MAX1438ECQ+D [MAXIM]

Low-Voltage and Low-Power Operation;
MAX1438ECQ+D
型号: MAX1438ECQ+D
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Low-Voltage and Low-Power Operation

信息通信管理 转换器
文件: 总23页 (文件大小:1091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-3741; ꢁev 1; 8/10  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
General Description  
Features  
o Low-Voltage and Low-Power Operation  
o Optional On-Board Clock-Shaping Circuitry  
o Serial Scalable Low-Voltage Signaling  
(SLVS)/Low-Voltage Differential Signaling (LVDS)  
Outputs  
The MAX1434/MAX1436/MAX1437/MAX1438 evaluation  
kits (EV kits) are fully assembled and tested circuit  
boards that contain all the components necessary to  
evaluate the performance of this family of octal 10-/12-  
bit analog-to-digital converters (ADCs). These ADCs  
accept differential analog input signals. The EV kits  
generate these signals from user-provided single-  
ended input sources. The EV kits’ digital outputs can be  
easily sampled with a user-provided high-speed logic  
analyzer or data-acquisition system. The EV kits also  
feature an on-board deserializer to simplify integration  
with standard logic analysis systems. The EV kits oper-  
ate from 1.8V and 3.3V (plus 1.5V if the FPGA is used)  
power supplies and include circuitry that generates a  
clock signal from an AC signal provided by the user.  
o On-Board LVPECL Differential Output Drivers  
o On-Board Deserializer  
o LVDS Test Mode  
o Fully Assembled and Tested  
Part Selection Table  
Ordering Information  
PART  
TYPE  
EV Kit  
EV Kit  
EV Kit  
EV Kit  
PART NUMBER  
MAX1434ECQ+D  
MAX1436ECQ+D  
MAX1437ECQ+D  
MAX1438ECQ+D  
BITS  
10  
SPEED (Msps)  
MAX1434EVKIT  
MAX1436EVKIT  
MAX1437EVKIT  
MAX1438EVKIT  
50  
40  
50  
65  
12  
12  
12  
+Denotes lead(Pb)-free and ꢁoHS compliant.  
D = Dry Pack.  
Component List  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
220µF 20ꢀ, 6.3V tantalum  
capacitors (C-case)  
AVX TPSC227M006ꢁ0250  
C1–C8, C10,  
C11, C12,  
C57–C64,  
C81–C85,  
C139, C140,  
C147–C156  
C45, C46, C47,  
8
C86–C89, C143  
0.1µF 10ꢀ, 10V X5ꢁ ceramic  
36 capacitors (0402)  
TDK C1005X5ꢁ1A104K  
C48, C49, C50,  
0
Not installed, capacitors (C-case)  
C144  
10µF 10ꢀ, 10V X5ꢁ ceramic  
capacitors (1210)  
TDK C3225X5ꢁ1A106K  
C51, C52, C53,  
6
C9, C29–C44,  
C56, C77, C78,  
C80, C92, C93, 28  
C134–C137,  
C146  
C90, C91, C145  
1.0µF 10ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0402)  
TDK C1005X5ꢁ0J105K  
2.2µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitor (0603)  
TDK C1608X5ꢁ0J225M  
C54  
1
C13–C20,  
0
Not installed, ceramic capacitors  
(0603)  
0.01µF 10ꢀ, 25V X7ꢁ ceramic  
capacitors (0402)  
TDK C1005X7ꢁ1E103K  
C55,  
C157–C176  
C65–C72  
21  
0
39pF 5ꢀ, 50V C0G ceramic  
capacitors (0402)  
TDK C1005C0G1H390J  
C21–C28,  
16  
C73–C76,  
C122–C125  
Not installed, ceramic capacitors  
(0402)  
C126–C133  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,  
or visit Maxim’s website at www.maxim-ic.com.  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Component List (continued)  
DESIGNATION QTY  
DESCRIPTION  
DESIGNATION QTY  
DESCRIPTION  
10µF 10ꢀ, 4V X5ꢁ ceramic  
capacitors (0603)  
TDK C1608X5ꢁ0G106K  
ꢁ45–ꢁ50,  
ꢁ100–ꢁ103  
C79, C138,  
10 1001ꢀ resistors (0603)  
3
C142  
ꢁ51  
1
3
1
1
1
2
2
1
1
1
100kpotentiometer, 19-turn, 3/8in  
4.02k1ꢀ resistors (0603)  
5kpotentiometer, 19-turn, 3/8in  
2k1ꢀ resistor (0603)  
0.1µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitors (0201)  
TDK C0603X5ꢁ0J104M  
ꢁ52, ꢁ53, ꢁ56  
ꢁ54  
C94–C121  
C141  
28  
1
ꢁ55  
100µF 20ꢀ, 6.3V X5ꢁ ceramic  
capacitor (1210)  
TDK C3225X5ꢁ0J107M  
ꢁ57  
13.0k1ꢀ resistor (0603)  
4.7k5ꢀ resistors (0603)  
3305ꢀ resistors (1206)  
1621ꢀ resistor (0603)  
10k5ꢀ resistor (0603)  
Momentary contact switch  
ꢁ94, ꢁ95  
ꢁ96, ꢁ97  
ꢁ99  
Dual Schottky diode (SOT23)  
Central Semi CMPD6263S or  
Diodes Inc. BAS70-04  
D1  
1
ꢁ104  
D2, D3  
2
9
Green surface-mount LEDs (0603)  
SMA PC-mount vertical connectors  
SW1  
IN0–IN7,  
CLOCK  
1:1 800MHz ꢁF transformers  
Mini-Circuits ADT1-1WT  
T1–T8  
8
0
J1–J8, JU14  
J9–J13, J15  
J14  
9
6
1
2-pin headers  
TP1–TP8, TP13,  
TP14, TP15  
Test points, not installed  
Dual-row, 40-pin (2 x 20) headers  
9-pin header  
TP9–TP12  
TP16  
4
1
1
PC test points (red)  
JU1–JU11,  
JU13  
PC test point (black)  
12 3-pin headers  
U1  
See EV kit specific component list  
JU12  
1
1
Dual-row, 8-pin (2 x 4) header  
Single LVDS line receivers (8 SO)  
Maxim MAX9111ESA  
U2  
1
Digital logic n-channel MOSFET  
(SOT23)  
Central Semi 2N7002  
N1  
Low-noise, low-distortion op amp  
(5 SOT23)  
U3  
1
ꢁ1–ꢁ8,  
ꢁ22–ꢁ25,  
ꢁ62–ꢁ73  
Maxim MAX4250EUK  
0
Not installed, resistors (0603)  
TinyLogic UHS dual inverter  
(6 SC70)  
U4  
1
ꢁ9–ꢁ16,  
ꢁ26–ꢁ35,  
ꢁ77–ꢁ81,  
Fairchild NC7WZ04P6X  
Virtex II platform FPGA (256 FGBGA)  
Xilinx XC2V80-5FG256C or  
Xilinx XC2V80-5FG256I  
0
9
Not installed, resistors (0402)  
U5  
U6  
1
1
ꢁ87–ꢁ93, ꢁ98  
ꢁ17–ꢁ21,  
ꢁ58–ꢁ61  
PꢁOM (SO-20)  
Xilinx XC18V01SO20C  
49.91ꢀ resistors (0603)  
ꢁ36,  
ꢁ105–ꢁ133  
LVDS/anything-to-LVPECL translators  
(8 µMAX®)  
Maxim MAX9375EUA  
30 49.91ꢀ resistors (0402)  
16 101ꢀ resistors (0805)  
U7–U16  
10  
ꢁ37–ꢁ44, ꢁ74,  
ꢁ75, ꢁ76,  
None  
None  
14 Shunts (JU1–JU14)  
ꢁ82–ꢁ86  
PCB: MAX1434/6/7/8 EVALUATION  
KIT  
1
Evluate:67/MAX1438  
µMAX is a registered trademark of Maxim Integrated Products, Inc.  
2
_______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
EV Kit Component List  
EV KIT PART NUMBER  
MAX1434EVKIT  
DESIGNATION  
DESCRIPTION  
MAX1434ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm)  
MAX1436ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm)  
MAX1437ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm)  
MAX1438ECQ+D (100 TQFP-EP 14mm x 14mm x 1mm)  
MAX1436EVKIT  
U1  
MAX1437EVKIT  
MAX1438EVKIT  
Component Suppliers  
SUPPLIER  
AVX Corporation  
PHONE  
WEBSITE  
www.avxcorp.com  
843-946-0238  
631-435-1110  
805-446-4800  
888-522-5372  
718-934-4500  
847-803-6100  
Central Semiconductor Corp.  
Diodes Incorporated  
Fairchild Semiconductor Corp.  
Mini-Circuits  
www.centralsemi.com  
www.diodes.com  
www.fairchildsemi..com  
www.minicircuits.com  
www.component.tdk.com  
TDK Corp.  
Note: Indicate that you are using the MAX1434, MAX1436, MAX1437, or MAX1438 when contacting these component suppliers.  
Procedure  
Quick Start  
Recommended Equipment  
The EV kit is a fully assembled and tested surface-  
mount board. Follow the steps below to verify board  
operation. Do not turn on power supplies or enable  
signal generators until all connections are completed.  
DC power supplies:  
Clock (CVDD) 3.3V, 100mA  
1) Verify that shunts are installed in the following  
locations:  
Analog (AVDD) 1.8V, 500mA  
Digital (OVDD) 1.8V, 150mA  
Optional  
Buffers (VPECL) 3.3V, 400mA  
Deserializer Core (VD1.5) 1.5V, 200mA  
Deserializer I/O (VD3.3) 3.3V, 200mA  
JU1 (pins 2-3) single termination  
JU2 (pins 2-3) LVDS outputs  
JU3 (pins 2-3) normal operation  
JU4 (pins 2-3) ADC enabled  
JU7 (pins 2-3) two’s-complement output  
JU8 (pins 2-3) FPGA enabled  
Signal generator with low phase noise and low jitter  
for clock input signal (e.g., HP 8662A, HP 8644B)  
JU9, JU10, JU11 (pins 2-3) channels 0–3  
Signal generator for analog signal inputs (e.g., HP  
8662A, HP 8644B)  
output from FPGA  
JU12 (pins 3-4) internal reference enabled  
JU14 (not installed) disconnect external ref-  
erence buffer  
Logic analyzer or data-acquisition system (e.g., HP  
16500C, TLA715)  
Analog bandpass filters (e.g., Allen Avionics, K&L  
Microwave) for input signal and clock signal  
2) Verify that shunts are installed in the following  
locations for configuring the specific EV kit:  
Digital voltmeter  
a)  
JU5 (pins 1-2), JU6 (pins 2-3), JU13 (pins 2-3)  
39MHz to 50MHz clock frequency range for  
the MAX1434 EV kit.  
_______________________________________________________________________________________  
3
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
b)  
JU5 (pins 1-2), JU6 (pins 2-3), JU13 (pins 2-3)  
32.5MHz to 40MHz clock frequency range for  
the MAX1436 EV kit.  
frequency with an amplitude 1.4V . All signal  
P-P  
generators should be phase-locked.  
19) Verify that the PꢁOGꢁAMMING LED (D2) is off.  
c)  
d)  
JU5, JU6, JU13 (pins 2-3) 45MHz to 50MHz  
clock frequency range for the MAX1437 EV kit.  
20) Momentarily press switch SW1 and verify that the  
LOCKED LED (D3) is on.  
JU5, JU6, JU13 (pins 2-3) 45MHz to 65MHz  
clock frequency range for the MAX1438 EV kit.  
21) Enable the logic analyzer.  
22) Collect data using the logic analyzer.  
3) Connect the clock signal generator to the input of  
the clock bandpass filter.  
Detailed Description of Hardware  
4) Connect the output of the clock bandpass filter to  
the clock SMA connector.  
The EV kit is a fully assembled and tested circuit board  
that contains all the components necessary to evaluate  
the performance of the MAX1438, MAX1437, MAX1436,  
or MAX1434.  
5) Connect the analog input signal generator to the  
input of the analog bandpass filter.  
The ADCs accept differential input signals; however,  
on-board transformers (T1–T8) convert the single-  
ended signals applied to the IN0–IN7 SMA connectors,  
to the required differential signal. The input signals of  
the ADC can be measured using a differential oscillo-  
scope probe at headers J1–J8.  
6) Connect the output of the analog bandpass filter to  
either one of the SMA connectors labeled IN0–IN7.  
The analog input signals can also be monitored at  
the 2-pin headers J1–J8.  
Note: All eight channels can be operated indepen-  
dently or simultaneously.  
Output level translators (U7–U16) buffer and convert  
the SLVS or LVDS output signals of the ADC to higher  
voltage LVPECL signals, which can be captured by a  
wide variety of logic analyzers. The SLVS/LVDS output  
signals are accessible at header J9 and the LVPECL  
output signals are accessible at header J15.  
7) Connect the logic analyzer to either header J9  
(SLVS- or LVDS-compatible signals) or J10–J13  
(deserialized 3.3V CMOS-compatible signals). See  
the Output Bit Locations section in this document  
for header connections.  
8) Connect the 1.8V, 500mA power supply to AVDD.  
Connect the ground terminal of this supply to GND.  
The EV kit PC board is designed as a six-layer board to  
optimize performance of the ADC. Separate analog,  
digital, clock, and buffer power planes minimize noise  
coupling between analog and digital signals. 50Ω  
coplanar transmission lines are used for analog and  
clock inputs. 100differential coplanar transmission  
lines are used for all digital LVDS outputs. All differential  
outputs are terminated with 100termination resistors  
between the true and complementary digital outputs.  
The trace lengths of the 100differential SLVS/LVDS  
lines are matched to within a few thousands of an inch  
to minimize layout-dependent data skew.  
9) Connect the 1.8V, 150mA power supply to OVDD.  
Connect the ground terminal of this supply to GND.  
10) Connect the 3.3V, 100mA power supply to CVDD.  
Connect the ground terminal of this supply to GND.  
11) Connect the 3.3V, 400mA power supply to VPECL.  
Connect the ground terminal of this supply to GND.  
12) Connect the 1.5V, 200mA power supply to VD1_5.  
Connect the ground terminal of this supply to GND.  
13) Connect the 3.3V, 200mA power supply to VD3_3.  
Connect the ground terminal of this supply to GND.  
Power Supplies  
For best performance, the EV kit requires separate ana-  
log, digital, clock, and buffer power supplies. Two 1.8V  
power supplies are used to power the analog (AVDD)  
and digital (OVDD) portion of the ADC. The clock cir-  
cuitry (CVDD) is powered by a 3.3V power supply. A  
separate 3.3V power supply (VPECL) is used to power  
the output buffers (U7–U16) of the EV kit. 1.5V (VD1_5)  
and 3.3V (VD3_3) power supplies are required to power  
the deserializer circuit.  
14) Turn on the VD3_3 power supply.  
15) Turn on the VD1_5 power supply.  
16) Verify that the PꢁOGꢁAMMING LED (D2) and the  
LOCKED LED (D3) are off.  
17) Turn on the remaining power supplies.  
M
18) Enable the signal generators. Set the clock signal  
generator to output as specified to configuration  
signal, with a 2.6V  
amplitude or higher. Set the  
P-P  
analog input signal generators to output the desired  
4
_______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Power-Down  
Table 2. MAX1434 PLL Jumper Settings  
Jumper JU4 controls the power-management feature of  
(JU5, JU6, JU13)  
data converter U1. See Table 1 for jumper JU4 shunt  
positions.  
CLOCK INPUT RANGE  
(MHz)  
JUMPER  
Table 1. Power-Down Jumper Settings (JU4)  
JU13  
(PLL1)  
JU6  
(PLL2)  
JU5  
(PLL3)  
MIN  
MAX  
SHUNT  
POWER-DOWN  
EV KIT FUNCTION  
2-3  
2-3*  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
2-3  
2-3*  
1-2  
1-2  
2-3  
2-3  
1-2  
1-2  
2-3  
1-2*  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
Unused  
POSITION CONNECTIONS  
39.0  
27.0  
19.5  
13.5  
9.8  
50.0  
39.0  
27.0  
19.5  
13.5  
9.8  
1-2  
AVDD  
GND  
ADC disabled  
ADC enabled  
2-3*  
*Default configuration: JU4 (2-3).  
Clock  
By default, the user-provided AC-coupled clock signal  
applied to the EV kit CLOCK SMA connector is buffered  
on board with two inverters (U4). In this mode, diode  
D1 limits the amplitude of the clock signal. Overdriving  
the clock input can increase the slew rate of the differ-  
ential signal, thereby reducing clock jitter. The frequen-  
cy of the signal should not exceed the maximum  
sampling rate of the ADC. The sinusoidal input signal  
6.8  
4.8  
6.8  
*Default configuration: JU5, JU6 (2-3), JU13 (1-2).  
Table 3. MAX1436 PLL Jumper Settings  
(JU5, JU6, JU13)  
frequency (f  
) determines the sampling rate of the  
CLK  
CLOCK INPUT RANGE  
JUMPER  
ADC. The clock signal applied to the ADC can be  
observed at test point TP10.  
(MHz)  
JU13  
(PLL1)  
JU6  
(PLL2)  
JU5  
(PLL3)  
MIN  
MAX  
Optional Clock-Shaping Circuit  
The EV kit also features an optional on-board clock-  
shaping circuit that generates a clock signal with vari-  
able duty cycle from the AC-coupled sine-wave signal  
applied to the CLOCK SMA connector. The MAX9111  
differential line receiver (U2) processes the clock input  
signal and generates the required CMOS clock signal.  
To use this circuitry, cut the trace on the printed circuit  
(PC) board at ꢁ78 and install 0resistors at ꢁ35 and  
ꢁ77. The signal’s duty cycle can be adjusted with poten-  
tiometer ꢁ54. With a 3.3V clock supply voltage (CVDD),  
a clock signal with a 50ꢀ duty cycle (recommended)  
can be achieved by adjusting ꢁ54 until a voltage of  
1.32V is produced across test points TP12 and TP16.  
2-3  
2-3*  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
2-3  
2-3*  
1-2  
1-2  
2-3  
2-3  
1-2  
1-2  
2-3  
1-2*  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
Unused  
32.5  
22.5  
16.3  
11.3  
8.1  
40.0  
32.5  
22.5  
16.3  
11.3  
8.1  
5.6  
4.0  
5.6  
*Default configuration: JU5, JU6 (2-3), JU13 (1-2).  
PLL Frequency Mode Selection  
When driving the EV kit with clock signals lower than  
the maximum specified sampling rate of the ADC, the  
phased-locked-loop (PLL) circuit of the ADC must be  
set accordingly. ꢁefer to the PLL Inputs (PLL0–PLL3)  
section in the ADC data sheet for further details about  
the operation of the internal PLL. Jumpers JU5, JU6,  
and JU13 control the PLL mode of the ADC. See Tables  
2, 3, 4, or 5 for shunt positions. Configure jumpers JU5,  
JU6, and JU13 accordingly and ensure that the clock  
signal frequency falls between the minimum and maxi-  
mum limits listed in Table 2 through Table 5.  
________________________________________________________________________________________  
5
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Table 4. MAX1437 PLL Jumper Settings  
Table 6. Reference Jumper Settings (JU12)  
(JU5, JU6, JU13)  
SHUNT  
REFADJ PIN  
EV KIT FUNCTION  
POSITION CONNECTION  
CLOCK INPUT RANGE  
JUMPER  
(MHz)  
Internal reference disabled.  
Apply an external reference  
voltage at the ꢁEFIO pad.  
Verify that a shunt is installed  
on jumper JU14.  
JU13  
(PLL1)  
JU6  
(PLL2)  
JU5  
(PLL3)  
Connected to  
AVDD  
MIN  
MAX  
1-2  
2-3*  
2-3  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
2-3*  
2-3  
1-2  
1-2  
2-3  
2-3  
1-2  
1-2  
2-3*  
1-2  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
45.0  
32.5  
22.5  
16.3  
11.3  
8.1  
50.0  
45.0  
32.5  
22.5  
16.3  
11.3  
8.1  
Internal reference enabled.  
Verify that a shunt is not  
installed on jumper JU14.  
Connected to  
GND  
3-4*  
Connected to  
ꢁEFIO through  
ꢁ57 and ꢁ51  
Increase full-scale range by  
adjusting potentiometer ꢁ51.  
5-6**  
7-8**  
5.6  
Connected to  
GND through  
ꢁ57 and ꢁ51  
Compensate for gain errors by  
adjusting potentiometer ꢁ51.  
4.0  
5.6  
*Default configuration: JU5, JU6, JU13 (2-3).  
*Default configuration: JU12 (3-4).  
**ꢁefer to the Full-Scale ꢁange Adjustments using the Internal  
ꢁeference section in the MAX1434, MAX1436, MAX1437, or  
MAX1438 IC data sheet.  
Table 5. MAX1438 PLL Jumper Settings  
(JU5, JU6, JU13)  
CLOCK INPUT RANGE  
ence. Use the 2 x 4 header JU12 to configure the  
desired reference mode. See Table 6 for the appropri-  
ate shunt settings.  
JUMPER  
(MHz)  
JU13  
(PLL1)  
JU6  
(PLL2)  
JU5  
(PLL3)  
MIN  
MAX  
Output Signal  
The ADC features eight serial LVDS-compatible digital  
outputs. Each output transmits the converted analog  
input signals of channels 0 through 7. Two additional  
outputs (CLKOUT and FꢁAME) are provided for data  
synchronization. ꢁefer to the MAX1434, MAX1436,  
MAX1437, or MAX1438 data sheet for more details.  
2-3*  
2-3  
2-3  
2-3  
1-2  
1-2  
1-2  
1-2  
2-3*  
2-3  
1-2  
1-2  
2-3  
2-3  
1-2  
1-2  
2-3*  
1-2  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
45.0  
32.5  
22.5  
16.3  
11.3  
8.1  
65.0  
45.0  
32.5  
22.5  
16.3  
11.3  
8.1  
Output Format  
The digital output coding can be chosen to be two’s  
complement or straight offset binary by configuring  
jumper JU7. See Table 7 for the appropriate jumper  
configuration.  
5.6  
4.0  
5.6  
*Default configuration: JU5, JU6, JU13 (2-3).  
Input Signal  
Although the ADC accepts differential analog input sig-  
nals, the EV kit only requires a single-ended analog  
Table 7. Output Format Jumper Settings (JU7)  
SHUNT  
T/B PIN  
input signal with an amplitude of less than 1.4V  
pro-  
P-P  
DESCRIPTION  
POSITION CONNECTION  
vided by the user. On-board transformers (T1–T8) con-  
vert the single-ended analog input signal and generate  
differential analog signals at the ADCs’ differential input  
pins. Connect the single-ended analog input signals to  
SMA connectors IN0–IN7 for channel 0 to channel 7,  
respectively.  
Straight Offset Binary Selected.  
Digital output in straight offset  
binary format.  
1-2  
AVDD  
GND  
Evluate:67/MAX1438  
Two’s Complement Selected.  
Digital output in two’s-  
2-3*  
complement format.  
Reference Voltage  
The EV kit can be configured to use the ADC’s 1.24V  
internal reference, or a stable, low-noise, external refer-  
*Default configuration: JU7 (2-3).  
6
_______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Double-Termination Settings  
The ADC features trimmed, internal 100termination  
Table 10. LVDS Test Pattern Jumper  
Settings (JU3)  
resistors between the positive (true) and negative  
(complementary) line of each output (D0–D7, CLKOUT,  
and FꢁAME). The EV kit circuit also features 100ter-  
mination resistors located at the far end of each differ-  
ential output pair. Activating the internal termination  
helps eliminate unwanted reflections on the signal  
traces. Use jumper JU1 to activate either single or dou-  
ble-termination. See Table 8 for appropriate shunt posi-  
tions that select the termination architecture.  
SHUNT  
POSITION CONNECTION  
LVDSTEST PIN  
EV KIT FUNCTION  
Test pattern transmitted, LSB  
first, on all SLVS/LVDS outputs  
1-2  
AVDD  
GND  
2-3*  
Normal operation  
*Default configuration: JU3 (2-3).  
Output Bit Locations  
The digital outputs of the ADC are connected to the 40-  
pin header J9. All PC board trace lengths are matched  
to minimize data skew and improve the overall dynamic  
performance of the device. Additionally, 10 drivers  
(U7–U16) buffer and level-translate the digital outputs  
to LVPECL-compatible signals. The drivers increase the  
differential voltage swing, and are capable of driving  
large capacitive loads, which may be present at the  
logic analyzer connection. The outputs of the buffers  
are connected with 40-pin header J15. See Table 11 for  
bit locations of headers J9 and J15.  
Table 8. Double-Termination Jumper  
Settings (JU1)  
SHUNT  
DT PIN  
EV KIT FUNCTION  
POSITION CONNECTION  
Double Termination Selected.  
Outputs are double-terminated.  
1-2  
AVDD  
GND  
Single Termination Selected.  
Outputs are single-terminated.  
2-3*  
*Default configuration: JU1 (2-3).  
Table 11. Output Bit Locations  
SLVS/LVDS Outputs  
UNBUFFERED BUFFERED  
The ADC is capable of generating SLVS or LVDS signals  
at its outputs. Jumper JU2 controls this feature of the  
ADC. See Table 9 for shunt positions. ꢁegardless of  
which output signal type is selected, the output buffers  
(U7–U16) will convert the data to LVPECL logic levels.  
When operating in SLVS output mode, JU1 must be con-  
figured for double-termination (shunt across pins 1 and 2).  
SIGNAL  
DESCRIPTION  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Clock  
(LVDS or SLVS) (LVPECL)  
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
P
N
J9-1  
J9-2  
J15-1  
J15-2  
CH0  
J9-5  
J15-5  
CH1  
J9-6  
J15-6  
J9-9  
J15-9  
CH2  
J9-10  
J9-13  
J9-14  
J9-17  
J9-18  
J9-21  
J9-22  
J9-25  
J9-26  
J9-29  
J9-30  
J9-33  
J9-34  
J9-37  
J9-38  
J15-10  
J15-13  
J15-14  
J15-17  
J15-18  
J15-21  
J15-22  
J15-25  
J15-26  
J15-29  
J15-30  
J15-33  
J15-34  
J15-37  
J15-38  
Table 9. SLVS/LVDS Jumper Settings (JU7)  
SHUNT  
POSITION CONNECTION  
SLVS/LVDS PIN  
CH3  
ADC OUTPUT  
1-2  
AVDD  
GND  
SLVS  
LVDS  
CLKOUT  
FꢁAME  
CH4  
2-3*  
*Default configuration: JU7 (2-3).  
Frame  
LVDS Test Pattern  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
To debug signal integrity problems, the ADC can gen-  
erate a factory-set test pattern on all of the output chan-  
nels. Jumper JU3 controls this feature. See Table 10 for  
the appropriate shunt positions. The test pattern for the  
MAX1436, MAX1437, and MAX1438 is 0000 1011 1101.  
The test pattern for the MAX1434 is 00 0101 1101 (MSB  
to LSB).  
CH5  
CH6  
CH7  
P = True (+).  
N = Complementary (-).  
_______________________________________________________________________________________  
7
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
On-Board Deserializer  
The EV kit features an on-board deserializer that con-  
verts the serial outputs of the ADC to a parallel data  
stream. The deserializer uses a delay-locked loop (DLL)  
to synchronize itself with the incoming serial data stream.  
After every change in ADC clock frequency, reset  
this DLL by pressing switch SW1. If the LOCKED LED  
D3 is not lit, the serial data stream is not synchronized  
and the outputs of the deserializer are not valid.  
Deserializer Output Enabled  
Jumper JU8 controls the output enabled of the deseri-  
alizer. See Table 14 for jumper JU8 configuration.  
Table 14. Deserializer Output Enables (JU8)  
EV KIT FUNCTION  
POSITION  
SHUNT  
1-2  
Deserializer output disabled  
Deserializer output enabled  
Channel 0 through channel 7 data is captured on head-  
ers J10–J13. Only four channels can be captured at  
one time on the EV kit. Configure jumpers JU9, JU10,  
and JU11 to select the location of the channels. See  
Table 12 for jumper JU9, JU10, JU11 configuration.  
See Table 13 for bit locations.  
2-3*  
*Default configuration: JU8 (2-3).  
Table 12. Output Channel Locations (JU9,  
JU10, JU11)  
JU9 (S2) JU10 (S1) JU11 (S0)  
J10 J11 J12 J13  
SHUNT  
SHUNT  
SHUNT  
POSITION POSITION POSITION  
2-3  
2-3  
2-3  
2-3  
1-2  
1-2  
2-3  
2-3  
1-2  
1-2  
2-3  
2-3  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
CH0 CH1 CH2 CH3  
CH4 CH5 CH6 CH7  
CH0 CH4 CH1 CH5  
CH0 CH6 CH1 CH7  
CH2 CH4 CH3 CH5  
CH2 CH6 CH3 CH7  
Table 13. Output Bit Locations (J10–J13)  
BIT  
CLK  
D11  
D10  
D9  
POSITION  
J11-38  
J10-38  
J10-26  
J10-24  
J10-22  
J10-20  
J10-18  
J10-16  
J10-14  
J10-12  
J10-10  
J10-8  
J12-38  
J12-26  
J12-24  
J12-22  
J12-20  
J12-18  
J12-16  
J12-14  
J12-12  
J12-10  
J12-8  
J13-38  
J13-26  
J13-24  
J13-22  
J13-20  
J13-18  
J13-16  
J13-14  
J13-12  
J13-10  
J13-8  
J11-26  
J11-24  
J11-22  
J11-20  
J11-18  
J11-16  
J11-14  
J11-12  
J11-10  
J11-8  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
Evluate:67/MAX1438  
D1  
J10-6  
J11-6  
J12-6  
J13-6  
D0  
J10-4  
J11-4  
J12-4  
J13-4  
Note: Odd numbered pins are connected to ground.  
ꢁemaining pins are no connects.  
8
_______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
R E F P  
R E F N  
D D  
D D  
D D  
D D  
D D  
D D  
O V  
O V  
O V  
O V  
O V  
O V  
O V  
O V  
N . C .  
N . C .  
N . C .  
N . C .  
N . C .  
N . C .  
N . C .  
D D  
D D  
D D  
D D  
D D  
D D  
O V  
O V  
O V  
O V  
C V  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
A G N D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
D D  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
A V  
I N 7 N  
I N 7 P  
Figure 1. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—ADC (Sheet 1 of 6)  
_______________________________________________________________________________________  
9
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
L
R
Figure 2. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—Clock, Voltage ꢁeference (Sheet 2 of 6)  
Evluate:67/MAX1438  
10 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
C C  
C C  
V
G N D  
G N D  
G N D  
G N D  
V
C C  
V
C C  
V
C C  
V
C C  
V
G N D  
G N D  
G N D  
G N D  
C C  
V
C C  
V
C C  
V
C C  
V
G N D  
G N D  
G N D  
G N D  
C C  
V
C C  
V
Figure 3. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—LVPECL Level Translators (Sheet 3 of 6)  
______________________________________________________________________________________ 11  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
C C  
C C  
V
G N D  
G N D  
G N D  
G N D  
V
C C  
V
C C  
V
C C  
V
C C  
V
G N D  
G N D  
G N D  
G N D  
C C  
V
C C  
V
Figure 4. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—LVPECL Level Translators (Sheet 4 of 6)  
Evluate:67/MAX1438  
12 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 5. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—Deserializer Input and Outputs (Sheet 5 of 6)  
______________________________________________________________________________________ 13  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Figure 6. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Schematic—PꢁOM and FPGA (Sheet 6 of 6)  
Evluate:67/MAX1438  
14 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 7. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Component Placement Guide—Component Side  
______________________________________________________________________________________ 15  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 8. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout—Component Side  
16 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 9. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 2)—Ground Planes  
______________________________________________________________________________________ 17  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 10. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 3)—Power Planes  
18 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 11. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 4)—Signal Layer  
______________________________________________________________________________________ 19  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 12. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout (Inner Layer 5)—Signal Layer  
20 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 13. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit PC Board Layout—Solder Side  
______________________________________________________________________________________ 21  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Figure 14. MAX1434/MAX1436/MAX1437/MAX1438 EV Kit Component Placement Guide—Solder Side  
22 ______________________________________________________________________________________  
MAX1434/MAX1436/MAX1437/MAX1438  
Evaluation Kits  
Evluate:67/MAX1438  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/05  
Initial release  
Added lead-free parts to Part Selection Table and EV Kit Component List and  
updated Component Suppliers  
1
8/10  
1, 3  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 23  
© 2010 Maxim Integrated Products  
Maxim is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY