MAX13335E [MAXIM]

Dual Automotive Differential Audio Receivers with I2C Control and Diagnostics;
MAX13335E
型号: MAX13335E
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual Automotive Differential Audio Receivers with I2C Control and Diagnostics

文件: 总28页 (文件大小:1398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
General Description  
Benefits and Features  
+3.3V or +5V Operation  
The MAX13335E/MAX13336E are high-fidelity stereo  
audio input amplifiers designed for automotive applica-  
tions requiring audio-level detection and/or jack sensing  
capability.  
+28V to -16V Tolerant Inputs  
Wide Common-Mode Input Range (-5V to +11.5V)  
Fully Differential Inputs Up to 7V  
RMS  
The devices feature a dual-channel, low-noise, program-  
mable gain amplifier that accepts fully differential and  
quasi-differential input signals with diagnostics capability  
Quasi-Differential Inputs Up to 3.5V  
Audio Presence Detection  
Jack Sense Detection  
RMS  
2
controlled through an I C interface. The devices’ audio  
receiver can also pair with the MAX13325/MAX13326  
audio transmitter to form a complete differential audio link  
in automotive systems.  
Diagnostic Capability  
Programmable Gain with Zero-Crossing Detection  
Each channel of the device features high common-mode  
rejection ratio (CMRR) (80dB), enabling the recovery of  
audio signals in the presence of large common-mode  
noise in automotive environments. An integrated pro-  
grammable gain amplifier is adjustable from -14dB to  
+16dB (MAX13335E) and -22dB to +8dB (MAX13336E)  
with zero-crossing detection to provide an optimum out-  
put-signal level and limit zip noise. The external flexible  
diagnostic inputs can be configured to perform jack sense  
functions or to detect short-to-battery, short-to-ground,  
open load, and shorts between channels.  
2
I C Control Interface  
Automotive Grade ESD Protection  
• ISO 10605 ±15kV Air Gap  
• ±8kV Contact Discharge  
Applications  
Radio Head Units  
RSA/RSE  
Connectivity Modules  
Automotive Telematics  
The audio inputs are protected against ISO 10605 ±15kV  
Air Gap and ±8kV Contact Discharge ESD pulses. Both  
devices have a -40°C to +105°C operating temperature  
range, and are available in a 16-pin QSOP package.  
Ordering Information appears at end of data sheet.  
Typical Application Circuits  
MAX13335E/MAX13336E  
2
I C  
DIAGNOSTICS  
AND  
MAX13325  
MAX13326  
CONTROL  
PGA  
PGA  
Typical Application Circuits continued at end of data sheet.  
19-6168; Rev 3; 1/18  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Absolute Maximum Ratings  
V
to GND..............................................................-0.3V to +6V  
Continuous Power Dissipation (T = +70°C)  
A
DD  
D_ to GND...............................................................-16V to +28V  
INL_, INR_ to GND..................................................-10V to +15V  
QSOP (derate 9.6 mW/°C above +70°C).................771.5 mW  
Operating Junction Temperature Range.......... -40°C to +150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s).................................+300°C  
Soldering Temperature (reflow).......................................+260°C  
OUTR, OUTL to GND................................ -0.3V to (V  
+ 0.3V)  
DD  
SDA, SCL, INT to GND.............................................-0.3V to +6V  
REF to GND............................................... -0.3V to (V + 0.3V)  
DD  
Output Short-Circuit Duration.....................................Continuous  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
(Note 1)  
Package Thermal Characteristics  
QSOP  
Junction-to-Ambient Thermal Resistance(θ ).......103.7°C/W  
JA  
Junction-to-Case Thermal Resistance (θ )................37°C/W  
JC  
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer  
board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Electrical Characteristics  
(V  
= 5V, A = -6dB, R = 10kΩ, f = 20Hz to 20kHz, T = T = -40°C to +105°C, unless otherwise noted. Typical values are at  
DD  
V L A J  
T
= 25°C under normal conditions, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GENERAL  
V
V
V
= 1.68V  
= 2.5V  
-5%  
-5%  
3.3  
5.0  
11  
+5%  
+5%  
REF  
REF  
INL_  
Supply-Voltage Range  
V
V
DD  
Quiescent Supply Current  
Shutdown Supply Current  
I
= V  
= V /2  
mA  
µA  
DD  
INR_  
DD  
I
SHDN bit = 1  
6
10  
SHDN  
V
V
= 3.3V  
= 5V  
-4%  
-3%  
1.68  
2.5  
+150  
15  
+4%  
+3%  
DD  
REF Output Voltage  
V
V
REF  
DD  
Thermal Shutdown  
T
(Note 3)  
(Note 3)  
°C  
°C  
SHDN  
Thermal Shutdown Hysteresis  
T
HYS  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Electrical Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, f = 20Hz to 20kHz, T = T = -40°C to +105°C, unless otherwise noted. Typical values are at  
DD  
V L A J  
T
= 25°C under normal conditions, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AMPLIFIERS  
G_[3:0] = 0000  
G_[3:0] = 0001  
G_[3:0] = 0010  
G_[3:0] = 0011  
G_[3:0] = 0100  
G_[3:0] = 0101  
G_[3:0] = 0110  
G_[3:0] =0111  
G_[3:0] =1000  
G_[3:0] =1001  
G_[3:0] =1010  
G_[3:0] =1011  
G_[3:0] =1100  
G_[3:0] =1101  
G_[3:0] =1110  
G_[3:0] =1111  
G_[3:0] = 0000  
G_[3:0] = 0001  
G_[3:0] = 0010  
G_[3:0] = 0011  
G_[3:0] = 0100  
G_[3:0] = 0101  
G_[3:0] = 0110  
G_[3:0] =0111  
G_[3:0] =1000  
G_[3:0] =1001  
G_[3:0] =1010  
G_[3:0] =1011  
G_[3:0] =1100  
G_[3:0] =1101  
G_[3:0] =1110  
G_[3:0] =1111  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
MAX13335E  
2
4
6
8
10  
12  
14  
16  
-22  
-20  
-18  
-16  
-14  
-12  
-10  
-8  
Programmable Gain Amp  
A
dB  
V
MAX13336E  
-6  
-4  
-2  
0
2
4
6
8
Gain Error  
A
Within V  
Within V  
operating range  
±0.4  
±0.4  
dB  
dB  
ERR  
CM  
CM  
Gain Matching  
A
operating range  
MCH  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Electrical Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, f = 20Hz to 20kHz, T = T = -40°C to +105°C, unless otherwise noted. Typical values are at  
DD  
V L A J  
T
= 25°C under normal conditions, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
-10  
13.5  
19  
TYP  
MAX  
+10  
33  
UNITS  
Input Offset Voltage  
V
A
= 0dB  
mV  
IOS  
V
MAX13335E  
22  
30  
14  
17  
Differential  
MAX13336E  
MAX13335E  
MAX13336E  
42  
Input Impedance  
R
kΩ  
IN  
8.5  
11  
21  
Single-ended  
24  
Within V  
range,  
CM  
f = DC, A = -2dB  
(Note 4)  
60  
60  
65  
65  
80  
V
MAX13335E  
MAX13336E  
V
= 2V  
,
CM  
RMS  
f = 20Hz to 20kHz  
(Note 3)  
Common-Mode Rejection Ratio  
A
dB  
dB  
CMRR  
Within V  
range,  
CM  
f = DC, A = -10dB  
85  
V
(Note 4)  
V
= 2V  
,
CM  
RMS  
f = 20Hz to 20kHz  
(Note 3)  
Power-Supply Rejection Ratio  
A
f = 1kHz, V  
= 200mV (Note 3)  
P-P  
-80  
PSRR  
RIPPLE  
Quasi-differential  
source, V = 3.3V  
1.3  
2
DD  
Quasi-differential  
source, V = 5V  
DD  
MAX13335E  
Differential source,  
= 3.3V  
2.6  
4.0  
2.3  
3.5  
4.6  
7.0  
V
DD  
Differential source,  
= 5V  
V
DD  
Input Voltage Range  
V
V
RMS  
IN  
Quasi-differential  
source, V = 3.3V  
DD  
Quasi-differential  
source, V = 5V  
DD  
MAX13336E  
Differential source,  
= 3.3V  
V
DD  
Differential source,  
V
V
V
V
V
= 5V  
DD  
DD  
DD  
DD  
DD  
= 3.3V  
= 5V  
-1.2  
-1.8  
-3.3  
-5.0  
4.6  
7.0  
MAX13335E  
MAX13336E  
Input Common-Mode Voltage  
Range  
V
V
CM  
= 3.3V  
= 5V  
7.6  
11.5  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Electrical Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, f = 20Hz to 20kHz, T = T = -40°C to +105°C, unless otherwise noted. Typical values are at  
DD  
V L A J  
T
= 25°C under normal conditions, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
- 0.1  
UNITS  
Output Voltage Range  
V
R = 10kΩ  
0.1  
V
V
OUT  
L
DD  
Total Harmonic Distortion Plus  
Noise  
THD+N  
SNR  
f = 1kHz, V  
= 1.4V  
(Note 3)  
0.01  
%
OUT_  
RMS  
MAX13335E  
104.8  
V
= 1.4V  
RMS  
OUT_  
Signal-to-Noise Ratio  
Output Noise  
dB  
(Note 3)  
MAX13336E  
MAX13335E  
MAX13336E  
99.4  
8
A
= 0dB, unweighted  
V
V
µV  
RMS  
N
(Note 3)  
15  
Slew Rate  
SR  
C = 300pF (Note 3)  
0.5  
V/µs  
L
Maximum Capacitive Load  
Crosstalk  
C
No sustained oscillation (Note 3)  
V = 2V (Note 3)  
IN  
300  
-80  
-80  
-80  
pF  
dB  
dB  
dB  
L
A
XTALK  
RMS  
Mute Attenuation  
A
MUTE bit = 1, V = 2V  
(Note 3)  
(Note 3)  
MUTE  
SHDN  
IN  
RMS  
RMS  
Shutdown Attenuation  
LEVEL SENSE/CLIP DETECTION  
Audio Presence Threshold  
A
SHDN bit = 1, V = 2V  
IN  
V
Output referred  
127  
200  
90  
268  
mV  
RMS  
TAP  
TCP  
TCN  
V
Positive clip warning level  
Negative clip warning level  
Clip-Level Warning  
% V  
DD  
V
10  
DIAGNOSTIC I/O  
D_[3:0]=0001  
D_[3:0]=0010  
D_[3:0]=0011  
D_[3:0]=0100  
D_[3:0]=0101  
D_[3:0]=0110  
D_[3:0]=0111  
D_[3:0]=1000  
D_[3:0]=1001  
D_[3:0]=1010  
D_[3:0]=1011  
D_[3:0]=1100  
D_[3:0]=1101  
40  
97  
154  
210  
265  
320  
375  
430  
485  
540  
595  
650  
705  
32  
V
= 1.5V,  
D_  
Pullup Current Limit  
I
µA  
IDH  
CTRL0.DGAIN = 0  
Pulldown Current  
Trip High Threshold  
Trip Low Threshold  
Switch Diode  
I
D_[3:0] = 1110, V < V  
CM  
65  
µA  
V
IDL  
D_  
V
R
= 1kΩ to 10kΩ  
= 1kΩ to 10kΩ  
1.94  
0.92  
0.7  
IDH  
D_  
D_  
V
R
V
IDL  
V
D_[3:0] = 1111  
Off-state D_[3:0] = 0000, V < V  
V
DON  
Input Resistance  
Leakage Current  
R
1
MΩ  
µA  
DOFF  
DLKG  
D_  
CM  
CM  
I
Off-state D_[3:0] = 0000, V < V  
±10  
D_  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Electrical Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, f = 20Hz to 20kHz, T = T = -40°C to +105°C, unless otherwise noted. Typical values are at  
DD  
V L A J  
T
= 25°C under normal conditions, unless otherwise noted.) (Note 2)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ESD PROTECTION  
ISO 10605 Air Gap  
Contact Discharge  
DIGITAL INTERFACE  
V
V
2k/150pF, INL_, INR_  
±15  
±8  
kV  
kV  
ESD  
330/330pF, INL_, INR_  
ESD  
0.7 x  
Input Voltage High  
Input Voltage Low  
V
SDA, SCL  
SDA, SCL  
V
V
INH  
V
DD  
0.3 x  
V
INL  
V
DD  
0.14 x  
Input Voltage Hysteresis  
V
I
SDA, SCL  
mV  
HYS  
V
DD  
I/O Leakage Current  
Output Low Voltage  
SDA, SCL, INT  
±10  
µA  
V
LKG  
V
SDA, INT, I  
= 3mA  
0.4  
OL  
SINK  
EN to Full Operation Time  
t
C
= 2.2µF (Note 3)  
= 10pF to 400pF  
100  
ms  
SON  
REF  
BUS  
2
I C TIMING  
Output Fall Time  
t
C
250  
10  
ns  
pF  
kHz  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
ns  
µs  
µs  
pF  
OF  
Pin Capacitance  
C
IN  
Clock Frequency  
f
400  
SCL  
SCL Low Time  
t
1.3  
0.6  
0.6  
0.6  
0
LOW  
SCL High Time  
t
HIGH  
START Condition Hold Time  
START Condition Setup Time  
Data Hold Time  
t
Repeated START condition  
Repeated START condition  
HD:STA  
t
SU:STA  
t
900  
HD:DAT  
Data Setup Time  
t
100  
SU:DAT  
Input Rise Time  
t
SCL, SDA  
SCL, SDA  
300  
300  
R
Input Fall Time  
t
F
STOP Condition Setup Time  
Bus Free Time  
t
0.6  
1.3  
SU:STO  
t
Between START and STOP conditions  
Per bus line  
BUF  
Maximum Bus Capacitance  
C
400  
BUS  
Note 2: Specifications within minimum and maximum limits are 100% production tested at T = +25°C and are guaranteed over the  
A
operating temperature range by design and characterization. Actual typical values may vary and are not guaranteed.  
Note 3: Guaranteed by bench characterization.  
Note 4: A  
= 20log(V  
/V ).  
CMRR  
IOS CM  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Operating Characteristics  
(V  
= 5V, A = -6dB, R = 10kΩ, BW = 20Hz to 20kHz, T = +25°C, unless otherwise noted.)  
V L A  
DD  
THD+N vs. OUTPUT VOLTAGE  
THD+N vs. FREQUENCY  
10  
0.1  
0.01  
MAX13336E  
V
IN_  
= 2V  
RMS  
V
A
= 5V  
= -22dB  
DD  
V
1
0.1  
MAX13336E  
f = 6kHz  
0.01  
0.001  
MAX13335E  
0.001  
0.0001  
f = 100Hz, 1kHz  
0.0001  
0
0
0
0.1  
0.2  
0.3  
0.4  
)
0.5  
0.01  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V  
FREQUENCY (kHz)  
RMS  
THD+N vs. OUTPUT VOLTAGE  
THD+N vs. OUTPUT VOLTAGE  
10  
1
10  
1
MAX13335E  
V
A
MAX13336E  
= 5V  
= -6dB  
V
= 5V  
= -18dB  
V
A
DD  
DD  
V
0.1  
0.1  
f = 6kHz  
f = 6kHz  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
f = 100Hz AND 1kHz  
f = 100Hz AND 1kHz  
0
0.1  
0.2  
0.3  
0.4  
)
0.5  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
OUTPUT VOLTAGE (V  
OUTPUT VOLTAGE (V  
)
RMS  
RMS  
THD+N vs. OUTPUT VOLTAGE  
THD+N vs. OUTPUT VOLTAGE  
10  
1
10  
1
MAX13336E  
= 5V  
= 8dB  
MAX13335E  
V
A
DD  
V
0.1  
0.1  
f = 6kHz  
f = 6kHz  
f = 1kHz  
0.01  
0.001  
0.0001  
0.01  
0.001  
0.0001  
f = 100Hz, 1kHz  
f = 100Hz  
0
0.5  
1.0  
1.5  
2.0  
0.4  
0.8  
1.2  
1.6  
2.0  
2.4  
OUTPUT VOLTAGE (V  
)
OUTPUT VOLTAGE (V  
)
RMS  
RMS  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Operating Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, BW = 20Hz to 20kHz, T = +25°C, unless otherwise noted.)  
DD  
V
L
A
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
THD+N vs. OUTPUT VOLTAGE  
10  
1
-60  
-70  
MAX13335E  
V
= 200mV  
P-P  
RIPPLE  
V
A
= 5V  
DD  
= +12dB  
V
-80  
0.1  
OUTR  
f = 6kHz  
-90  
0.01  
0.001  
-100  
-110  
-120  
OUTL  
f = 100Hz AND 1kHz  
0.0001  
0
0.5  
1.0  
1.5  
2.0  
0.01  
0.1  
1
10  
100  
OUTPUT VOLTAGE (V  
)
RMS  
FREQUENCY (kHz)  
CROSSTALK vs. FREQUENCY  
GAIN MATCHING vs. FREQUENCY  
-80  
-90  
-5.80  
-5.85  
-5.90  
-5.95  
-6.00  
-6.05  
-6.10  
-6.15  
-6.20  
-6.25  
-6.30  
V
IN_  
= 2V  
V
= 2V  
RMS  
RMS  
IN_  
-100  
-110  
-120  
-130  
-140  
-150  
OUTR  
OUTL  
OUTR TO OUTL  
OUTL TO OUTR  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
SUPPLY CURRENT vs. TEMPERATURE  
SHUTDOWN CURRENT vs. TEMPERATURE  
12.0  
11.8  
8
7
6
5
4
3
2
1
0
V
= V  
= V  
SDA  
DD  
SCL  
11.6  
V
= 5V  
DD  
V
= 5V  
11.4  
DD  
11.2  
11.0  
V
= 3.3V  
DD  
10.80  
10.60  
10.40  
10.20  
V
= 3.3V  
50  
DD  
-50 -25  
0
25  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Operating Characteristics (continued)  
(V  
= 5V, A = -6dB, R = 10kΩ, BW = 20Hz to 20kHz, T = +25°C, unless otherwise noted.)  
DD  
V
L
A
COMMON-MODE REJECTION RATIO  
vs. FREQUENCY  
DIAGNOSTIC CURRENT SOURCE vs. D_[3:0]  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
-10  
V
DD  
V
D_  
= 5V  
= 1.5V  
MAX13336E  
V
= 2V  
IN_  
RMS  
-20  
-30  
-40  
-50  
-60  
LEFT CHANNEL  
RIGHT CHANNEL  
-70  
-80  
-90  
-100  
-110  
-120  
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14  
0.01  
0.1  
1
10  
100  
D_[3:0] (dec)  
FREQUENCY (kHz)  
MUTE ATTENUATION vs. FREQUENCY  
SHUTDOWN ATTENUATION vs. FREQUENCY  
0
-20  
0
V
= 2V  
V
= 2V  
IN_  
RMS  
IN_ RMS  
MUTE = 1  
SHDN = 1  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-100  
-120  
-140  
0.01  
0.1  
1
10  
100  
0.01  
0.1  
1
10  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
OUTPUT NOISE vs. GAIN SETTING  
OUTPUT NOISE vs. GAIN SETTING  
40  
35  
30  
25  
20  
15  
10  
5
40  
MAX13336E  
MAX13335E  
35  
30  
25  
20  
15  
10  
5
NONWEIGHTED  
NONWEIGHTED  
A-WEIGHTED  
A-WEIGHTED  
0
0
0
5
10  
15  
0
5
10  
15  
G_[3:0] (dec)  
G_[3:0] (dec)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Pin Configuration  
TOP VIEW  
+
D0  
D1  
1
2
3
4
5
6
7
8
16 REF  
15  
V
DD  
INL+  
INL-  
INR-  
INR+  
D2  
14 OUTL  
13 GND  
12 OUTR  
11 INT  
MAX13335E  
MAX13336E  
10 SDA  
D3  
9 SCL  
QSOP  
Pin Description  
PIN  
1
NAME  
D0  
FUNCTION  
Diagnostic I/O 0. I/O pin used for jack sense and diagnostics.  
Diagnostic I/O 1. I/O pin used for jack sense and diagnostics.  
Noninverting Left-Channel Audio Input  
2
D1  
3
INL+  
INL-  
INR-  
INR+  
D2  
4
Inverting Left-Channel Audio Input  
5
Inverting Right-Channel Audio Input  
6
Noninverting Right-Channel Audio Input  
7
Diagnostic I/O 2. I/O pin used for diagnostics.  
Diagnostic I/O 3. I/O pin used for diagnostics.  
8
D3  
2
9
SCL  
SDA  
INT  
I C Serial-Clock Input  
2
10  
11  
12  
13  
14  
15  
16  
I C Serial-Data Input and Output  
Active-Low, Open-Drain Interrupt Request Output  
Right-Channel Audio Output  
Ground  
OUTR  
GND  
OUTL  
Left-Channel Audio Output  
Supply Input  
V
DD  
REF  
V
/2 Reference Output. Bypass REF to GND with a 2.2µF capacitor.  
DD  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Thermal Shutdown  
Detailed Description  
Thermal shutdown protects the device when the junction  
temperature exceeds +150°C (typ). The device resumes  
operation when the junction temperature drops below the  
thermal shutdown hysteresis of 15°C (typ). The internal  
status register latches the status change of the TSD bit  
The MAX13335E/MAX13336E are designed to operate  
with the MAX13325/MAX13326 dual automotive audio  
line drivers to form a complete differential audio link  
in automotive systems. In addition, the MAX13335E/  
MAX13336E can operate as an auxiliary input audio  
amplifier with jack sense function.  
2
until an I C read is performed.  
Diagnostics  
Signal Path  
The devices feature four similar diagnostic I/O ports.  
When configured correctly, they are capable of performing  
jack sense detection, short-to-ground, short-to-battery,  
open-load, and shorts between channels. Each diagnostic  
I/O port contains a programmable current source, a volt-  
age sense, and a diode to ground.  
The devices can be configured to operate with quasi-  
differential (up to 3.5V  
) and fully differential (up to  
RMS  
7V  
) input signals. Both input channels feature high  
RMS  
80dB CMRR (typ). An integrated programmable gain  
amplifier with zero-crossing detection controlled through  
2
the I C interface provides adjustable gain from -14dB to  
+16dB (MAX13335E) or -22dB to +8dB (MAX13336E) in  
+2dB increments. Zero-crossing detection can be enabled  
to limit the zip noise during a gain transition by delaying  
the gain change until a zero-crossing event occurs on the  
input signal.  
The principle behind the diagnosis is simply forcing a  
current into the load attached to the I/O port and sensing  
the voltage to check if it is greater or smaller than the  
two predefined low/high thresholds. These can be easily  
2
accessed by a microcontroller through the I C interface.  
The procedure usually starts with stepping up the current  
source from the minimum to maximum range.  
Interrupt Output  
The devices can monitor the inputs for the presence of  
audio, clip detection, and change-of-state in the jack  
sense. An active-low, open-drain interrupt request output  
can be configured through the I C interface to report the  
presence of audio, clip detection, and change-of-state in  
the jack sense. The internal status register also latches  
1) If the sensed voltage is consistently below the low  
threshold, a short-to-ground event is determined.  
2
2) However, if the sensed voltage is consistently above  
the high threshold, there is a possibility of either a  
short-to-battery or an open-load event. In order to dif-  
ferentiate between them, the I/O port should be tested  
again with a voltage-sense-only configuration (i.e.,  
with the current source switched off). If the sensed  
voltage remains above the high threshold, a short-to-  
battery event has occurred. Otherwise, an open-load  
event is detected.  
2
the status change of those parameters until an I C read  
is performed.  
40µA TO  
705µA  
2
I C INTERFACE  
3) In some current source range, if the sensed voltage is  
between the high and low thresholds, this could indi-  
cate that the load is present.  
D_  
R
D_  
A valid readout of the status might require some amount  
of delays (to be inserted by the microcontroller) due to  
the settling time needed to charge/discharge any external  
capacitive load on the I/O port.  
V
IDH  
DH_  
DL_  
The diode is useful in the case of sensing an unconnected  
load or short between channels. Here, one end of the load  
can be forced to ground by the diode and the usual pro-  
cedure described above can be applied to detect various  
events. It is, however, advisable to test the I/O port for a  
short-to-battery condition prior to turning on the diode as  
it could risk damaging the device.  
V
IDL  
Figure 1. Diagnostic I/O Port  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
See the Applications Information section for various  
examples on how the diagnostic can be set up to detect  
different events.  
is high are read as control signals (see the START and  
STOP Conditions section). When the serial interface is  
inactive, SDA and SCL idle high.  
START and STOP Conditions  
Applications Information  
A master device initiates communication by issuing a  
START condition (S) which is a high-to-low transition on  
SDA with SCL high. A START condition from the master  
signals the beginning of a transmission to the device. The  
master terminates transmission by a STOP condition (P)  
(see the Acknowledge Bit section). A STOP condition is a  
low-to-high transition on SDA while SCL is high (Figure 4).  
The STOP condition frees the bus. If a repeated START  
Serial Interface  
Writing to the device using I C requires that first the mas-  
2
ter send a START condition (S) followed by the device’s  
2
I C address. After the address, the master sends the  
address of the register that is to be programmed. The  
master then ends communication by issuing a STOP con-  
dition (P) to relinquish control of the bus, or a repeated  
START condition (Sr) to communicate to another I C  
slave (Figure 2).  
2
condition (S ) is generated instead of a STOP condition,  
r
the bus remains active. When a STOP condition or incor-  
rect slave ID is detected, the device internally disconnects  
SCL from the serial interface until the next START or  
repeated START condition, minimizing digital noise and  
feedthrough.  
Bit Transfer  
Each SCL rising edge transfers one data bit. The data  
on SDA must remain stable during the high portion of the  
SCL clock pulse (Figure 3). Changes in SDA while SCL  
SDA  
t
R
t
SU:DAT  
t
F
t
t
t
t
BUF  
LOW  
HD:STA  
SP  
t
t
F
R
SCL  
t
t
t
SU:STO  
HD:STA  
SU:STA  
t
t
HIGH  
HD:DAT  
S
Sr  
P
S
2
Figure 2. I C Timing  
START  
STOP  
CONDITION  
CONDITION  
SDA  
SCL  
SDA  
DATA LINE  
STABLE;  
CHANGE OF  
DATA ALLOWED  
SCL  
DATA VALID  
Figure 3. Bit Transfer  
Figure 4. START/STOP Conditions  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
reads the final byte of data from the device, followed by a  
Acknowledge Bit  
STOP condition.  
The acknowledge bit (ACK) is a clocked 9th bit that the  
device uses to handshake the receipt of each byte of data  
when in write mode. The device pulls down SDA during  
the entire master-generated 9th clock pulse if the previ-  
ous byte is successfully received (Figure 5). Monitoring  
ACK allows for detection of unsuccessful data transfers.  
An unsuccessful data transfer occurs if a receiving device  
is busy or if a system fault has occurred. In the event of  
an unsuccessful data transfer, the bus master could retry  
communication. The master must pull down SDA during  
the 9th clock cycle to acknowledge receipt of data when  
the device is in read mode. An acknowledge must be sent  
by the master after each read byte to allow data transfer  
to continue. A not-acknowledge is sent when the master  
Slave Address  
2
2
The device is programmable to one of the four I C  
slave addresses (Table 2). The power-on default I C  
slave address of the device for read/write is 0xD0/0xD1  
(1101000R/W). The I C slave address of the device can  
be selected by writing to Control Register 1 (0x03) while  
INT is pulled low externally during the I C write duration  
(Figure 6).  
2
2
Single Byte-Write Operation  
For a single byte-write operation, send the slave address  
as the first byte followed by the register address and then  
a single data byte (Figure 7).  
NOT ACKNOWLEDGE  
S
SDA  
ACKNOWLEDGE  
1
8
9
SCL  
Figure 5. Acknowledge and Not-Acknowledge Bits  
2
2
PROGRAM I C ADDRESS  
CURRENT I C ADDRESS  
CONTROL REGISTER 1 (0x03)  
SDA  
SCL  
INT  
1
1
0
1
0
I2C1 I2C0  
0
ACK  
0
0
0
0
0
0
1
1
ACK  
0
0
0
0
0
0
I2C1 I2C0 ACK  
2
Figure 6. I C Slave Address Programming  
R/W  
S
S7  
B6  
S6  
B5  
S5  
S4  
S3  
S2  
S1  
ACK C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0 ACK  
= 0  
SLAVE ADDRESS  
REGISTER ADDRESS  
B7  
B4  
B3  
B2  
B1  
B0 ACK  
P
DATA 1  
Figure 7. A Single Byte-Write Operation  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
by the slave address with the read bit set. After the slave  
Burst-Write Operation  
sends the data byte, send a not-acknowledge followed by  
a STOP condition (Figure 9).  
For a burst-write operation, send the slave address as the  
first byte followed by the register address and then the  
data bytes (Figure 8).  
Burst-Read Operation  
For a burst-read operation, send the slave address with  
a write as the first byte followed by the register address.  
Then send a repeated START condition followed by the  
slave address with the read bit set. The slave sends data  
bytes until a not-acknowledge condition is sent (Figure 10).  
Single Byte-Read Operation  
For a single byte-read operation, send the slave address  
with a write as the first byte followed by the register  
address. Then send a repeated START condition followed  
R/W  
S
S7  
B7  
S6  
B6  
S5  
S4  
S3  
S2  
B2  
S1  
B1  
ACK R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0 ACK  
= 0  
SLAVE ADDRESS  
REGISTER ADDRESS  
B5  
B4  
B3  
B0 ACK B7  
B6  
B6  
B5  
B5  
B4  
B3  
B3  
B2  
B2  
B1  
B1  
B0 ACK  
B0 ACK  
DATA 1  
DATA 2  
ACK B7  
B4  
P
DATA N  
Figure 8. A Burst-Write Operation  
R/W  
S
S7  
S6  
S5  
S4  
S3  
S2  
S2  
S1  
S1  
ACK B7  
B6  
B6  
B5  
B4  
B3  
B2  
B1  
B1  
B0 ACK  
B0 NACK  
= 0  
SLAVE ADDRESS  
REGISTER ADDRESS  
R/W  
= 1  
Sr  
S7  
S6  
S5  
SLAVE ADDRESS  
NOTE: SHADED ITEM IS FROM THE MASTER.  
S4  
S3  
ACK B7  
B5  
B4  
B3  
B2  
P
DATA  
Figure 9. A Single Byte-Read Operation  
R/W  
S
S7  
S7  
S6  
S6  
S5  
S4  
S3  
S2  
S2  
S1  
S1  
ACK B7  
B6  
B6  
B5  
B5  
B4  
B3  
B2  
B1  
B1  
B0 ACK  
= 0  
SLAVE ADDRESS  
REGISTER ADDRESS  
R/W  
= 1  
Sr  
S5  
S4  
S3  
ACK B7  
B5  
B4  
B4  
B3  
B2  
B2  
B1  
B0 ACK  
SLAVE ADDRESS  
DATA 1  
ACK B7  
B6  
B3  
B0 NACK  
P
DATA N  
NOTE: SHADED ITEMS ARE FROM THE MASTER.  
Figure 10. A Burst-Read Operation  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Register Map  
NAME  
STAT0  
STAT1  
CTRL0  
CTRL1  
DIAG0  
DIAG1  
GAIN  
REG  
00  
BIT 7  
DH3  
APD  
API  
BIT 6  
DL3  
CLD  
CLI  
BIT 5  
DH2  
JSD  
JSI  
BIT 4  
DL2  
TSD  
BIT 3  
DH1  
BIT 2  
DL1  
ID2  
BIT 1  
DH0  
BIT 0  
DL0  
R/W  
R
POR SETTINGS  
0x00  
01  
ID1  
ID0  
R
0x00  
02  
ZEN  
MUTE  
I2C1  
D0[1]  
D2[1]  
GR1  
SHDN  
I2C0  
D0[0]  
D2[0]  
GR0  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00  
03  
0x00  
04  
D1[3]  
D3[3]  
GL3  
D1[2]  
D3[2]  
GL2  
D1[1]  
D3[1]  
GL1  
D1[0]  
D3[0]  
GL0  
D0[3]  
D2[3]  
GR3  
D0[2]  
D2[2]  
GR2  
0x00  
05  
0x00  
06  
0x00  
Status Register 0 (STAT0)  
ADDRESS: 0x00  
MODE: R  
BIT  
NAME  
POR  
7
DH3  
0
6
DL3  
0
5
4
DL2  
0
3
2
DL1  
0
1
0
DL0  
0
DH2  
0
DH1  
0
DH0  
0
The bits in Status Register 0 are updated to reflect the states of the upper (DH_) and lower (DL_) comparator’s threshold  
when voltage sensing is enabled for the corresponding diagnostic I/O. Combinations of DH_ and DL_ can be used to  
decode the fault on the I/O port.  
Bits 7, 5, 3, 1: DH_ (Diagnostic Upper Comparator Threshold V  
0 = Below upper threshold  
)
IDH  
1 = Above upper threshold  
Bits 6, 4, 2, 0: DL_ (Diagnostic Lower Comparator Threshold V  
0 = Below lower threshold  
)
IDL  
1 = Above lower threshold  
Table 1. Interpretation of Diagnostic Status Bits  
DH_  
DL_  
0
CONDITION  
0
0
1
1
1
Short-to-ground (or disabled)  
1
No fault  
0
Invalid (not used)  
1
Short-to-battery if current source is disabled (i.e., D_[3:0] = 1110)  
Open-load if current source is enabled (i.e., D_[3:0] = 0001 to 1101)  
1
Maxim Integrated  
15  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Status Register 1 (STAT1)  
ADDRESS: 0x01  
MODE: R  
BIT  
NAME  
POR  
7
APD  
0
6
CLD  
0
5
JSD  
0
4
TSD  
0
3
0
2
1
0
ID2  
ID1  
ID0  
Bit 7: APD (Audio Presence Status Bit)  
0 = Audio not present.  
1 = Audio presence detected. INT asserts low.  
Bit 6: CLD (Clip Detection Status Bit)  
0 = No clipping detected.  
1 = Clip warning. INT asserts low.  
Bit 5: JSD (Jack Sense Status Bit)  
0 = Jack removed. INT asserts low.  
1 = Jack inserted. INT asserts low.  
Note: INT asserts low whenever jack sense changes state.  
Bit 4: TSD (Thermal Shutdown Status Bit)  
0 = Within safe operating range.  
1 = Overheating detected. INT pin asserts low.  
Bit 3: No Function  
Bit 2 to 0: ID_ (Die ID)  
001 = MAX13335E  
010 = MAX13336E  
Note: Reading of Status Register 1 (REG = 0x01) releases INT and resets bits APD, CLD, JSD, and TSD back to zero.  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Control Register 0 (CTRL0)  
ADDRESS: 0x02  
MODE: R/W  
BIT  
NAME  
POR  
7
API  
0
6
CLI  
0
5
JSI  
0
4
0
3
DGAIN  
0
2
ZEN  
0
1
MUTE  
0
0
SHDN  
0
Bit 7: API (Audio Presence Interrupt Enable Bit)  
0 = Disable  
1 = Enable*  
*Bit automatically resets to 0 when an audio presence interrupt occurs.  
Bit 6: CLI (Clip Warning Interrupt Enable Bit)  
0 = Disable  
1 = Enable*  
*Bit automatically resets to 0 when a clip warning interrupt occurs.  
Bit 5: JSI (Jack Sense Interrupt Enable Bit)  
The JSI bit can be set only after D1[3:0] and D0[3:0] in the Diagnostic register 0 (DIAG0) has been programmed.  
0 = Disable  
1 = Enable*  
*Bit automatically resets to 0 when a jack sense interrupt occurs.  
Bits 4: No Function (0 should be written during write access.)  
Bit 3: DGAIN (Diagnostic Pullup Current Gain Bit)  
Gain adjustment used to set the diagnostic pullup current value on the D0–D3 pins.  
0 = Nominal; pullup current values match typical values in the Electrical Characteristics table.  
1 = 1.5x; Increases the diagnostic current by 1.5x the nominal values listed for the Pullup Current Limit parameter in the  
Electrical Characteristics table  
Bit 2: ZEN (Zero-Crossing Enable Bit)  
Enabling zero-crossing detection loads the new PGA gain settings at the zero-crossing signal to avoid zip noise.  
0 = Disable  
1 = Enable  
Bit 1: MUTE (Mute Enable Bite)  
0 = Play mode  
1 = Mute mode  
Bit 0 : SHDN (Shutdown Enable Bit)  
0 = Normal mode  
1 = Shutdown mode  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Control Register 1 (CTRL1)  
ADDRESS: 0x03  
MODE: R/W  
BIT  
NAME  
POR  
7
0
6
0
5
0
4
0
3
0
2
0
1
I2C1  
0
0
I2C0  
0
2
Table 2. I C Address  
A7  
1
A6  
1
A5  
0
A4  
1
A3  
0
A2 (I2C1)  
A1 (I2C0)  
A0 (R/W)  
READ  
0xD1  
0xD3  
0xD5  
0xD7  
WRITE  
0xD0  
0xD2  
0xD4  
0xD6  
0
0
1
1
0
1
0
1
1
1
0
1
0
1
1
0
1
0
1
1
0
1
0
Bits 7 to 2: No Function (0 should be written during write access.)  
Bits 1 and 0: I2C_  
2
2
The I2C1 and I2C0 bits determine the I C slave address of the device. The I C slave address is changed by writing to  
2
CTRL1 while INT is pulled low (e.g., by an external microcontroller) for the duration of the I C write cycle.  
Diagnostic Register 0 (DIAG0)  
ADDRESS: 0x04  
MODE: R/W  
BIT  
NAME  
POR  
7
D1[3]  
0
6
D1[2]  
0
5
D1[1]  
0
4
D1[0]  
0
3
D0[3]  
0
2
D0[2]  
0
1
D0[1]  
0
0
D0[0]  
0
Maxim Integrated  
18  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Diagnostic Register 1 (DIAG1)  
ADDRESS: 0x05  
MODE: R/W  
BIT  
NAME  
POR  
7
D3[3]  
0
6
D3[2]  
0
5
D3[1]  
0
4
D3[0]  
0
3
D2[3]  
0
2
D2[2]  
0
1
D2[1]  
0
0
D2[0]  
0
The Diagnostic registers, DIAG0 and DIAG1, program the state of the four diagnostic I/O ports D_. The diagnostic ports  
can be programmed to operate in one of the four states:  
1) Setting D_[3:0] = 0000 disables the corresponding diagnostic I/O.  
2) Setting D_[3:0] = 0001 to 1101 enables the internal current source (40µA to 705µA) and voltage sensing. The volt-  
age sensing utilizes a window comparator with an upper threshold of 1.94V and a lower threshold of 0.92V (see the  
Diagnostic Configurations section).  
3) Setting D_[3:0] = 1110 enables voltage sensing only.  
4) Setting D_[3:0] = 1111 enables the internal diode to ground.  
Table 3. Diagnostic I/O Port States  
D_[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
FUNCTION  
Diagnostic output disabled.  
Enables the 40µA current source and voltage sense.  
Enables the 97µA current source and voltage sense.  
Enables the 154µA current source and voltage sense.  
Enables the 210µA current source and voltage sense.  
Enables the 265µA current source and voltage sense.  
Enables the 320µA current source and voltage sense.  
Enables the 375µA current source and voltage sense.  
Enables the 430µA current source and voltage sense.  
Enables the 485µA current source and voltage sense.  
Enables the 540µA current source and voltage sense.  
Enables the 595µA current source and voltage sense.  
Enables the 650µA current source and voltage sense.  
Enables the 705µA current source and voltage sense.  
Enable voltage sense. The current source is disabled.  
Enables the diode. The current source and voltage sense are disabled.  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Gain Register (GAIN)  
ADDRESS: 0x06  
MODE: R/W  
BIT  
NAME  
POR  
7
GL3  
0
6
GL2  
0
5
GL1  
0
4
GL0  
0
3
GR3  
0
2
GR2  
0
1
GR1  
0
0
GR0  
0
Bits 7 to 0: G_  
The Gain register sets the gain of the internal programmable gain amplifier (A ) for the left (GL[3:0]) and right (GR[3:0])  
V
channels. The gain of the programmable gain amplifier (A ) is determined by the following transfer function:  
V
Gain(A ) = -14dB + (G_[3:0] x 2)dB (for MAX13335E)  
V
Gain(A ) = -22dB + (G_[3:0] x 2)dB (for MAX13336E)  
V
example, the diagnostic I/O D1 is configured as a 97µA  
Diagnostic Configurations  
current-source output and D0 is configured for voltage  
sensing. When a plug is not inserted, the internal spring  
contact of the jack shorts D1 to D0. The 97µA current  
The device’s diagnostics can be configured for local jack  
sense, remote jack sense, and differential drive connec-  
tions (see the Typical Application Circuits). Diagnostic  
registers DIAG0 and DIAG1 configure the diagnostic I/O  
ports D_ as a current-source output with voltage sens-  
ing enabled, a voltage sensing input, or a diode to GND.  
When voltage sensing is enabled, the current states of  
the internal window comparator are updated to status  
register STAT0. A valid readout of the STAT0 register  
might require some amount of delays (to be inserted by  
the microcontroller) between configuring the diagnostic  
and reading the status register due to the settling time  
needed to charge/discharge the external capacitive load  
on the D_ pins.  
source from D1 pulls D0 to V  
resulting in DH0 = 1.  
DD  
When a plug is inserted, the internal spring contact of the  
jack is forced open and disconnects D1 from D0. This  
results in D0 going low and hence DH0 = 0.  
Remote Jack Sense Detection  
When the jack is remotely located, the device can be used  
for additional fault detection of the wiring harness used for  
the connection. See the Typical Application Circuits.  
Differential Connection  
For fully differential applications, the device can be con-  
figured to detect faults in the wiring harness as shown in  
the Typical Application Circuits.  
Local Jack Sense  
The device is configured for jack sense function when the  
jack is localized to the same module. In this application  
Table 4. Local Jack Sense Diagnostic Configuration  
CONFIGURATION  
FUNCTION  
COMPARATOR OUTPUT  
STATUS  
D1[3:0] = 0010  
D0[3:0] = 1110  
Source 97µA  
Source off  
DH0 = H  
Device not plugged in  
D1[3:0] = 0010  
D0[3:0] = 1110  
Source 97µA  
Source off  
DH0 = L  
Device plugged in  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
MAX13335E/MAX13336E  
D1[3:0] 0010  
97µA  
D1  
V
IDH  
L
V
IDL  
R
C
D0[3:0] = 1110  
40µA TO  
705µA  
D0  
V
IDH  
DH0  
DL0  
V
IDL  
Figure 11. Diagnostic Setup for Local Jack Sense  
1) Set the gain in the GAIN register based on the  
required input audio level where the APD threshold is  
Audio Presence Detection  
When the device is used in an auxiliary input ampli-  
fier, it can detect if audio is present at the inputs so the  
downstream DSP does not have to continuously convert  
the analog signal to digital in order to monitor the audio  
stream. This can save two ADC inputs as the auxiliary  
input can be muxed with another audio stream that is  
mutually exclusive. To do this, perform the following steps:  
exceeded. The threshold is set to 200mV  
/G_[3:0].  
RMS  
2) Set API bit in the CTRL0 register to enable the APD  
interrupt.  
When the input audio level exceeds 200mV  
/G_[3:0]  
RMS  
the INT pin is asserted. The microcontroller can read back  
the STAT0 register to check for APD = 1.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
MAX13335E/MAX13336E  
D1[3:0] = 0000  
40µA TO  
705µA  
D1  
V
IDH  
L
1kΩ-10kΩ  
V
IDL  
1kΩ-10kΩ  
R
C
D3  
D2  
D2[3:0] = 1111  
D3[3:0] = 1101  
40µA TO  
705µA  
0-10kΩ  
705µA  
V
V
IDH  
IDH  
DH3  
DL2  
V
V
IDL  
IDL  
Figure 12. Diagnostic Setup for Remote Jack Sense  
4) Set D0[3:0] = 0001 to source 40µA out of the D0 pin.  
5) Enable the JSI bit in the CTRL0 register.  
Low-Power Standby with Jack Sense  
When the device is used as an auxiliary amplifier, there  
is the option to put the device into a low-power standby  
mode while waiting for a plug to be inserted into the jack.  
To do this, perform the following steps:  
When a plug is inserted, the DH0 comparator trips and  
subsequently asserts the interrupt INT pin. The microcon-  
troller can read back the STAT0 register to check for DH0  
= 1 and follow up by setting SHDN to 0.  
1) Connect D0 to the R (or L) of the jack.  
In the standby state, the typical current consumption is  
reduced to 290µA.  
2) Connect R  
(or L  
) of the jack with a 50Ω  
SENSE  
SENSE  
resistor to ground.  
3) Set the SHDN bit to 1 in the CTRL0 register to power  
down the amplifier.  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
side of the DC-blocking capacitor; however, depending  
on application requirements, the IC side may allow for a  
ESD Guide  
For maximum protection against IEC 61000-4-2 and  
ISO 10605 ESD pulses, a 1kΩ or larger resistor is rec-  
ommended on every diagnostic D_ pin before the input  
AC-coupling capacitor. Additionally, a suitable ESD diode  
must be connected from the DC-blocking ceramic capaci-  
tor to ground. The ESD diode can be connected on either  
lower clamping voltage, which results in a smaller ESD  
device. If the input source is always DC biased to V /2,  
BAT  
then a unidirectional ESD device can be used when  
clamping on the input side of the DC-blocking capacitor.  
See Figure 13.  
1nF  
1nF  
1nF  
MAX13335E/MAX13336E  
1nF  
1kΩ  
D3  
2
D2  
2.2µF  
I C  
DIAGNOSTICS  
AND  
CONTROL  
D1  
D0  
20Ω  
INL-  
1kΩ  
PGA  
PGA  
2.2µF  
20Ω  
20Ω  
INL+  
INR+  
1kΩ  
20Ω  
2.2µF  
INR-  
1kΩ  
2.2µF  
Figure 13. ESD Protection Technique Against IEC 61000-4-2 and ISO 10605 Pulses  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Application Circuits (continued)  
LOCAL JACK SENSE CONNECTION  
3.3V OR 5V  
1µF  
V
DD  
MAX13335E/MAX13336E  
40µA TO  
705µA  
D_[3:0]  
D3  
2kΩ  
2kΩ  
2kΩ  
SDA  
SCL  
INT  
V
D2  
D1  
IDH  
DH_  
2
I C  
AND  
CONTROL  
DL_  
D0  
V
IDL  
X4  
AUDIO  
PRESENCE  
DETECT  
L
2.2µF  
2.2µF  
INL-  
OUTL  
OUTR  
PGA  
PGA  
R
C
INL+  
2.2µF  
2.2µF  
INR+  
INR-  
GND  
REF  
10µF  
EXTERNAL ESD PROTECTION COMPONENTS ARE NOT SHOWN.  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Application Circuits (continued)  
REMOTE JACK SENSE CONNECTION  
3.3V OR 5V  
1µF  
V
DD  
MAX13335E/MAX13336E  
40µA TO  
705µA  
D3  
D2  
D1  
D_[3:0]  
2kΩ  
2kΩ  
2kΩ  
SDA  
SCL  
INT  
V
IDH  
DH_  
2
I C  
AND  
CONTROL  
DL_  
D0  
V
IDL  
L
X4  
AUDIO  
PRESENCE  
DETECT  
2.2µF  
INL-  
OUTL  
OUTR  
2.2µF  
PGA  
PGA  
INL+  
R
C
2.2µF  
INR+  
2.2µF  
INR-  
GND  
REF  
10µF  
EXTERNAL ESD PROTECTION COMPONENTS ARE NOT SHOWN.  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Typical Application Circuits (continued)  
DIFFERENTIAL CONNECTION  
3.3V OR 5V  
1µF  
V
DD  
MAX13335E/MAX13336E  
40µA TO  
705µA  
D3  
D2  
D_[3:0]  
2kΩ  
2kΩ  
2kΩ  
SDA  
SCL  
INT  
V
IDH  
DH_  
2
I C  
AND  
CONTROL  
D1  
D0  
DL_  
V
IDL  
X4  
AUDIO  
PRESENCE  
DETECT  
2.2µF  
2.2µF  
INL-  
L-  
OUTL  
OUTR  
PGA  
PGA  
INL+  
L+  
2.2µF  
2.2µF  
INR+  
INR-  
R+  
R-  
GND  
REF  
10µF  
EXTERNAL ESD PROTECTION COMPONENTS ARE NOT SHOWN.  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Ordering Information  
PART  
TEMP RANGE  
GAIN RANGE (dB)  
OPTIONS  
Differential V up to 4V  
PIN-PACKAGE  
;
IN  
RMS  
MAX13335EGEE/V+  
16 QSOP  
-40°C to +105°C  
-14 to +16  
quasi-differential V up to 2V  
IN  
RMS  
Differential V up to 7V  
;
IN  
RMS  
MAX13336EGEE/V+  
16 QSOP  
-40°C to +105°C  
-22 to +8  
quasi-differential V up to 3.5V  
IN  
RMS  
/V denotes an automotive qualified part.  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
Chip Information  
PROCESS: BCD  
Package Information  
For the latest package outline information and land patterns  
(footprints), go to www.maximintegrated.com/packages. Note  
that a “+”, “#”, or “-” in the package code indicates RoHS status  
only. Package drawings may show a different suffix character, but  
the drawing pertains to the package regardless of RoHS status.  
PACKAGE  
TYPE  
PACKAGE  
CODE  
OUTLINE  
NO.  
LAND  
PATTERN NO.  
16 QSOP  
E16+1  
21-0055  
90-0167  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX13335E/MAX13336E  
Dual Automotive Differential Audio Receivers  
with I2C Control and Diagnostics  
Revision History  
REVISION REVISION  
PAGES  
DESCRIPTION  
CHANGED  
NUMBER  
DATE  
0
1/12  
Initial release  
Corrected the read operation procedure in the Single Byte-Read Operation and  
Burst-Read Operation sections  
1
2
3
7/12  
9/17  
1/18  
14  
5, 17  
17  
Electrical Characteristics  
Added row for CTRL0.DGAIN=0 to Diagnostic I/O section in  
table; added Bit 3: DGAIN reference below the  
Control Register 0 (CTRL0)  
table  
Control Register 0 (CTRL0)  
Updated Bit 3 in the  
section  
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2018 Maxim Integrated Products, Inc.  
28  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY