MAX13444EASA-T [MAXIM]

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOP-8;
MAX13444EASA-T
型号: MAX13444EASA-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO8, 0.150 INCH, MS-012AA, SOP-8

文件: 总18页 (文件大小:251K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3898; Rev 1; 3/06  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
General Description  
Features  
The MAX13442E/MAX13444E are fault-protected RS-485  
and J1708 transceivers that feature 80V protection from  
signal faults on communication bus lines. The  
MAX13442E/MAX13444E feature a reduced slew-rate dri-  
ver that minimizes EMI and reflections, allowing error-free  
transmission up to 250kbps. The MAX13443E driver can  
transmit up to 10Mbps. The high-speed MAX13443E  
RS-485 tranceiver features ±±0V protection from signal  
faults on communication bus lines. These transceivers fea-  
ture foldback current limit. Each device contains one dif-  
ferential line driver with three-state output and one  
differential line receiver with three-state input. The 1/4-unit-  
load receiver input impedance allows up to 128 trans-  
ceivers on a single bus. The devices operate from a 5V  
supply. True fail-safe inputs guarantee a logic-high receiv-  
er output when the receiver inputs are open, shorted, or  
connected to an idle data line.  
15kV ESD Protection  
80V Fault Protection (±±0V ꢀMA1ꢁ33ꢁEꢂ  
Guaranteed 10ꢀbps Data Rate (ꢀMA1ꢁ33ꢁEꢂ  
Hot-Swappable for Telecom Mpplications  
True Fail-Safe Receiver Inputs  
Enhanced Slew-Rate-Limiting Facilitates  
Error-Free Data Transmission  
(ꢀMA1ꢁ332E/ꢀMA1ꢁ333Eꢂ  
Mllow Up to 128 Transceivers on the Bus  
-7V to +12V Common-ꢀode Input Range  
±±mM FoldBack Current Limit  
Industry-Standard Pinout  
Hot-swap circuitry eliminates false transitions on the  
data bus during circuit initialization or connection to a  
live backplane. Short-circuit current-limiting and ther-  
mal-shutdown circuitry protect the driver against exces-  
sive power dissipation, and on-chip 15kV ESD  
protection eliminates costly external protection devices.  
The MAX13442E/MAX13443E/MAX13444E are avail-  
able in an 8-pin SO package and are specified over the  
automotive temperature range.  
Ordering Information  
PIN-  
PMCKMGE  
PKG  
CODE  
PMRT  
TEꢀP RMNGE  
ꢀMA1ꢁ332EASA -40°C to +125°C  
ꢀMA1ꢁ33ꢁEASA -40°C to +125°C  
ꢀMA1ꢁ333EASA -40°C to +125°C  
8 SO  
8 SO  
8 SO  
S8-4  
S8-4  
S8-4  
Applications  
Telecommunications  
Systems  
RS-422/RS-485  
Communications  
Truck and Trailer  
Applications  
Automotive Applications  
HVAC Controls  
Industrial Networks  
Selector Guide  
FMULT  
PROTECTION  
(Vꢂ  
DMTM RMTE  
(ꢀbpsꢂ  
LOW-POWER RECEIVER/DRIVER TRMNSCEIVERS  
PMRT  
TYPE  
HOT SWMP  
SHUTDOWN  
ENMBLE  
ON BUS  
MAX13442E RS-485  
MAX13443E RS-485  
0.25  
10  
±80  
±±0  
±80  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
128  
128  
128  
Yes  
Yes  
MAX13444E  
J1708  
0.25  
Yes (only RE)  
-in Configurations and Typical Operating Circuits  
TOP VIEW  
DE  
MAX13442E  
MAX13443E  
RO  
RE  
DE  
DI  
R
R
RO  
RE  
DE  
DI  
1
2
3
4
1
V
CC  
8
8
7
6
5
V
D
CC  
R
DI  
B
B
A
7
2
3
4
B
R
T
T
6
A
A
RO  
R
D
D
GND  
5
GND  
RE  
SO  
SO  
Pin Configurations and Typical Operating Circuits continued at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
MBSOLUTE ꢀMAIꢀUꢀ RMTINGS  
(Voltages referenced to GND.)  
Continuous Power Dissipation (T = +70°C)  
A
V
........................................................................................+7V  
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW  
Operating Temperature Range .........................-40°C to +125°C  
Storage Temperature Range.............................-±5°C to +150°C  
Junction Temperature......................................................+150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
CC  
RE, DE, DE, DI, TXD...................................-0.3V to (V  
A, B (Note 1) (MAX13442E/MAX13444E) ............................±80V  
A, B (Note 1) (MAX13443E).................................................±±0V  
RO ..............................................................-0.3V to (V  
+ 0.3V)  
CC  
+ 0.3V)  
CC  
Short-Circuit Duration (RO, A, B) ...............................Continuous  
Note 1: During normal operation, a termination resistor must be connected between A and B in order to guarantee overvoltage pro-  
tection up to the absolute maximum rating of this device. When not in operation, these devices can withstand fault voltages  
up to the maximum rating without a termination resistor and will not be damaged.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
DC ELECTRICML CHMRMCTERISTICS  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PMRMꢀETER  
SYꢀBOL  
CONDITIONS  
ꢀIN  
TYP  
ꢀMA  
UNITS  
DRIVER  
Figure 1, R = 100Ω  
2
V
V
L
CC  
CC  
Differential Driver Output  
V
V
V
V
V
OD  
Figure 1, R = 54Ω  
1.5  
L
Change in Magnitude of  
Differential Output Voltage  
ΔV  
Figure 1, R = 100Ω or 54Ω (Note 2)  
0.2  
3
OD  
OC  
L
Driver Common-Mode  
Output Voltage  
V
Figure 1, R = 100Ω or 54Ω  
V
/ 2  
CC  
L
Change in Magnitude of  
Common-Mode Voltage  
Figure 1, R = 100Ω or 54Ω (Note 2)  
L
ΔV  
0.2  
OC  
(MAX13442E/MAX13443E)  
DRIVER LOGIC  
Driver-Input High Voltage  
Driver-Input Low Voltage  
Driver-Input Current  
V
2
V
V
DIH  
V
0.8  
2
DIL  
I
µA  
DIN  
0 V  
+12V  
OUT  
+350  
Driver Short-Circuit Output Current  
(Note 3)  
I
mA  
mA  
mA  
OSD  
-7V V  
V  
-350  
+25  
OUT  
CC  
(V  
CC  
- 1V) V  
+12V (Note 3)  
OUT  
Driver Short-Circuit Foldback  
Output Current  
I
OSDF  
OSDL  
-7V V  
+1V (Note 3)  
-25  
-±  
OUT  
V
V
+20V, R = 100Ω  
+±  
Driver-Limit Short-Circuit Foldback  
Output Current  
OUT  
OUT  
L
I
-15V, R = 100Ω  
L
RECEIVER  
V
V
V
= GND, V  
= 12V  
A, B  
250  
-150  
±
CC  
A, B  
receive  
mode  
µA  
mA  
mV  
mV  
Input Current  
I
= -7V  
A,B  
A, B  
A, B  
=
80V  
Receiver-Differential Threshold  
Voltage  
V
-7V V  
+12V  
-200  
-50  
TH  
CM  
Receiver-Input Hysteresis  
ΔV  
25  
TH  
2
_______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
DC ELECTRICML CHMRMCTERISTICS (continuedꢂ  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PMRMꢀETER  
SYꢀBOL  
CONDITIONS  
ꢀIN  
TYP  
ꢀMA  
UNITS  
RECEIVER LOGIC  
Output-High Voltage  
Output-Low Voltage  
V
Figure 2, I  
= -1.±mA  
V - 0.±  
CC  
V
V
OH  
OH  
V
Figure 2, I = 1mA  
0.4  
1
OL  
OL  
Tri-State Output Current at  
Receiver  
I
0 V  
V  
CC  
µA  
kΩ  
mA  
OZR  
A, B  
Receiver Input Resistance  
R
-7V V  
+12V  
48  
IN  
CM  
Receiver Output Short-Circuit  
Current  
I
0V V  
V  
CC  
95  
OSR  
RO  
CONTROL  
Control-Input High Voltage  
V
DE, DE, RE  
DE, RE  
2
V
CIH  
Input-Current Latch During First  
Rising Edge  
I
90  
µA  
IN  
SUPPLY CURRENT  
DE = V , RE = GND (MAX13442E)  
(DE = RE = GND) (MAX13444E)  
CC  
30  
10  
No load,  
Normal Operation  
I
DI = V  
mA  
CC  
CC  
(DE = V , RE = GND)  
CC  
or GND  
(MAX13443E)  
DE = GND, RE = V  
(MAX13442E/ MAX13443E)  
CC  
20  
10  
DE = GND, RE = V , T = +25°C  
CC  
A
Supply Current in Shutdown Mode  
I
µA  
SHDN  
(MAX13442E/MAX13443E)  
DE = RE = V (MAX13444E)  
100  
10  
CC  
DE = RE = V , T = +25°C (MAX13444E)  
CC  
A
Supply Current with Output  
Shorted to ±0V  
DE = GND, RE = GND, no load  
output in tri-state (MAX13443E)  
I
±15  
mA  
SHRT  
PROTECTION SPECIFICMTIONS  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V = +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PMRMꢀETER  
SYꢀBOL  
CONDITIONS  
ꢀIN  
80  
TYP  
ꢀMA  
UNITS  
MAX13442E/  
MAX13444E  
MAX13443E  
A, B; R  
R = 54Ω  
L
= 0,  
SOURCE  
Overvoltage Protection  
ESD Protection  
V
±±0  
A, B  
Human Body Model  
15  
kV  
_______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
SWITCHING CHMRMCTERISTICS (ꢀMA1ꢁ332E/ꢀMA1ꢁ333Eꢂ  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PMRMꢀETER  
SYꢀBOL  
CONDITIONS  
ꢀIN  
TYP  
ꢀMA UNITS  
Figure 3, R = 54Ω, C = 50pF (MAX13442E)  
L
L
t
t
PLHA,  
Driver Propagation Delay  
2000  
2000  
2000  
ns  
ns  
ns  
PLHB  
R
DIFF  
= ±0Ω, C  
= 100pF (MAX13444E)  
DIFF  
t
DPLH,  
Driver Differential Propagation Delay  
R = 54Ω, C = 50pF, Figure 4  
L L  
t
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
R = 54Ω, C = 50pF, Figure 4  
200  
LH HL  
L
L
R = 54Ω, C = 50pF,  
L
L
t
t
,
SKEWAB  
Driver Output Skew  
t
= |t  
- t  
|,  
|
350  
200  
ns  
ns  
SKEWAB  
SKEWBA  
PLHA PHLB  
SKEWBA  
t
= |t  
- t  
PLHB PHLA  
R = 54Ω, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
t
= |t  
- t  
|
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
250  
kbps  
ns  
MAX  
Driver Enable Time to Output High  
t
R = 500Ω, C = 50pF, Figure 5  
2000  
2000  
PDZH  
PDHZ  
L
L
Driver Disable Time from Output High  
t
R
= 500Ω, C = 50pF, Figure 5  
ns  
L
L
Driver Enable Time from Shutdown to  
Output High  
t
R
= 500Ω, C = 50pF, Figure 5  
4.2  
µs  
PDHS  
L
L
Driver Enable Time to Output Low  
Driver Disable Time from Output Low  
t
t
R = 500Ω, C = 50pF, Figure ±  
2000  
2000  
ns  
ns  
PDZL  
PDLZ  
L
L
R = 500Ω, C = 50pF, Figure ±  
L
L
Driver Enable Time from Shutdown to  
Output Low  
t
R = 500Ω, C = 50pF, Figure ±  
4.2  
800  
µs  
ns  
ns  
PDLS  
L
L
Driver Time to Shutdown  
t
R = 500Ω, C = 50pF  
L L  
SHDN  
t
,
RPLH  
Receiver Propagation Delay  
C = 20pF, V = 2V, V  
= 0V, Figure 7  
2000  
L
ID  
CM  
t
RPHL  
Receiver Output Skew  
t
C = 20pF, t  
= |t - t |  
RPLH RPHL  
200  
2000  
2000  
4.2  
ns  
ns  
ns  
µs  
ns  
ns  
ns  
RSKEW  
L
RSKEW  
Receiver Enable Time to Output High  
Receiver Disable Time from Output High  
Receiver Wake Time from Shutdown  
Receiver Enable Time to Output Low  
Receiver Disable Time from Output Low  
Receiver Time to Shutdown  
t
t
R = 1kΩ, C = 20pF, Figure 8  
L L  
RPZH  
RPHZ  
R = 1kΩ, C = 20pF, Figure 8  
L
L
t
R = 1kΩ, C = 20pF, Figure 8  
L L  
RPWAKE  
t
t
R = 1kΩ, C = 20pF, Figure 8  
2000  
2000  
800  
RPZL  
L
L
R = 1kΩ, C = 20pF, Figure 8  
RPLZ  
L
L
t
R = 500Ω, C = 50pF  
L L  
SHDN  
3
_______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
SWITCHING CHMRMCTERISTICS (ꢀMA1ꢁ33ꢁEꢂ  
(V  
= +4.75V to +5.25V, T = T  
A
to T  
, unless otherwise noted. Typical values are at V  
= +5V and T = +25°C.)  
CC A  
CC  
MIN  
MAX  
PMRMꢀETER  
SYꢀBOL  
CONDITIONS  
R = 27Ω, C = 50pF, Figure 3  
ꢀIN  
TYP  
ꢀMA UNITS  
t
PLHA,  
Driver Propagation Delay  
±0  
±0  
25  
ns  
ns  
ns  
L
L
t
PLHB  
t
DPLH,  
Driver Differential Propagation Delay  
R = 54Ω, C = 50pF, Figure 4  
L L  
t
DPHL  
Driver Differential Output  
Transition Time  
t
,t  
R = 54Ω, C = 50pF, Figure 4  
L L  
LH HL  
R = 54Ω, C = 50pF,  
L
L
t
t
,
SKEWAB  
Driver Output Skew  
t
= |t  
- t  
|,  
|
10  
10  
ns  
ns  
SKEWAB  
SKEWBA  
PLHA PHLB  
SKEWBA  
t
= |t  
- t  
PLHB PHLA  
R = 54Ω, C = 50pF,  
L
L
Differential Driver Output Skew  
t
DSKEW  
t
= |t  
- t  
|
DSKEW  
DPLH DPHL  
Maximum Data Rate  
f
10  
Mbps  
ns  
MAX  
Driver Enable Time to Output High  
t
R = 500Ω, C = 50pF, Figure 5  
1200  
1200  
PDZH  
PDHZ  
L
L
Driver Disable Time from Output High  
t
R = 500Ω, C = 50pF, Figure 5  
ns  
L
L
Driver Enable Time from Shutdown to  
Output High  
t
R = 500Ω, C = 50pF, Figure 5  
4.2  
µs  
PDHS  
L
L
Driver Enable Time to Output Low  
Driver Disable Time from Output Low  
t
t
R = 500Ω, C = 50pF, Figure ±  
1200  
1200  
ns  
ns  
PDZL  
PDLZ  
L
L
R = 500Ω, C = 50pF, Figure ±  
L
L
Driver Enable Time from Shutdown to  
Output Low  
t
R = 500Ω, C = 50pF, Figure ±  
4.2  
µs  
ns  
PDLS  
L
L
Driver Time to Shutdown  
t
R = 500Ω, C = 50pF, Figure ±  
800  
SHDN  
L
L
t
t
,
RPLH  
Receiver Propagation Delay  
C = 20pF, V = 2V, V  
= 0V, Figure 7  
85  
ns  
L
ID  
CM  
RPHL  
Receiver Output Skew  
t
C = 20pF, t  
= |t - t |  
RPLH RPHL  
15  
ns  
ns  
ns  
µs  
RSKEW  
L
RSKEW  
Receiver Enable Time to Output High  
Receiver Disable Time from Output High  
Receiver Wake Time from Shutdown  
t
t
R = 1kΩ, C = 20pF, Figure 8  
400  
400  
4.2  
RPZH  
RPHZ  
L
L
R = 1kΩ, C = 20pF, Figure 8  
L
L
t
R = 1kΩ, C = 20pF, Figure 8  
L L  
RPWAKE  
Receiver Enable Wake Time from  
Shutdown  
t
R = 1kΩ, C = 20pF, Figure 8  
400  
ns  
RPSH  
L
L
Receiver Disable Time from Output Low  
Receiver Time to Shutdown  
t
R = 1kΩ, C = 20pF, Figure 8  
400  
800  
ns  
ns  
RPLZ  
L
L
t
R = 500Ω, C = 50pF  
L L  
SHDN  
Note 2: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note ꢁ: The short-circuit output current applies to peak current just before foldback current limiting. The short-circuit foldback out-  
put current applies during current limiting to allow a recovery from bus contention.  
_______________________________________________________________________________________  
5
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
vs. TEMPERATURE  
6
5
4
3
2
1
0
24  
20  
16  
12  
8
10  
1
MAX13442E  
DI = DE = GND  
DRIVER AND RECEIVER  
ENABLED  
DRIVER AND RECEIVER  
ENABLED  
RE = V  
CC  
0.1  
0.01  
DRIVER DISABLED,  
RECEIVER ENABLED  
0.001  
0.0001  
0.00001  
0.000001  
DRIVER DISABLED,  
RECEIVER ENABLED  
4
MAX13443E  
MAX13442E/MAX13444E  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT-HIGH VOLTAGE  
RECEIVER OUTPUT CURRENT  
vs. OUTPUT-LOW VOLTAGE  
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0  
OUTPUT LOW VOLTAGE (V)  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
RECEIVER OUTPUT VOLTAGE  
vs. TEMPERATURE  
5.0  
R = 54Ω  
MAX13442E  
DI = GND, DE = V  
VOLTAGE APPLIED  
TO OUTPUT A  
L
140  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
,
CC  
120  
100  
V
, I  
= 10mA  
OH OUT  
80  
60  
40  
20  
0
V
, I  
= -10mA  
OL OUT  
10  
20  
30  
40  
50  
60  
70  
80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
±
_______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Typical Operating Characteristics (continued)  
(V  
= +5V, T = +25°C, unless otherwise noted.)  
A
CC  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R = 54Ω  
L
MAX13442E  
R = 100Ω  
L
DI = GND, DE = V  
,
CC  
VOLTAGE APPLIED  
TO OUTPUT B  
R = 54Ω  
L
MAX13442E  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-80  
-65  
-50  
-35  
-20  
-5  
TEMPERATURE (°C)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
A, B CURRENT vs. A, B  
VOLTAGE (TO GROUND)  
DIFFERENTIAL OUTPUT VOLTAGE  
vs. TEMPERATURE  
3200  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DRIVER DISABLED,  
RECEIVER ENABLED  
2800  
2400  
2000  
1600  
1200  
800  
RL = 100Ω  
RL = 54Ω  
400  
0
-400  
-800  
-1200  
NO LOAD  
R = 54Ω  
L
-1600  
-2000  
MAX13442E  
MAX13443E  
0
80  
-60 -40 -20  
20 40 60  
-80  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
A, B VOLTAGE (V)  
TEMPERATURE (°C)  
A, B CURRENT vs. A, B VOLTAGE  
(TO GROUND)  
2000  
1600  
1200  
800  
DRIVER DISABLED,  
RECEIVER ENABLED  
400  
0
NO LOAD  
-400  
-800  
-1200  
-1600  
-2000  
R = 54Ω  
L
MAX13443E  
-60 -50 -40 -30 -20 -10  
0 10 20 30 40 50 60  
A, B VOLTAGE (V)  
_______________________________________________________________________________________  
7
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Test Circuits and Waveforms  
R
L
2
A
B
V
OD  
DI  
D
R
L
V
OC  
V
2
CC  
Figure 1. Driver V  
and V  
OC  
OD  
A
ID  
B
RO  
V
R
0
V
V
OH  
I
I
OH  
OL  
OL  
(+)  
(-)  
Figure 2. Receiver V  
and V  
OH  
OL  
3V  
0V  
V
OM  
DI  
1.5V  
1.5V  
R
L
A
B
2
S1  
t
t
PHLA  
DI  
D
PLHA  
OUT  
V
V
OH  
OL  
GENERATOR  
(NOTE 4)  
50Ω  
C = 50pF  
L
(NOTE 5)  
V
V
OM  
OM  
t
A
B
V
CC  
t
PHLB  
PLHB  
V
+ V  
2
OH  
OL  
V
=
1.5V  
OM  
V
V
OH  
OL  
V
V
OM  
OM  
Figure 3. Driver Propagation Times  
3V  
1.5V  
1.5V  
DPLH  
DI  
A
C
L
L
0V  
DI  
D
OUT  
t
DPHL  
t
R
L
GENERATOR  
(NOTE 4)  
B
50Ω  
2.0V  
90%  
90%  
V
CC  
50%  
10%  
50%  
10%  
C
(A–B)  
-2.0V  
C = 50pF (NOTE 5)  
L
t
t
HL  
LH  
Figure 4. Driver Differential Output Delay and Transition Times  
_______________________________________________________________________________________  
8
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Test Circuits and Waveforms (continued)  
3V  
A
B
S1  
DI  
A, B  
0 OR 3V  
D
DE  
1.5V  
1.5V  
PDZH  
t
0V  
V
DE  
R = 500Ω  
L
t
t
PDHZ  
PDHS  
C = 50pF  
L
(NOTE 5)  
GENERATOR  
(NOTE 4)  
50Ω  
OH  
0.25V  
A, B  
V
OM  
V
+ V  
2
OH  
OL  
V
=
1.5V  
OM  
0V  
Figure 5. Driver Enable and Disable Times  
V
CC  
3V  
R = 500Ω  
L
1.5V  
1.5V  
PDZL  
DE  
A
S1  
t
t
DI  
0V  
A, B  
0 OR 3V  
D
t
PDLS  
PDLZ  
B
DE  
C = 50pF  
L
(NOTE 5)  
V
V
CC  
OL  
GENERATOR  
(NOTE 4)  
A, B  
V
OM  
50Ω  
0.25V  
Figure 6. Driver Enable and Disable Times  
2.0V  
A
R
O
V
ID  
R
(A–B)  
1.0V  
1.0V  
GENERATOR  
(NOTE 4)  
50Ω  
B
C = 20pF  
L
0V  
(NOTE 5)  
t
t
RPLH  
RPHL  
V
CC  
1.0V  
0V  
V
V
OM  
OM  
RO  
0V  
Figure 7. Receiver Propagation Delay  
_______________________________________________________________________________________  
9
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Test Circuits and Waveforms (continued)  
S1  
S3  
+1.5V  
A
B
V
CC  
1kΩ  
R
O
-1.5V  
V
ID  
R
S2  
C = 20pF  
L
(NOTE 5)  
GENERATOR  
(NOTE 4)  
50Ω  
3V  
0V  
3V  
0V  
S1 OPEN  
S2 CLOSED  
S3 = 1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
RE  
RE  
RO  
RE  
RO  
1.5V  
1.5V  
t
RPZH  
t
t
RPZL  
RPSL  
t
t
RPSH  
RPWAKE  
V
OH  
V
V
CC  
RO  
1.5V  
1.5V  
0V  
3V  
OL  
3V  
0V  
S1 OPEN  
S2 CLOSED  
S3 = 1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
RE  
1.5V  
1.5V  
0V  
t
RPHZ  
t
RPLZ  
V
OH  
V
V
CC  
OL  
RO  
0.5V  
0.5V  
0V  
Figure 8. Receiver Enable and Disable Times  
Note 3: The input pulse is supplied by a generator with the following characteristics: f = 5MHz, 50% duty cycle; t ±ns; Z = 50Ω.  
0
r
Note 5: C includes probe and stray capacitance.  
L
10 ______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
-in Description  
PIN  
NMꢀE  
FUNCTION  
ꢀMA1ꢁ332E  
ꢀMA1ꢁ33ꢁE  
ꢀMA1ꢁ333E  
Receiver Output. If the receiver is enabled and (A - B) ≥  
-50mV, RO = high; if (A - B) -200mV, RO = low.  
1
2
1
2
RO  
RE  
Receiver Output Enable. Pull RE low to enable RO.  
Driver Output Enable. Force DE high to enable driver. Pull  
DE low to tri-state the driver output. Drive RE high and pull  
DE low to enter low-power shutdown mode.  
3
DE  
Driver Input. A logic low on DI forces the noninverting  
output low and the inverting output high. A logic high on  
DI forces the noninverting output high and the inverting  
output low.  
4
DI  
5
±
7
5
±
7
GND  
A
Ground  
Noninverting Receiver Input/Driver Output  
Inverting Receiver Input/Driver Output  
B
Positive Supply, V  
= +4.75V to +5.25V. For normal  
CC  
operation, bypass V  
capacitor. For full ESD protection, bypass V  
1µF ceramic capacitor.  
to GND with a 0.1µF ceramic  
CC  
8
8
V
CC  
to GND with  
CC  
Driver Output Enable. Pull DE low to enable the outputs.  
Force DE high to tri-state the outputs. Drive RE and DE high  
to enter low-power shutdown mode.  
3
4
DE  
J1708 Input. A logic low on TXD forces outputs A and B to  
the dominant state. A logic high on TXD forces outputs A  
and B to the recessive state.  
TXD  
______________________________________________________________________________________ 11  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Function Tables  
Table 1. ꢀMA1ꢁ332E/ꢀMA1ꢁ33ꢁE  
(RS-385/RS-322ꢂ  
Table ꢁ. ꢀMA1ꢁ332E/ꢀMA1ꢁ33ꢁE  
(RS-385/RS-322ꢂ  
TRMNSꢀITTING  
RECEIVING  
INPUTS  
INPUTS  
OUTPUTS  
OUTPUTS  
RE  
0
DE  
0
DI  
X
0
M
B
RE  
0
DE  
X
(M - Bꢂ  
RO  
High-Z  
High-Z  
-0.05V  
1
0
1
0
1
1
0
0
X
-0.2V  
0
1
0
1
1
0
X
Open/shorted  
1
0
X
0
Shutdown Shutdown  
1
1
X
X
High-Z  
Shutdown  
1
1
0
1
1
0
1
0
1
1
1
X = Don’t care.  
X = Don’t care.  
Table 2. ꢀMA1ꢁ333E (J1708ꢂ Mpplication  
Table 3. ꢀMA1ꢁ333E (RS-385/RS-322ꢂ  
TRMNSꢀITTING  
RECEIVING  
INPUTS  
OUTPUTS  
CONDITIONS  
INPUTS  
OUTPUTS  
TAD  
DE  
1
M
B
RE  
0
DE  
X
(M - Bꢂ  
RO  
0
1
0
1
High-Z  
High-Z  
1
High-Z  
High-Z  
0
-0.05V  
1
1
0
X
-0.2V  
0
1
0
Dominant state  
Recessive state  
0
X
Open/shorted  
0
High-Z  
High-Z  
1
0
X
X
High-Z  
Shutdown  
1
1
X = Don’t care.  
12 ______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
ver outputs/receiver inputs of the MAX13442E/  
Detailed Description  
MAX13444E withstand voltage faults up to 80V (±±0V  
The MAX13442E/MAX13443E/MAX13444E fault-protect-  
for the MAX13443E) with respect to ground without dam-  
ed transceivers for RS-485/RS-422 and J1708 communi-  
age. Protection is guaranteed regardless whether the  
cation contain one driver and one receiver. These  
device is active, shut down, or without power.  
devices feature fail-safe circuitry, which guarantees a  
logic-high receiver output when the receiver inputs are  
open or shorted, or when they are connected to a termi-  
nated transmission line with all drivers disabled (see the  
True Fail-Safe section). All devices have a hot-swap input  
structure that prevents disturbances on the differential  
signal lines when a circuit board is plugged into a hot  
backplane (see the Hot-Swap Capability section). The  
MAX13442E/MAX13444E feature a reduced slew-rate dri-  
ver that minimizes EMI and reduces reflections caused  
by improperly terminated cables, allowing error-free data  
transmission up to 250kbps (see the Reduced EMI and  
Reflections section). The MAX13443E driver is not slew-  
rate limited, allowing transmit speeds up to 10Mbps.  
True FailꢁSafe  
The MAX13442E/MAX13443E/MAX13444E use a  
-50mV to -200mV differential input threshold to ensure  
true fail-safe receiver inputs. This threshold guarantees  
the receiver outputs a logic high for shorted, open, or  
idle data lines. The -50mV to -200mV threshold com-  
plies with the ±200mV threshold EIA/TIA-485 standard.  
±1ꢀ5k ESD -rotection  
As with all Maxim devices, ESD-protection structures  
are incorporated on all pins to protect against ESD  
encountered during handling and assembly. The  
MAX13442E/MAX13443E/MAX13444E receiver inputs/  
driver outputs (A, B) have extra protection against stat-  
ic electricity found in normal operation. Maxim’s engi-  
neers have developed state-of-the-art structures to  
protect these pins against ±15kV ESD without damage.  
After an ESD event, the MAX13442E/MAX13443E/  
MAX13444E continue working without latchup.  
Driver  
The driver accepts a single-ended, logic-level input  
(DI) and transfers it to a differential, RS-485/RS-422  
level output (A and B). Deasserting the driver enable  
places the driver outputs (A and B) into a high-imped-  
ance state.  
ESD protection can be tested in several ways. The  
receiver inputs are characterized for protection to  
±15kV using the Human Body Model.  
Receiver  
The receiver accepts a differential, RS-485/RS-422  
level input (A and B), and transfers it to a single-ended,  
logic-level output (RO). Deasserting the receiver enable  
places the receiver inputs (A and B) into a high-imped-  
ance state (see Tables 1–4).  
ESD Test Conditions  
ESD performance depends on a number of conditions.  
Contact Maxim for a reliability report that documents  
test setup, methodology, and results.  
Lowꢁ-ower Shutdown  
The MAX13442E/MAX13443E/MAX13444E offer a low-  
power shutdown mode. Force DE low and RE high to  
shut down the MAX13442E/MAX13443E. Force DE and  
RE high to shut down the MAX13444E. A time delay of  
50ns prevents the device from accidentally entering  
shutdown due to logic skews when switching between  
transmit and receive modes. Holding DE low and RE  
high for at least 800ns guarantees that the  
MAX13442E/MAX13443E enter shutdown. In shutdown,  
the devices consume a maximum 20µA supply current.  
Human Body Model  
Figure 9a shows the Human Body Model, and Figure  
9b shows the current waveform it generates when dis-  
charged into a low impedance. This model consists of  
a 100pF capacitor charged to the ESD voltage of inter-  
est, which is then discharged into the device through a  
1.5kΩ resistor.  
Driver Output -rotection  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or bus contention.  
The first, a foldback current limit on the driver output  
stage, provides immediate protection against short cir-  
cuits over the whole common-mode voltage range. The  
second, a thermal shutdown circuit, forces the driver out-  
puts into a high-impedance state if the die temperature  
exceeds +1±0°C. Normal operation resumes when the  
die temperature cools to +140°C, resulting in a pulsed  
output during continuous short-circuit conditions.  
±8k Fault -rotection  
The driver outputs/receiver inputs of RS-485 devices in  
industrial network applications often experience voltage  
faults resulting from shorts to the power grid that exceed  
the -7V to +12V range specified in the EIA/TIA-485 stan-  
dard. In these applications, ordinary RS-485 devices  
(typical absolute maximum -8V to +12.5V) require costly  
external protection devices. To reduce system complexi-  
ty and eliminate this need for external protection, the dri-  
______________________________________________________________________________________ 1ꢁ  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Hot-Swap Input Circuitry  
At the driver-enable input (DE), there are two NMOS  
devices, M1 and M2 (Figure 10). When V ramps from  
HotꢁSwap Capability  
Hot-Swap Inputs  
Inserting circuit boards into a hot, or powered, back-  
plane may cause voltage transients on DE, RE, and  
receiver inputs A and B that can lead to data errors. For  
example, upon initial circuit board insertion, the proces-  
sor undergoes a power-up sequence. During this period,  
the high-impedance state of the output drivers makes  
them unable to drive the MAX13442E/MAX13443E/  
MAX13444E enable inputs to a defined logic level.  
Meanwhile, leakage currents of up to 10µA from the  
high-impedance output, or capacitively coupled noise  
CC  
zero, an internal 15µs timer turns on M2 and sets the  
SR latch, which also turns on M1. Transistors M2, a  
2mA current sink, and M1, a 100µA current sink, pull  
DE to GND through a 5.±kΩ resistor. M2 pulls DE to the  
disabled state against an external parasitic capaci-  
tance up to 100pF that may drive DE high. After 15µs,  
the timer deactivates M2 while M1 remains on, holding  
DE low against tri-state leakage currents that may drive  
DE high. M1 remains on until an external current source  
overcomes the required input current. At this time, the  
SR latch resets M1 and turns off. When M1 turns off, DE  
reverts to a standard, high-impedance CMOS input.  
from V  
or GND, could cause an input to drift to an  
CC  
incorrect logic state. To prevent such a condition from  
occurring, the MAX13442E/MAX13443E/MAX13444E  
feature hot-swap input circuitry on DE, and RE to guard  
against unwanted driver activation during hot-swap sit-  
uations. The MAX13444E has hot-swap input circuitry  
Whenever V  
drops below 1V, the input is reset.  
CC  
A complementary circuit for RE uses two PMOS  
devices to pull RE to V  
.
CC  
only on RE. When V  
rises, an internal pulldown (or  
CC  
pullup for RE) circuit holds DE low for at least 10µs, and  
until the current into DE exceeds 200µA. After the initial  
power-up sequence, the pulldown circuit becomes  
transparent, resetting the hot-swap tolerable input.  
R
R
D
C
1.5k  
1M  
V
CC  
DISCHARGE  
RESISTANCE  
CHARGE-CURRENT-  
LIMIT RESISTOR  
15μs  
TIMER  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
100pF  
STORAGE  
CAPACITOR  
s
TIMER  
SOURCE  
Figure 9a. Human Body ESD Test Model  
5.6kΩ  
DE  
(HOT SWAP)  
I
100%  
90%  
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
P
r
2mA  
100μA  
M1  
M2  
AMPERES  
36.8%  
10%  
0
Figure 10. Simplified Structure of the Driver Enable Pin (DE)  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 9b. Human Body Model Current Waveform  
13 ______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
In general, a transmitter’s rise time relates directly to  
the length of an unterminated stub, which can be driven  
Applications Information  
12± Transceivers on the Bus  
The MAX13442E/MAX13443E/MAX13444E transceivers  
1/4-unit-load receiver input impedance (48kΩ) allows  
up to 128 transceivers connected in parallel on one  
communication line. Connect any combination of these  
devices, and/or other RS-485 devices, for a maximum  
of 32-unit loads to the line.  
with only minor waveform reflections. The following  
equation expresses this relationship conservatively:  
length = t  
/ (10 x 1.5ns/ft)  
RISE  
where t  
is the transmitter’s rise time.  
RISE  
For example, the MAX13442E’s rise time is typically  
800ns, which results in excellent waveforms with a stub  
length up to 53ft. A system can work well with longer  
unterminated stubs, even with severe reflections, if the  
waveform settles out before the UART samples them.  
Reduced EMI and Reflections  
The MAX13442E/MAX13444E are slew-rate limited,  
minimizing EMI and reducing reflections caused by  
improperly terminated cables. Figure 11 shows the dri-  
ver output waveform and its Fourier analysis of a  
125kHz signal transmitted by a MAX13443E. High-fre-  
quency harmonic components with large amplitudes  
are evident.  
RSꢁ4±ꢀ Applications  
The MAX13442E/MAX13443E/MAX13444E transceivers  
provide bidirectional data communications on multi-  
point bus transmission lines. Figure 13 shows a typical  
network application circuit. The RS-485 standard cov-  
ers line lengths up to 4000ft. To minimize reflections  
and reduce data errors, terminate the signal line at both  
ends in its characteristic impedance, and keep stub  
lengths off the main line as short as possible.  
Figure 12 shows the same signal displayed for the  
MAX13442E transmitting under the same conditions.  
Figure 12’s high-frequency harmonic components are  
much lower in amplitude, compared with Figure 11’s,  
and the potential for EMI is significantly reduced.  
20dB/div  
2V/div  
20dB/div  
2V/div  
0
500kHz/div  
5.00MHz  
0
500kHz/div  
5.00MHz  
Figure 11. Driver Output Waveform and FFT Plot of the  
MAX13443E Transmitting a 125kHz Signal  
Figure 12. Driver Output Waveform and FFT Plot of the  
MAX13442E Transmitting a 125kHz Signal  
______________________________________________________________________________________ 15  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
idle in this configuration, all receivers output logic high  
because of the pullup resistor on A and pulldown resistor  
on B. R1 and R2 provide the bias for the recessive state.  
C1 and C2 combine to form a lowpass filter, effective for  
reducing FM interference. R2, C1, R4, and C2 combine  
to form a 1.±MHz lowpass filter, effective for reducing  
AM interference. Because the bus is unterminated, at  
high frequencies, R3 and R4 perform a pseudotermina-  
tion. This makes the implementation more flexible, as no  
specific termination nodes are required at the ends of  
the bus.  
J178± Applications  
The MAX13444E is designed for J1708 applications. To  
configure the MAX13444E, connect DE and RE to GND.  
Connect the signal to be transmitted to TXD. Terminate  
the bus with the load circuit as shown in Figure 14. The  
drivers used by SAE J1708 are used in a dominant-  
mode application. DE is active low; a high input on DE  
places the outputs in high impedance. When the driver is  
disabled (TXD high or DE high), the bus is pulled high by  
external bias resistors R1 and R2. Therefore, a logic-level  
high is encoded as recessive. When all transceivers are  
120Ω  
120Ω  
DE  
B
B
DI  
D
D
DI  
DE  
A
A
B
A
B
A
RO  
RE  
RO  
RE  
R
R
R
R
D
D
MAX13442E  
MAX13443E  
DE  
DI  
DI  
RO  
DE  
RO  
RE  
RE  
Figure 13. MAX13442E/MAX13443E Typical RS-485 Network  
1± ______________________________________________________________________________________  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
Chip Information  
TRANSISTOR COUNT: 310  
DE  
PROCESS: BiCMOS  
R1  
4.7kΩ  
R3  
T
X
D
TXD  
47Ω  
B
A
C1  
2.2nF  
J1708 BUS  
C2  
MAX13444E  
2.2nF  
R4  
47Ω  
R2  
4.7kΩ  
R
X
R
RO  
V
CC  
RE  
Figure 14. J1708 Application Circuit (See Tables 2 and 4)  
-in Configurations and Typical Operating Circuits (continued)  
DE  
MAX13444E  
V
1
2
3
8
7
6
RO  
RE  
DE  
CC  
R
R
V
RO  
1
2
3
4
8
7
6
5
CC  
D
TXD  
RO  
B
B
A
B
RE  
DE  
R
T
R
T
A
A
GND  
R
4
TXD  
GND  
D
5
D
TXD  
RE  
SO  
SO  
______________________________________________________________________________________ 17  
±1ꢀ5k ESDꢁ-rotected, ±±8k Faultꢁ-rotected,  
FailꢁSafe RSꢁ4±ꢀ/J178± Transceivers  
-ac5age Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
INCHES  
MILLIMETERS  
MAX  
MAX  
1.75  
0.25  
0.49  
0.25  
DIM  
A
MIN  
MIN  
1.35  
0.10  
0.35  
0.19  
0.053  
0.004  
0.014  
0.007  
0.069  
0.010  
0.019  
0.010  
N
A1  
B
C
e
0.050 BSC  
1.27 BSC  
E
0.150  
0.228  
0.016  
0.157  
0.244  
0.050  
3.80  
5.80  
0.40  
4.00  
6.20  
1.27  
E
H
H
L
VARIATIONS:  
INCHES  
1
MILLIMETERS  
MAX  
0.197  
0.344  
0.394  
MAX  
5.00  
DIM  
D
MIN  
MIN  
4.80  
8.55  
9.80  
N
8
MS012  
AA  
TOP VIEW  
0.189  
0.337  
0.386  
D
8.75 14  
10.00 16  
AB  
D
AC  
D
C
A
B
0-8∞  
e
A1  
L
FRONT VIEW  
SIDE VIEW  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, .150" SOIC  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
1
21-0041  
B
1
Revision History  
Pages changed at Rev 1: 1, 2, 7, 18  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
18 ____________________Maxim Integrated -roducts, 128 San Gabriel Drive, Sunnyvale, CA 948±6 48±ꢁ737ꢁ7688  
© 200± Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  
Boblet  

相关型号:

MAX13444EASA/V+

Line Transceiver,
MAXIM

MAX13448E

80V Fault-Protected Full-Duplex RS-485 Transceiver
MAXIM

MAX13448EESD

80V Fault-Protected Full-Duplex RS-485 Transceiver
MAXIM

MAX13448EESD+

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, 0.150 INCH, LEAD FREE, MS-012AB, SOP-14
MAXIM

MAX13448EESD+T

Line Driver/Receiver, 1 Func, 1 Driver, 1 Rcvr, BICMOS, PDSO14, LEAD FREE, SOP-14
MAXIM

MAX13450E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13450E_1011

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451E

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX13451EAUD+

RS-485 Transceivers with Integrated 100Ω/120Ω Termination Resistors
MAXIM

MAX1346

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM

MAX1346BETX

12-Bit, Multichannel ADCs/DACs with FIFO, Temperature Sensing, and GPIO Ports
MAXIM