢃ9976  
ꢆꢃꢆꢆ12  
0x0001  
0x0000  
0x3FFF  
ꢆx1FFF  
8 x V  
REFADC  
ꢆ1 1111 1111 111ꢆ ➔  
ꢆx1FFE  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
ꢆxꢆꢆꢆ1  
0x2003  
0x2002  
0x2001  
0x2000  
8 x V  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
REFADC  
214  
1 LSB =  
ꢆxꢆꢆꢆꢆ  
11 1111 1111 1111 ➔  
-1  
-ꢆꢃꢆꢆ12  
-9ꢃ9988  
-1ꢆꢃꢆꢆꢆꢆ  
-8192 -8190  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+8189 +8191  
IN LSBs)  
MSV  
ꢆx3FFF  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
- V  
CH_  
-8191  
-8192  
ꢆx2ꢆꢆ1  
Figure 6. 10V Bipolar Transfer Function  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
ꢆx2ꢆꢆꢆ  
4 x V  
REFADC  
Tablꢇ 3. 5V Bipꢃlar Cꢃꢆꢇ Tablꢇ  
0x1FFF  
0x1FFE  
0x1FFD  
0x1FFC  
DECꢁoAꢀ  
ꢁIPUT  
TWO’L COoPꢀEoEIT  
BꢁIARY OUTPUT CODE  
EQUꢁVAꢀEIT VOꢀTAGE (V)  
OUTPUT  
(CODE  
(V  
= 2.5Vꢂ  
= 0V)  
REF  
V
oLV  
)
10  
0x0001  
0x0000  
0x3FFF  
4 x V  
REFADC  
ꢆ1 1111 1111 1111 ➔  
8191  
819ꢆ  
1
4ꢃ9994  
4ꢃ9988  
ꢆꢃꢆꢆꢆ6  
ꢆx1FFF  
ꢆ1 1111 1111 111ꢆ ➔  
ꢆx1FFE  
0x2003  
0x2002  
0x2001  
0x2000  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
4 x V  
REFADC  
214  
1 LSB =  
ꢆxꢆꢆꢆ1  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
ꢆxꢆꢆꢆꢆ  
-8192 -8190  
-1  
(MSV)  
INPUT VOLTAGE (V  
0
+1  
+8189 +8191  
IN LSBs)  
MSV  
11 1111 1111 1111 ➔  
-1  
-ꢆꢃꢆꢆꢆ6  
-4ꢃ9994  
-5ꢃꢆꢆꢆꢆ  
- V  
CH_  
ꢆx3FFF  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
Figure 7. 5V Bipolar Transfer Function  
-8191  
-8192  
ꢆx2ꢆꢆ1  
ꢂaxiꢂꢅꢂ voltage ratings oV the analog inpꢅts when  
choosing MLꢄꢃ Deterꢂine the inpꢅt voltage as a Vꢅnc-  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
ꢆx2ꢆꢆꢆ  
tion oV ꢄ  
, ꢄ  
, and the oꢅtpꢅt code in deciꢂal  
MLꢄ  
REF  
ꢅsing the Vollowing eqꢅation:  
= ꢀLS × CꢇDE + ꢄ  
MLꢄ  
CH_  
1ꢆ  
______________________________________________________________________________________ 15  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Tablꢇ 4. 0 tꢃ +5V Uꢄipꢃlar Cꢃꢆꢇ Tablꢇ  
2 x V  
REFADC  
DECꢁoAꢀ  
EQUꢁVAꢀEIT VOꢀTAGE (V)  
OUTPUT (V = V  
(CODE  
ꢁIPUT  
0x3FFF  
0x3FFE  
0x3FFD  
0x3FFC  
BꢁIARY OUTPUT CODE  
REF  
REFoL  
)
= 2.5V)  
10  
11 1111 1111 1111 ➔  
16383  
16382  
8193  
8192  
8191  
1
4ꢃ9997  
ꢆx3FFF  
0x2001  
0x2000  
0x1FFF  
2 x V  
REFADC  
11 1111 1111 111ꢆ ➔  
4ꢃ9994  
2ꢃ5ꢆꢆ3  
2ꢃ5ꢆꢆꢆ  
2ꢃ4997  
ꢆꢃꢆꢆꢆ3  
ꢆx3FFE  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
ꢆx2ꢆꢆ1  
0x0003  
0x0002  
0x0001  
0x0000  
1ꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
2 x V  
REFADC  
1 LSB =  
ꢆx2ꢆꢆꢆ  
214  
ꢆ1 1111 1111 1111 ➔  
ꢆx1FFF  
0
2
8192  
8190 8194  
16,381 16,383  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆ1 ➔  
(MSV)  
ꢆxꢆꢆꢆ1  
INPUT VOLTAGE (LSBs)  
ꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ꢆꢆꢆꢆ ➔  
ꢆxꢆꢆꢆꢆ  
Figure 8. 0 to +5V Unipolar Transfer Function  
Unipolar ꢀ to +±0 Device  
Table 4 and Figꢅre 8 show the oVVset binary transVer Vꢅnc-  
tion Vor the MAX1319 with a ꢆ to +5ꢄ inpꢅt rangeꢃ The  
FLR is two tiꢂes the voltage at REFꢃ The internal +2ꢃ5ꢆꢆꢄ  
reVerence gives a +5ꢄ FLR, while an external +2ꢄ to +3ꢄ  
reVerence allows an FLR oV +4ꢄ to +6ꢄ, respectivelyꢃ  
Calcꢅlate the ꢀLS size ꢅsing the Vollowing eqꢅation:  
= ꢀLS × CꢇDE + ꢄ  
- 2ꢃ5ꢆꢆꢄ  
(
)
CH_  
1ꢆ  
MLꢄ  
Definitions  
Integral Nonlinearity (INL)  
ꢁntegral nonlinearity is the deviation oV the valꢅes on an  
actꢅal transVer Vꢅnction Vroꢂ a straight lineꢃ For these  
devices this straight line is a line drawn between the  
endpoints oV the transVer Vꢅnction, once oVVset and gain  
errors have been nꢅlliViedꢃ  
2 × ꢄ  
REFADC  
14  
1 ꢀLS =  
2
Differential Nonlinearity (DNL)  
DiVVerential nonlinearity is the diVVerence between an  
actꢅal step width and the ideal valꢅe oV 1 ꢀLSꢃ For  
these devices, the DIꢀ oV each digital oꢅtpꢅt code is  
ꢂeasꢅred and the worst-case valꢅe is reported in the  
Electrical Characteristics tableꢃ A DIꢀ error speciVica-  
tion oV less than 1 ꢀLS gꢅarantees no ꢂissing codes  
and a ꢂonotonic transVer Vꢅnctionꢃ  
This eqꢅals ꢆꢃ3ꢆ52ꢂꢄ when ꢅsing the internal reVerenceꢃ  
The inpꢅt range is centered aboꢅt ꢄ , which is inter-  
MLꢄ  
nally set to +2ꢃ5ꢆꢆꢄꢃ For a cꢅstoꢂ ꢂidscale voltage,  
drive REF with an external voltage soꢅrce and MLꢄ  
ML  
will Vollow REF ꢃ Ioise present on MLꢄ or REF  
ML  
ML  
directly coꢅples into the ADC resꢅltꢃ Use a precision,  
low-driVt voltage reVerence with adeqꢅate bypassing to  
prevent MLꢄ Vroꢂ degrading ADC perVorꢂanceꢃ For  
ꢂaxiꢂꢅꢂ Vꢅll-scale range, be careVꢅl not to violate the  
absolꢅte ꢂaxiꢂꢅꢂ voltage ratings oV the analog inpꢅts  
when choosing MLꢄꢃ Deterꢂine the inpꢅt voltage as a  
Unipolar Offset Error  
For the ꢅnipolar MAX1319, the ideal ꢂidscale transition  
Vroꢂ ꢆx1FFF to ꢆx2ꢆꢆꢆ occꢅrs at MLꢄ (see Figꢅre 8)ꢃ  
The ꢅnipolar oVVset error is the aꢂoꢅnt oV deviation  
between the ꢂeasꢅred ꢂidscale transition point and  
the ideal ꢂidscale transition pointꢃ  
Vꢅnction oV ꢄ  
, ꢄ  
, and the oꢅtpꢅt code in deciꢂal  
REF MLꢄ  
ꢅsing the Vollowing eqꢅation:  
16 ______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Bipolar Offset Error  
Total Harmonic Distortion  
Total harꢂonic distortion (THD) is the ratio oV the RML  
sꢅꢂ oV the Virst Vive harꢂonics oV the inpꢅt signal to the  
Vꢅndaꢂental itselVꢃ This is expressed as:  
For the bipolar MAX1323/MAX1327, the ideal zero-point  
transition Vroꢂ ꢆx3FFF to ꢆxꢆꢆꢆꢆ occꢅrs at MLꢄ, which  
is ꢅsꢅally connected to groꢅnd (see Figꢅres 6 and 7)ꢃ  
The bipolar oVVset error is the aꢂoꢅnt oV deviation  
between the ꢂeasꢅred zero-point transition and the  
ideal zero-point transitionꢃ  
2
2
2
2
+ + + ꢄ  
3 4 5  
2
THD = 2ꢆ × log  
1
Gain Error  
The ideal Vꢅll-scale transition Vroꢂ ꢆx1FFE to ꢆx1FFF  
occꢅrs at 1 ꢀLS below Vꢅll scale (see the Transfer  
Functions section)ꢃ The gain error is the aꢂoꢅnt oV devi-  
ation between the ꢂeasꢅred Vꢅll-scale transition point  
and the ideal Vꢅll-scale transition point, once oVVset error  
has been nꢅlliViedꢃ  
where ꢄ is the Vꢅndaꢂental aꢂplitꢅde and ꢄ throꢅgh  
2
1
ꢄ are the 2nd- throꢅgh 5th-order harꢂonicsꢃ  
5
Spurious-Free Dynamic Range  
Lpꢅrioꢅs-Vree dynaꢂic range (LFDR) is the ratio oV the  
RML aꢂplitꢅde oV the Vꢅndaꢂental (ꢂaxiꢂꢅꢂ signal  
coꢂponent) to the RML valꢅe oV the next largest Vre-  
qꢅency coꢂponentꢃ  
Signal-to-Noise Ratio  
For a waveVorꢂ perVectly reconstrꢅcted Vroꢂ digital  
saꢂples, signal-to-noise ratio (LIR) is the ratio oV the  
Vꢅll-scale analog inpꢅt (RML valꢅe) to the RML qꢅanti-  
zation error (residꢅal error)ꢃ The ideal, theoretical ꢂini-  
ꢂꢅꢂ analog-to-digital noise is caꢅsed by qꢅantization  
noise error only and resꢅlts directly Vroꢂ the ADC’s res-  
olꢅtion (I bits):  
Aperature Delay  
Apertꢅre delay (t ) is the tiꢂe delay Vroꢂ the saꢂpling  
AD  
clock edge to the instant when an actꢅal saꢂple is takenꢃ  
Aperture Jitter  
Apertꢅre Jitter (t ) is the saꢂple-to-saꢂple variation in  
AJ  
apertꢅre delayꢃ  
LIR = (6ꢃꢆ2 × I + 1ꢃ76)dS  
Small-Signal Bandwidth  
A sꢂall -2ꢆdSFL analog inpꢅt signal is applied to an  
ADC in a ꢂanner that ensꢅres that the signal’s slew  
rate does not liꢂit the ADC’s perVorꢂanceꢃ The inpꢅt  
Vreqꢅency is then swept ꢅp to the point where the  
aꢂplitꢅde oV the digitized conversion resꢅlt has  
decreased by -3dSꢃ  
where I = 14 bitsꢃ  
ꢁn reality, there are other noise soꢅrces besides qꢅanti-  
zation noise; therꢂal noise, reVerence noise, clock jitter,  
etcꢃ LIR is coꢂpꢅted by taking the ratio oV the RML  
signal to the RML noise, which inclꢅdes all spectral  
coꢂponents ꢂinꢅs the Vꢅndaꢂental, the Virst Vive har-  
ꢂonics, and the DC oVVsetꢃ  
Full-Power Bandwidth  
A large -ꢆꢃ5dSFL analog inpꢅt signal is applied to an  
ADC, and the inpꢅt Vreqꢅency is swept ꢅp to the point  
where the aꢂplitꢅde oV the digitized conversion resꢅlt  
has decreased by -3dSꢃ This point is deVined as Vꢅll-  
power inpꢅt bandwidth Vreqꢅencyꢃ  
Signal-to-Noise Plus Distortion  
Lignal-to-noise plꢅs distortion (LꢁIAD) is the ratio oV the  
Vꢅndaꢂental inpꢅt Vreqꢅency’s RML aꢂplitꢅde to the  
RML eqꢅivalent oV all the other ADC oꢅtpꢅt signalsꢃ  
Lignal  
(Ioise + Distortion)  
RML  
LꢁIAD(dS) = 2ꢆ × log  
RML  
Effective Number of Bits  
EVVective nꢅꢂber oV bits (EIꢇS) indicates the global  
accꢅracy oV an ADC at a speciVic inpꢅt Vreqꢅency and  
saꢂpling rateꢃ An ideal ADC’s error consists oV qꢅanti-  
zation noise onlyꢃ With an inpꢅt range eqꢅal to the Vꢅll-  
scale range oV the ADC, calcꢅlate the EIꢇS as Vollows:  
Chip Information  
TRAILꢁLTꢇR CꢇUIT: 8ꢆ,ꢆꢆꢆ  
PRꢇCELL: ꢆꢃ6µꢂ SiCMꢇL  
LꢁIAD - 1ꢃ76  
EIꢇS =  
6ꢃꢆ2  
______________________________________________________________________________________ 17  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Typical Operating Circuits  
I.C.2  
38  
13  
+3V  
DV  
INTCLK/EXTCLK  
DD  
+5V  
0.1µF  
0.1µF  
MAX1319  
1
39  
DGND  
GND  
AV  
AV  
AV  
DD  
DD  
DD  
0.1µF  
0.1µF  
15  
17  
0.1µF  
2.2µF  
44  
42  
45  
47  
48  
46  
40  
41  
CS  
RD  
6
MSV  
CONVST  
SHDN  
ALLON  
CLK  
UNIPOLAR  
CONFIGURATION  
DIGITAL  
INTERFACE  
AND  
0.01µF  
18  
19  
REF  
REF  
MS  
CONTROL  
0.01µF  
EOC  
0.1µF  
20  
EOLC  
REF+  
REF-  
0.1µF  
2.2µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
22  
D13  
D12  
D11  
D10  
D9  
0.1µF  
2.2µF  
21  
0.1µF  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
D8  
12  
11  
10  
9
PARALLEL  
DIGITAL  
OUTPUTS  
D7  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
CH0  
D6  
D5  
D4  
8
D3  
7
D2  
5
D1  
ANALOG  
INPUTS  
0 TO +5V  
4
D0  
18 ______________________________________________________________________________________  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Typical Operating Circuits (continued)  
I.C.2  
38  
39  
13  
1
+3V  
DV  
INTCLK/EXTCLK  
DD  
+5V  
0.1µF  
0.1µF  
0.1µF  
MAX1323  
MAX1327  
DGND  
GND  
AV  
DD  
AV  
DD  
AV  
DD  
0.1µF  
15  
17  
44  
42  
45  
47  
48  
46  
40  
41  
CS  
RD  
6
18  
19  
MSV  
REF  
CONVST  
SHDN  
ALLON  
CLK  
BIPOLAR  
CONFIGURATION  
DIGITAL  
INTERFACE  
AND  
0.01µF  
MS  
CONTROL  
REF  
0.1µF  
EOC  
20  
REF+  
EOLC  
0.1µF  
2.2µF  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
22  
D13  
D12  
D11  
D10  
D9  
REF-  
0.1µF  
2.2µF  
21  
0.1µF  
COM  
2, 3, 14, 16, 23  
GND  
AGND  
D8  
12  
11  
10  
9
PARALLEL  
DIGITAL  
OUTPUTS  
D7  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
I.C.  
CH0  
D6  
D5  
D4  
8
D3  
7
D2  
5
BIPOLAR  
ANALOG  
INPUTS  
D1  
4
D0  
______________________________________________________________________________________ 19  
526ksps, Single-Channel,  
14-Bit, Parallel-Interface ADCs  
Package Information  
(The package drawing(s) in this data sheet ꢂay not reVlect the ꢂost cꢅrrent speciVicationsꢃ For the latest package oꢅtline inVorꢂation  
go to www.maxim-ic.cꢃm/packaꢅꢇsꢃ)  
PACKAGE OUTLINE, 32/48L TQFP, 7x7x1.4mm  
1
21-0054  
E
2
PACKAGE OUTLINE, 32/48L TQFP, 7x7x1.4mm  
2
21-0054  
E
2
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2ꢆꢆ5 Maxiꢂ ꢁntegrated Prodꢅcts  
Printed ULA  
is a registered tradeꢂark oV Maxiꢂ ꢁntegrated Prodꢅcts, ꢁncꢃ  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY