MAX1379 [MAXIM]

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface;
MAX1379
型号: MAX1379
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Dual, 12-Bit, 1.25Msps Simultaneous-Sampling ADCs with Serial Interface

文件: 总25页 (文件大小:2297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-4126; Rev 1; 2/ꢀ9  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
General Description  
Features  
Dual, Simultaneous-Sampling, 12-Bit Successive  
The MAX1377/MAX1379/MAX1383 feature two simulta-  
neous-sampling, low-power, 12-bit ADCs with serial  
interface and internal voltage reference. Fast sampling  
rate, low power dissipation, and excellent dynamic per-  
formance make the MAX1377/MAX1379/MAX1383  
ideal for industrial process control, motor control, and  
RF applications.  
Approximation Register (SAR) ADCs  
2 x 2 Mux Inputs or Two Differential Inputs  
1.25Msps Sampling Rate per ADC  
Internal or External Reference  
Excellent Dynamic Performance  
70dB SINAD (MAX1377)  
Conversion results are available through a SPI™-/  
QSPI™-/MICROWIRE™-/DSP-compatible interface with  
independent serial digital outputs for each channel. The  
serial outputs allow twice as much data to be transferred  
at the given clock rate. The conversion results for both  
ADCs can also be output on a single digital output for  
microcontrollers (µCs) and DSPs with only a single serial  
input available.  
71dB SINAD (MAX1379/MAX1383)  
84dBc/SFDR  
1MHz Full-Linear Bandwidth  
2.7V to 3.6V Low-Power Operation (MAX1377)  
50mW (Normal Operation)  
6mW (Partial Power-Down)  
3µW (Full Power-Down)  
4.75V to 5.25V Low-Power Operation (MAX1379)  
90mW (Normal Operation)  
The MAX1377 operates from a 2.7V to 3.6V analog sup-  
ply and the MAX1379/MAX1383 operate from a 4.75V  
to 5.25V analog supply. A separate 1.8V to AVDD digi-  
tal supply allows interfacing to low voltage logic without  
the use of level translators.  
10mW (Partial Power-Down)  
5µW (Full Power-Down)  
4.75V to 5.25V Low-Power Operation (MAX1383)  
280mW (Normal Operation)  
2.5µW (Full Power-Down)  
Two power-down modes, partial and full, allow the  
MAX1377/MAX1379 and MAX1383 (full power-down only)  
to save power between conversions. Partial power-down  
mode reduces the supply current to 2mA while leaving  
the reference enabled for quick power-up. Full power-  
down mode reduces the supply current to 1µA.  
20MHz, SPI-Compatible, 3-Wire Serial Interface  
User-Selectable Single (0.625Msps max) or Dual  
Outputs (1.25Msps max)  
Input Range: 10V (MAX1383), 0ꢀV  
or  
REF  
V
REF  
/2 (MAX1377/MAX1379)  
Small 20-Pin TQFN Package  
The MAX1377/MAX1379 inputs accept voltages  
SPI/QSPI are trademarks of Motorola, Inc.  
between zero and the reference voltage or  
V
/2.  
REF  
MICROWIRE is a trademark of National Semiconductor Corp.  
The MAX1383 offers an input voltage range of 1ꢀV,  
which is ideal for industrial and motor-control applica-  
tions. The input to each of the ADCs supports either a  
true-differential input or two single-ended inputs.  
Functional Diagram  
V
AVDD  
L
AIN1A  
AIN1B  
The MAX1377/MAX1379/MAX1383 are available in a  
2ꢀ-pin TQFN package, and are specified for the automo-  
tive (-4ꢀ°C to +125°C) temperature range.  
MAX1377  
MAX1379  
MAX1383  
12-BIT  
SAR  
ADC1  
MUX  
T/H  
DOUT1  
OUTPUT  
BUFFER  
Applications  
Bill Validation  
CS  
REF  
SERIAL  
INTERFACE  
AND TIMING  
REFSEL  
CNVST  
SCLK  
Motor Control  
Communications  
Data Acquisition  
Portable Instruments  
A = 1  
INTERNAL  
REFERENCE  
RGND  
U/B  
S/D  
CONTROL  
LOGIC  
Ordering Information  
V
L
PART  
TEMP RANGE  
PIN-PACKAGE  
2ꢀ TQFN-EP*  
2ꢀ TQFN-EP*  
2ꢀ TQFN-EP*  
AIN2A  
AIN2B  
12-BIT  
SAR  
ADC2  
T/H  
MUX  
DOUT2  
OUTPUT  
BUFFER  
MAX1377ATP+  
MAX1379ATP+  
MAX1383ATP+  
-4ꢀ°C to +125°C  
-4ꢀ°C to +125°C  
-4ꢀ°C to +125°C  
AGND  
SEL  
DGND  
+Denotes a lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed pad.  
Pin Configuration appears at end of data sheet.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing delivery, and ordering information please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
ABSOLUTE MAXIMUM RATINGS  
AVDD to AGND ........................................................-ꢀ.3V to +6V  
RGND to DGND.....................................................-ꢀ.3V to +ꢀ.3V  
DGND to AGND.....................................................-ꢀ.3V to +ꢀ.3V  
Maximum Current into Any Pin (except power-supply pins).....5ꢀmA  
V to DGND..............................................................-ꢀ.3V to +6V  
L
SCLK, CS, CNVST, U/B, S/D, SEL,  
REFSEL to DGND.......................................-ꢀ.3V to (V + ꢀ.3V)  
Continuous Power Dissipation (T = +7ꢀ°C)  
L
A
DOUT_ to DGND...........................................-ꢀ.3V to (V + ꢀ.3V)  
2ꢀ-Pin Thin QFN (derate 34.5mW/°C above +7ꢀ°C) ...2758.6mW  
Operating Temperature Range .........................-4ꢀ°C to +125°C  
Junction Temperature......................................................+15ꢀ°C  
Storage Temperature Range.............................-6ꢀ°C to +15ꢀ°C  
Lead Temperature (soldering, 1ꢀs) .................................+3ꢀꢀ°C  
L
AIN1A, AIN1B, AIN2A, AIN2B to AGND  
MAX1377/MAX1379 .............................-ꢀ.3V to (AVDD + ꢀ.3V)  
MAX1383..............................................................-12V to +12V  
RGND to AGND.....................................................-ꢀ.3V to +ꢀ.3V  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS—MAX1377  
(V  
= 2.7V to 3.6V, V = 1.8V to AVDD, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 2.ꢀ48V, REFSEL = V , S/D = DGND, C  
=
AVDD  
L
SCLK  
REF  
L
REF  
1µF; T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
DC ACCURACY  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
12  
-1.25  
-1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
INL  
(Note 1)  
+1.25  
DNL  
+1.5  
8
Offset-Error Matching  
Gain Error  
12  
6
(Note 2)  
(Note 2)  
79/MAX183  
Gain-Error Matching  
Gain Temperature Coefficient  
6
2
8ꢀ  
8ꢀ  
ppm/oC  
AIN1A to AIN1B, AIN2A to AIN2B  
AIN1A to AIN2A, AIN1B to AIN2B  
DC Input Isolation  
dB  
DYNAMIC SPECIFICATIONS (f = 500kHz, 2V  
sine wave, 1.25Msps, 20MHz f  
)
SCLK  
IN  
P-P  
Unipolar  
66  
67  
66  
67  
69.5  
7ꢀ  
7ꢀ  
7ꢀ  
-84  
-86  
-78  
5
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
dB  
dB  
Bipolar  
Unipolar  
Bipolar  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-74  
-76  
dB  
dB  
f
= 1ꢀ3.5kHz, f  
= 113.5kHz  
IN2  
dB  
IN1  
-3dB point  
(S/N + D) > 68dB, 1V input  
MHz  
MHz  
Full-Linear Bandwidth  
1
CONVERSION RATE (Figure 4)  
Minimum Conversion Time  
t
16 clock cycles per conversion (Note 3)  
Dual output mode, S/D = ꢀ  
ꢀ.8ꢀꢀ  
µs  
CONV  
1.25  
Maximum Throughput Rate  
Msps  
Single output mode, S/D = 1  
ꢀ.625  
Minimum Throughput Rate for  
Full Bandwidth Signal  
(Note 4)  
1ꢀ  
ksps  
2
_______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
ELECTRICAL CHARACTERISTICS—MAX1377 (continued)  
(V  
= 2.7V to 3.6V, V = 1.8V to AVDD, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 2.ꢀ48V, REFSEL = V , S/D = DGND, C  
=
AVDD  
L
SCLK  
REF  
L
REF  
1µF; T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
Track-and-Hold Acquisition Time  
Aperture Delay  
SYMBOL  
CONDITIONS  
MIN  
TYP  
125  
2
MAX  
UNITS  
ns  
t
ACQ  
ns  
Aperture-Delay Matching  
Aperture Jitter  
2
ns  
(Note 5)  
3ꢀ  
ps  
External Clock Frequency  
f
2ꢀ  
MHz  
SCLK  
ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)  
Input Range  
U/B = ꢀ, V  
- RGND  
V
V
V
AIN_A  
REF  
Differential Input Range  
Absolute Voltage Range  
DC Leakage Current  
Input Impedance  
U/B = 1, V  
- V  
-V  
/2  
+V  
/2  
REF  
AIN_A  
AIN_B  
REF  
AVDD  
1
V
µA  
kΩ  
pF  
34  
16  
Input Capacitance  
At each analog input  
EXTERNAL REFERENCE (REFSEL = 1)  
AVDD  
+ ꢀ.ꢀ5  
Absolute Input Voltage Range  
V
1.ꢀ  
V
REF  
Input Capacitance  
DC Leakage Current  
Input Current  
5ꢀ  
pF  
µA  
µA  
1
Time averaged at maximum throughput rate  
8ꢀꢀ  
INTERNAL REFERENCE (REFSEL = 0)  
Reference Voltage Level  
2.ꢀ28  
2.ꢀ48  
1
2.ꢀ68  
V
I
I
= ꢀ to 1mA  
SOURCE  
Load Regulation  
mV/mA  
= ꢀ to 5ꢀµA  
1
SINK  
Voltage Temperature Coefficient  
5ꢀ.ꢀ  
ppm/oC  
DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL)  
ꢀ.3 x  
Input-Voltage Low  
Input-Voltage High  
V
V
IL  
V
L
ꢀ.7 x  
V
V
IH  
V
L
Input Leakage Current  
I
1ꢀ  
µA  
IL  
DIGITAL OUTPUT (DOUT1, DOUT2)  
Output Load Capacitance  
Output-Voltage Low  
C
For stated timing performance  
3ꢀ  
pF  
V
DOUT  
V
I
= 5mA  
ꢀ.4  
OL  
OH  
OL  
SINK  
V
L
Output-Voltage High  
V
I
= 1mA, V 2.7V  
V
SOURCE  
L
- ꢀ.5V  
Output Leakage Current  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
I
High-impedance mode (Figure 9)  
ꢀ.2  
3.ꢀ  
µA  
AVDD  
2.7  
1.8  
3.6  
V
V
V
AVDD  
L
_______________________________________________________________________________________  
3
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
ELECTRICAL CHARACTERISTICS—MAX1377 (continued)  
(V  
= 2.7V to 3.6V, V = 1.8V to AVDD, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 2.ꢀ48V, REFSEL = V , S/D = DGND, C  
=
AVDD  
L
SCLK  
REF  
L
REF  
1µF; T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
Normal operation  
MIN  
TYP  
13  
2
MAX  
UNITS  
15  
mA  
Analog Supply Current  
I
Partial power-down mode (Note 5)  
Full power-down mode (Note 5)  
AVDD  
1
5
1ꢀ  
1.5  
3
µA  
mA  
mA  
mV  
Average Static Supply Current  
Digital Supply Current  
8
I
f
= 2ꢀMHz, V = 3V, C = 3ꢀpF  
1
VL  
SCLK  
L
L
Power-Supply Rejection  
PSR  
V
= 3V 1ꢀ%, full-scale input  
ꢀ.2  
AVDD  
ELECTRICAL CHARACTERISTICS—MAX1379  
(V  
= 4.75V to 5.25V, V = 3V, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 4.ꢀ96V, REFSEL = V , S/D = DGND, C  
= 1µF; T  
=
AVDD  
L
SCLK  
REF  
L
REF  
A
T
MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
12  
-1.25  
-1  
Bits  
LSB  
LSB  
LSB  
LSB  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
Offset Error  
INL  
(Note 1)  
+1.25  
DNL  
+1  
8
Offset-Error Matching  
Gain Error  
9
(Note 2)  
(Note 2)  
6
Gain-Error Matching  
Gain Temperature Coefficient  
9
79/MAX183  
2
8ꢀ  
8ꢀ  
ppm/oC  
AIN1A to AIN1B, AIN2A to AIN2B  
AIN1A to AIN2A, AIN1B to AIN2B  
DC Input Isolation  
dB  
DYNAMIC SPECIFICATIONS (f = 500kHz , 4V  
sine wave, 1.25Msps, 20MHz f  
)
SCLK  
IN  
P-P  
Unipolar  
69  
7ꢀ  
7ꢀ  
7ꢀ  
7ꢀ  
71  
71  
72  
-84  
-84  
-78  
5
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
dB  
dB  
Bipolar  
Unipolar  
Bipolar  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-76  
-76  
dB  
dB  
f
= 1ꢀ3.5kHz, f  
= 113.5kHz  
IN2  
dB  
IN1  
-3dB point  
(S/N + D) > 68dB, 1V input  
MHz  
MHz  
Full-Linear Bandwidth  
1
CONVERSION RATE (Figure 6)  
Minimum Conversion Time  
t
16 clock cycles per conversion (Note 3)  
Dual-output mode, S/D = ꢀ  
ꢀ.8  
µs  
CONV  
1.25  
Maximum Throughput Rate  
Msps  
Single-output mode, S/D = 1  
ꢀ.625  
Minimum Throughput Rate for  
Full Bandwidth Signal  
(Note 4)  
1ꢀ  
ksps  
4
_______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
ELECTRICAL CHARACTERISTICS—MAX1379 (continued)  
(V  
= 4.75V to 5.25V, V = 3V, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 4.ꢀ96V, REFSEL = V , S/D = DGND, C  
= 1µF; T =  
REF A  
AVDD  
L
SCLK  
REF  
L
T
MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
125  
2
MAX  
UNITS  
ns  
Track-and-Hold Acquisition Time  
Aperture Delay  
t
ACQ  
ns  
Aperture-Delay Matching  
Aperture Jitter  
2
ns  
(Note 5)  
3ꢀ  
ps  
External Clock Frequency  
f
2ꢀ  
MHz  
SCLK  
ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)  
Input Range  
U/B = ꢀ, V  
- RGND  
V
REF  
AIN_A  
V
Differential Input Range  
Absolute Voltage Range  
DC Leakage Current  
Input Impedance  
U/B = 1, V  
- V  
-V  
/2  
+V  
/2  
AIN_A  
AIN_B  
REF  
REF  
AVDD  
1
V
µA  
k  
pF  
34  
16  
Input Capcitance  
At each analog input  
EXTERNAL REFERENCE (REFSEL = 1)  
AVDD  
+ ꢀ.ꢀ5  
Absolute Input Voltage Range  
V
1.ꢀ  
V
REF  
Input Capacitance  
DC Leakage Current  
Input Current  
5ꢀ  
pF  
µA  
µA  
1
Time averaged at maximum throughput rate  
8ꢀꢀ  
INTERNAL REFERENCE (REFSEL = 0)  
Reference Voltage Level  
4.ꢀ86  
4.ꢀ96  
1
4.1ꢀ6  
V
I
I
= ꢀ to 1mA  
SOURCE  
Load Regulation  
mV/mA  
= ꢀ to 5ꢀµA  
1
SINK  
Voltage Temperature Coefficient  
5ꢀ.ꢀ  
ppm/oC  
DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL)  
ꢀ.3 x  
Input-Voltage Low  
Input-Voltage High  
V
V
IL  
V
L
ꢀ.7 x  
V
V
IH  
V
L
Input Leakage Current  
I
1ꢀ  
µA  
IL  
DIGITAL OUTPUT (DOUT1, DOUT2)  
Output Load Capacitance  
Output-Voltage Low  
C
For stated timing performance  
3ꢀ  
pF  
V
DOUT  
V
I
= 5mA  
ꢀ.4  
OL  
OH  
OL  
SINK  
V -  
L
ꢀ.5V  
Output-Voltage High  
V
I
= 1mA, V 2.7V  
V
SOURCE  
L
Output Leakage Current  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
I
High-impedance mode (Figure 9)  
ꢀ.2  
5.ꢀ  
µA  
AVDD  
4.25  
1.8  
5.25  
V
V
V
AVDD  
L
_______________________________________________________________________________________  
5
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
ELECTRICAL CHARACTERISTICS—MAX1379 (continued)  
(V  
= 4.75V to 5.25V, V = 3V, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 4.ꢀ96V, REFSEL = V , S/D = DGND, C  
= 1µF; T =  
REF A  
AVDD  
L
SCLK  
REF  
L
T
MIN  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
PARAMETER  
SYMBOL  
CONDITIONS  
Normal operation  
MIN  
TYP  
16  
2
MAX  
UNITS  
18  
mA  
Analog Supply Current  
I
Partial power-down mode (Note 5)  
Full power-down mode (Note 5)  
AVDD  
5
1ꢀ  
3
µA  
Average Static Supply Current  
Digital Supply Current  
9
mA  
f
f
= 2ꢀMHz, V = 5V, C = 3ꢀpF  
2
SCLK  
SCLK  
L
L
I
mA  
mV  
VL  
= 2ꢀMHz, V = 3V, C = 3ꢀpF  
1
L
L
Power-Supply Rejection  
PSR  
V
= 5V 1ꢀ%, full-scale input  
ꢀ.2  
3
AVDD  
ELECTRICAL CHARACTERISTICS—MAX1383  
(V  
= 4.75V to 5.25V, V = 1.8V to AVDD, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 2.5ꢀV, REFSEL = V , S/D = DGND, C  
=
AVDD  
L
SCLK  
REF  
L
REF  
1µF; T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DC ACCURACY  
Resolution  
12  
-1.5  
-1  
Bits  
LSB  
LSB  
Relative Accuracy  
Differential Nonlinearity  
INL  
(Note 1)  
+1.5  
+1.5  
12  
16  
1ꢀ  
8
DNL  
Unipolar  
Bipolar  
Offset Error  
LSB  
79/MAX183  
Offset-Error Matching  
Gain Error  
LSB  
LSB  
LSB  
(Note 2)  
(Note 2)  
Gain-Error Matching  
Gain Temperature Coefficient  
6
2
74  
8ꢀ  
ppm/oC  
AIN1A to AIN1B, AIN2A to AIN2B  
AIN1A to AIN2A, AIN1B to AIN2B  
DC Input Isolation  
dB  
DYNAMIC SPECIFICATIONS (f = 100kHz, 20V  
sine wave, 1.25Msps, 20MHz f  
)
SCLK  
IN  
P-P  
Unipolar  
67  
69  
67  
69  
71  
72  
71  
72  
-84  
-86  
-78  
1ꢀ  
1
Signal-to-Noise Plus Distortion  
Signal-to-Noise Ratio  
SINAD  
SNR  
dB  
dB  
Bipolar  
Unipolar  
Bipolar  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Intermodulation Distortion  
Full-Power Bandwidth  
THD  
SFDR  
IMD  
Up to the 5th harmonic  
-72  
-72  
dB  
dB  
f
= 1ꢀ3.5kHz, f  
= 113.5kHz  
IN2  
dB  
IN1  
-3dB point  
(S/N + D) > 68dB, 1V input  
MHz  
MHz  
Full-Linear Bandwidth  
CONVERSION RATE (Figure 4)  
Minimum Conversion Time  
t
16 clock cycles per conversion (Note 3)  
Dual output mode, S/D = ꢀ  
ꢀ.8ꢀꢀ  
µs  
CONV  
1.25  
Maximum Throughput Rate  
Msps  
Single output mode, S/D = 1  
ꢀ.625  
6
_______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
ELECTRICAL CHARACTERISTICS—MAX1383 (continued)  
(V  
= 4.75V to 5.25V, V = 1.8V to AVDD, f  
= 2ꢀMHz (5ꢀ% duty cycle), V  
= 2.5ꢀV, REFSEL = V , S/D = DGND, C  
=
AVDD  
L
SCLK  
REF  
L
REF  
1µF; T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.)  
MAX A  
A
MIN  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Throughput Rate for  
Full Bandwidth Signal  
(Note 4)  
(Note 5)  
1ꢀ  
ksps  
Track-and-Hold Acquisition Time  
Aperture Delay  
t
125  
2
ns  
ns  
ACQ  
Aperture-Delay Matching  
Aperture Jitter  
2
ns  
3ꢀ  
ps  
External Clock Frequency  
f
2ꢀ  
MHz  
SCLK  
ANALOG INPUTS (AIN1A, AIN1B, AIN2A, AIN2B)  
Input Range  
U/B = ꢀ, V  
- RGND  
-1ꢀ  
-1ꢀ  
-1ꢀ  
+1ꢀ  
+1ꢀ  
+1ꢀ  
V
V
AIN_A  
Differential Input Range  
Absolute Voltage Range  
Input Impedance  
U/B = 1, V  
- V  
AIN_B  
AIN_A  
V
1ꢀ  
1ꢀ  
k  
pF  
Input Capacitance  
At each analog input  
EXTERNAL REFERENCE (REFSEL = 1)  
Absolute Input Voltage Range  
Input Capacitance  
V
1.25  
2.48  
2.5  
V
REF  
5ꢀ  
pF  
µA  
Input Current  
Time averaged at maximum throughput rate  
16ꢀꢀ  
INTERNAL REFERENCE (REFSEL = 0)  
Reference Voltage Level  
2.5ꢀ  
1
2.52  
V
I
I
= ꢀ to 1mA  
SOURCE  
Load Regulation  
mV/mA  
ppm/oC  
= ꢀ to 5ꢀµA  
1
SINK  
Voltage Temperature Coefficient  
5ꢀ.ꢀ  
DIGITAL INPUTS (SCLK, CNVST, U/B, S/D, SEL, REFSEL)  
Input-Voltage Low  
V
ꢀ.3 x V  
V
V
IL  
IH  
IL  
L
Input-Voltage High  
V
ꢀ.7 x V  
L
Input Leakage Current  
DIGITAL OUTPUTS (DOUT1, DOUT2)  
I
1ꢀ  
µA  
Output Load Capacitance  
Output-Voltage Low  
C
For stated timing performance  
3ꢀ  
pF  
V
DOUT  
V
I
I
= 5mA  
ꢀ.4  
OL  
OH  
OL  
SINK  
Output-Voltage High  
V
= 1mA, V 2.7V  
V - ꢀ.5V  
L
V
SOURCE  
L
Output Leakage Current  
POWER REQUIREMENTS  
Analog Supply Voltage  
Digital Supply Voltage  
I
High-impedance mode (Figure 9)  
ꢀ.2  
5.ꢀ  
µA  
AVDD  
4.75  
1.8  
5.25  
AVDD  
65  
V
V
V
L
Normal operation  
55  
ꢀ.5  
44  
2
mA  
µA  
mA  
mA  
mV  
Analog Supply Current  
I
AVDD  
Full power-down mode (Note 5)  
1ꢀ  
Average Static Supply Current  
Digital Supply Current  
58  
I
f
= 2ꢀMHz, V = 3V, C = 3ꢀpF  
3.ꢀ  
VL  
SCLK  
L
L
Power-Supply Rejection  
PSR  
V
= 5V 1ꢀ%, full-scale input  
5
3ꢀ  
AVDD  
_______________________________________________________________________________________  
7
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
TIMING CHARACTERISTICS (Figures 6, 10)  
V
= 4.25V to 5.25V, V = 1.8V to AVDD, V  
= 4.ꢀ96V, f  
= 2ꢀMHz for MAX1379, 5ꢀ% duty cycle, C = 3ꢀpF, T = T  
to  
MIN  
AVDD  
L
REF  
SCLK  
L
A
T
MAX  
, unless otherwise noted. Typical values are at T = +25°C.)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
5ꢀ  
TYP  
MAX  
UNITS  
ns  
SCLK Clock Period  
SCLK Duty Cycle  
t
CP  
t
/t  
45  
55  
%
CH CL  
SCLK Pulse-Width High  
SCLK Pulse-Width Low  
t
22.5  
22.5  
ns  
CH  
t
ns  
CL  
C = 3ꢀpF, V = 5V  
14  
17  
24  
L
L
SCLK Rise to DOUT_ Transition  
t
ns  
C = 3ꢀpF, V = 3V  
DOUT  
L
L
C = 3ꢀpF, V = 1.8V  
L
L
DOUT_ Remains Valid After  
SCLK  
t
4
ns  
DHOLD  
CNVST Fall to SCLK Fall  
CNVST Pulse Width  
t
C = 3ꢀpF  
L
1ꢀ  
2ꢀ  
ns  
ns  
SETUP  
t
CSW  
Power-Up Time; Full Power-Down  
SEL to CNVST Fall  
t
External load on REF < 3µF  
2
ms  
PWR-UP  
t
1ꢀꢀ  
1ꢀ  
12ꢀ  
ns  
SEL_SETUP  
SEL Hold to CNVST Fall  
CS Fall To CNVST Fall  
ns  
t
External load on REF < 3µF  
No external load  
2
ms  
CST  
Restart Time; Partial Power-Down  
t
16  
Cycles  
RCV  
Note 1: Relative accuracy is the deviation of the analog value at any code from its theoretical value after the gain error and the offset  
error have been nulled.  
Note 2: Offset nulled.  
Note 3: Conversion time is defined as the number of clock cycles (16) multiplied by the clock period. Clock has 5ꢀ% duty cycle.  
Note 4: At sample rates below 1ꢀksps, the input full linear bandwidth is reduced to 5kHz.  
Note 5: SCLK and CNVST not switching during measurement.  
79/MAX183  
Typical Operating Characteristics  
(V  
= 5V/3V, V = 3V, f  
= 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1377 BIPOLAR FFT  
MAX1377 BIPOLAR FFT  
MAX1377 BIPOLAR FFT  
0
0
0
f
f
f
= 1.25MHz  
= 20MHz  
= 100kHz  
f
f
f
= 1.25MHz  
= 20MHz  
= 250kHz  
f
f
f
= 1.25MHz  
= 20MHz  
SCLK  
= 500kHz  
SAMPLE  
SAMPLE  
SAMPLE  
-20  
-20  
-20  
SCLK  
SCLK  
IN  
IN  
IN  
SINAD = 60.052dB  
SNR = 69.073dB  
THD = -92.267dB  
SFDR = 93.225dB  
SINAD = 68.720dB  
SNR = 68.769dB  
THD = -88.244dB  
SFDR = 91.237dB  
SINAD = 68.542dB  
SNR = 68.554dB  
THD = -90.391dB  
SFDR = 94.350dB  
-40  
-60  
-80  
-40  
-60  
-80  
-40  
-60  
-80  
V
= 2.048V  
V
= 2.048V  
V
= 2.048V  
REF  
REF  
REF  
-100  
-120  
-100  
-120  
-100  
-120  
0
100  
200  
300 400  
500  
600  
0
100  
200  
300 400  
500  
600  
0
100  
200  
300 400  
500  
600  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
8
_______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Typical Operating Characteristics (continued)  
(V  
= 5V/3V, V = 3V, f  
= 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1377 UNIPOLAR FFT  
MAX1377 UNIPOLAR FFT  
MAX1377 UNIPOLAR FFT  
0
0
0
f
f
f
= 1.25MHz  
= 20MHz  
= 100kHz  
f
f
f
= 1.25MHz  
= 20MHz  
= 250kHz  
f
f
f
= 1.25MHz  
= 20MHz  
SCLK  
= 500kHz  
SAMPLE  
SAMPLE  
SAMPLE  
-20  
-20  
-20  
SCLK  
SCLK  
IN  
IN  
IN  
SINAD = 69.324dB  
SNR = 69.400dB  
THD = -86.952dB  
SFDR = 89.213dB  
SINAD = 68.947dB  
SNR = 69.054dB  
THD = -85.101dB  
SFDR = 86.718dB  
SINAD = 68.645dB  
SNR = 68.715dB  
THD = -83.617dB  
SFDR = 88.709dB  
-40  
-60  
-80  
-40  
-60  
-80  
-40  
-60  
-80  
V
= 2.048V  
V
= 2.048V  
V
= 2.048V  
REF  
REF  
REF  
-100  
-120  
-100  
-120  
-100  
-120  
0
100  
200  
300 400  
500  
600  
0
100  
200  
300 400  
500  
600  
0
100  
200  
300 400  
500  
600  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
MAX1377 BIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
MAX1377 UNIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
MAX1377 UNIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
MAX1379 UNIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
MAX1379 BIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
MAX1377 BIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
0
500 1000 1500 2000 2500 3000 3500 4000 4500  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
_______________________________________________________________________________________  
9
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
Typical Operating Characteristics (continued)  
(V  
= 5V/3V, V = 3V, f  
= 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1379 BIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
MAX1379 UNIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
MAX1379 OFFSET ERROR  
vs. TEMPERATURE  
1.0  
0.8  
1.0  
0.8  
0
-0.3  
-0.6  
-0.9  
-1.2  
-1.5  
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0
0
CHANNEL 1  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
CHANNEL 2  
-15  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
-40  
10  
35  
60  
85  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
MAX1379 GAIN ERROR  
vs. TEMPERATURE  
MAX1379 FFT PLOT  
MAX1379 FFT PLOT  
0
2.0  
1.6  
1.2  
0.8  
0.4  
0
0
CHANNEL 2  
f
f
f
= 1.8Msps  
= 28.8MHz  
= 100kHz  
SAMPLE  
f
f
f
= 1.8Msps  
= 28.8MHz  
= 250kHz  
SAMPLE  
-20  
-20  
SCLK  
SCLK  
IN  
IN  
SINAD = 70.43dB  
SNR = 70.72dB  
THD = -82.33dB  
SFDR = 82.78dB  
SINAD = 70.05dB  
SNR = 70.32dB  
THD = -82.35dB  
SFDR = 83.22dB  
-40  
-60  
-80  
-40  
-60  
-80  
79/MAX183  
CHANNEL 1  
V
= 4.096V  
REF  
V
= 4.096V  
REF  
-100  
-120  
-100  
-120  
0
300  
600  
900  
0
300  
600  
900  
-40  
-15  
10  
35  
60  
85  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
MAX1379 TOTAL HARMONIC DISTORTION  
vs. SOURCE IMPEDENCE  
MAX1379 FFT PLOT  
MAX1379 FFT PLOT  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
0
0
f
f
f
= 1.8Msps  
= 28.8MHz  
= 300kHz  
SAMPLE  
-20  
-20  
SCLK  
f
= 500kHz  
IN  
IN  
f
f
f
= 1.8Msps  
SAMPLE  
SINAD = 70dB  
SNR = 70.27dB  
THD = -82.2dB  
SFDR = 81.81dB  
-40  
-60  
-80  
= 28.8MHz  
-40  
-60  
-80  
SCLK  
= 500kHz  
IN  
SINAD = 69.58dB  
SNR = 69.75dB  
THD = -83.79dB  
SFDR = 84.69dB  
V
= 4.096V  
REF  
V
= 4.096V  
REF  
f
= 100kHz  
IN  
-100  
-120  
-100  
-120  
0
200  
400  
600  
800  
10  
100  
SOURCE IMPEDANCE ()  
1000  
0
300  
600  
900  
ANALOG INPUT FREQUENCY (kHz)  
ANALOG INPUT FREQUENCY (kHz)  
10 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Typical Operating Characteristics (continued)  
(V  
= 5V/3V, V = 3V, f = 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1379 AVDD FULL POWER-DOWN  
MAX1379 AVDD PARTIAL POWER-DOWN  
CURRENT vs. TEMPERATURE  
MAX1379 INTERMODULATION PLOT  
CURRENT vs. TEMPERATURE  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0
f
f
f
f
= 1.8Msps  
= 28.8MHz  
= 250kHz  
= 300kHz  
SAMPLE  
-20  
SCLK  
IN1  
IN1  
-40  
-60  
-80  
IMD = -81.53dB  
= 4.096V  
V
REF  
-100  
-120  
0
300  
600  
900  
-40 -25 -10  
5
20 35 50 65 80  
-40 -25 -10  
5
20 35 50 65 80  
ANALOG INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX1379 AVDD SUPPLY CURRENT  
vs. TEMPERATURE  
MAX1379 AVDD SUPPLY CURRENT  
vs. CONVERSION RATE  
20  
18  
16  
14  
12  
10  
8
14.0  
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
6
4
2
0
-40 -25 -10  
5
20 35 50 65 80  
0
400  
800  
1200  
1600  
2000  
TEMPERATURE (°C)  
CONVERSION RATE (kHz)  
MAX1379 INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
MAX1379 FULL-SCALE AMPLITUDE  
vs. FREQUENCY  
3850  
3800  
3750  
3700  
3650  
3600  
3550  
4.10  
4.09  
4.08  
4.07  
4.06  
4.05  
4.04  
4.03  
4.02  
4.01  
T
= +25°C  
A
T
= -40°C  
= +85°C  
A
T
A
1
10  
4.20  
4.45  
4.70  
AVDD (V)  
4.95  
5.20  
FREQUENCY (MHz)  
______________________________________________________________________________________ 11  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
Typical Operating Characteristics (continued)  
(V  
= 5V/3V, V = 3V, f = 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1383 BIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
MAX1383 BIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
MAX1383 UNIPOLAR INL  
vs. DIGITAL OUTPUT CODE  
1.0  
0.8  
1.0  
0.8  
1.0  
0.8  
0.6  
0.6  
0.6  
0.4  
0.4  
0.4  
0.2  
0.2  
0.2  
0
0
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
0
1024  
2048  
3072  
4096  
4096  
625  
0
1024  
2048  
3072  
4096  
0
1024  
2048  
3072  
4096  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
DIGITAL OUTPUT CODE  
MAX1383 UNIPOLAR DNL  
vs. DIGITAL OUTPUT CODE  
MAX1383 OFFSET ERROR  
vs. TEMPERATURE  
MAX1383 GAIN ERROR  
vs. TEMPERATURE  
1.0  
0.8  
10  
8
4
2
CHANNEL 1  
0.6  
0.4  
CHANNEL 2  
0.2  
6
79/MAX183  
0
0
CHANNEL 2  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
4
CHANNEL 1  
-2  
-4  
2
0
0
1024  
2048  
3072  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
DIGITAL OUTPUT CODE  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAX1383 TOTAL HARMONIC DISTORTION  
vs. SOURCE IMPEDANCE  
MAX1383 AVDD FULL POWER-DOWN  
CURRENT vs. TEMPERATURE  
MAX1383 FFT PLOT  
0
-20  
-87.0  
-87.5  
-88.0  
-88.5  
-89.0  
-89.5  
-90.0  
2000  
1800  
1600  
1400  
1200  
1000  
800  
f
f
f
= 1.25Msps  
SAMPLE  
= 20MHz  
= 100kHz  
SINAD = 70.07dB  
SNR = 70.15dB  
THD = -87.39dB  
SFDR = 90.1dB  
SCLK  
IN  
-40  
-60  
V
= 2.5V  
REF  
-80  
600  
400  
-100  
-120  
f
f
= 100kHz  
IN  
200  
= 1.25Msps  
SAMPLE  
0
0
125  
250  
375  
500  
0
100  
200  
300  
400  
500  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
ANALOG INPUT FREQUENCY (kHz)  
SOURCE IMPEDANCE ()  
TEMPERATURE (°C)  
12 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Typical Operating Characteristics (continued)  
(V  
= 5V/3V, V = 3V, f  
= 2ꢀMHz, T = +25°C, unless otherwise noted.)  
SCLK A  
AVDD  
L
MAX1383 AVDD SUPPLY CURRENT  
vs. TEMPERATURE  
MAX1383 AVDD SUPPLY CURRENT  
vs. CONVERSION RATE  
MAX1383 FULL-SCALE AMPLITUDE  
vs. FREQUENCY  
56  
54  
52  
50  
48  
46  
44  
42  
56  
55  
54  
53  
52  
51  
50  
0
-1  
-2  
-3  
CONVERTING AT 1.25Msps  
STATIC  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
0
500  
1000  
1500  
2000  
1
10  
TEMPERATURE (°C)  
CONVERSION RATE (kHz)  
FREQUENCY (MHz)  
MAX1383 AVDD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX1383 AVDD SUPPLY CURRENT  
vs. SUPPLY VOLTAGE  
MAX1383 INTERNAL REFERENCE VOLTAGE  
vs. ANALOG SUPPLY VOLTAGE  
56  
54  
52  
50  
48  
46  
44  
42  
40  
54  
52  
50  
48  
46  
44  
42  
40  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
2.490  
EXTERNAL REFERENCE  
INTERNAL REFERENCE  
TEMPERATURE AT T = +25°C  
A
TEMPERATURE AT T = -40°C  
A
CONVERTING AT 1.25Msps  
STATIC  
CONVERTING AT 1.25Msps  
STATIC  
TEMPERATURE AT T = +85°C  
A
TEMPERATURE AT T = +125°C  
A
4.25  
4.45  
4.65  
4.85  
(V)  
5.05  
5.25  
4.25  
4.45  
4.65  
4.85  
(V)  
5.05  
5.25  
4.75  
4.85  
4.95  
5.05  
(V)  
5.15  
5.25  
V
V
V
CC  
CC  
CC  
MAX1383 INTERNAL REFERENCE VOLTAGE  
vs. TEMPERATURE  
MAX1383 EXTERNAL REFERENCE SUPPLY  
CURRENT vs. TEMPERATURE  
MAX1383 DIGITAL SUPPLY CURRENT  
vs. TEMPERATURE  
2.499  
2.497  
2.495  
2.493  
2.491  
2.489  
1.48  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.70  
1.68  
1.66  
1.64  
1.62  
1.60  
V
= 5V  
AVDD  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
______________________________________________________________________________________ 13  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
Pin Description  
PIN  
NAME  
FUNCTION  
Reference-Select Input. Drive REFSEL high to select external reference mode and power down the  
internal reference. Drive REFSEL low to select internal reference mode.  
1
REFSEL  
Internal Reference Output/External Reference Input. For internal reference mode, bypass REF to  
RGND with a 1µF capacitor. For external reference mode, apply a reference voltage at REF.  
2
3
REF  
Reference Ground/Common Negative Input. In bipolar mode, RGND is the reference ground. In  
unipolar mode, RGND is the common negative input for all four analog inputs (see Figure 3).  
RGND  
4, 18  
5
AGND  
AVDD  
Analog Ground  
Analog-Supply Input. Bypass AVDD with a 1ꢀµF || 1ꢀnF capacitor to ground.  
Primary/Positive Analog Input Channel 2. AIN2A is the primary channel 2 input (AIN2A) if using  
single-ended inputs (U/B is low) and the positive channel 2 input (AIN2+) if using differential inputs  
(U/B is high) (see Figure 3).  
6
AIN2A  
AIN2B  
Secondary/Negative Analog Input Channel 2. AIN2B is the secondary channel 2 input (AIN2B) if  
using single-ended inputs (U/B is low) and the negative channel 2 input (AIN2-) if using differential  
inputs (U/B is high) (see Figure 3).  
7
8
Unipolar/Bipolar Input. Drive U/B low to select unipolar mode. Drive U/B high to select bipolar  
mode. In bipolar mode, the analog inputs are differential.  
U/B  
9
DGND  
Digital Supply Ground  
1ꢀ  
11  
12  
13  
V
Digital Supply Input. Bypass V with a 1ꢀµF || 1ꢀnF capacitor to ground.  
L
L
DOUT2  
DOUT1  
SCLK  
Serial-Data Output 2. Data is clocked out on the rising edge of SCLK.  
Serial-Data Output 1. Data is clocked out on the rising edge of SCLK.  
Serial-Clock Input. Clocks data out of the serial interface. SCLK also sets the conversion time.  
79/MAX183  
Conversion-Start Input. Forcing CNVST high prepares the device for a conversion. Conversion  
begins on the falling edge of CNVST.  
14  
15  
CNVST  
Active-Low, Chip-Select Input. Drive CS low to enable the serial interface. When CS is high, DOUT1  
and DOUT2 are high impedance, the serial interface resets, and the device powers down.  
CS  
Single-Output/Dual-Output Selection Input. Drive S/D high to route ADC2 data through DOUT1 after  
ADC1 data. Drive S/D low for dual outputs with ADC1 data going to DOUT1 and ADC2 data going  
to DOUT2. See the Single-/Dual-Output Modes (S/D) section.  
16  
17  
19  
S/D  
SEL  
Analog-Input Selection Input. If U/B is low (unipolar mode), drive SEL low to select the primary  
inputs, AIN1A and AIN2A. Drive SEL high to select the secondary inputs, AIN1B and AIN2B. In  
bipolar mode, SEL is ignored.  
Secondary/Negative Analog Input Channel 1. AIN1B is the secondary channel 1 input (AIN1B) if  
using single-ended inputs (U/B is low) and the negative channel 1 input (AIN1-) if using differential  
inputs (U/B is high) (see Figure 3).  
AIN1B  
Primary/Positive Analog Input Channel 1. AIN1A is the primary channel 1 input (AIN1A) if using  
single-ended inputs (U/B is low) and the positive channel 1 input (AIN1+) if using differential inputs  
(U/B is high) (see Figure 3).  
2ꢀ  
AIN1A  
EP  
Exposed Pad. EP is internally connected to AGND.  
14 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
For the MAX1383, t  
has a typical constant value of  
ACQ  
Detailed Description  
125ns. Also, it has a typical constant input impedance  
The MAX1377/MAX1379/MAX1383 use an input track  
and hold (T/H) and SAR circuitry to convert an analog  
input signal to a digital 12-bit output. The dual serial  
interface requires a minimum of three digital lines  
(SCLK, CNVST, and DOUT) and provides easy interfac-  
ing to microprocessors (µPs) and DSPs. Four digital  
lines are required for dual-output mode.  
of 11k. Since the input voltage seen at the pin is a  
function of a resistive voltage divider i.e., V x R /(R  
IN  
IN IN  
+ R ) = V x 11k/(11k+ R ), it is very important to  
X
IN  
X
select an R << 11kto avoid large gain error.  
X
MAX1377/MAX1379 Unipolar Mode  
The MAX1377/MAX1379 support two simultaneously  
sampled, single-ended conversions in unipolar mode.  
Drive U/B low for unipolar mode. In unipolar mode,  
switches A–D in Figure 3a close according to the posi-  
tion of SEL. Drive SEL low to close switches A and D  
and designate AIN1A and AIN2A as the active, single-  
ended inputs referenced to RGND. Drive SEL high to  
close switches B and D and select AIN1B and AIN2B  
as the active, single-ended inputs referenced to RGND.  
The output code in unipolar mode is straight binary.  
See Figure 4a for the unipolar transfer function.  
Input T/H Circuit  
Upon power-up, the input T/H circuit enters its tracking  
mode immediately. Following a conversion, the T/H  
enters the tracking mode on the 14th SCLK rising edge  
of the previous conversion (Figure 6). The T/H enters the  
hold mode on the falling edge of CNVST. The time  
required for the T/H to acquire an input signal is deter-  
mined by how quickly the input capacitance is charged.  
If the input signal’s source impedance is high, the acqui-  
sition time lengthens. For the MAX1377/MAX1379, the  
acquisition time, t  
, is the minimum time needed for  
the signal to be acquired (see the Definitions section).  
is calculated by the following equation:  
ACQ  
MAX1377/MAX1379 Bipolar Mode  
Drive U/B high to configure the inputs for bipolar/differ-  
ential mode. Switches A and C in Figure 3a are closed,  
designating AIN1A (AIN2A) and AIN1B (AIN2B) as the  
active, differential inputs. In bipolar mode, SEL is  
ignored. The output code is in two’s complement.  
Figure 5 shows the transfer function for bipolar mode.  
t
ACQ  
t
9 x (R + R ) x C (MAX1377/MAX1379)  
S IN IN  
ACQ  
where R = 45ꢀ, C = 16pF, and R is the source  
IN  
IN  
S
impedance of the input signal.  
Figure 1 shows the acquisition time as tested using the  
circuit of Figure 2. The acquisition time is the time  
between the rising edge of a 1V to 3V step input and  
the falling edge of CONVST which produced a stable  
sample. Rs represents the source impedance of the  
function generator (5ꢀ) and Rx represents the vari-  
able filter resistance.  
MAX1383 Input Mode  
A
1ꢀV input mode is available on the MAX1383. It is  
accomplished by utilizing a resistive divider on the  
input followed by a low distortion amplifier to drive the  
track and hold circuit. Special high voltage ESD struc-  
tures are also utilized on these channels. When using  
Rs  
Rx  
ADC  
1800  
1600  
1400  
1200  
1000  
1V TO 3V  
STEP  
C
CONVST  
C = 1nF  
800  
Figure 2. Test Circuit  
600  
400  
200  
0
C = 120pF  
AIN1A  
(AIN2A)  
C
C
R
IN  
IN  
A
TO ADC+  
TO ADC-  
AIN1B  
(AIN2B)  
B
C
D
0
50  
100  
150  
200  
R
IN  
IN  
SOURCE IMPEDANCE, Rx ()  
RGND  
Figure 1. MAX1377/MAX1379 Acquisition Time vs. Source  
Impedance  
Figure 3a. MAX1377/MAX1379 Equivalent Input Circuit  
______________________________________________________________________________________ 15  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
the MAX1383, the signal bandwidth is limited to 1ꢀꢀkHz  
by specification. Since 1ꢀV signals are divided down to  
a 2.5V range, this version should only be used with sig-  
nals greater than 5V. For those applications with signals  
5V or less, use the MAX1377/MAX1379 for best SNR per-  
formance. The configuration is shown on Figure 3b.  
1ꢀV input swings. All inputs must not exceed the stat-  
ed ranges for accurate conversions.  
Internal Reference Mode  
Drive REFSEL low to select internal reference mode. The  
MAX1377 includes an on-chip 2.ꢀ48V reference; the  
MAX1379 has a 4.ꢀ96V reference; and the MAX1383  
includes a 2.5V internal reference. The reference output  
at REF can be used as a reference voltage source for  
other components. REF can source up to 2mA. Bypass  
REF with a 1ꢀnF capacitor and a 4.7µF capacitor to  
RGND. It is important to select a low ESR capacitor and  
keep the trace resistance as low as possible.  
Input Bandwidth  
The ADC’s input-tracking circuitry has a 5MHz small-  
signal bandwidth, allowing the ADC to digitize high-  
speed transient events and measure periodic signals  
with bandwidths exceeding the ADC’s sampling rate by  
using undersampling techniques. To avoid high-fre-  
quency signals being aliased into the frequency band  
of interest, anti-alias filtering is recommended.  
FULL-SCALE  
TRANSITION  
Analog Input Protection  
Internal protection diodes that clamp the analog input  
to AVDD and AGND allow the analog inputs to swing  
from AGND - ꢀ.3V to AVDD + ꢀ.3V without damage to  
the MAX1377 and MAX1379. The MAX1383 can handle  
MAX1383  
111...111  
+FS = 4V  
REF  
111...110  
111...101  
ZS = 0  
-FS = -4V  
REF  
8 x V  
4096  
REF  
1 LSB =  
REF (2.5V)  
R2  
000...011  
000...010  
000...001  
000...000  
R
IN  
~ 11K(typ)  
R1  
R4  
INA  
3pF  
INPUT  
T/H  
79/MAX183  
R3  
V
- 1 LSB  
REF  
+FS  
+FS - 3/2 LSB  
-FS  
INTERNAL  
SIGNAL  
INPUT VOLTAGE (LSB)  
GROUND  
Figure 4b. MAX1383 Single-Ended Input  
Figure 3b. MAX1383 Equivalent Input Circuit  
FULL-SCALE  
TRANSITION  
FULL-SCALE  
TRANSITION  
MAX1377/  
MAX1379  
011...111  
011...100  
111...111  
111...110  
111...101  
V
REF  
2
+FS =  
V
FS =  
REF  
ZS = 0  
-FS =  
ZS = 0  
-V  
000...010  
000...001  
REF  
2
REF  
V
4096  
REF  
1 LSB =  
V
4096  
1 LSB =  
000...000  
111...111  
MAX1383  
ZS = 0  
111...110  
111...101  
+FS = 4V  
REF  
-FS = -4V  
REF  
000...011  
000...010  
000...001  
000...000  
8 x V  
REF  
1 LSB =  
100...001  
100...000  
4096  
V
- 1 LSB  
REF  
+FS  
FS  
FS - 3/2 LSB  
-FS  
0
3
1
2
+FS - 3/2 LSB  
DIFFERENTIAL INPUT VOLTAGE (LSB)  
INPUT VOLTAGE (LSB)  
Figure 4a. MAX1377/MAX1379 Unipolar Transfer Function (U/B  
Figure 5. Bipolar Transfer Function (U/B = High)  
= Low)  
16 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
The internal reference is continuously powered-up dur-  
ing both normal and partial power-down modes. In full  
power-down mode, the internal reference is disabled.  
Allow at least 2ms recovery time after a power-on reset  
or exiting full power-down mode for the reference to  
settle to its intended value.  
Serial Interface  
Initialization After Power-Up  
Upon initial power-up, the MAX1377/MAX1379/ MAX1383  
require a complete conversion cycle to initialize the inter-  
nal calibration. Following this initialization, the ADC is  
ready for normal operation. This initialization is only  
required after a hardware power-on reset and is not  
required after exiting partial or full power-down mode.  
Input Voltage Range (MAX1383)  
The input range on the MAX1383 has an 8x relationship  
with the reference voltage. For example, when the refer-  
ence voltage (internal or external) is 2.5V, the input  
Starting a Conversion and Reading the Output  
With SCLK idling high or low, a falling edge on CNVST  
begins a conversion (see Figure 6). This causes the  
analog input stage to transition from track to hold  
mode. SCLK provides the timing for the conversion  
process, and data is shifted out as each bit of the result  
is determined. A rising edge in CNVST forces the  
device into one of three modes. The mode is deter-  
mined by the clock cycle in which the transition occurs  
and whether the device is set for single or dual outputs.  
Figures 7 and 8 show each mode that is activated with  
a rising CNVST edge for single and dual outputs.  
range is 1ꢀV (2ꢀV ).  
P-P  
External Reference Mode  
Drive REFSEL high to select external reference mode.  
Apply a reference voltage at REF. Bypass REF with  
a 1ꢀnF capacitor and a 4.7µF capacitor to RGND. As  
with the internal reference, it is important to select a low  
ESR capacitor and keep the trace resistance as low  
as possible.  
CS  
t
CSW  
CNVST  
t
SETUP  
t
CH  
13  
1
14  
SCLK  
t
t
CL  
ACQ  
t
DOUT  
t
CST  
D11  
D10  
D7  
D5  
D3  
D2  
D0  
D9  
D6  
D4  
D1  
D8  
DOUT_  
t
DHOLD  
TRACKING  
INTERNAL T/H STATE  
HOLD MODE  
Figure 6. Detailed Serial-Interface Timing Diagram  
CS  
CNVST  
POWER-DOWN  
CONTINUOUS MODE  
DOUT1 HI-Z  
DOUT1 GOES HI-Z  
29  
4
14  
28  
2
3
SCLK  
1
Figure 7. Single-Output CNVST Transition Modes  
______________________________________________________________________________________ 17  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
CS  
CNVST  
SCLK  
POWER-DOWN  
CONTINUOUS MODE DOUT_ HI-Z  
16  
17  
15  
4
14  
1
2
3
DOUT_ HI-Z  
Figure 8. Dual-Output CNVST Transition Modes  
SINGLE CONVERSION  
CNVST  
1
8
16  
9
SCLK  
D2  
D1  
D5  
D4  
D7  
D6  
D3  
D0  
D11  
D10  
D9  
D8  
0
0
0
DOUT_  
HIGH-Z  
HIGH-Z  
CONTINUOUS-CONVERSION  
SELECTION WINDOW*  
CONTINUOUS CONVERSION  
CNVST  
79/MAX183  
1
1
8
14  
16  
9
SCLK  
D2  
D1  
D5  
D4  
D7  
D6  
D3  
D0  
D11  
D10  
D9  
D8  
0
0
0
DOUT_  
*CNVST MUST GO HIGH BETWEEN THE 14TH RISING AND 16TH FALLING EDGES OF SCLK.  
TO MAINTAIN CONTINUOUS CONVERSIONS, DOUT_ REMAINS LOW BETWEEN  
CONVERSION RESULTS IN CONTINUOUS-CONVERSION DUAL-OUTPUT MODE.  
Figure 9. Dual-Output Mode, Single and Continuous Conversions  
For continuous operation in single-output mode, pull  
CNVST high after the 14th rising and before the 28th  
rising edge of SCLK. In dual-output mode, if CNVST  
returns high after the 14th rising and before the 16th  
falling edge of SCLK, DOUT_ remains active so continu-  
ous conversions can be sustained. If CNVST is low  
during the 16th edge of SCLK (dual-conversion mode)  
and the 28th falling edge of SCLK (single-output mode),  
DOUT_ returns to its high-impedance state on the next  
rising edge of CNVST or SCLK, enabling the serial inter-  
face to be shared by multiple devices. See Figures 9  
and 1ꢀ for single and continuous conversion timing  
diagrams.  
DOUT1 (and DOUT2, if S/D = low) transitions from high  
impedance to being actively driven low once the ADC  
enters hold mode. DOUT_ remains low for the first three  
SCLK pulses and begins outputting the conversion result  
after the 4th rising edge of SCLK, MSB first. DOUT_ tran-  
sitions complete t  
after each SCLK rising edge and  
DOUT  
the DOUT_ values remain valid for t  
after the next  
HOLD  
rising edge of SCLK. A total of 16 SCLK pulses are  
required to complete a normal conversion in dual-output  
mode and 28 SCLK pulses in single-output mode.  
DOUT_ goes low after the 16th rising edge of SCLK and  
goes high-impedance when CNVST goes high.  
18 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Power-Down Modes  
Single-/Dual-Output Modes (S/D)  
In dual-output mode, conversion results from the two  
channels appear on separate outputs. DOUT1 outputs  
the result from channel 1 and DOUT2 outputs the result  
from channel 2. Drive S/D low to operate in dual-output  
mode. For DSPs with two-buffer and two-input-stream  
capability, use the dual-output mode to allow for easier  
DSP software for dual streams. Two buffer locations can  
be used so the streams do not need to be separated.  
Partial Power-Down (PPD)  
Reduce power consumption by placing the MAX1377/  
MAX1379 in partial power-down mode. Partial power-  
down mode is ideal for infrequent data sampling and  
applications requiring fast wake-up times. Pull CNVST  
high after the 3rd and before the 14th rising edge of  
SCLK to place the device in partial power-down mode.  
This reduces the analog supply current to 2mA. While  
in partial power-down mode, the internal reference  
remains enabled (if REFSEL = GND). Figure 11 shows  
the timing sequence to enter partial power-down mode.  
In single-output mode, the results from both channels  
appear on DOUT1. The channel 2 conversion result fol-  
lows the channel 1 conversion result (see Figure 1ꢀ).  
The MSB (D11) of the channel 2 conversion result  
appears on DOUT1 after the 16th rising edge of SCLK.  
The LSB (Dꢀ) of the channel 2 conversion result  
appears on DOUT1 after the 27th rising edge of SCLK  
and is ready to be clocked in on the 28th rising edge of  
SCLK. DOUT2 is high-impedance when S/D is high.  
Full Power-Down Mode (FPD)  
Full power-down mode is ideal for infrequent data sam-  
pling and very low-supply current applications. To enter  
full power-down mode, place the MAX1377/MAX1379/  
MAX1383 first in partial power-down mode. Perform the  
CNVST/SCLK sequence necessary to enter partial  
power-down mode. Repeat the same sequence to enter  
full power-down mode. In full power-down mode, the  
internal reference is disabled to minimize power con-  
sumption. Figure 12 shows the timing sequence to  
enter full power-down mode.  
If CNVST goes high after the 28th rising edge of SCLK,  
DOUT1 goes high impedance until the next conversion  
is initiated (single-conversion mode). If CNVST goes  
high after the 14th rising edge and before the 28th ris-  
ing edge of SCLK, DOUT1 is actively driven low until  
the next conversion results are ready (continuous- con-  
version mode).  
Another way to enter the full power-down mode is to  
drive CS high. If CS is high, the MAX1377/MAX1379/  
MAX1383 act as if the full power-down sequence were  
issued. To exit the CS-initiated power-down mode,  
drive CS low. Allow 2ms for the reference to wake up  
and settle before performing a conversion.  
Note: In single-output mode, the conversion speed is  
limited to ꢀ.625Msps by the maximum SCLK.  
SINGLE CONVERSION  
(SINGLE OUTPUT)  
CNVST  
8
SCLK  
9
1
0
16  
17  
D10  
24  
28  
D9  
D8 D7 D6 D5  
CHANNEL 2  
D2  
D0  
D1  
D9  
D7  
CHANNEL 1  
CONVERSION RESULT  
D5  
D3 D2  
D0 D11  
0
0
D10  
D8  
D6  
D4  
D1  
D4 D3  
D11  
DOUT1  
HIGH-Z  
CONVERSION RESULT  
CONTINUOUS CONVERSION  
(SINGLE OUTPUT)  
CNVST  
SCLK  
1
8
9
14  
16  
17  
D10  
24  
D4 D3  
25  
D2  
27 28  
D0  
D9  
D8 D7 D6 D5  
CHANNEL 2  
CONVERSION RESULT  
D9  
D7  
CHANNEL 1  
CONVERSION RESULT  
D5  
D3 D2 D0 D11  
D1  
D1  
0
0
0
D10  
D8  
D6  
D4  
D11  
DOUT1  
Figure 1ꢀ. Single-Output Mode, Single and Continuous Conversions  
______________________________________________________________________________________ 19  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
PPD WINDOW  
CNVST  
SCLK  
CNVST MUST GO HIGH AFTER THE 3RD  
BUT BEFORE THE 14TH  
SCLK RISING EDGE  
3
9
1
14  
DOUT_ GOES HIGH IMPEDANCE ONCE CNVST GOES HIGH  
1ST SCLK RISING EDGE  
0
DOUT_  
MODE  
0
0
D11  
D10  
D9  
D8  
D7  
NORMAL  
PARTIAL POWER-DOWN  
ENABLED  
REF  
Figure 11. Partial Power-Down Timing Sequence  
EXECUTE PARTIAL POWER-DOWN SEQUENCE TWICE  
DOUT_ ENTERS THREE-STATE ONCE CNVST GOES HIGH  
CNVST  
SCLK  
1ST SCLK RISING EDGE  
DOUT_  
1ST SCLK RISING EDGE  
D8 D7  
0
D10  
0
D11  
0
D9  
0
0
0
0
0
0
0
0
79/MAX183  
NORMAL  
FPD  
PPD  
MODE  
REF  
ENABLED  
DISABLED  
Figure 12. Full Power-Down Mode Timing Sequence  
Exiting Partial and Full Power-Down Modes  
Drive CNVST low and allow at least 14 SCLK cycles to  
elapse before driving CNVST high to exit partial or full  
power-down mode. When exiting partial power-down  
mode, conversions can begin immediately without hav-  
ing to wait for the reference to wake-up. When exiting  
full power-down mode, allow at least 2ms recovery time  
after exiting to ensure that the internal reference has  
settled.  
Applications Information  
SPI and MICROWIRE  
The MAX1377/MAX1379/MAX1383 are compatible with  
all four modes programmed with the CPHA and CPOL  
bits in the SPI or MICROWIRE control register.  
Conversion begins with a CNVST falling edge. DOUT_  
goes low, indicating a conversion is in progress. Two  
consecutive 8-bit reads are required to get the full 12  
bits from the ADC. DOUT_ transitions on the rising edge  
In partial or full power-down mode, maintain idle SCLK  
low or high to minimize power.  
of SCLK. DOUT_ is guaranteed to be valid t  
after  
DOUT  
the rising edge of SCLK and remains valid until t  
after the next SCLK rising edge (see Figure 13).  
DHOLD  
20 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
For CPOL = ꢀ and CPHA = ꢀ or CPOL = 1 and CPHA =  
1, the data is clocked into the µC on the rising edge of  
SCLK. For CPOL = ꢀ and CPHA = 1 or CPOL = 1 and  
CPHA = ꢀ, the data is clocked into the µC on the falling  
edge of SCLK. The MAX1377/MAX1379/MAX1383 are  
compatible with all CPOL/CPHA configurations since  
the data is valid on the falling and rising edge of SCLK.  
clock cycles from the µC to clock out the 12 bits of  
data. The conversion result contains three zeros fol-  
lowed by the 12 data bits, and a trailing zero with the  
data in the MSB-first format.  
Three-Phase Motor Controller  
The MAX1377/MAX1379/MAX1383 are ideally suited for  
motor-control systems (Figure 16). The devices’ simulta-  
neously sampled inputs eliminate the need for complicat-  
ed DSP algorithms that realign sequentially sampled  
data into a simultaneous sample set. The 1ꢀV  
(MAX1383) input allows for standard industrial inputs,  
eliminating the need for voltage-scaling amplifiers.  
QSPI  
Unlike SPI, which requires two 8-bit reads to acquire  
the 12 bits of data from the ADC, QSPI allows the mini-  
mum number of clock cycles necessary to clock in the  
data. The MAX1377/MAX1379/MAX1383 require 16  
I/O  
SCK  
CNVST  
SCLK  
SCLK  
MISO1  
DOUT1  
t
t
MISO2  
DOUT  
DHOLD  
DOUT2  
MAX1377  
MAX1379  
MAX1383  
3V TO 5V  
DOUT_  
SS  
A) SPI  
CNVST  
CS  
SCK  
Figure 13. Data Valid and Hold Times  
SCLK  
MISO1  
DOUT1  
DOUT2  
MAX1377  
MAX1379  
MAX1383  
MISO2  
3V TO 5V  
SUPPLIES  
ANALOG  
SUPPLY  
DIGITAL  
SUPPLY  
RETURN  
RETURN  
SS  
OPTIONAL  
FERRITE  
BEAD  
B) QSPI  
I/O  
SK  
SI1  
CNVST  
SCLK  
DOUT1  
DOUT2  
MAX1377  
MAX1379  
MAX1383  
SI2  
AVDD  
V
L
AGND  
DGND  
V
GND  
DD  
DIGITAL  
CIRCUITRY  
MAX1377  
MAX1379  
MAX1383  
C) MICROWIRE  
Figure 15. Common Serial-Interface Connections to the  
MAX1377/MAX1379/MAX1383  
Figure 14. Power-Supply Grounding and Bypassing  
______________________________________________________________________________________ 21  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
MAX1383  
AIN1A  
12-BIT  
ADC  
T/H  
T/H  
MISO1  
MISO2  
AIN1B  
DSP-BASED DIGITAL  
PROCESSING ENGINE  
AIN2A  
AIN2B  
12-BIT  
ADC  
IGBT CURRENT DRIVERS  
CURRENT  
SENSORS  
I
PHASE2  
I
PHASE1  
THREE-PHASE ELECTRIC MOTOR  
PHASE 2  
79/MAX183  
PHASE 1  
PHASE 3  
SIN/COS  
POSITION  
RESOLVER  
I
= - I  
- I  
PHASE3  
PHASE1 PHASE2  
Figure 16. Three-Phase Motor Control  
22 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Wireless Communication  
V
AVDD  
L
Use the MAX1377/MAX1379/MAX1383 in a variety of  
wireless communication systems. These devices allow  
precise, simultaneous sampling of the I and Q signals  
of quadrature RF receiver systems. Figure 17 shows the  
MAX1377 in a simplified quadrature system. The device  
has a differential input option that allows either full dif-  
ferential or psuedo-differential signals. The 2:1 input  
mux allows measurement of RSSI and other system-  
monitoring functions with this device.  
V
L
MAX1377  
I
12-BIT  
ADC  
QUADRATURE  
DEMODULATOR  
Q
12-BIT  
ADC  
DSP  
PROCESSING  
T/R  
Layout, Grounding, and Bypassing  
For best performance, use PCBs with ground planes.  
Ensure that digital and analog signal lines are separat-  
ed from each other. Do not run analog and digital  
(especially clock) lines parallel to one another or digital  
lines underneath the ADC package.  
DAC  
DAC  
QUADRATURE  
TRANSMITTER  
Figure 17. Quadrature Wireless-Communication System  
Establish a single-point analog ground (star ground point)  
at AGND, separate from the digital ground, DGND.  
Connect all other analog grounds and DGND to this star  
ground point for further noise reduction. The ground return  
to the power supply for this ground should be low imped-  
ance and as short as possible for noise-free operation.  
See Figure 14.  
Aperture Delay  
Aperture delay (t ) is the time defined between the  
AD  
falling edge of CNVST and the instant when an actual  
sample is taken.  
Signal-to-Noise Ratio  
For a waveform perfectly reconstructed from digital  
samples, signal-to-noise ratio (SNR) is the ratio of full-  
scale analog input (RMS value) to the RMS quantization  
error (residual error). The theoretical minimum analog-  
to-digital noise is caused by quantization error, and  
results directly from the ADC’s resolution (N bits):  
High-frequency noise in the AVDD power supply affects  
the ADC’s high-speed comparator. Bypass the supply  
to the single-point analog ground with ꢀ.ꢀ1µF and 1ꢀµF  
bypass capacitors. Minimize capacitor lead lengths for  
best supply-noise rejection.  
Definitions  
SNR = (6.ꢀ2 x N + 1.76)dB  
Integral Nonlinearity  
Integral nonlinearity (INL) is the deviation of the values  
on an actual transfer function from a straight line. This  
straight line can be either a best-straight-line fit or a line  
drawn between the end points of the transfer function,  
once offset and gain errors have been nulled. The static  
linearity parameters for the MAX1377/MAX1379/  
MAX1383 are measured using the end-points method.  
In reality, there are other noise sources besides quanti-  
zation noise, including thermal noise, reference noise,  
clock jitter, etc. Therefore, SNR is computed by taking  
the ratio of the RMS signal to the RMS noise, which  
includes all spectral components minus the fundamen-  
tal, the first five harmonics, and the DC offset.  
Signal-to-Noise Plus Distortion  
Signal-to-noise plus distortion (SINAD) is the ratio of the  
fundamental input frequency’s RMS amplitude to the  
RMS equivalent of all other ADC output signals:  
Differential Nonlinearity  
Differential nonlinearity (DNL) is the difference between  
an actual step width and the ideal value of 1 LSB. A  
DNL error specification of 1 LSB or less guarantees no  
missing codes and a monotonic transfer function.  
SINAD(dB) = 2ꢀ x log(SignalRMS/NoiseRMS)  
Effective Number of Bits  
Effective number of bits (ENOB) indicates the global  
accuracy of an ADC at a specific input frequency and  
sampling rate. An ideal ADC’s error consists of quanti-  
Aperture Jitter  
Aperture jitter (t ) is the sample-to-sample variation in  
AJ  
the time between the samples.  
______________________________________________________________________________________ 23  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
zation noise only. With an input range equal to the full-  
scale range of the ADC, calculate the ENOB as follows:  
Intermodulation Distortion  
Any device with nonlinearities creates distortion prod-  
ucts when two sine waves at two different frequencies  
(f1 and f2) are input into the device. Intermodulation  
distortion (IMD) is the total power of the IM2 to IM5  
intermodulation products to the Nyquist frequency rela-  
tive to the total input power of the two input tones, f1  
and f2. The individual input tone levels are at  
-6dBFS.  
SINAD1.76  
ENOB=  
6.ꢀ2  
Total Harmonic Distortion  
Total harmonic distortion (THD) is the ratio of the RMS  
sum of the first five harmonics of the input signal to the  
fundamental itself. This is expressed as:  
Pin Configuration  
2
2
2
2
V
+ V + V + V  
3 4 5  
2
THD = 2×log  
TOP VIEW  
V
1
15  
14  
13  
12  
11  
where V is the fundamental amplitude, and V through  
5
harmonics.  
1
2
V
are the amplitudes of the 2nd- through 5th-order  
V
10  
9
S/D 16  
SEL 17  
L
DGND  
Spurious-Free Dynamic Range  
MAX1377  
MAX1379  
MAX1383  
Spurious-free dynamic range (SFDR) is the ratio of the  
RMS amplitude of the fundamental (maximum signal  
component) to the RMS value of the next largest distor-  
tion component.  
8
AGND 18  
AIN1B 19  
U/B  
7
AIN2B  
AIN2A  
(EXPOSED PAD)*  
+
20  
6
AIN1A  
Full-Power Bandwidth  
Full-power bandwidth is the frequency at which the input  
signal amplitude attenuates by 3dB for a full-scale input.  
1
2
3
4
5
79/MAX183  
Full-Linear Bandwidth  
Full-linear bandwidth is the frequency at which the sig-  
nal-to-noise plus distortion (SINAD) is equal to 56dB.  
TQFN  
*CONNECT PAD TO AGND  
Selector Guide  
INTERNAL  
REFERENCE  
VOLTAGE (V)  
INPUT VOLTAGE  
RANGE  
SAMPLING RATE  
(Msps)  
PART  
SUPPLY VOLTAGE (V)  
MAX1377  
MAX1379  
MAX1383  
2.7 to 3.6  
4.75 to 5.25  
4.75 to 5.25  
2.ꢀ48  
4.ꢀ96  
2.5  
ꢀ to V  
ꢀ to V  
V
V
/2  
/2  
1.25  
1.25  
1.25  
REF,  
REF  
REF  
REF,  
1ꢀV  
Package Information  
Chip Information  
For the latest package outline information and land patterns, go  
PROCESS: BiCMOS  
to www.maxim-ic.com/packages.  
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.  
2ꢀ TQFN-EP  
T2ꢀ55-4  
21-0140  
24 ______________________________________________________________________________________  
Dual, 12-Bit, 1.25Msps Simultaneous-Sampling  
ADCs with Serial Interface  
79/MAX183  
Revision History  
REVISION  
NUMBER  
REVISION  
DATE  
PAGES  
CHANGED  
DESCRIPTION  
1
7/ꢀ8  
2/ꢀ9  
Initial release of the MAX1377/MAX1379  
Initial release of the MAX1383  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 25  
© 2ꢀꢀ9 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY