MAX14745KEWXT [MAXIM]

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems;
MAX14745KEWXT
型号: MAX14745KEWXT
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

PMIC with Ultra Low IQ Voltage Regulators and Battery Charger for Small Lithium Ion Systems

电池 集成电源管理电路
文件: 总67页 (文件大小:1637K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
General Description  
Benefits and Features  
Extend System Use Time Between Battery Charging  
The MAX14745 is a battery-charge-management solution  
ideal for low-power wearable applications. The device  
includes a linear battery charger with a smart power  
selector and several power-optimized peripherals. The  
MAX14745 features two ultra-low quiescent current buck  
regulators and three ultra-low quiescent current low-dropout  
(LDO) linear regulators, providing up to five regulated  
voltages, each with an ultra-low quiescent current, allows  
designers to minimize power consumption and extend  
battery life in 24/7 operation devices, such as those in the  
wearable market.  
• Dual Ultra-Low-I 200mA Buck Regulators  
Q
- Output Programmable from 0.8V to 2.375V and  
0.8V to 3.95V  
- 0.9μA (typ) Quiescent Current (Buck 1)  
- Optional Fixed Peak-Current Mode to Optimize  
Ripple Frequency in Noise-Sensitive Applications  
• Three Ultra-Low-I 100mA LDOs  
Q
• LDO1  
- Output Programmable from 0.8V to 3.6V  
- 0.6μA (typ) Quiescent Current  
- 2.7V to 5.5V Input with Dedicated Pin  
The battery charger features a smart power selector that  
allows operation on a dead battery when connected to a  
power source. To avoid overloading a power adapter, the  
input current to the smart power selector is limited based  
• LDO2/3  
- Output Programmable from 0.9V to 4V  
- 1μA (typ) Quiescent Current  
- 1.71V to 5.5V Input with Dedicated Pin  
2
on an I C register setting. If the charger power source  
is unable to supply the entire system load, the smart  
power control circuit supplements the system load with  
current from the battery. The charger also supports  
temperature dependent charge currents.  
Easy-to-Implement Li+ Battery Charging  
• Smart Power Selector  
• 28V/-5.5V Tolerant Input  
• Thermistor Monitor  
The two synchronous, high-efficiency step-down buck  
regulators feature a variable frequency mode for increased  
efficiency during light-load operation. The output voltage  
Minimize Solution Footprint Through High Integration  
• Provides Five Regulated Voltage Rails  
• Switch Mode Option on Each LDO  
2
of these regulators can be programmed through I C  
with the default preconfigured. The buck regulators can  
support dynamic voltage scaling to further improve  
system power consumption.  
Optimize System Control  
• Monitors Pushbutton for Ultra-Low Power Mode  
• Power-On Reset Delay and Voltage Sequencing  
• On-Chip Voltage Monitor Multiplexer  
The three configurable LDOs each have a dedicated  
input pin. Each LDO regulator output voltage can be  
Applications  
Wearable Electronics  
Fitness Monitors  
Rechargeable IoT devices  
2
programmed through I C with the default preconfigured.  
The linear regulators can also be configured to operate  
as power switches that may be used to disconnect the  
quiescent load of the system peripherals.  
The MAX14745 features a programmable power controller  
that allows the device to be configured for applications  
that require the device be in a true-off, or always-on,  
state. The controller also provides a delayed reset signal  
and voltage sequencing.  
Ordering Information appears at end of data sheet.  
The MAX14745 is available in a 36-bump, 0.4mm pitch,  
2.72mm x 2.47mm wafer-level package (WLP).  
19-8560; Rev 22; 9/20  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
TABLE OF CONTENTS  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Benefits and Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical Operating Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Bump Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Bump Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Detailed Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Power Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Power On/Off and Reset Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Smart Power Selector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Thermal Current Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
System Load Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Input Limiter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Fast-Charge Current Setting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Thermistor Monitoring with Charger Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
2
I C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
2
I C Addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Thermistor Monitoring with Charger Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
2
I C Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Start, Stop, And Repeated Start Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Slave Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Bit Transfer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Single-Byte Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Burst Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Single Byte Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Burst Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Acknowledge Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
2
I C Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
2
I C Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Applications Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
(
TABLE OF CONTENTS continued)  
Inductor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Output Capacitor Selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Input Capacitor Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
PCB Layout and Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Chip Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
LIST OF FIGURES  
Figure 1. Power Function Input Control Modes Flow Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 2a. Power-On Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Figure 2b. Power-On Sequencing Without Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figure 3. Smart Power Selector Current/Voltage Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 4a. Charging Behavior Using Thermistor Monitoring Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 4b. Charging Behavior Using JEITA Monitoring 1 and 2 Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 5a. Charger State Diagram (Thermistor Monitoring with Charger Shutdown) . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 5b. Battery Charger State Diagram (JEITA Monitoring with Charger Shutdown). . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 6. I2C START, STOP and REPEATED START Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 7. Write Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 8. Burst Write Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 9. Read Byte Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Figure 10. Burst Read Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 11. Acknowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
LIST OF TABLES  
Table 1. Power Function Input Control Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 2. Thermistor Monitoring/JEITA Monitoring Enable Control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
2
Table 3. I C Slave Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Table 4. ChipId Register (0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 5. ChipRev Register (0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 6. StatusA Register (0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Table 7. StatusB Register (0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
(
LIST OF TABLES continued)  
Table 8. StatusC Register (0x04). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Table 9. IntA Register (0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 10. IntB Register (0x06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table 11. IntMaskA Register (0x07). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table 12. IntMaskB Register (0x08). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 13. ILimCntl Register (0x09). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Table 14. ChgCntlA Register (0x0A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 15. ChgCntlB Register (0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Table 16. ChTmr Register (0x0C). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 17. Buck1Cfg Register (0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Table 18. Buck1VSet Register (0x0E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 19. Buck2Cfg Register (0x0F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Table 20. Buck2VSet Register (0x10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 21. Buck1/2ISet Register (0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Table 22. LDO1Cfg Register (0x12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 23. LDO1VSet Register (0x13) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Table 24. LDO2Cfg Register (0x14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 25. LDO2VSet Register (0x15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Table 26. LDO3Cfg Register (0x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 27. LDO3VSet Register (0x17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Table 28. ThrmCfg Register (0x18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Table 29. ThrmCfg Register (0x19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 30. MONCfg Register (0x1A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 31. BootCfg Register (0x1B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 32. PinStat Register (0x1C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Table 33. Buck1/2Extra Control Register (0x1D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Table 34. PwrCfg Register (0x1E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 35. PwrCmd Register (0x1F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Table 36. Suggested Inductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 37. Output Capacitor Values* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Table 38. Register Bit Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Table 39. Register Default Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Typical Application Circuit  
MAX14745  
CAP  
SET  
Li+ BATTERY  
THM  
CHARGER WITH  
SMART POWER  
SELECTOR  
CHGIN  
GND  
BAT  
EXT  
1µF  
1µF  
1µF  
VIO  
VSYS  
VB1  
10µF  
10µF  
(*)  
SYS  
SCL  
SDA  
INT  
SCL  
SDA  
B1OUT  
B1LX  
2.2µH  
BUCK 1  
INT  
VB2  
MPC0  
MPC0  
B2OUT  
B2LX  
CONTROL  
MPC1  
PFN2  
RST  
BUCK 2  
10µF  
1µF  
2.2µH  
VSYS  
MPC1  
PFN2  
RST  
L1IN  
LDO/  
PFN1  
VL1  
SWITCH 1  
L1OUT  
VSYS  
LED  
VSYS  
VSYS  
L2IN  
LDO/  
VL2  
VL3  
1µF  
1µF  
SWITCH 2  
L2OUT  
MON  
MUX/  
DIVIDER  
MON  
L3IN  
LDO/  
SWITCH 3  
L3OUT  
* OPTIONAL EXTERNAL FET  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Absolute Maximum Ratings  
(Voltages referenced to GND.)  
SDA, SCL, THM, RST, SYS, PFN1, PFN2,  
MPC0, MPC1, INT, MON, BAT, LED,  
L1IN, L2IN, L3IN.............................................. -0.3V to +6.0V  
Continuous Current into CHGIN, BAT, SYS ................±1000mA  
Continuous Current into any other terminal ..................±100mA  
Continuous Power Dissipation (multilayer board at +70°C):  
6 x 6 Array 36-Bump 2.72mm x 2.47mm  
B1LX, B2LX, B1OUT, B2OUT, EXT ...... -0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
+ 0.3V)  
0.4mm Pitch WLP (derate 21.70mW/°C).......................1.74W  
Operating Temperature Range........................... -40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range............................ -65°C to +150°C  
Soldering Temperature (reflow).......................................+260°C  
SYS  
L1IN  
L2IN  
L3IN  
L1OUT................................................... -0.3V to (V  
L2OUT................................................... -0.3V to (V  
L3OUT................................................... -0.3V to (V  
CHGIN .................................................................... -6V to +30V  
CAP ................................... -0.3V to min (|V | + 0.3V, +6V)  
CHGIN  
SET .......................................................... -0.3V to V  
+ 0.3V  
BAT  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 36 WLP  
Package Code  
W362D2+1  
Outline Number  
21-0897  
Land Pattern Number  
Refer to Application Note 1891  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
46°C/W  
JA  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”,  
“#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing  
pertains to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
GLOBAL SUPPLY CURRENT (L_IN Connected to SYS)  
All functions disabled  
Power on, V = 5V  
0.26  
CHGIN  
Charger Input Current  
I
mA  
SYS switch closed, buck regulators  
CHG  
1.5  
1.7  
4.3  
enabled, LDO1 enabled, I = 0A,  
SYS  
I
= 0A, I  
= 0A  
B_OUT  
L_OUT  
Power off, V  
= 0V,  
CHGIN  
0.96  
2.8  
SYS switch open  
Power on, V  
= 0V  
CHGIN  
SYS switch closed, 2x buck  
regulators enabled, LDOs disabled.  
I
= 0A, I  
= 0A  
SYS  
B_OUT  
Power on, V  
= 0V SYS switch  
CHGIN  
BAT Input Current  
I
µA  
closed, 2x buck regulators enabled,  
BAT  
3.5  
5.2  
7
LDO1 enabled, I = 0A, I  
=
B_OUT  
SYS  
0A, I  
= 0A  
L_OUT  
Power on, V  
= 0V  
CHGIN  
SYS switch closed, 2x buck  
regulators enabled, 3x LDOs  
enabled, I = 0A, I = 0A,  
SYS  
B_OUT  
I
= 0A  
L_OUT  
BUCK REGULATOR 1  
(V  
= +3.7V, L = 2.2µH, C = 2.2µF, V  
= 1.2V)  
SYS  
B1OUT  
Input Voltage  
V
Input voltage = V  
2.7  
0.8  
5.5  
V
V
IN_BUCK1  
SYS  
Output Voltage  
V
25mV step resolution  
2.375  
OUT_BUCK1  
Note: For V  
imposed  
< UVLO ZC is  
OUT  
Output UVLO Voltage  
V
0.44  
0.9  
0.7  
V
UVLO_BUCK1  
Buck enabled, I  
= 0mA,  
= 1.2V  
B1OUT  
Quiescent Supply  
Current  
I
V
= 3.7V, V  
1.3  
µA  
Q_BUCK1  
SYS  
B1OUT  
(Note 2)  
Dropout Quiescent  
Supply Current  
I
= 0mA, (V  
– V  
)
B1OUT  
SYS  
OUT  
I
1.1  
60  
mA  
µA  
QDO_BUCK1  
≤ 0.1V  
Shutdown Supply  
Current with Active  
Discharge Enabled  
I
Buck1 disabled, Buck1ActDSC=1.  
SD_BUCK1  
Output Accuracy  
ACC  
I
= 1mA  
B1OUT  
-3  
+3.1  
375  
%
BUCK1  
Buck1ISet = 100mA, C  
I
= 2.2µF,  
OUT  
Peak-to-Peak Ripple  
V
10  
mV  
PPRIPPLE1  
= 1mA  
B1OUT  
25mA step resolution set by  
Buck1ISet[3:0].  
I
Set Range  
I
50  
mA  
PEAK  
PEAK_BUCK1  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
Buck1ISet = 150mA,  
Buck1IAdptEnb = 0,  
MIN  
TYP  
MAX  
UNITS  
Load Regulation Error  
Line Regulation Error  
V
-3  
%
LOADR_BUCK1  
I
= 300mA  
B1OUT  
V
= 1.2V; V from 2.7V  
SYS  
B1OUT  
V
3
mV  
mA  
LINER_BUCK1  
to 5.5V  
V
= 3.7V, Buck1VSet = 1.2V,  
SYS  
Maximum Operating  
Output Current  
I
Buck1ISet = 200mA, Buck1IAdptEnb  
= 0, load regulation error = -5%  
200  
500  
OUT_BUCK1  
LEAK_B1OUT  
B1OUT Pulldown  
Current  
I
Buck1 enabled  
110  
12  
nA  
B1OUT Pulldown  
Resistance  
R
Buck1 disabled, V  
= 1.2V  
B1OUT  
MΩ  
PD_B1OUT  
Buck1FFET = 0  
Buck1FFET = 1  
Buck1FFET = 0  
Buck1FFET = 1  
0.27  
0.55  
0.24  
0.43  
0.5  
1
Ω
Ω
Ω
Ω
pMOS On-Resistance  
nMOS On-Resistance  
R
ONP_BUCK1  
0.45  
0.9  
R
ONN_BUCK1  
Freewheeling  
On-Resistance  
R
V
= 3.7V, V = 1.2V  
B1OUT  
7.3  
13  
80  
Ω
ONFW_BUCK1  
SYS  
Minimum T  
T
40  
98  
3
ns  
%
ON  
ON_MIN  
Maximum Duty Cycle  
Switching Frequency  
D
Buck1IAdptEnb = 0  
MAX_BUCK1  
f
Load regulation error = -3%  
Buck1ISet = 150mA,  
MHz  
SW_BUCK1  
Average Current During  
Short-Circuit to GND  
I
100  
0.005  
17  
mA  
µA  
SHRT_BUCK1  
Buck1IAdptEnb = 0, V  
= 0V  
B1OUT  
BLX Leakage Current  
I
1
BLX_BUCK1  
Active Discharge Current  
I
V
V
= 1.2V  
= 1.2V  
mA  
PD_BUCK1  
B1OUT  
Passive Discharge  
Resistance  
R
9
kΩ  
PD_BUCK1  
ON_BUCK1  
B1OUT  
Time from enable to full current  
capability, Buck1Fst = 0  
Full Turn-On Time  
t
58  
ms  
I
= 10mA, Buck1ISet = 150mA,  
LOAD  
Efficiency  
Eff  
Inductor = BOURNS SRP2010-  
87  
%
BUCK1  
2R2M, V = 1.2V  
B1OUT  
Buck1LowEMI = 0  
Buck1LowEMI = 1  
2
BLX Rising/Falling Slew  
Rate  
SR  
V/ns  
BLX_BUCK1  
0.5  
Thermal-Shutdown  
Temperature  
T
140  
10  
°C  
°C  
SHDN_BUCK1  
Thermal-Shutdown  
Temperature Hysteresis  
T
SHDN_HYST_BUCK1  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BUCK REGULATOR 2  
(V = +3.7V, L = 2.2µH, C = 2.2µF, V  
= 1.2V)  
B2OUT  
SYS  
Input Voltage  
V
Input voltage = V  
2.7  
0.8  
5.5  
V
V
IN_BUCK2  
SYS  
Output Voltage  
V
50mV step resolution  
3.95  
OUT_BUCK2  
Note: For V  
imposed  
< UVLO ZC is  
OUT  
Output UVLO Voltage  
V
0.44  
1
0.7  
V
UVLO_BUCK2  
Buck enabled, I  
= 0mA,  
= 1.2V  
B2OUT  
Quiescent Supply  
Current  
I
V
= 3.7V, V  
1.3  
µA  
mA  
µA  
Q_BUCK2  
SYS  
B2OUT  
(Note 2)  
Dropout Quiescent  
Supply Current  
I
= 0mA, V  
– V  
SYS B2OUT  
B2OUT  
I
1.1  
60  
QDO_BUCK2  
≤ 0.1V  
Shutdown Supply  
Current with Active  
Discharge Enabled  
I
Buck1 disabled, Buck2ActDSC = 1.  
SD_BUCK2  
Output Accuracy  
ACC  
I
= 1mA, V < 3.4V  
B2OUT  
-3  
+3.1  
375  
%
BUCK2  
B2OUT  
Buck2ISet = 100mA, C  
I
= 2.2µF,  
OUT  
Peak-to-Peak Ripple  
V
10  
mV  
PPRIPPLE2  
= 1mA  
B2OUT  
25mA step resolution set by  
Buck2ISet[3:0].  
I
Set Range  
I
50  
mA  
%
PEAK  
PEAK_BUCK2  
Buck2ISet = 150mA,  
Buck2IAdptEnb = 0, I  
300mA  
Load Regulation Error  
Line Regulation Error  
V
=
B2OUT  
-3  
3
LOADR_BUCK2  
V
= 1.2V; V  
from 2.7V  
B2OUT  
SYS  
V
mV  
mA  
LINER_BUCK2  
to 5.5V  
V
= 3.7V, Buck2VSet = 1.2V,  
SYS  
Maximum Operating  
Output Current  
I
Buck2ISet = 200mA, Buck2IAdptEnb  
= 0, load regulation = -5%  
200  
500  
OUT_BUCK2  
LEAK_B2OUT  
B2OUT Pulldown  
Current  
I
Buck2 enabled  
220  
6
nA  
B2OUT Pulldown  
Resistance  
R
Buck2 disabled, V  
= 1.2V  
B2OUT  
MΩ  
PD_B2OUT  
Buck2FFET = 0  
Buck2FFET = 1  
Buck2FFET = 0  
Buck2FFET = 1  
0.27  
0.55  
0.24  
0.43  
0.5  
1
Ω
Ω
Ω
Ω
pMOS On-Resistance  
nMOS On-Resistance  
R
ONP_BUCK2  
0.45  
0.9  
R
ONN_BUCK2  
Freewheeling  
On-Resistance  
R
V
= 3.7V, V = 1.2V  
B2OUT  
7.3  
13  
Ω
ONFW_BUCK2  
SYS  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
40  
98  
3
MAX  
UNITS  
ns  
Minimum T  
T
80  
ON  
ON_MIN  
Maximum Duty Cycle  
Switching Frequency  
D
f
Buck2IAdptEnb = 0  
%
MAX_BUCK2  
SW_BUCK2  
Load regulation error = -3%  
Buck2ISet = 150mA,  
MHz  
Average Current During  
Short-Circuit to GND  
I
100  
0.005  
17  
mA  
µA  
SHRT_BUCK2  
Buck2IAdptEnb = 0, V  
= 0V  
B2OUT  
BLX Leakage Current  
I
1
BLX_BUCK2  
Active Discharge Current  
I
V
V
= 1.2V  
= 1.2V  
mA  
PD_BUCK2  
B2OUT  
Passive Discharge  
Resistance  
R
9
kΩ  
PD_BUCK2  
ON_BUCK2  
B2OUT  
Time from enable to full current  
capability, Buck2Fst = 0  
Full Turn-On Time  
T
58  
ms  
I
= 10mA, Buck2ISet = 150mA,  
LOAD  
Efficiency  
Eff  
Inductor = BOURNS SRP2010-  
87  
%
BUCK2  
2R2M, V = 1.2V  
B2OUT  
Buck2LowEMI = 0  
Buck2LowEMI = 1  
2
BLX Rising/Falling Slew  
Rate  
SR  
V/ns  
BLX_BUCK2  
0.5  
Thermal-Shutdown  
Temperature  
T
140  
10  
°C  
°C  
SHDN_BUCK2  
Thermal-Shutdown  
Temperature Hysteresis  
T
SHDN_HYST_BUCK2  
LDO1  
(C = 1μF, unless otherwise noted. Typical values are at V  
= 3.7V, with I  
= 10mA, V  
= 3V.)  
L1IN  
L1OUT  
L1OUT  
LDO mode  
2.7  
5.5  
5.5  
4
V
V
Input Voltage  
V
INLDO1  
Switch mode  
1.2  
LDO enabled, I  
= 0µA  
0.55  
0.45  
L1OUT  
L1OUT  
Quiescent Supply  
Current  
I
µA  
µA  
LDO enabled, I  
Switch mode  
= 0µA,  
Q_LDO1  
Shutdown Supply  
Current with Active  
Discharge Enabled  
I
LDO1 disabled. LDO1ActDSC=1.  
55  
SD_LDO1  
Maximum Output  
Current  
I
100  
0.8  
mA  
V
L1OUT_MAX  
Output Voltage  
V
3.6  
L1OUT  
V
= (V  
= 100µA  
+ 0.5V) or higher,  
L1IN  
L1OUT  
Output Accuracy  
ACC  
-2.7  
+2.7  
%
LDO1  
I
L1OUT  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 3V, I = 100mA,  
MIN  
TYP  
MAX  
UNITS  
V
L1IN  
L1OUT_  
Dropout Voltage  
V
102  
mV  
DROP_LDO1  
LDO1VSet = 3V  
Line Regulation Error  
Load Regulation Error  
V
V
= (V + 0.5V) to 5.5V  
L1OUT  
-0.12  
0.022  
0.002  
±36  
+0.12  
0.005  
%/V  
%/mA  
mV  
LINEREG_LDO1  
L1IN  
V
I
= 100µA to 100mA  
LOADREG_LDO1  
L1OUT  
V
= 4V to 5V, 200ns rise time  
= 4V to 5V, 1µs rise time  
L1IN  
L1IN  
Line Transient  
V
LINETRAN_LDO1  
V
±28  
mV  
I
= 0mA to 10mA, 200ns  
L1OUT  
145  
290  
10  
mV  
mV  
KΩ  
mA  
rise time  
Load Transient  
V
LOADTRAN_LDO1  
I
= 0mA to 100mA, 200ns  
L1OUT  
rise time  
Passive Discharge  
Resistance  
R
5
7
16  
37  
PD_LDO1  
Active Discharge Current  
I
V
= 3.7V  
20  
ADL_LDO1  
L1IN  
V
V
V
= 2.7V, I  
= 1.8V, I  
= 1.2V, I  
= 100mA  
= 100mA  
= 5mA  
0.5  
0.76  
1.7  
0.85  
1.3  
L1IN  
L1OUT  
L1OUT  
L1OUT  
Switch Mode Resistance  
R
Ω
ON_LDO1  
L1IN  
2.8  
L1IN  
I
= 0mA, time from 10% to  
L1OUT  
1.6  
3.7  
90% of final value  
Turn-On Time  
t
ms  
ON_LDO1  
I
= 0mA, time from 10% to  
L1OUT  
0.25  
345  
335  
0.65  
550  
550  
90% of final value, Switch mode  
V
V
= 2.7V, V  
= GND  
= GND,  
150  
150  
mA  
mA  
L1IN  
L1OUT  
Short-Circuit Current  
Limit  
I
= 2.7V , V  
SHRT_LDO1  
L1IN  
L1OUT  
Switch mode  
Thermal-Shutdown  
Temperature  
T
150  
16  
°C  
°C  
SHDN_LDO1  
Thermal-Shutdown  
Temperature Hysteresis  
T
SHDN_HYST_LDO1  
10Hz to 100kHz, V  
= 5V,  
= 5V,  
= 5V,  
= 5V,  
L1IN  
L1IN  
L1IN  
L1IN  
110  
95  
V
= 3.3V  
L1OUT  
10Hz to 100kHz, V  
= 2.5V  
V
L1OUT  
Output Noise  
OUT  
µVrms  
NOISE  
10Hz to 100kHz, V  
= 1.2V  
60  
V
L1OUT  
10Hz to 100kHz, V  
= 0.8V  
60  
V
L1OUT  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 3.7V, with I  
MIN  
TYP  
= 3V.)  
MAX  
UNITS  
LDO2  
(C = 1μF, unless otherwise noted. Typical values are at V  
= 10mA, V  
L2IN  
L2OUT  
L2OUT  
LDO mode  
Switch mode  
1.71  
5.5  
5.5  
5.1  
V
V
Input Voltage  
V
INLDO2  
1.2  
I
I
I
= 0µA  
1
Quiescent Supply  
Current  
L2OUT  
L2OUT  
L2OUT  
I
µA  
µA  
Q_LDO2  
= 0µA, Switch mode  
0.5  
Quiescent Supply  
Current in Dropout  
= 0µA, V = 2.9V,  
L2IN  
I
1.8  
QDO_LDO2  
LDO2VSet = 3V.  
Shutdown Supply  
Current with Active  
Discharge Enabled  
I
LDO2 disabled. LDO2ActDSC=1.  
54  
µA  
SD_LDO2  
V
V
≥ 2.7V  
100  
50  
mA  
mA  
V
Maximum Output  
Current  
L2IN  
I
L2OUT_MAX  
= 1.8V or lower  
L2IN  
Output Voltage  
V
0.9  
4
L2OUT  
V
= (V  
= 100µA  
+ 0.5V) or higher,  
L2IN  
L2OUT  
Output Accuracy  
ACC  
-2.7  
+2.7  
%
LDO2  
I
L2OUT  
V
= 3V, I  
= 100mA,  
L2IN  
L2OUT_  
Dropout Voltage  
V
100  
mV  
DROP_LDO2  
LDO2VSet = 3V  
Line Regulation Error  
Load Regulation Error  
V
V
= (V + 0.5V) to 5.5V  
L2OUT  
-0.4  
+0.05  
0.001  
±35  
+0.4  
%/V  
%/mA  
mV  
LINEREG_LDO2  
L2IN  
V
I
= 100µA to 100mA  
0.005  
LOADREG_LDO2  
L2OUT  
V
= 4V to 5V, 200ns rise time  
= 4V to 5V, 1µs rise time  
L2IN  
L2IN  
Line Transient  
V
LINETRAN_LDO2  
V
±25  
mV  
I
= 0mA to 10mA, 200ns  
L2OUT  
100  
200  
10  
mV  
mV  
KΩ  
mA  
rise time  
Load Transient  
V
LOADTRAN_LDO2  
I
= 0mA to 100mA, 200ns  
L2OUT  
rise time  
Passive Discharge  
Resistance  
R
5
7
16  
37  
PD_LDO2  
Active Discharge Current  
I
V
= 3.7V  
20  
ADL_LDO2  
L2IN  
V
V
V
= 2.7V, I  
= 1.8V, I  
= 1.2V, I  
= 100mA  
= 50mA  
= 5mA  
0.46  
0.7  
0.76  
1.15  
2.6  
L2IN  
L2OUT  
L2OUT  
L2OUT  
Switch Mode  
Resistance  
R
Ω
ON_LDO2  
L2IN  
1.7  
L2IN  
I
= 0mA, time from 10% to  
L2OUT  
1.5  
3.7  
90% of final value  
Turn-On Time  
t
ms  
ON_LDO2  
I
= 0mA, time from 10% to  
L2OUT  
0.25  
0.65  
90% of final value, Switch mode  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 2.7V, V = GND  
MIN  
TYP  
MAX  
UNITS  
V
V
140  
340  
600  
mA  
L2IN  
L2OUT  
Short-Circuit Current  
Limit  
I
= 2.7V , V  
= GND,  
SHRT_LDO2  
L2IN  
L2OUT  
140  
330  
150  
21  
600  
mA  
°C  
Switch mode  
Thermal-Shutdown  
Temperature  
T
SHDN_LDO2  
Thermal-Shutdown  
Temperature Hysteresis  
T
°C  
SHDN_HYST_LDO2  
10Hz to 100kHz, V  
= 5V,  
= 5V,  
= 5V,  
= 5V,  
L2IN  
L2IN  
L2IN  
L2IN  
150  
125  
90  
V
= 3.3V  
L2OUT  
10Hz to 100kHz, V  
= 2.5V  
V
L2OUT  
Output Noise  
OUT  
µVrms  
NOISE  
10Hz to 100kHz, V  
= 1.2V  
V
L2OUT  
10Hz to 100kHz, V  
80  
V
V
V
= 0.9V  
L2OUT  
Falling  
1.14  
1.38  
1.4  
L2IN  
L2IN  
L2IN UVLO  
V
V
UVLO_LDO2  
Rising  
1.64  
LDO3  
(C = 1μF, unless otherwise noted. Typical values are at V  
= 3.7V, with I  
= 10mA, V  
= 3V.)  
L3IN  
L3OUT  
L3OUT  
LDO mode  
Switch mode  
1.71  
5.5  
5.5  
5.1  
V
V
Input Voltage  
V
INLDO3  
1.2  
I
I
I
= 0µA  
1
Quiescent Supply  
Current  
L3OUT  
L3OUT  
L3OUT  
I
µA  
µA  
Q_LDO3  
= 0µA, Switch mode  
0.5  
Quiescent Supply  
Current in Dropout  
= 0µA, V = 2.9V,  
L3IN  
I
1.8  
QDO_LDO3  
LDO3VSet = 3V.  
Shutdown Supply  
Current with Active  
Discharge Enabled  
I
LDO3 disabled. LDO3ActDSC=1.  
54  
µA  
SD_LDO3  
V
V
≥ 2.7V  
100  
50  
mA  
mA  
V
Maximum Output  
Current  
L3IN  
I
L3OUT_MAX  
= 1.8V or lower  
L3IN  
Output Voltage  
V
0.9  
4
L3OUT  
V
= (V  
= 100µA  
+ 0.5V) or higher,  
L3IN  
L3OUT  
Output Accuracy  
ACC  
-2.7  
+2.7  
%
LDO3  
I
L3OUT  
V
= 3V, I  
= 100mA,  
L3IN  
L3OUT_  
Dropout Voltage  
V
100  
mV  
DROP_LDO3  
LDO3VSet = 3V  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= (V + 0.5V) to 5.5V  
L3OUT  
MIN  
TYP  
+0.05  
0.001  
±35  
MAX  
+0.4  
UNITS  
%/V  
Line Regulation Error  
Load Regulation Error  
V
V
-0.4  
LINEREG_LDO3  
L3IN  
V
I
= 100µA to 100mA  
0.005  
%/mA  
mV  
LOADREG_LDO3  
L3OUT  
V
= 4V to 5V, 200ns rise time  
= 4V to 5V, 1µs rise time  
L3IN  
L3IN  
Line Transient  
V
LINETRAN_LDO3  
V
±25  
mV  
I
= 0mA to 10mA, 200ns  
L3OUT  
100  
200  
10  
mV  
mV  
KΩ  
mA  
rise time  
Load Transient  
V
LOADTRAN_LDO3  
I
= 0mA to 100mA, 200ns  
L3OUT  
rise time  
Passive Discharge  
Resistance  
R
5
7
16  
37  
PD_LDO3  
Active Discharge Current  
I
V
= 3.7V  
20  
ADL_LDO3  
L3IN  
V
V
V
= 2.7V, I  
= 1.8V, I  
= 1.2V, I  
= 100mA  
= 100mA  
= 5mA  
0.46  
0.7  
0.76  
1.15  
2.6  
L3IN  
L3OUT  
L3OUT  
L3OUT  
Switch Mode Resistance  
R
Ω
ON_LDO3  
L3IN  
1.7  
L3IN  
I
= 0mA, time from 10% to  
L3OUT  
1.5  
3.7  
90% of final value  
Turn-On Time  
t
ms  
ON_LDO3  
I
= 0mA, time from 10% to  
L3OUT  
0.25  
340  
330  
0.65  
600  
600  
90% of final value, Switch mode  
V
= 2.7V, V  
= GND  
= GND,  
140  
140  
mA  
mA  
L3IN  
L3IN  
L3OUT  
Short-Circuit Current  
Limit  
I
V
= 2.7V , V  
SHRT_LDO3  
L3OUT  
Switch mode  
Thermal-Shutdown  
Temperature  
T
150  
21  
°C  
°C  
SHDN_LDO3  
Thermal-Shutdown  
Temperature Hysteresis  
T
SHDN_HYST_LDO3  
10Hz to 100kHz, V  
= 5V,  
= 5V,  
= 5V,  
= 5V,  
L3IN  
L3IN  
L3IN  
L3IN  
150  
125  
80  
V
= 3.3V  
L3OUT  
10Hz to 100kHz, V  
= 2.5V  
V
L3OUT  
Output Noise  
L3IN UVLO  
OUT  
µVrms  
NOISE  
10Hz to 100kHz, V  
= 1.2V  
V
L3OUT  
10Hz to 100kHz, V  
60  
V
V
V
= 0.9V  
L3OUT  
Falling  
1.14  
1.38  
1.4  
L3IN  
L3IN  
V
V
UVLO_LDO3  
Rising  
1.64  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHGIN TO SYS PATH  
(V = 5.0V, V  
= V  
SYS_REG  
)
CHGIN  
SYS  
Allowed CHGIN Input  
Voltage Range  
V
-5.5  
28  
V
V
CHGIN_RNG  
Rising  
Falling  
3.8  
3.0  
3.9  
3.1  
4.1  
3.2  
V
Detect  
CHGIN  
V
CHGIN_DET  
Threshold  
V
Overvoltage  
CHGIN  
V
Rising  
7.2  
7.5  
200  
7.8  
V
CHGIN_OV  
Threshold  
V
Overvoltage  
CHGIN  
V
mV  
mV  
mV  
CHGIN_OV_HYS  
Threshold Hysteresis  
V
V
– V  
, Rising,  
CHGIN  
SYS  
V
Valid Trip Point  
V
+30  
+145  
275  
+290  
CHGIN  
CHGIN  
CHGIN-SYS_TP  
= 4V  
BAT  
V
Valid Trip Point  
V
CHGIN-SYS_TP_HYS  
Hysteresis  
ILimCntl[1:0] = 00  
ILimCntl[1:0] = 01  
ILimCntl[1:0] = 10  
ILimCntl[1:0] = 11  
0
90  
100  
550  
Input Limiter Current  
Internal CAP Regulator  
I
mA  
LIM  
450  
1000  
4.2  
V
V
= 5V  
3.9  
4.7  
V
CAP  
CHGIN  
CHGIN  
CHGIN-SYS Regulation  
Voltage  
V
R
V
= 4V, I  
= 1mA  
40  
370  
+150  
30  
mV  
CHGIN-SYS  
SYS  
CHGIN to SYS  
On-Resistance  
V
= 4.4V, I  
= 500mA  
SYS  
660  
mΩ  
oC  
oC  
ms  
V
CHGIN-SYS  
CHGIN  
Thermal-Shutdown  
Temperature  
T
(Note 3)  
CHGIN_SHDN  
Thermal-Shutdown  
Temperature Hysteresis  
T
CHGIN_SHDN_HYS  
Input Current Soft-Start  
Time  
t
1
SFST_LIM  
Internal Supply  
Switchover Threshold  
V
V
= V  
rising, V = 4.2V  
BAT  
2.5  
2.8  
3.0  
CCINT_TH  
CHGIN  
CAP  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SYS, BATTERY, AND VCCINT UVLOs  
V
Rising  
Falling  
2.64  
2.62  
2.69  
2.67  
V
V
SYSUVLO_R  
SYS UVLO Threshold  
V
2.57  
SYSUVLO_F  
SYS UVLO Threshold  
Hysteresis  
V
Hysteresis  
26  
20  
mV  
µs  
SYSUVLO_HYS  
SYS UVLO Falling  
Debounce Time  
t
SYS Falling  
SYSUVLO_FDEB  
V
UVLO Threshold  
CCINT  
V
V
Rising  
0.8  
1.9  
1.82  
140  
2.6  
2.2  
V
UVLO  
CCINT  
(POR)  
V
UVLO Threshold  
CCINT  
V
mV  
UVLO_HYS  
Hysteresis  
Rising (Valid only when CHGIN is  
present. When V < V  
the BAT-SYS switch opens and  
BAT is connected to SYS through a  
diode.)  
,
BAT_UVLO  
BAT  
BAT UVLO Threshold  
V
2.05  
50  
V
BAT_UVLO  
BAT UVLO Threshold  
Hysteresis  
V
Hysteresis  
mV  
BAT_UVLO_HYS  
BATTERY CHARGER (See Figure 5a and Figure 5b)  
(V  
= 4.2V. Typical values are at V  
= 5.0V, V  
= V  
SYS_REG  
)
BAT  
CHGIN  
SYS  
Allowed BAT Voltage  
Range  
V
0
5.5  
V
BAT_RNG  
BAT to SYS  
On-Resistance  
R
V
= 4.2V, I = 300mA  
BAT  
80  
120  
22  
140  
mΩ  
BAT-SYS  
BAT  
Current Reduce Thermal  
Threshold Temperature  
T
(Note 4)  
oC  
CHG_LIM  
BAT-to-SYS Switch-On  
Threshold  
V
SYS falling  
SYS rising  
10  
35  
mV  
mV  
V
BAT-SYS-ON  
BAT-to-SYS Switch-Off  
Threshold  
V
-3  
-1.5  
0
BAT-SYS-OFF  
SYS-BAT Regulation  
Voltage  
V
V
V
BatReg  
BatReg  
BatReg  
V
V
= 5V, I  
= 1mA  
SYS  
SYS_REG  
CHGIN  
+ 140mV + 200mV + 260mV  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
SysMin = 000,  
> 3.6V  
MIN  
TYP  
MAX  
UNITS  
V +  
BAT  
0.1  
V
BAT  
SysMin = 000,  
< 3.4V  
3.6  
3.7  
3.8  
3.9  
4
V
BAT  
SysMin = 001,  
< 3.4V  
V
BAT  
SysMin = 010,  
< 3.4V  
V
BAT  
SYS Threshold Voltage  
Charger Limiting Current  
(Note 5)  
SysMin = 011,  
< 3.4V  
V
V
SYS_LIM  
V
BAT  
SysMin = 100,  
< 3.4V  
3.86  
4.14  
V
BAT  
SysMin = 101,  
< 3.4V  
4.1  
4.2  
4.3  
1
V
BAT  
SysMin = 110,  
< 3.4V  
V
BAT  
SysMin = 111,  
< 3.4V  
V
BAT  
Charger Current Soft-  
Start Time  
t
ms  
CHG_SOFT  
PRECHARGE  
IPChg = 00  
5
IPChg = 01  
9
10  
11  
Precharge Current  
I
%I  
FChg  
PCHG  
IPChg = 10  
20  
IPChg = 11  
30  
VPChg = 000  
VPChg = 001  
VPChg = 010  
VPChg = 011  
VPChg = 100  
VPChg = 101  
VPChg = 110  
VPChg = 111  
2.1  
2.15  
2.25  
2.40  
2.55  
2.7  
2.35  
Prequalification  
Threshold  
V
V
BAT_PChg  
2.85  
3.0  
3.15  
Prequalification  
Threshold Hysteresis  
V
90  
mV  
BAT_PChg_HYS  
Maxim Integrated  
17  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
FAST CHARGE  
SET Current Gain Factor  
SET Regulation Voltage  
K
V
2000  
1
A/A  
V
SET  
SET  
R
R
R
= 400kΩ  
5
SET  
SET  
SET  
Fast-Charge Current  
I
= 40kΩ  
45  
50  
55  
mA  
%
FChg  
= 4kΩ  
450  
500  
550  
Fast-Charge Current  
Accuracy (Note 6)  
I
R
Range = 4kΩ to 40kΩ  
-10  
+10  
FChg_ACC  
SET  
MAINTAIN CHARGE  
ChgDone = 00  
ChgDone = 01  
ChgDone = 10  
ChgDone = 11  
BatReg = 0000  
BatReg = 0001  
BatReg = 0010  
5
8.5  
10  
11.5  
Charge Done  
Qualification  
I
%IFChg  
Chg_DONE  
20  
30  
4.05  
4.10  
4.15  
4.2  
T
= +25°C  
4.179  
4.168  
4.221  
4.232  
BatReg =  
0011  
A
A
T
= 0 to +45C  
4.2  
BatReg = 0100  
BatReg = 0101  
BatReg = 0110  
BatReg = 0111  
BatReg = 1000  
BatReg = 1001  
BatReg = 1010  
BatReg = 1011  
BatReChg = 00  
BatReChg = 01  
BatReChg = 10  
BatReChg = 11  
4.25  
4.3  
BAT Regulation Voltage  
(Note 7)  
V
V
BatReg  
4.35  
4.4  
4.45  
4.5  
4.55  
4.6  
V
- 70  
BatReg  
V
- 120  
-170  
-220  
BAT Recharge  
Threshold  
BatReg  
V
mV  
BatReChg  
V
BatReg  
BatReg  
V
Maxim Integrated  
18  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
CHARGER TIMER  
PChgTmr = 00  
30  
60  
PChgTmr = 01  
PChgTmr = 10  
PChgTmr = 11  
FChgTmr = 00  
FChgTmr = 01  
FChgTmr = 10  
FChgTmr = 11  
TOChgTmr = 00  
TOChgTmr = 01  
TOChgTmr = 10  
TOChgTmr = 11  
Maximum  
Prequalification Time  
t
min  
PChg  
120  
240  
75  
150  
300  
600  
0
Maximum Fast-Charge  
Time  
t
min  
FChg  
15  
Maintain-Charge Time  
t
min  
%
TOChg  
30  
60  
Timer Accuracy  
t
-10  
+10  
CHG_ACC  
If charge current is reduced due to  
ILIM or TDIE this is the percentage  
of charge current below which timer  
clock operates at half speed  
Timer Extend Threshold  
TIM  
50  
20  
%I  
%I  
EXD_THRES  
FChg  
FChg  
If charge current is reduced due to  
ILIM or TDIE this is the percentage  
of charge current below which timer  
clock pauses  
Timer Suspend  
Threshold  
TIM  
SUS_THRES  
THERMISTOR MONITOR AND NTC DETECTION  
V
falling, MAX14745A/  
THM  
30.9  
21.3  
48  
32.9  
23.3  
50  
34.9  
25.3  
52  
MAX14745C  
THM Hot Threshold  
T
4
3
V
falling, MAX14745D/  
THM  
MAX14745E  
V
falling, MAX14745A/  
THM  
MAX14745C  
%CAP  
THM Warm Threshold  
T
V
falling, MAX14745D/  
THM  
30.9  
32.9  
34.9  
MAX14745E  
THM Cool Threshold  
THM Cold Threshold  
THM Disable Threshold  
T
T
V
V
V
rising  
rising  
rising  
62.5  
71.9  
91  
64.5  
73.9  
93  
66.5  
75.9  
95  
2
THM  
THM  
THM  
1
THM  
DIS  
THM Threshold  
Hysteresis  
THM  
60  
mV  
µA  
HYS  
THM Input Leakage  
I
-1  
1
LKG_THM  
Maxim Integrated  
19  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
START UP TIMING (See Figure 2)  
Boot Delay  
BootDly = 00  
80  
BootDly = 01  
BootDly = 10  
BootDly = 11  
120  
220  
420  
t
ms  
%
RST  
Boot Delay Timer  
Accuracy  
t
-10  
1.4  
10  
RST_ACC  
DIGITAL SIGNALS  
Input Logic-High (SDA,  
SCL, MPC0, MPC1,  
PFN1, PFN2)  
V
IH  
V
Input Logic-Low (SDA,  
SCL, MPC0, MPC1,  
PFN1, PFN2)  
V
0.5  
0.4  
IL  
V
V
Output Logic-Low (SDA,  
V
I
I
= 4mA  
OL  
OL  
RST  
, INT, LED, PFN2)  
High Level Leakage  
Current (SDA, RST  
,
INT  
,
1
µA  
kHz  
µs  
LK  
LED, PFN2)  
SCL Clock Frequency  
Bus Free Time Between  
f
400  
SCL  
BUF  
a
STOP and START  
t
1.3  
Condition  
START Condition  
(Repeated) Hold Time  
t
(Note 8)  
0.6  
1.3  
0.6  
µs  
µs  
µs  
HD:STA  
Low Period of SCL  
Clock  
t
LOW  
High Period of SCL  
Clock  
t
HIGH  
Setup Time for a  
Repeated START  
Condition  
t
0.6  
µs  
SU:STA  
Data Hold Time  
Data Setup Time  
t
(Note 9)  
(Note 9)  
0
0.9  
µs  
ns  
HD:DAT  
t
100  
SU:DAT  
Setup Time for STOP  
Condition  
t
0.6  
µs  
SU:STO  
Spike Pulse Widths  
Suppressed by Input  
Filter  
t
(Note 10)  
50  
ns  
SP  
Maxim Integrated  
20  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Electrical Characteristics (continued)  
(V  
= 5.0V, V  
= 3.7V, T = -40°C to +85°C, all registers in their default state, unless otherwise noted. Typical values are at  
CHGIN  
BAT A  
T
= +25°C.) (Note 1)  
A
Note 1:  
All devices are 100% production tested at T = +25°C. Limits over the operating temperature range guaranteed by  
A
design.  
Note 2:  
Note 3:  
Note 4:  
Note 5:  
This value is included in the I  
When the die temperature exceeds T  
When the die temperature exceeds T  
This is the threshold at which the charger starts to limit the current due to SYS dropping; if VSYS drops below this value  
the charger will not move to maintain charge.  
quiescent current values for the ON states.  
BAT  
, the CHGIN to SYS path opens, and the charger is turned off.  
CHGIN_SHDN  
, the charger current starts to decrease.  
CHG_LIM  
Note 6:  
Note 7:  
Note 8:  
Note 9:  
Fast charge current accuracy tested only at 50mA and 500mA, all other values guaranteed by design.  
Values over temperature are not production tested and guaranteed by characterization.  
f
must meet the minimum clock low time plus the rise/fall times.  
SCL  
The maximum t  
has to be met only if the device does not stretch the low period (t  
) of the SCL signal.  
HD:DAT  
LOW  
Note 10: Filters on SDA and SCL suppress noise spikes at the input buffers and delay the sampling instant.  
Maxim Integrated  
21  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Typical Operating Characteristics  
(V  
= 3.7V, V  
= 0V, registers in their default state, T = +25°C, unless otherwise noted.)  
BAT  
CHGIN A  
IFCHG vs. TEMPERATURE  
IBAT vs. TEMPERATURE  
IBAT vs. VBAT  
toc02  
toc01  
toc03  
10  
8
10  
100  
80  
60  
40  
20  
0
VCHGIN = 5V  
RSET = 40k  
VBAT = 3.7V  
IPChg[1:0] = 01  
8
6
4
2
0
BUCKS ON, ALL LDOS ON  
BUCKS ON, ALL LDOS ON  
BUCKS ON, LDO1 ON  
BUCKS ON, LDO1 ON  
6
BUCKS ON  
BUCKS ON  
4
VBAT = 3.7V  
VBAT = 2V  
2
POWER OFF  
POWER OFF  
10  
0
-40  
-15  
35  
60  
85  
2.7  
3
3.3  
VBAT (V)  
3.6  
3.9  
4.2  
-40  
-15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
VSYS vs. VCHGIN  
IBAT/VBAT vs. TIME  
VBAT_REG vs. TEMPERATURE  
toc05  
6
toc06  
toc04  
200  
6.0  
4.22  
150mAhr BATTERY  
IChgDone[1:0 ]= 01  
IPChg[1:0 = 01  
VPChg[2:0] = 110  
RSET = 40k  
VCHGIN = 5V  
BatReg[2:0] = 011  
RSET = 40kΩ  
4.2kat BAT  
VBAT = 2.8V  
RSYS = 50Ω  
5
4
3
2
1
0
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
160  
120  
80  
40  
0
4.21  
4.2  
VBAT  
IBAT  
4.19  
4.18  
3
4
5
6
7
8
0
40  
80  
120  
160  
200  
240  
280  
-40  
-15  
10  
35  
60  
85  
VCHGIN (V)  
TIME (minutes)  
TEMPERATURE (°C)  
BUCK2 EFFICIENCY vs. LOAD  
ICHGIN vs. TEMPERATURE  
toc8  
toc07  
100  
800  
600  
400  
200  
0
VBAT = 3.7V  
VCHGIN = 5V  
ISYS = 600mA  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT = 4.2V  
VBAT = 3.7V  
VBAT = 3.3V  
ILimCntl[1:0] = 0x02  
ILimCntl[1:0] = 0x01  
VB2OUT = 1.8V  
100 1000  
-40  
-15  
10  
35  
60  
85  
0.001  
0.01  
0.1  
1
10  
TEMPERATURE (°C)  
IB2OUT (mA)  
Maxim Integrated  
22  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Typical Operating Characteristics (continued)  
(V  
= 3.7V, V  
= 0V, registers in their default state, T = +25°C, unless otherwise noted.)  
BAT  
CHGIN A  
VB2OUT vs. LOAD  
BUCK1 EFFICIENCY vs. LOAD  
toc9  
toc10  
VB1OUT vs. LOAD  
1.9  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
toc11  
1.3  
1.25  
1.2  
VB2OUT = 1.8V  
1.86  
1.82  
1.78  
1.74  
1.7  
VBAT = 4.2V  
VBAT = 3.3V, 3.7V, 4.2V  
VBAT = 3.7V  
1.15  
1.1  
VBAT = 3.3V, 3.7V, 4.2V  
VBAT = 3.3V  
VBAT = 3.3V, 3.7V, 4.2V  
1.05  
1
VB1OUT = 1.2V  
10 100 1000  
VB1OUT = 1.2V  
300 400  
0
100  
200  
IB1OUT (mA)  
300  
400  
0
100  
200  
0.001  
0.01  
0.1  
1
IB1OUT (mA)  
IB1OUT (mA)  
VL1OUT vs. LOAD  
BUCK1 TRANSIENT RESPONSE  
VB1OUT = 1.2V  
toc12  
toc13  
toc14  
BUCK2 TRANSIENT RESPONSE  
3.1  
VL1OUT = 3.0V  
VB2OUT = 1.8V  
3.05  
3
VBAT = 3.3V, 3.7V, 4.2V  
VB1OUT  
20mV/div  
50mA/div  
VB2OUT  
20mV/div  
50mA/div  
2.95  
2.9  
IB1OUT  
IB2OUT  
0
20  
40  
60  
80  
100  
20µs/div  
20µs/div  
IL1OUT (mA)  
VL3OUT vs. LOAD  
VL2OUT vs. LOAD  
LDO1 TRANSIENT RESPONSE  
toc17  
toc15  
toc16  
3.1  
3.05  
3
3.1  
VL1OUT = 3.0V  
VL2OUT = 3.0V  
VL3OUT = 3.0V  
3.05  
3
VBAT = 3.3V, 3.7V, 4.2V  
VBAT = 3.3V, 3.7V, 4.2V  
200mV/div  
50mA/div  
VOUT  
2.95  
2.9  
2.95  
2.9  
IOUT  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
100ms/div  
IL2OUT (mA)  
IL3OUT (mA)  
Maxim Integrated  
23  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Typical Operating Characteristics (continued)  
(V  
= 3.7V, V  
= 0V, registers in their default state, T = +25°C, unless otherwise noted.)  
BAT  
CHGIN A  
LDO1 TRANSIENT RESPONSE  
LDO2 TRANSIENT RESPONSE  
VL2OUT = 3.0V  
toc18  
toc19  
LDO2 TRANSIENT RESPONSE toc20  
VL1OUT = 3.0V  
VL2OUT = 3.0V  
VOUT  
VOUT  
200mV/div  
50mA/div  
200mV/div  
50mA/div  
200mV/div  
50mA/div  
VOUT  
IOUT  
IOUT  
IOUT  
100ms/div  
40µs/div  
40µs/div  
LDO3 TRANSIENT RESPONSE  
VL3OUT = 3.0V  
LDO3 TRANSIENT RESPONSE  
VL3OUT = 3.0V  
toc21  
toc22  
VOUT  
VOUT  
200mV/div  
50mA/div  
200mV/div  
IOUT  
IOUT  
50mA/div  
100ms/div  
40µs/div  
Maxim Integrated  
24  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Bump Configuration  
TOP VIEW  
(BUMP SIDE DOWN)  
MAX14745  
1
2
3
4
5
6
+
L1OUT  
L2OUT  
L1IN  
CAP  
GND  
B2OUT  
B2LX  
A
B
C
D
L2IN  
INT  
MON  
BAT  
BAT  
L3OUT  
LED  
L3IN  
GND  
GND  
GND  
GND  
SET  
EXT  
SYS  
SYS  
PFN2  
E
RST  
MPC0  
SCL  
MPC1  
THM  
PFN1  
GND  
CHGIIN  
B1OUT  
CHGIN  
B1LX  
SDA  
F
WLP  
(2.72mm x 2.47mm)  
Bump Description  
BUMP  
A1  
NAME  
L1OUT  
L1IN  
FUNCTION  
LDO1 Output. Bypass with a minimum 1µF capacitor to GND.  
LDO1 Input  
A2  
A3  
CAP  
Bypass for Internal LDO. Bypass with a 1µF capacitor to GND.  
A4, C3, C4  
D3, D4, F4  
GND  
Ground  
A5  
A6  
B1  
B2  
B3  
B4  
B2OUT  
B2LX  
L2OUT  
L2IN  
0.8V – 3.95V Buck Regulator Output Feedback. Bypass with a 10µF capacitor to GND.  
0.8V – 3.95V Buck Regulator Switch. Connect 2.2µH inductor to B2OUT.  
LDO2 Output. Bypass with a minimum 1µF capacitor to GND.  
LDO2 Input  
INT  
Open-Drain, Active-Low Interrupt Output.  
MON  
Voltage Monitor Pin  
Battery Connection. Connect BAT to a positive battery terminal, bypass BAT with a minimum 1µF  
capacitor to GND.  
B5,B6  
BAT  
Maxim Integrated  
25  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Bump Description (continued)  
PIN  
C1  
NAME  
L3OUT  
L3IN  
FUNCTION  
LDO3 Output. Bypass with a minimum 1µF capacitor to GND.  
C2  
LDO3 Input  
External Resistor For Battery Charge Current Level Setting. Do not connect any external capacitance  
C5  
SET  
SYS  
on this pin; maximum allowed capacitance (C  
< 5µs/R  
) pF.  
SET  
SET  
System Load Connection. Connect SYS to the system load. Bypass SYS with a minimum 10µF low-  
ESR ceramic capacitor to GND.  
C6, D6  
D1  
D2  
LED  
LED Open-Drain Pulldown Current. Add an external current limiting pullup resistor.  
PFN2  
Power Function Control Input/Output. Programmable functionality via PwrFnMode. See Table 1.  
Push-Pull Gate Drive for Optional External pFET from BAT-to-SYS. Output is pulled to GND when  
charger is disconnected and internal BAT-SYS FET is switched on. Otherwise, this output is pulled  
high to the SYS voltage.  
D5  
EXT  
E1  
E2  
RST  
MPC0  
MPC1  
PFN1  
CHGIN  
SDA  
Power-On Reset Output. Active-low, open-drain.  
Multipurpose Configuration Input 0  
E3  
Multipurpose Configuration Input 1  
E4  
Power Function Control Input. Programmable functionality via PwrFnMode. See Table 1.  
-5.5V/+28V Protected Charger Input. Bypass CHGIN with 1µF capacitor to GND.  
E5, E6  
F1  
2
Open-Drain, I C Serial Data Input/Output.  
2
F2  
SCL  
I C Serial Clock Input  
Battery Temperature Thermistor Measurement Connection. Connect a 10kΩ resistor from THM to  
CAP and a 10kΩ, 3380β NTC thermistor from THM to GND.  
F3  
THM  
F5  
F6  
B1OUT  
B1LX  
0.8V – 2.375V Buck Regulator Output Feedback. Bypass B1OUT with a 10µF capacitor to GND.  
0.8V – 2.375V Buck Regulator Switch Terminal. Connect B1LX to B1OUT with a 2.2µH inductor.  
Note: All capacitance values listed in this document refer to effective capacitance. Be sure to specify capacitors that will meet these  
requirements under typical system operating conditions taking into consideration the effects of voltage and temperature.  
Maxim Integrated  
26  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Block Diagram  
MAX14745  
LINEAR  
Li+ BATTERY CHARGER  
WITH POWER SELECTOR  
28V/-5.5V INPUT  
PROTECTION  
POWER  
POWER  
SEQUENCER  
BUCK 1  
MONITOR  
CONTROL  
BUCK 2  
LDO/SWITCH 1  
LDO/SWITCH 2  
DATA  
SYS  
LDO/SWITCH 3  
Power On/Off and Reset Control  
Detailed Description  
The behavior of power function control pins (PFN1 and  
PFN2) is preconfigured to support one of the multiple  
types of wearable application cases. Table 1 describes  
the behavior of the PFN1 and PFN2 pins based on  
the PwrRstCfg[3:0] bits and Figure 1 shows basic flow  
diagrams associated with each mode.  
Power Regulation  
The MAX14745 family includes two high-efficiency, low  
quiescent current buck regulators, and three low quiescent  
current linear regulators that are also configurable as  
power switches. Excellent light-load efficiency allows  
the switching regulators to run continuously without  
significant energy cost.  
A Soft-Reset generates a 10ms logic low pulse at RST  
and resets all registers to their default values. A Hard-  
Reset initiates a complete Power-On Reset sequence and  
generates a 50ms logic-low pulse at RST.  
Maxim Integrated  
27  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 1. Power Function Input Control Modes  
Available PwrCmd  
OFF HARD SOFT  
NO NO YES  
PFN1 PU/PD  
PFNxResEna = 1  
PFN2 PU/PD  
PFNxResEna = 1  
PwrRstCfg[3:0]**  
PFN1**  
PFN2**  
ENABLE  
PULLDOWN  
Manual Reset  
PULLUP*  
On/Off  
On/Off Mode with 10ms debounce. PFN1 is the active-high on/off control input. PFN2 is the active-low soft-  
reset input.  
DISABLE  
PULLUP*  
Manual Reset  
PULLUP*  
NO  
NO  
YES  
On/Off  
On/Off Mode with 10ms debounce. PFN1 is the active-low on/off control. PFN2 is the active-low soft-reset  
input.  
Hard-Reset on PFN1  
Rising  
Soft-Reset on  
PFN2 Rising  
PULLDOWN  
PULLDOWN  
YES  
YES  
YES  
AON  
Always-On Mode. A rising edge on PFN1 generates a hard reset after a 200ms delay. A rising edge on PFN2  
generates a soft-reset after a 200ms delay. In this mode, the device can only enter the off state by writing to  
the PwrCmd register.  
Hard-Reset on PFN1  
Falling  
Soft-Reset on  
PFN2 Falling  
PULLUP*  
PULLUP*  
YES  
YES  
YES  
AON  
Always-On Mode. A falling edge on PFN1 generates a hard-reset after a 200ms delay. A falling edge on PFN2  
generates a soft-reset after a 200ms delay. In this mode, the device can only enter the off state by writing to  
the PwrCmd register.  
Hard-Reset on CHGIN  
insertion When PFN1  
High  
Soft-Reset CHGIN  
Insertion When  
PFN2 High  
PULLDOWN  
PULLDOWN  
YES  
YES  
YES  
CR High  
Charger Reset High Mode. When PFN1 is high, a CHGIN insertion generates a hard-reset after a 200ms  
delay. When PFN2 is high, a CHGIN insertion generates a soft-reset after a 200ms delay. In this mode, the  
device can only enter the off state by writing to the PwrCmd register.  
Hard-Reset on CHGIN  
Insertion  
Soft-Reset on  
CHGIN Insertion  
When PFN2 Low  
PULLUP*  
PULLUP*  
YES  
YES  
YES  
When PFN1 low  
CR Low  
Charger Reset Low Mode. When PFN1 is low, a CHGIN insertion generates a Hard-Reset after a 200ms  
delay. When PFN2 is low, a CHGIN insertion generates a Soft-Reset after a 200ms delay. In this mode, the  
device can only enter the off state by writing to the PwrCmd register.  
KIN  
PULLUP*  
KOUT  
NONE  
YES  
YES  
YES  
Custom Button Mode. PFN1 is the active-low KIN button input. PFN2 is the open-drain KOUT output, which  
buffers the KIN input. The device can enter the off state by either a KIN press (>12s) or by writing to the  
PwrCmd register. A CHGIN insertion or a KIN press (>400ms) can exit the off state.  
KIN  
KIN  
PULLUP*  
KOUT  
NONE  
YES  
NO  
NO  
Custom Soft Reset 1. PFN1 is the active-low KIN button input. PFN2 is the open-drain KOUT output, which  
buffers the KIN input. A KIN press (>12s) generates a soft-reset. The device can only enters the off state  
through the PwrCmd register. A CHGIN insertion or a KIN press (>3s) can exit the off state.  
CSR1  
CSR2  
KIN  
PULLUP*  
Manual Reset  
NONE  
YES  
YES  
YES  
Custom Soft-Reset 2. PFN1 is the active-low KIN button input. PFN2 is the active-low soft-reset input. A PFN2  
press (>12s) generates a soft-reset. In this mode, the device can only enter the off state by writing to the  
PwrCmd register.  
* Pullup is connected to an internal supply, V  
. (V  
= V  
if V  
> V  
, or V  
= V  
if V  
< V  
).  
CCINT  
CCINT  
CAP  
CAP  
CCINT_TH  
CCINT  
BAT  
CAP  
CCINT_TH  
2
** PwrRstCfg[3:0] is read-only; the functions of PFN1 and PFN2 cannot be changed through I C  
Maxim Integrated  
28  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Figure 1. Power Function Input Control Modes Flow Diagrams  
Maxim Integrated  
29  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
In general, if an undervoltage condition is detected on  
SYS the device goes into the off state. However if there  
Power Sequencing  
There are multiple configuration options for the sequenc-  
ing of the buck regulators and LDOs during power-on. See  
Table 1 for details. Regulators can be configured to turn  
on at one of the four points during the power-on process:  
is a valid voltage on CHGIN the behavior is determined  
by the ChgAlwTry setting. If ChgAlwTry = 0, and an  
undervoltage condition is detected on SYS during the  
sequencing process the device turns SYS and all other  
external resources off and waits for CHGIN removal. On  
CHGIN removal the device enters the off state to avoid  
draining the battery. If ChgAlwTry = 1, the process will  
continually recheck the SYS undervoltage condition every  
500ms until it is no longer vaild before continuing with the  
sequencing process.  
0% t  
delay t  
, 25% t  
, 50% t  
, and 100% t  
. The reset  
can be set to 80ms, 120ms, 220ms, or 420ms  
RST  
RST  
RST  
RST  
RST  
by BootDly[1:0] in the BootCfg register. The power-on  
sequencing is depicted in Figure 2a and Figure 2b.  
Additionally, the regulators can be selected to default off  
2
and can be turned on with an I C command after RST is  
released. Each LDO regulator can be configured to be  
always-on as long as SYS or BAT is present.  
t
RST  
POR  
15ms  
CHGIN INSERTION  
OR KIN PRESS*  
SYS  
ENABLE VIA  
CHGIN INSERTION  
30ms  
30ms  
15ms  
5ms  
2
I C/MPC  
KIN PRESS  
ENABLE VIA  
LDO_En  
Buck_En**  
RST  
2
I C/MPC  
BUCK  
CANNOT BE  
ALWAYS ON  
011  
100  
111  
010  
0%  
_Seq  
001  
ALWAYS-ON  
25%  
50%  
100%  
% OF t  
RST  
*KIN PRESS TURN-ON ENABLED VIA SPECIFIC PwrRstCfg ONLY  
**AFTER BEING ENABLED, THE BUCK CONVERTERS HAVE AN  
8ms (TYP) BLANKING TIME BEFORE THE OUTPUT VOLTAGE  
STARTS TO RISE.  
Figure 2a. Power-On Sequencing  
Maxim Integrated  
30  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
t
RST  
POR  
CHGIN  
SYS  
30ms  
15ms  
ENABLE VIA  
2
I C/MPC  
ENABLE VIA  
I C/MPC  
LDO_En  
15ms  
2
BUCK CANNOT  
BE ALWAYS ON  
Buck_En*  
RST  
011  
100  
111  
010  
0%  
_Seq  
001  
ALWAYS-ON  
50%  
100%  
25%  
% of t  
RST  
*After being enabled, the buck converters have an 8ms (typ) blanking time before the output voltage starts to rise.  
Figure 2b. Power-On Sequencing Without Battery  
When the battery is connected and there is no  
external power input, the system is powered from the  
battery.  
Smart Power Selector  
The smart power selector seamlessly distributes power  
from the external CHGIN input to the battery (BAT) and  
the system (SYS). With both an external adapter and  
battery connected, the smart power selector basic  
functions are:  
Thermal Current Regulation  
In case the die temperature exceeds the normal limit, the  
MAX14745 will attempt to limit the temperature increase  
by reducing the input current from CHGIN. In this condi-  
tion, the system load has priority over charger current, so  
the input current is first reduced by lowering the charge  
current. If the junction temperature continues to rise and  
reaches the maximum operating limit, no input current  
is drawn from CHGIN and the battery powers the entire  
system load.  
When the system load requirements are less than the  
input current limit, the battery is charged with residual  
power from the input.  
When the system load requirements exceed the  
input current limit, the battery supplies supplemental  
current to the load.  
Maxim Integrated  
31  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Note: The body diode of an external pMOS connected  
between BAT and SYS remains present when the device  
is in off mode.  
System Load Switch  
An internal 80mΩ (typ) MOSFET connects SYS to BAT  
when no voltage source is available on CHGIN. When an  
external source is detected at CHGIN, this switch opens  
and SYS is powered from the input source through the  
input current limiter. The SYS-to-BAT switch also prevents  
Input Limiter  
The input limiter distributes power from the external  
adapter to the system load and battery charger. In  
addition to the input limiter’s primary function of passing  
power to the system load and charger, it performs several  
additional functions to optimize use of available power:  
V
SYS  
from falling below V  
when the system load  
BAT  
exceeds the input current limit. If V  
drops to V  
due  
BAT  
SYS  
to the current limit, the load switch turns on so the load is  
supported by the battery. If the system load continuously  
exceeds the input current limit the battery is not charged.  
This is useful for handling loads that are nominally below  
the input current limit but have high current peaks exceeding  
the input current limit. During these peaks, battery energy  
is used, but at all other times the battery charges. See  
Figure 3.  
Invalid CHGIN Voltage Protection: If CHGIN is above  
the overvoltage threshold, the MAX14745 enters  
overvoltage lockout (OVL). OVL protects the MAX14745  
and downstream circuitry from high-voltage stress up to  
28V and down to -5.5V. During OVL, the internal circuit  
remains powered and an interrupt is sent to the host.  
During OVL, the charger turns off and the system load  
switch closes, allowing the battery to power SYS. CHGIN  
The pin EXT can drive the gate of an external pMOS  
connected between SYS (source, bulk) and BAT (drain) in  
parallel to the internal one.  
is also invalid if it is less than V  
, or less than the USB  
BAT  
undervoltage threshold. With an invalid input voltage, the  
SYS-to-BAT load switch closes and allows the battery to  
power SYS.  
When V  
< V  
the EXT voltage is the buffered  
CHGIN  
BDET  
version of the internal gate command that controls the  
internal 80mΩ (typ) MOSFET.  
VCHG  
VSYS  
VBAT  
CLOSED  
SYS SWITCH  
CLOSE  
OPEN  
OPEN  
ILIM  
ICHG  
IBAT  
ISYS  
0mA  
CONSTANT BAT CHARGE  
SMART POWER SELECTOR  
OPERATION WITH LIMITED VB  
CURRENT  
VOLTAGE  
DONE  
Figure 3. Smart Power Selector Current/Voltage Behavior  
Maxim Integrated  
32  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
CHGIN Adaptive Input Current Limit: The CHGIN input  
Thermistor Monitoring with Charger Shutdown  
current is limited to prevent input overload. The input  
The MAX14745 features three modes for controlling  
charger behavior based on battery-pack temperature:  
Thermistor Monitoring, JEITA Monitoring 1, and JEITA  
Monitoring 2. The divider formed by a pull-up resistor  
(RPU) to CAP, optional parallel resistor (RPA) from THM  
to ground, and NTC thermistor (RTHM) from THM to  
ground, provides a voltage at THM that is proportional to  
temperature as a fraction of the CAP voltage. Two sets  
of preconfigured default thresholds (0°C/10°C/45°C/60°C  
or 0°C/10°C/25°C/45°C as a %CAP) optimized for beta  
3380 thermistors are available (see Table 38). The four  
default thresholds create five temperature zones, and the  
fractional CAP voltage measured at the THM pin is  
compared to the thresholds to determine the active  
temperature zone during operation.  
2
current limit is controlled by I C. However, if the voltage  
at CHGIN collapses because the source is not able to  
2
supply either the current programmed in I C, or the total  
current required by the battery charger and system load,  
the input current limit will be adaptively reduced.  
Thermal Limiting: In case the die temperature exceeds  
the normal limit (T  
), the MAX14745 attempts to  
CHG_LIM  
limit temperature increase by reducing the input current  
from CHGIN. In this condition, the system load has prior-  
ity over the charger current, so the input current is first  
reduced by lowering the charge current. If the junction  
temperature continues to rise and reaches the maximum  
operating limit (T  
), no input current is drawn  
CHGIN_SHDN  
from CHGIN and the battery powers the entire system  
load.  
The behavior in each temperature zone is determined by  
2
the configuration of bits in the I C registers. The active  
Adaptive Battery Charging: While the system is powered  
from CHGIN, the charger draws power from SYS to charge  
the battery. If the total load exceeds the input current limit,  
an adaptive charger control loop reduces charge current to  
monitoring mode is selected by ThermEn[1:0] in the  
ThrmCfrg register. In all modes, the T2IFchg[2:0] and  
T2T3IFchg[2:0], and T3T4IFchg[2:0] fields in the ThrmCfg  
registers set the fast charge current in three tempera-  
ture zones, T1_T2, T2_T3, and T3_T4. In Thermistor  
Monitoring mode, charging is enabled only in T1_T2  
and T2_T3 and the battery termination voltage is equal  
prevent V  
from collapsing.  
SYS  
When the charge current is reduced below 50% due to  
or T , the timer clock operates at half speed. When  
I
LIM  
DIE  
the charge current is reduced below 20% due to I  
or  
LIM  
to V , as shown in Figure 4a. In both JEITA  
BATREG  
T
, the timer clock is paused.  
DIE  
Monitoring 1 and JEITA Monitoring 2 the charger is  
active in the T1_T2, T2_T3, and T3_T4 zones. However,  
JEITA Monitoring 1 sets the battery termination voltage to  
Fast-Charge Current Setting  
The MAX14745 uses an external resistor connected from  
SET to GND to set the fast-charge current. The pre-charge  
and charge-termination currents are programmed as a  
V
for all zones, while JEITA Monitoring 2 sets the  
BATREG  
battery termination voltage to V  
- 150mV for zones  
BATREG  
2
T1_2 and T3_T4, as shown in Figure 4b. The behavior of  
all three modes is summarized in Table 2.  
percentage of this value through I C registers. The fast-  
charge current resistor can be calculated as:  
R
= K  
x V /I  
SET FChg  
SET  
SET  
where K  
has a typical value of 2000A/A and V  
has  
SET  
SET  
a typical value of 1V. The range of acceptable resistors for  
is 4kΩ to 400kΩ  
R
SET  
Maxim Integrated  
33  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
PREQUAL:  
FAST CHARGE CONSTANT CURRENT:  
V
<V  
V
< V < V  
BAT BAT_REG  
BAT BAT_PCHG  
BAT_PCHG  
I
FCHG_T1-T2  
I
FCHG_T2-T3  
I
PCHG  
NO CHARGING  
NO CHARGING  
CHARGING  
NO CHARGING  
CHARGING  
NO CHARGING  
T
T
4
T
2
T
T
1
T
4
1
T
2
T
3
3
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REGULATED VOLTAGE  
CAP  
V
BATREG  
R
PU  
NO CHARGING  
CHARGING  
NO CHARGING  
R
R
THM  
PA  
T
T
4
T
2
T
3
1
TEMPERATURE (°C)  
Figure 4a. Charging Behavior Using Thermistor Monitoring Mode  
PREQUAL:  
FAST-CHARGE CONSTANT-CURRENT:  
< V < V  
V
<V  
BAT BAT_PCHG  
V
BAT_PCHG  
BAT  
BAT_REG  
(BOTH MODES)  
(BOTH MODES)  
I
FCHG_T1-T2  
NO  
I
FCHG_T3-T4  
I
FCHG_T2-T3  
I
PCHG  
NO  
CHARGING  
NO  
CHARGING  
NO  
CHARGING  
CHARGING  
CHARGING  
CHARGING  
T1  
T4  
T
1
T
4
T2  
T3  
T
T
3
2
TEMPERATURE (°C)  
TEMPERATURE (°C)  
REGULATED VOLTAGE  
(JEITA MONITORING 1)  
REGULATED VOLTAGE  
(JEITA MONITORING 2)  
V
V
BATREG  
BATREG  
-150mV  
-150mV  
NO  
CHARGING  
NO  
CHARGING  
NO  
CHARGING  
NO  
CHARGING  
CHARGING  
CHARGING  
T
T
4
T
T
4
T
2
T
T
T
3
1
1
3
2
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 4b. Charging Behavior Using JEITA Monitoring 1 and 2 Modes  
Maxim Integrated  
34  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 2. Thermistor Monitoring/JEITA Monitoring Enable Control  
CHARGER MODE  
ThermEn[1:0] DESCRIPTION  
T < T1  
T1 < T < T2  
T2 < T < T3  
T3 < T < T4  
T >T4  
Thermistor/  
JEITA  
Monitoring OFF  
2
00  
01  
As per I C settings  
I
= IPChg,  
= T1T2IFchg,  
I
= IPChg,  
PCHG  
PCHG  
Thermistor  
Monitoring ON  
I
I
= T2T3IFchg,  
Regulated Voltage =  
FChg  
FChg  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
Regulated Voltage =  
V
V
BATREG  
BATREG  
I
= IPChg,  
= T1T2IFchg,  
I
= IPChg,  
I
= IPChg,  
PCHG  
= T3T4IFchg  
Regulated Voltage =  
PCHG  
PCHG  
JEITA  
Monitoring 1 ON  
I
I
= T2T3IFchg  
Regulated Voltage =  
I
FChg  
FChg  
FChg  
10  
11  
Regulated Voltage =  
V
V
V
BATREG  
BATREG  
BATREG  
I
= IPChg,  
= T1T2IFchg,  
I
= IPChg,  
I
= IPChg,  
PCHG  
PCHG  
PCHG  
JEITA  
Monitoring 2 ON  
I
I
= T2T3IFchg,  
Regulated Voltage =  
I
= T3T4IFchg,  
FChg  
FChg  
FChg  
Regulated Voltage =  
Regulated Voltage =  
- 150mV  
V
- 150mV  
V
V
BATREG  
BATREG  
BATREG  
2
I C Interface  
2
The device uses the two-wire I C interface to communicate  
with the host microcontroller. The configuration settings  
and status information provided through this interface are  
detailed in the register descriptions.  
2
I C Addresses  
The registers of the MAX14745 are accessed through  
the slave address of 0101000 (0x50 for writes/0x51 for  
reads).  
Maxim Integrated  
35  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Thermistor Monitoring with Charger Shutdown  
FROM ANY STATE  
T
< T  
DIE  
BUS_LIM  
SYS  
OR V > V  
BAT  
OR ChgEn = 0  
RESET CHARGE TIMER  
T1 < T < T4  
CHARGER OFF  
FAULT  
ChgStat = 111  
LED = 0.15s PERIOD  
ChgStat = 000  
LED = OFF  
CHARGE SUSPEND  
I = 0  
CHG  
I
= 0  
CHG  
RECOVER FROM FAULT  
RESET CHARGE TIMER  
ChgStat = 001  
LED = 1.5s PERIOD  
I
= 0  
CHG  
ChgEn = 1,  
V
SYS  
> V  
SYS_LIM  
V
< V  
– V  
BATRE  
BAT  
AND ChgAutoReSta = 1  
AND V > V  
BATREG  
PAUSE  
CHARGE  
TIMER  
SYS  
SYS_LIM  
MAINTAIN  
PREQUAL  
RESET CHARGE TIMER  
CHARGE DONE  
PREQUAL SUSPEND  
T < T1 or T > T3  
T1 < T < T3  
ChgStat = 010  
LED = ON  
ChgStat = 110  
LED = OFF  
ChgStat = 001  
LED = 1.5s PERIOD  
T < T1 or T > T3  
I
= I  
CHG PCHG  
I
= 0  
CHG  
I
= 0  
CHG  
t
> t  
CHG_TIMER PCHG  
V
< V  
V
> V  
BAT BAT_PChg  
BAT  
BAT_PChg  
RESET CHARGE TIMER  
RESET CHARGE TIMER  
PAUSE  
CHARGE  
TIMER  
FAST  
CHARGE  
CC SUSPEND  
FAST  
CHARGE  
(CONSTANT CURRENT)  
T<T1 or T>T3  
ChgStat = 001  
LED = 1.5s PERIOD  
ChgStat = 011  
LED = ON  
t
> t  
T1<T<T3  
CHG_TIMER MTCHG  
I
= 0  
CHG  
I
= I  
**  
CHG FCHG  
AND  
ChgAutoStp = 1  
(VOLTAGE MODE = 0*  
AND V > V  
tCHG_TIMER > tFCHG  
)
SYS  
OR V < V  
SYS_LIM  
VOLTAGE MODE = 1* AND  
> V  
BAT  
BAT_PChg  
V
SYS  
SYS_LIM  
PAUSE  
CHARGE  
TIMER  
I
> I  
CHG CHG_DONE  
FAST  
CHARGE  
CV SUSPEND  
ChgAutoStp = 0"  
MAINTAIN  
CHARGE  
FAST  
CHARGE  
(CONSTANT VOLTAGE)  
RESET CHARGE TIMER  
T<T1 or T>T3  
T1<T<T3  
ChgStat = 101  
LED = ON  
ChgStat = 001  
LED = 1.5s PERIOD  
T < T1 or T > T3  
ChgStat = 100  
LED = ON  
I
< I  
CHG CHG_DONE  
I
< I  
AND  
CHG CHG_DONE  
I
= 0  
CHG  
I
= I  
CHG FCHG  
V
> V  
SYS  
SYS_LIM  
AND  
< T  
T
DIE  
CHG_LIM  
t
MTCHG  
RESET CHARGE TIMER  
NOTES:  
* VOLTAGE MODE IS AN INTERNAL SIGNAL  
** CHARGE TIMER IS SLOWED BY 50% IF I  
< I  
CHG FCHG  
/ 2 AND PAUSED IF I /5 ONLY IN FAST CHARGE CONSTANT CURRENT STATE  
< I  
CHG FCHG  
Figure 5a. Charger State Diagram (Thermistor Monitoring with Charger Shutdown)  
Maxim Integrated  
36  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
FROM ANY STATE  
TDIE<TBUS_LIM  
or VBAT>VSYS  
or ChgEn=0  
RESET CHARGE TIMER  
T1<T<T4  
1s  
V
<V  
–V  
BAT BATREG BATRECHG  
FRESH BATTERY  
INSERTION  
CHARGE SUSPEND  
CHARGER OFF  
FAULT  
ChgStat=001  
LED=1.5s period  
ChgStat=111  
LED=0.15s PERIOD  
ChgStat=000  
LED=OFF  
ChgStat=110  
LED=1s pulse  
I
=0  
CHG  
I
=0  
CHG  
T<T1 or T>T4  
ChgEn=1,  
I
=0  
CHG  
RECOVER FROM FAULT  
RESET CHARGE TIMER  
I =0  
CHG  
V
>V  
–V  
BAT BATREG BATRECHG  
Freshbat_dis=0  
ChgEn=1,  
ChgEn=1  
AND  
>V  
V
BAT  
> V  
– V  
BATREG BATRECHG  
V
SYS SYS_LIM  
V
<V  
–V  
BAT BATREG BATRECHG  
PAUSE  
CHARGE  
TIMER  
and ChgAutoReSta=1  
And V >V  
SYS SYS_LIM  
RESET CHARGE TIMER  
MAINTAIN  
CHARGE DONE  
PREQUAL  
PREQUAL SUSPEND  
T<T1 or T>T4  
ChgStat=110  
LED=OFF  
ChgStat=010  
LED=ON  
ChgStat=001  
LED=1.5s PERIOD  
T<T1 or T>T4  
T1<T<T4  
I =0  
CHG  
I
=I  
I
=0  
CHG  
CHG PCHG  
t
>t  
CHG_TIMER PCHG  
V
<V  
V
>V  
BAT BAT_PChg  
BAT BAT_PChg  
RESET CHARGE TIMER  
RESET CHARGE TIMER  
PAUSE  
CHARGE  
TIMER  
FAST  
CHARGE  
(CONSTANT CURRENT)  
FAST  
CHARGE  
CC SUSPEND  
T<T1 or T>T4  
T1<T<T4  
ChgStat=011  
LED=ON  
ChgStat=001  
LED=1.5s PERIOD  
t
>t  
CHG_TIMER MTCHG  
I
=I  
**  
CHG FCHG  
I
=0  
CHG  
AND  
ChgAutoStp=1  
(VOLTAGE MODE=0*  
T<T2 or T>T3  
AND V >V  
)
VOLTAGE MODE=1*  
AND  
>V  
SYS SYS_LIM  
V <V  
BAT BAT_PChg  
t
>t  
CHG_TIMER FCHG  
OR  
V
SYS SYS_LIM  
PAUSE  
CHARGE  
TIMER  
I
>I  
CHG CHG_DONE  
FAST  
CHARGE  
(CONSTANT VOLTAGE)  
FAST  
CHARGE  
CV SUSPEND  
MAINTAIN  
CHARGE  
ChgAutoStp=0"  
T<T1 or T>T4  
RESET CHARGE TIMER  
ChgStat=101  
LED=ON  
ChgStat=100  
LED=ON  
ChgStat=001  
LED=1.5s PERIOD  
T<T1 or T>T4  
T1<T<T4  
I
<I  
AND  
I
<I  
CHG CHG_DONE  
CHG CHG_DONE  
I
=I  
I
=0  
CHG  
CHG FCHG  
V
>V  
SYS SYS_LIM  
AND  
T
<T  
DIE CHG_LIM  
t
MTCHG  
RESET CHARGE TIMER  
NOTES:  
* VOLTAGE MODE IS AN INTERNAL SIGNAL  
** CHARGE TIMER IS SLOWED BY 50% IF I  
< I  
/2 AND PAUSED IF I /5 ONLY IN FAST CHARGE CONSTANT  
< I  
CHG FCHG  
CHG FCHG  
CURRENT STATE WHERE I  
FCHG  
IS THE EFFECTIVE FAST CHARGE CURRENT INCLUDING JEITA CURRENT LIMITATION  
Figure 5b. Battery Charger State Diagram (JEITA Monitoring with Charger Shutdown)  
Maxim Integrated  
37  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
2
Slave Address  
I C Interface  
The MAX14745 contain an I2C-compatible interface for  
data communication with a host controller (SCL and  
SDA). The interface supports a clock frequency of up to  
400kHz. SCL and SDA require pullup resistors that are  
connected to a positive supply.  
Set the Read/Write bit high to configure the MAX14745  
to read mode (Table 3). Set the Read/Write bit low to  
configure the MAX14745 to write mode. The address is  
the first byte of information sent to the MAX14745 after  
the START condition.  
Bit Transfer  
Start, Stop, And Repeated Start Conditions  
2
One data bit is transferred on the rising edge of each  
SCL clock cycle. The data on SDA must remain stable  
during the high period of the SCL clock pulse. Changes in  
SDA while SCL is high and stable are considered control  
signals (see theStart, Stop,And Repeated Start Conditions  
section). Both SDA and SCL remain high when the bus  
is not active.  
When writing to the MAX14745 using I C, the master  
sends a START condition (S) followed by the MAX14745  
I C address. After the address, the master sends the  
register address of the register that is to be programmed.  
The master then ends communication by issuing a  
STOP condition (P) to relinquish control of the bus, or  
a REPEATED START condition (Sr) to communicate to  
2
2
another I C slave. See Figure 6.  
Single-Byte Write  
In this operation, the master sends an address and two  
data bytes to the slave device (Figure 7). The following  
procedure describes the single byte write operation:  
2
Table 3. I C Slave Addresses  
ADDRESS FORMAT  
7-Bit Slave ID  
HEX  
0x28  
0x50  
0x51  
BINARY  
0101000  
01010000  
01010001  
1) The master sends a START condition  
Write Address  
Read Address  
2) The master sends the 7-bit slave address plus a  
write bit (low)  
3) The addressed slave asserts an ACK on the data line  
4) The master sends the 8-bit register address  
S
Sr  
P
5) The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
SCL  
SDA  
6) The master sends 8 data bits  
7) The slave asserts an ACK on the data line  
8) The master generates a STOP condition  
2
Figure 6. I C START, STOP and REPEATED START Conditions  
WRITE SINGLE BYTE  
S
DEVICE SLAVE ADDRESS - W  
A
A
REGISTER ADDRESS  
A
8 DATA BITS  
P
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 7. Write Byte Sequence  
Maxim Integrated  
38  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Burst Write  
Single Byte Read  
In this operation, the master sends an address and  
multiple data bytes to the slave device (Figure 8).  
The slave device automatically increments the  
register address after each data byte is sent. The following  
procedure describes the burst write operation:  
In this operation, the master sends an address plus two  
data bytes and receives one data byte from the slave  
device (Figure 9). The following procedure describes the  
single byte read operation:  
1) The master sends a START condition  
1) The master sends a START condition  
2) The master sends the 7-bit slave address plus a  
write bit (low)  
2) The master sends the 7-bit slave address plus a  
write bit (low)  
3) The addressed slave asserts an ACK on the data  
line  
3) The addressed slave asserts an ACK on the data  
line  
4) The master sends the 8-bit register address  
4) The master sends the 8-bit register address  
5) The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
5) The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
6) The master sends a REPEATED START condition  
6) The master sends eight data bits  
7) The slave asserts an ACK on the data line  
8) Repeat 6 and 7 N-1 times  
7) The master sends the 7-bit slave address plus a  
read bit (high)  
8) The addressed slave asserts an ACK on the data line  
9) The slave sends eight data bits  
9) The master generates a STOP condition  
10) The master asserts a NACK on the data line  
11) The master generates a STOP condition  
BURST WRITE  
S
DEVICE SLAVE ADDRESS - W  
A
A
REGISTER ADDRESS  
8 DATA BITS - 2  
A
A
A
8 DATA BITS - 1  
8 DATA BITS - N  
P
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 8. Burst Write Sequence  
READ SINGLE BYTE  
S
DEVICE SLAVE ADDRESS - W  
A
A
REGISTER ADDRESS  
8 DATA BITS  
A
Sr  
DEVICE SLAVE ADDRESS - R  
NA  
P
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 9. Read Byte Sequence  
Maxim Integrated  
39  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
9) The slave sends eight data bits  
Burst Read  
In this operation, the master sends an address plus two  
data bytes and receives multiple data bytes from the slave  
device (Figure 10). The following procedure describes the  
burst byte read operation:  
10) The master asserts an ACK on the data line  
11) Repeat 9 and 10 N-2 times  
12) The slave sends the last eight data bits  
13) The master asserts a NACK on the data line  
14) The master generates a STOP condition  
1) The master sends a START condition  
2) The master sends the 7-bit slave address plus a  
write bit (low)  
Acknowledge Bits  
3) The addressed slave asserts an ACK on the data  
line  
Data transfers are acknowledged with an acknowledge bit  
(ACK) or a not-acknowledge bit (NACK). Both the master  
and the MAX14745 generate ACK bits. To generate an  
ACK, pull SDA low before the rising edge of the ninth  
clock pulse and hold it low during the high period of the  
ninth clock pulse (see Figure 11). To generate a NACK,  
leave SDA high before the rising edge of the ninth clock  
pulse and leave it high for the duration of the ninth clock  
pulse. Monitoring for NACK bits allows for detection of  
unsuccessful data transfers.  
4) The master sends the 8-bit register address  
5) The slave asserts an ACK on the data line only if the  
address is valid (NAK if not)  
6) The master sends a REPEATED START condition  
7) The master sends the 7-bit slave address plus a  
read bit (high)  
8) The slave asserts an ACK on the data line  
BURST READ  
S
DEVICE SLAVE ADDRESS - W  
DEVICE SLAVE ADDRESS - R  
8 DATA BITS - 2  
A
A
A
REGISTER ADDRESS  
8 DATA BITS - 1  
A
A
Sr  
8 DATA BITS - 3  
A
8 DATA BITS - N  
NA  
P
FROM MASTER TO SLAVE  
FROM SLAVE TO MASTER  
Figure 10. Burst Read Sequence  
S
SCL  
1
2
8
9
NOT ACKNOWLEDGE  
SDA  
ACKNOWLEDGE  
Figure 11. Acknowledge  
Maxim Integrated  
40  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Maxim Integrated  
41  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Maxim Integrated  
42  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
2
I C Register Descriptions  
Table 4. ChipId Register (0x00)  
ADDRESS:  
MODE:  
0x00  
Read-Only  
BIT  
7
6
5
4
3
2
1
0
0
0
NAME  
Chip_Id[7:0]  
Chip_Id[7:0] bits show information about the version of the MAX14745.  
Chip_Id[7:0]  
Table 5. ChipRev Register (0x01)  
ADDRESS:  
MODE:  
0x01  
Read-Only  
BIT  
7
6
5
4
3
2
1
NAME  
Chip_Rev[7:0]  
Chip_Rev[7:0] bits show information about the revision of the MAX14745 silicon.  
Chip_Rev[7:0]  
Table 6. StatusA Register (0x02)  
ADDRESS:  
MODE:  
BIT  
0x02  
Read-Only  
7
6
5
4
3
2
1
NAME  
ThermStat[2:0]  
ChgStat[2:0]  
Status of Thermistor Monitoring  
000 = T < T1  
001 = T1 < T < T2  
010 = T2 < T < T3  
011 = T3 < T < T4  
100 = T > T4  
ThermStat[2:0]  
101 = No thermistor detected (THM high due to external pullup). Note that if a parallel resistor is used for  
thermistor monitoring, this mode may not function properly.  
110 = NTC input disabled through ThermEn[1:0]  
111 = Detection disabled due to CHGIN not present.  
Status of Charger Mode  
000 = Charger off  
001 = Charging suspended due to temperature (see Figure 5a and Figure 5b)  
010 = Pre-charge in progress  
011, 100 = Fast charge in progress  
ChgStat[2:0]  
101 = Maintain charge in progress  
110 = Maintain charger timer done  
111 = Charger fault condition (see Figure 5a and Figure 5b)  
Maxim Integrated  
43  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 7. StatusB Register (0x03)  
ADDRESS:  
MODE:  
BIT  
0x03  
Read-Only  
7
6
5
4
3
2
1
0
Chg  
ThrmSd  
Chg  
ThrmReg  
NAME  
UVLOLDO2 UVLOLDO3  
ILim  
UsbOVP  
UsbOk  
ChgTmo  
Status of LDO2 UVLO  
UVLOLDO2  
0 = LDO2 in normal operating mode  
1 = Undervoltage-lockout on LDO2  
Status of LDO2 UVLO  
UVLOLDO3  
ILim  
0 = LDO3 in normal operating mode  
1 = Undervoltage-lockout on LDO3  
CHGIN Input Current Limit  
0 = CHGIN input current is within limit.  
1 = CHGIN input is in current limit.  
Status of CHGIN OVP  
UsbOVP  
UsbOk  
0 = CHGIN OVP is not active.  
1 = CHGIN OVP is active.  
Status of CHGIN Input  
0 = CHGIN Input is not present or outside of valid range.  
1 = CHGIN Input is present and valid.  
Status of Thermal Shutdown  
ChgThrmSd  
0 = Charger and input current limiter is in normal operating mode.  
1 = Charger and input current limiter is in thermal shutdown.  
Status of Thermal Regulation  
0 = Charger is functioning normally, or disabled.  
1 = Charger is running in thermal regulation mode and charging current is being actively reduced to prevent  
device overheating.  
ChgThrmReg  
ChgTmo  
Status of Time-Out Condition  
0 = Charger is running normally, or disabled.  
1 = Charger has reached a time-out condition. ChgStat =1 11 in this condition (see Figure 5).  
Maxim Integrated  
44  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 8. StatusC Register (0x04)  
ADDRESS:  
MODE:  
BIT  
0x04  
Read-Only  
7
6
5
4
3
2
1
0
NAME  
SysBLim  
VLim  
ThrmBuck1 ThrmBuck2 ThrmLDO1  
ThrmLDO2  
ThrmLDO3  
Status of Minimum SYS-BAT Voltage Limit. While the system is powered from VBUS, the charger draws power  
from SYS to charge the battery. If the total load exceeds the input current limit, an adaptive charger control loop  
reduces charge current to prevent VSYS from collapsing. The regulation of the charge current starts when either  
SysBLim  
one of the following two conditions is true: 1. V  
0 = Charge Current is normal.  
- V  
= 100mV (typ) OR 2. V  
= V (falling)  
SYS  
BAT  
SYS  
SYS_LIM  
1 = Charge Current is being actively reduced to prevent SYS collapse.  
Status of CHGIN-SYS Voltage Limit. This bit indicates if the input current limit is being actively reduced to  
maintain a 40mV drop between CHGIN-SYS. This adaptive input current limit prevents adapter collapse in the  
case that a power adapter with insufficient load capability, or a high resistance charging cable is used.  
0 = CHGIN input current limit is functioning normally.  
VLim  
1 = CHGIN input current limit is being actively reduced to maintain 40mV drop between CHGIN-SYS.  
0 = Buck1 NOT in Thermal Off mode  
1 = Buck1 in Thermal Off Mode  
ThrmBuck1  
ThrmBuck2  
ThrmLDO1  
ThrmLDO2  
ThrmLDO3  
0 = Buck2 NOT in Thermal Off mode  
1 = Buck2 in Thermal Off Mode  
0 = LDO1 NOT in Thermal Off mode  
1 = LDO1 in Thermal Off Mode  
0 = LDO2 NOT in Thermal Off mode  
1 = LDO2 in Thermal Off Mode  
0 = LDO3 NOT in Thermal Off mode  
1 = LDO3 in Thermal Off Mode  
Maxim Integrated  
45  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 9. IntA Register (0x05)  
ADDRESS:  
MODE:  
BIT  
0x05  
Clear On Read  
7
6
5
4
3
2
1
0
Therm  
StatInt  
Chg  
ThrmSdInt  
Therm  
RegInt  
Chg  
TmoInt  
NAME  
ChgStatInt  
ILimInt  
UsbOVPInt  
UsbOk  
ThermStatInt  
ChgStatInt  
ILimInt  
Change in ThermStat caused interrupt.  
Change in ChgStat caused interrupt, or first detection complete after POR.  
Input current limit triggered caused interrupt.  
Change in UsbOVP caused interrupt.  
UsbOVPInt  
UsbOk  
Change in UsbOk caused interrupt.  
ChgThrmSdInt Change in ChgThrmSd caused interrupt.  
ThermRegInt  
ChgTmoInt  
Change in ChgThrmReg caused interrupt.  
Change in ChgTmo caused interrupt.  
Table 10. IntB Register (0x06)  
ADDRESS:  
MODE:  
BIT  
0x06  
Clear On Read  
7
6
5
4
3
2
1
0
Thrm  
Buck1Int  
Thrm  
Buck2Int  
Thrm  
LDO1Int  
Thrm  
LDO2Int  
Thrm  
LDO3Int  
NAME  
SysBLimInt  
VLimInt  
SysBLimInt  
VLimInt  
Minimum SYS-BAT voltage limit caused interrupt  
Input Voltage Limit caused interrupt  
ThrmBuck1Int  
ThrmBuck2Int  
ThrmLDO1Int  
ThrmLDO2Int  
ThrmLDO3Int  
Change in ThrmBuck1 caused interrupt.  
Change in ThrmBuck2 caused interrupt.  
Change in ThrmLDO1 caused interrupt.  
Change in ThrmLDO2 caused interrupt.  
Change in ThrmLDO3 caused interrupt.  
Maxim Integrated  
46  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 11. IntMaskA Register (0x07)  
ADDRESS:  
MODE:  
BIT  
0x07  
Read/Write  
7
6
5
4
3
2
1
0
Therm  
StatIntM  
Chg  
StatIntM  
Usb  
OVPIntM  
ChgThrm  
SdIntM  
Therm  
RegIntM  
Chg  
TmoIntM  
NAME  
ILimIntM  
UsbOkM  
ThermStatIntM masks the ThermStatInt interrupt in the IntA register (0x05).  
ThermStatIntM 0 = Mask  
1 = Not masked  
ChgStatIntM masks the ChgStatInt interrupt in the IntA register (0x05).  
ChgStatIntM  
ILimIntM  
0 = Mask  
1 = Not masked  
ILimIntM masks the ILimInt interrupt in the IntB register (0x06).  
0 = Mask  
1 = Not masked  
UsbOVPIntM masks the UsbOVPInt interrupt in the IntA register (0x05).  
UsbOVPIntM  
UsbOkM  
0 = Mask  
1 = Not masked  
UsbOkM masks the UsbOk interrupt in the IntB register (0x06).  
0 = Mask  
1 = Not masked  
ChgThrmSdIntM masks the ChgThrmSdInt interrupt in the IntB register (0x06).  
0 = Mask  
1 = Not masked  
ChgThrm  
SdIntM  
ThermRegIntM masks the ThermRegInt interrupt in the IntA register (0x05).  
ThermRegIntM 0 = Mask  
1 = Not masked  
ChgTmoIntM masks the ChgTmoInt interrupt in the IntA register (0x05).  
ChgTmoIntM  
0 = Mask  
1 = Not masked  
Maxim Integrated  
47  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 12. IntMaskB Register (0x08)  
ADDRESS:  
MODE:  
BIT  
0x08  
Read/Write  
7
6
5
4
3
2
1
0
SysB  
LimIntM  
Thrm  
Buck1IntM  
Thrm  
Buck2IntM  
Thrm  
LDO1IntM  
Thrm  
LDO2IntM  
Thrm  
LDO3IntM  
NAME  
VLimIntM  
SysBLimIntM masks the SysBLimInt interrupt in the IntB register (0x06).  
SysBLimIntM  
0 = Mask  
1 = Not masked  
VLimIntM masks the VLimInt interrupt in the IntB register (0x06).  
VLimIntM  
0 = Mask  
1 = Not masked  
0 = Mask  
ThrmBuck1  
IntM  
1 = Not masked  
0 = Mask  
ThrmBuck2  
IntM  
1 = Not masked  
0 = Mask  
ThrmLDO1  
IntM  
1 = Not masked  
0 = Mask  
ThrmLDO2  
IntM  
1 = Not masked  
0 = Mask  
ThrmLDO3  
IntM  
1 = Not masked  
Table 13. ILimCntl Register (0x09)  
ADDRESS:  
MODE:  
BIT  
0x09  
Read/Write* or Read-Only if Write-Protect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
SysMin[2:0]  
ILimCntl [1:0]  
SysMin sets System Voltage Minimum Threshold. When SYS drops to this level, the charger current is reduced.  
000 = 3.6V  
001 = 3.7V  
010 = 3.8V  
011 = 3.9V  
100 = 4.0V  
101 = 4.1V  
110 = 4.2V  
111 = 4.3V  
SysMin[2:0]  
CHGIN Custom Input Current Limit  
(see Electrical Characteristics table for details)  
00 = 0mA  
ILimCntl[1:0]  
01 = 100mA  
10 = 500mA  
11 = 1000mA  
*Register is reset to default value upon CHGIN rising edge.  
Maxim Integrated  
48  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 14. ChgCntlA Register (0x0A)  
ADDRESS:  
MODE:  
BIT  
0x0A  
Read/Write* or Ready-Only if Write-Protect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
BatReChg[1:0]  
BatReg[3:0]  
ChgEn  
Recharge Threshold in Relation to BatReg  
00 = BatReg - 70mV  
01 = BatReg - 120mV  
BatReChg[1:0]  
10 = BatReg - 170mV  
11 = BatReg - 220mV  
Setting the Battery Regulation Threshold  
0000 = 4.05V  
0001 = 4.10V  
0010 = 4.15V  
0011 = 4.20V  
0100 = 4.25V  
0101 = 4.30V  
0110 = 4.35V  
BatReg[3:0]  
0111 = 4.4V  
1000 = 4.45V  
1001 = 4.5V  
1010 = 4.55V  
1011 = 4.6V  
1100…1111 = Reserved  
On/Off Control for Charger (does not affect SYS node).  
0 = Charger disabled.  
ChgEn  
1 = Charger enabled.  
*Register is reset to default value upon CHGIN rising edge.  
Maxim Integrated  
49  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 15. ChgCntlB Register (0x0B)  
ADDRESS:  
MODE:  
BIT  
0x0B  
Read/Write* or Ready-Only if Write-Protect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
-
VPChg[2:0]  
IPChg[1:0]  
ChgDone[1:0]  
Pre-charge voltage threshold setting  
000 = 2.10V  
001 = 2.25V  
010 = 2.40V  
VPChg[2:0]  
111 = 2.55V  
100 = 2.70V  
101 = 2.85V  
110 = 3.00V  
111 = 3.15V  
Pre-charge current setting  
00 = 0.05 x I  
FChg  
FCHG  
FChg  
IPChg[1:0]  
01 = 0.1 x I  
10 = 0.2 x I  
11 = 0.3 x I  
FChg  
Charge Done Threshold Setting  
00 = 0.05 x I  
FChg  
ChgDone[1:0]  
01 = 0.1 x I  
10 = 0.2 x I  
11 = 0.3 x I  
FChg  
FChg  
FChg  
*Register is reset to default value upon CHGIN rising edge.  
Maxim Integrated  
50  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 16. ChTmr Register (0x0C)  
ADDRESS:  
MODE:  
BIT  
0x0C  
Read/Write* or Ready-Only if Write-Protect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
ChgAutoStp  
ChpAutoReSta  
MtChgTmr[1:0]  
FChgTmr[1:0]  
PChgTmr[1:0]  
Charger Auto-Stop. Controls the transition from Maintain Charger to Maintain Charger Done.  
ChgAutoStp  
0 = Auto-stop disabled.  
1 = Auto-stop enabled.  
Charger Auto-Restart Control  
0 = Charger remains in maintain charge done even when VBAT is less than charge restart threshold (see  
Charger state diagram)  
ChgAutoReSta  
1 = Charger automatically restarts when VBAT drops below charge restart threshold  
Maintain Charge Timer Setting  
00 = 0min  
01 = 15min  
MtChgTmr  
[1:0]  
10 = 30min  
11 = 60min  
Fast-Charge Timer Setting  
00 = 75min  
FChgTmr[1:0]  
PChgTmr[1:0]  
01 = 150min  
10 = 300min  
11 = 600min  
Precharge Timer Setting  
00 = 30min  
01 = 60min  
10 = 120min  
11 = 240min  
*Register is reset to default value upon CHGIN rising edge.  
Table 17. Buck1Cfg Register (0x0D)  
ADDRESS:  
MODE:  
BIT  
0x0D  
Read/Write  
7
6
5
4
3
2
1
0
Reserved  
Reserved  
NAME  
Buck1Seq[2:0] (Read-only)  
Buck1En[1:0]  
Buck1 Enable Configuration (Read-Only)  
000 = Disabled  
001 = Reserved  
010 = Enabled at 0% of Boot/POR Process Delay Control  
Buck1Seq[2:0] 011 = Enabled at 25% of Boot/POR Process Delay Control  
100 = Enabled at 50% of Boot/POR Process Delay Control  
101 = Reserved  
110 = Reserved  
111 = Controlled by Buck1En[1:0] after 100% of Boot/POR Process Delay Control  
Buck1 Enable Configuration (effective only when Buck1Seq = 111)  
00 = Disabled (Buck1 OUT not actively discharged unless in Hard Reset/ShutDown/Off Mode)  
01 = Enabled  
Buck1En[1:0]  
10 = Enabled when MPC0 is high (regardless of MPC1)  
11 = Enabled when MPC1 is high (regardless of MPC0)  
Maxim Integrated  
51  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 18. Buck1VSet Register (0x0E)  
ADDRESS:  
MODE:  
BIT  
0x0E  
Read/Write  
7
6
5
4
3
2
1
0
NAME  
Buck1LowEMI  
Buck1VSet[5:0]  
Buck1 BLX Rising/Falling Slopes Setting  
0 = Normal rising/falling slopes on BLX  
Buck1LowEMI  
1 = Reduce the rising/falling slopes on BLX by a factor of three.  
Buck1 Output Voltage Setting  
Linear Scale from 0.8V to 2.375V in 25mV increments  
Buck1VSet  
[5:0]  
000000 = 0.8V  
000001 = 0.825V  
111111 = 2.375V  
Changes in output voltages are digitally ramped in 25mV increments every 80µs giving a maximum slew rates of 312.5V/s.  
Table 19. Buck2Cfg Register (0x0F)  
ADDRESS:  
MODE:  
BIT  
0x0F  
Read/Write or Read-Only if Write-Protect Enabled (See Table 38)  
7
6
5
4
3
2
1
0
NAME  
Buck2Seq[2:0] (Read-only)  
Buck2En[1:0]  
Reserved  
Reserved  
Buck2 Enable Configuration (Read-only)  
000 = Disabled  
001 = Reserved  
010 = Enabled at 0% of Boot/POR Process Delay Control  
011 = Enabled at 25% of Boot/POR Process Delay Control  
100 = Enabled at 50% of Boot/POR Process Delay Control  
101 = Reserved  
Buck2Seq[2:0]  
110 = Reserved  
111 = Controlled by Buck2En [1:0] after 100% of Boot/POR Process Delay Control  
Buck2 Enable Configuration (effective only when Buck2Seq = 111)  
00 = Disabled (Buck2 OUT not actively discharged unless in Hard Reset/ShutDown/OMode)  
01 = Enabled  
Buck2En[1:0]  
10 = Enabled when MPC0 is high (regardless of MPC1)  
11 = Enabled when MPC1 is high (regardless of MPC0)  
Maxim Integrated  
52  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 20. Buck2VSet Register (0x10)  
ADDRESS:  
MODE:  
BIT  
0x10  
Read/Write or Read-Only if WriteProtect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
Buck2LowEMI  
Buck2VSet[5:0]  
Buck1 BLX Rising/Falling Slopes Setting  
0 = Normal rising/falling slopes on BLX  
Buck2LowEMI  
1 = Reduce the rising/falling slopes on BLX by a factor of three.  
Buck2 Output Voltage Setting  
Linear Scale from 0.8V to 3.95V in 50mV increments  
000000 = 0.80V  
000001 = 0.85V  
...  
Buck2VSet  
[5:0]  
111111 = 3.95V  
Changes in output voltages are digitally ramped in 50mV increments every 40µs giving a maximum slew rates of 1250V/s.  
Table 21. Buck1/2ISet Register (0x11)  
ADDRESS:  
MODE:  
BIT  
0x11  
Read/Write  
7
6
5
4
3
2
1
0
NAME  
Buck2ISet[3:0]  
Buck1ISet[3:0]  
Buck2 Inductor Peak current setting. 25mA step  
0000 = Reserved  
0001 = Reserved  
0010 = 50mA  
...  
Buck2ISet[3:0]  
1111 = 375mA  
Buck1 Inductor Peak Current Setting. 25mA step  
0000 = Reserved  
0001 = Reserved  
0010 = 50mA  
...  
Buck1ISet[3:0]  
1111 = 375mA  
Maxim Integrated  
53  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 22. LDO1Cfg Register (0x12)  
ADDRESS:  
MODE:  
BIT  
0x12  
Read/Write  
7
6
5
4
3
2
1
0
LDO1Act  
DSC  
NAME  
LDO1Seq[2:0] (Read Only)  
LDO1En[1:0]  
LDO1Mode  
LDO1 Enable Configuration (Read-only)  
000 = Disabled  
001 = Enabled always when BAT/SYS is present  
010 = Enabled at 0% of Boot/POR Process Delay Control  
011 = Enabled at 25% of Boot/POR Process Delay Control  
100 = Enabled at 50% of Boot/POR Process Delay Control  
101 = Disabled  
LDO1Seq[2:0]  
110 = Disabled  
111 = Controlled by LDO1En[1:0] after 100% of Boot/POR Process Delay Control  
LDO1 Active Discharge Control  
0: LDO1 output will be actively discharged only in HardReset mode  
LDO1ActDSC  
1: LDO1 output will be actively discharged in HardReset mode and also when its Enable goes Low. The active  
discharge circuit will continue to draw additional quiescent current as long at this bit is set to 1, even when the  
LDO is disabled. (See EC table.)  
LDO1 Enable Configuration (effective only when LDO1Seq = 111)  
00 = Disabled  
LDO1En[1:0]  
LDO1Mode  
01 = Enabled  
10 = Enabled when MPC0 is high (regardless of MPC1)  
11 = Enabled when MPC1 is high (regardless of MPC0)  
LDO1 Mode Control  
0 = Normal LDO operating mode  
1 = Load switch mode. FET is either fully ON or OFF depending on state of LDO1En. When FET is ON, the  
output is unregulated. This setting is internally latched and can change only when the LDO is disabled.  
Table 23. LDO1VSet Register (0x13)  
ADDRESS:  
MODE:  
BIT  
0x13  
Read/Write or Read-Only if WriteProtect Enabled (see Table 38)  
7
-
6
-
5
-
4
3
2
1
0
NAME  
LDO1Vset[4:0]  
LDO1 Output Voltage Setting  
Linear Scale from 0.8V to 3.6V in 100mV increments  
00000 = 0.8V  
LDO1VSet[4:0] 00001 = 0.9V  
11100 = 3.6V  
>11101 = N/A  
Maxim Integrated  
54  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 24. LDO2Cfg Register (0x14)  
ADDRESS:  
MODE:  
BIT  
0x14  
Read/Write or Read-Only if Write-Protect Enabled (See Table 38)  
7
6
5
4
3
2
1
0
LDO2Act  
DSC  
LDO2  
Mode  
NAME  
LDO2Seq[2:0] (Read Only)  
LDO2En[1:0]  
LDO2 Enable Configuration (Read only)  
000 = Disabled  
001 = Enabled always when BAT/SYS is present  
010 = Enabled at 0% of Boot/POR Process Delay Control  
011 = Enabled at 25% of Boot/POR Process Delay Control  
100 = Enabled at 50% of Boot/POR Process Delay Control  
101 = Disabled  
LDO2Seq[2:0]  
110 = Disabled  
111 = Controlled by LDO2En[1:0] after 100% of Boot/POR Process Delay Control  
LDO2 Active Discharge Control  
0 = LDO2 output will be actively discharged only in HardReset mode  
LDO2ActDSC  
1 = LDO2 output will be actively discharged in HardReset mode and also when its Enable goes Low. The active  
discharge circuit will continue to draw additional quiescent current as long at this bit is set to 1, even when the  
LDO is disabled. (See Electrical Characteristics table.)  
LDO2 Enable Configuration (effective only when LDO2Seq = 111)  
00 = Disabled – LDO’s OUT not actively discharged unless HardReset/ShutDown/Off Mode  
01 = Enabled  
10 = Enabled when MPC0 is high (regardless of MPC1)  
11 = Enabled when MPC1 is high (regardless of MPC0)  
LDO2En[1:0]  
LDO2Mode  
LDO2 Mode Control  
0 = Normal LDO operating mode  
1 = Load switch mode. FET is either fully ON or OFF depending on state of LDO2En. When FET is ON, the  
output is unregulated. This setting is internally latched and can change only when the LDO is disabled.  
Table 25. LDO2VSet Register (0x15)  
ADDRESS:  
MODE:  
BIT  
0x15  
Read/Write or Read-Only if WriteProtect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
LDO2Vset[4:0]  
LDO2 Output Voltage Setting  
Linear Scale from 0.9V to 4.0V in 100mV increments  
00000 = 0.9V  
00001 = 1.0V  
...  
LDO2VSet[4:0]  
11111 = 4.0V  
Maxim Integrated  
55  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 26. LDO3Cfg Register (0x16)  
ADDRESS:  
MODE:  
BIT  
0x16  
Read/Write  
7
6
5
4
3
2
1
0
LDO3Act  
DSC  
LDO3  
Mode  
NAME  
LDO3Seq[2:0] (Read-Only)  
LDO3En[1:0]  
LDO3 Enable Configuration (Read only)  
000 = Disabled  
001 = Enabled always when BAT/SYS is present  
010 = Enabled at 0% of Boot/POR Process Delay Control  
011 = Enabled at 25% of Boot/POR Process Delay Control  
100 = Enabled at 50% of Boot/POR Process Delay Control  
101 = Disabled  
LDO3Seq[2:0]  
110 = Disabled  
111 = Controlled by LDO3En[1:0] after 100% of Boot/POR Process Delay Control  
LDO3 Active Discharge Control  
0 = LDO3 output will be actively discharged only in HardReset mode  
LDO3ActDSC  
1 = LDO3 output will be actively discharged in HardReset modes and also when its Enable goes Low. The active  
discharge circuit will continue to draw additional quiescent current as long at this bit is set to 1, even when the  
LDO is disabled. (See EC table.)  
LDO3 Enable Configuration (effective only when LDO3Seq == 111)  
00 = Disabled. LDO’s OUT not actively discharged unless in HardReset/ShutDown/Off Mode  
01 = Enabled  
10 = Enabled when MPC0 is high (regardless of MPC1)  
11 = Enabled when MPC1 is high (regardless of MPC0)  
LDO3En[1:0]  
LDO3Mode  
LDO3 Mode Control  
0 = Normal LDO operating mode  
1 = Load switch mode. FET is either fully ON or OFF depending on state of LDO3En. When FET is ON, the  
output is unregulated. This setting is internally latched and can change only when the LDO is disabled.  
Table 27. LDO3VSet Register (0x17)  
ADDRESS:  
MODE:  
BIT  
0x17  
Read/Write or Read-Only if WriteProtect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
LDO3Vset[4:0]  
LDO3 Output Voltage Setting  
Linear Scale from 0.9V to 4.0V in 100mV increments  
00000 = 0.9V  
00001 = 1.0V  
LDO3VSet[4:0]  
11111 = 4.0V  
Maxim Integrated  
56  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 28. ThrmCfg Register (0x18)  
ADDRESS:  
MODE:  
BIT  
0x18  
Read/Write* or Read-Only if WriteProtect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
T1T2IFchg[2:0]  
T2T3IFchg[2:0]  
ThermEn[1:0]  
Fast Charge Current for T1-T2 Temperature Zone  
000 = 0.2 x I  
001 = 0.3 x I  
010 = 0.4 x I  
011 = 0.5 x I  
100 = 0.6 x I  
101 = 0.7 x I  
110 = 0.8 x I  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
T1T2IFchg[2:0]  
111 = 1 x I  
FChg  
Fast Charge Current for T2-T3 Temperature Zone  
000 = 0.2 x I  
001 = 0.3 x I  
010 = 0.4 x I  
011 = 0.5 x I  
100 = 0.6 x I  
101 = 0.7 x I  
110 = 0.8 x I  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
T2T3IFchg[2:0]  
111 = 1 x I  
FChg  
Thermistor Monitoring Mode  
00 = Thermistor Monitoring Disabled  
01 = Charging enabled between T1 and T3  
10 = Charging enabled between T1 and T4  
ThermEn[1:0]  
11 = Charging enabled between T1 and T4, Voltage reduced below T2 and above T3  
*Register is reset to default value upon CHGIN rising edge.  
Maxim Integrated  
57  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 29. ThrmCfg Register (0x19)  
ADDRESS:  
MODE:  
BIT  
0x19  
Read/Write* or Read-Only if WriteProtect Enabled (see Table 38)  
7
6
5
4
3
2
1
0
NAME  
T3T4IFchg[2:0]  
Fast Charge Current for T3-T4 Temperature Zone  
000 = 0.2 x I  
001 = 0.3 x I  
010 = 0.4 x I  
011 = 0.5 x I  
100 = 0.6 x I  
101 = 0.7 x I  
110 = 0.8 x I  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
FChg  
T3T4IFchg[2:0]  
111 = 1 x I  
FChg  
*Register is reset to default value upon CHGIN rising edge.  
Table 30. MONCfg Register (0x1A)  
ADDRESS:  
MODE:  
BIT  
0x1A  
Read/Write  
7
6
5
4
3
2
1
0
NAME  
MONRatioCfg[1:0]  
MONHiZ  
MONCtr[2:0]  
MON Resistive Partition Selector  
00 = 4:1  
01 = 3:1  
10 = 2:1  
11 = 1:1  
MONRatioCfg  
MONHiZ  
MON OFF MODE condition  
0 = Pulled LOW by 100k pull-down resistor  
1 = Hi-Z  
MON Pin Source selection (40µs BBM after any change of MONCtr)  
000 = MON is not connected to any internal node and its state depends on MONHiZ  
001 = MON connected to a resistive partition of BATT  
010 = MON connected to a resistive partition of SYS  
MONCtr[2:0]  
011 = MON connected to a resistive partition of BUCK1 OUT  
100 = MON connected to a resistive partition of BUCK2 OUT  
101 = MON connected to a resistive partition of LDO1 OUT  
110 = MON connected to a resistive partition of LDO2 OUT  
111 = MON connected to a resistive partition of LDO3 OUT  
Maxim Integrated  
58  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 31. BootCfg Register (0x1B)  
ADDRESS:  
MODE:  
BIT  
0x1B  
Read-Only  
7
6
5
4
3
2
1
0
NAME  
PwrRstCfg[3:0]  
SftRstCfg  
BootDly[1:0]  
ChgAlwTry  
PwrRstCfg  
[3:0]  
See Table 1  
Soft Reset Register Default  
SftRstCfg  
0 = Registers do not reset to default values on soft reset  
1 = Registers reset to default values on soft reset  
Reset Delay Control (see Figure 2a, 2b)  
00 = 80ms  
01 = 120ms  
10 = 220ms  
11 = 420ms  
BootDly[1:0]  
UVLO Automatic Retry  
If SYS UVLO condition occurs during boot process:  
0 = Part latches off until CHGIN is removed and replaced  
1 = Part retries after delay  
ChgAlwTry  
Table 32. PinStat Register (0x1C)  
ADDRESS:  
MODE:  
BIT  
0x1C  
Read Only  
7
6
5
4
3
2
PFN2  
1
0
NAME  
ILim_T[2:0]  
-
PFN1  
MPC1  
MPC0  
Monitor of The Input limiter Current Setting  
000 = Input Limiter Off  
001 = 100mA  
ILim_T[2:0]  
010 = 500mA  
100 =1A  
PFN1 Input State  
0 = pin low  
1 = pin high  
PFN1  
PFN2  
MPC1  
MPC0  
PFN2 In/Out State  
0 = pin low  
1 = pin high  
MPC1 Input State  
0 = pin low  
1 = pin high  
MPC0 Input State  
0 = pin low  
1 = pin high  
Maxim Integrated  
59  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 33. Buck1/2Extra Control Register (0x1D)  
ADDRESS:  
MODE:  
BIT  
0x1D  
Read/Write  
7
6
5
4
3
2
1
0
Buck2  
Buck2  
FFET  
Buck1  
Buck1  
FFET  
NAME  
Buck2IAdptEnb  
Buck2Fst  
Buck1IAdptEnb Buck1Fst  
ActDSC  
ActDSC  
Buck 2 Peak Current  
Buck2IAdptEnb 0 = Enable adaptive peak current  
1 = Peak current set by Buck2ISet[3:0]  
Buck2 Fast Start  
Buck2Fst  
0 = Normal startup current limit  
1 = Double the startup current to reduce the startup time by half  
Buck2 Active Discharge Control  
0 = Buck2 output will be actively discharged only in HardReset mode  
Buck2ActDSC  
Buck2FFET  
1 = Buck2 output will be actively discharged in HardReset mode and also when its Enable goes Low. Note, when  
BuckActDSC=1, the active discharge circuit will remain active and draw additional quiescent current even when  
Buck2 is disabled.  
Buck2 Force FET scaling (reduces active FET size by 50% and increases efficiency for loads <100mA.)  
0 = FET Scaling disabled  
1 = FET Scaling enabled  
Buck 1 Peak Current  
Buck1IAdptEnb 0 = Enable adaptive peak current  
1 = Peak current set by Buck1ISet[3:0]  
Buck1 Fast Start  
Buck1Fst  
0 = Normal startup current limit  
1 = Double the startup current to reduce the startup time by half  
Buck1 Active Discharge Control  
0 = Buck1 output will be actively discharged only in HardReset mode  
1 = Buck1 output will be actively discharged in HardReset mode and also when its Enable goes Low. Note, when  
BuckActDSC=1, the active discharge circuit will remain active and draw additional quiescent current even when  
Buck2 is disabled.  
Buck1ActDSC  
Buck1FFET  
Buck1 Force FET Scaling (reduces active FET size by 50% and increases efficiency for loads <100mA.)  
0 = FET Scaling only enabled during the Buck1 Turn-On Sequence  
1 = FET Scaling enabled during the Buck1 Turn-On Sequence and also in the Buck1 Steady ON state  
Maxim Integrated  
60  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Table 34. PwrCfg Register (0x1E)  
ADDRESS:  
MODE:  
BIT  
0x1E  
Read/Write  
7
6
5
4
3
2
1
0
PFNx  
ResEna  
NAME  
StayOn  
PFN_ PFNx Automatic Internal Pull-Up/Pull-Down Enable  
0 = No internal pullup/pulldown  
PFNxResEna  
1 = Automatic internal pullup/pulldown as per Table 1  
This bit is used to ensure that the processor booted correctly. This bit must be set within 5s of power-on to  
prevent the part from shutting down and returning to the power-off condition. This bit has no effect after being  
StayOn  
set.  
0 = Shut down 5s after power-on  
1 = Stay on  
Table 35. PwrCmd Register (0x1F)  
ADDRESS:  
MODE:  
BIT  
0x1F  
Read/Write  
7
6
5
4
3
2
1
0
NAME  
PWR_CMD[7:0]  
Power Command Register  
Writing the following values issues the command listed:  
0xB2 = places the part in off mode  
0xC3 = issues a hard reset (power cycle)  
0xD4 = issues a soft reset (reset pulse only)  
PWR_CMD  
[7:0]  
After the written value has been validated by the internal logic, this register is cleared automatically. Any other  
commands will be ignored. See Table 1 for the available PwrCmd for each PwrRstCfg value.  
Maxim Integrated  
61  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Input Capacitor Selection  
Applications Information  
The input capacitors of the buck converters reduce the  
current peaks drawn from the battery or input power  
source and reduces switching noise in the IC. The impedance  
of the input capacitors at the switching frequency should  
be kept very low. Ceramic capacitors are recommended  
due to their small size and low ESR. Make sure the  
capacitor maintains its capacitance over temperature and  
DC bias. Capacitors with X5R or X7R temperature  
characteristics perform well in most applications.  
The buck converters of the MAX14745 are optimized for  
use with a tiny inductor and small ceramic capacitors. The  
correct selection of external components ensures high  
efficiency, low output ripple, and fast transient response.  
Inductor Selection  
A 2.2µH inductor is recommended for use with the  
MAX14745 buck converters. Table 36 lists recommended  
inductors for use depending on whether a given application  
requires highest efficiency, or a compromise between  
high efficiency and small size.  
PCB Layout and Routing  
High switching frequencies and large peak currents make  
PCB layout a very important part of design. Good design  
minimizes excessive EMI on the feedback paths and  
voltage gradients in the ground plane, both of which can  
result in instability or regulation errors. Connect the inductor,  
input capacitor, and output capacitor as close together as  
possible, and keep their traces short, direct, and wide.  
Connect the two GND pins under the IC and directly to the  
grounds of the input and output capacitors. Keep noisy  
traces, such as the LX node, as short as possible.  
Output Capacitor Selection  
The output capacitors of the MAX14745 buck converters  
are required to keep the output voltage ripple small and  
to ensure regulation loop stability. A 10µF output capacitor  
with Buck_ISet[3:0] = 150mA and Buck_IAdptEnb = 0 is  
suggested to cover all the possible output voltage/load  
current cases. If a lower output cap are needed, please  
refer to Table 37 for the minimum allowed capacitor size).  
Ceramic capacitors are recommended due to their small  
size and low ESR and care should be taken to ensure  
that the selected capacitor maintains its capacitance  
over temperature and voltage bias. Capacitors with X5R  
or X7R temperature characteristics perform well in most  
applications.  
Table 36. Suggested Inductors  
INDUCTANCE  
(µH)  
DC RESISTANCE  
CURRENT  
RATING (mA)  
DIMENSIONS  
L x W x H (mm)  
MANUFACTURER  
SERIES  
NOTES  
(mΩ)  
Optimized for  
highest efficiency  
BOURNS  
SRP2010  
2.2  
2.2  
168  
2200  
1400  
2.0 x 1.6 x 1.0  
1.6 x 0.8 x 1.0  
Optimized for  
smallest size  
MURATA  
MFD160810  
310  
Table 37. Output Capacitor Values*  
OUTPUT VOLTAGE  
(V)  
OUTPUT CAPACITOR MINIMUM VALUES  
(µF)  
BUCK_ISET[3:0]  
<150mA  
<200mA  
<175mA  
>1.4V  
>1.2V  
>0.8  
2.2  
4.7  
10  
*Minimum Output Capacitor Values are given for L = 2.2µH  
Maxim Integrated  
62  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Maxim Integrated  
63  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Maxim Integrated  
64  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Maxim Integrated  
65  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Ordering Information  
PART  
TEMP RANGE  
PIN-PACKAGE  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
36 WLP  
MAX14745AEWX+  
MAX14745AEWX+T  
MAX14745BEWX+*  
MAX14745BEWX+T*  
MAX14745CEWX+  
MAX14745CEWX+T  
MAX14745DEWX+  
MAX14745DEWX+T  
MAX14745EEWX+  
MAX14745EEWX+T  
MAX14745FEWX+  
MAX14745FEWX+T  
MAX14745GEWX+  
MAX14745GEWX+T  
MAX14745HEWX+  
MAX14745HEWX+T  
MAX14745IEWX+  
MAX14745IEWX+T  
MAX14745JEWX+  
MAX14745JEWX+T  
MAX14745KEWX+  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
MAX14745KEWX+T  
MAX14745LEWX+  
MAX14745LEWX+T  
MAX14745MEWX+  
MAX14745MEWX+T  
MAX14745OEWX+  
MAX14745OEWX+T  
MAX14745PEWX+  
MAX14745PEWX+T  
MAX14745QEWX+  
MAX14745QEWX+T  
MAX14745REWX+  
MAX14745REWX+T  
MAX14745SEWX+  
MAX14745SEWX+T  
+Denotes a lead(Pb)-free package/RoHS-compliant package.  
T = Tape and reel.  
*Future Product—contact factory for availability.  
See Table 38 and Table 39 for the device differences.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
66  
www.maximintegrated.com  
MAX14745  
PMIC with Ultra Low I Voltage Regulators and  
Q
Battery Charger for Small Lithium Ion Systems  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
0
6/16  
Initial release  
4–7, 15, 16, 24, 26,  
31, 47, 50, 53, 58, 59  
5, 23–25, 36,  
1
2
10/16  
11/16  
Added new part numbers and corrected various errors  
Changed future product status of MAX14745C/MAX14745D and various updates  
46–48, 60  
Removed future product asterisks from MAX14745EEWX+ and  
MAX14745EEWX+T in the Ordering Information table.  
3
4
5
3/17  
5/17  
6/17  
61  
58–61  
61  
MAX14745E no longer future product. Updated Table 38 and Table 39  
Removed future product asterisks from MAX14745FEWX+ and  
MAX14745FEWX+T in the Ordering Information table.  
Updated Tables 38, 39, and added MAX14745GEWX, MAX14745GEWX+T,  
MAX14745HEWX, MAX14745HEWX+T to the Ordering Information table  
Removed future product asterisks from MAX14745GEWX+ and  
MAX14745GEWX+T in the Ordering Information table  
6
7
8/17  
63–66  
66  
10/17  
Added new parts to the Ordering Information table.  
Updated Tables 23, and 38–39  
54, 63–66  
30, 63–66  
36–37, 66  
8
9
2/18  
2/18  
Updated Figure 2a, Tables 38–39, and added new future parts to the Ordering  
Information table.  
Updated Figures 5a and 5b, and removed future part designation from  
MAX14745IEWX and MAX14745IEWX+T in the Ordering Information table.  
Updated title, Tables 38 and 29, removed future part designation from  
MAX14745KEWX and MAX14745KEWX+T, and added MAX14745LEWX and  
MAX14745LEWX+T as future products to the Ordering Information table.  
Updated Table 39 and the Ordering Information table  
10  
11  
4/18  
5/18  
1–67  
12  
13  
6/18  
7/18  
65–66  
63–66  
Updated Table 38, Table 39, and removed future product designation from  
MAX14745HEWX+ and MAX14745HEWX+Tthe Ordering Information table  
Updated Table 38, Table 39, and added MAX14745MEWX+, MAX14745MEWX+T  
and future products MAX14745OEWX+, MAX14745OEWX+T to the Ordering  
Information table  
63–66  
14  
10/18  
Updated the Bump Description and Table 38; removed future product designation  
from MAX14745OEWX+ and MAX14745OEWX+T, and added MAX14745PEWX+  
and MAX14745PEWX+T as future parts to the Ordering Information table  
Removed future product asterisks from MAX14745PEWX+ and  
MAX14745PEWX+T in the Ordering Information table  
26, 63–64,  
66  
15  
16  
3/19  
4/19  
66  
17  
18  
19  
5/19  
7/19  
8/19  
Updated Table 38  
64  
64  
64  
Corrected errors in Table 38  
Updated Table 38  
Updated Table 38 and Table 39; added MAX14745QEWX+, MAX14745QEWX+T,  
MAX14745SEWX+ and MAX14745EWX+T as future products, and  
MAX14745REWX+ and MAX14745REWX+T to the Ordering Information table  
Removed future product designation from MAX14745SEWX+ and  
MAX14745SEWX+T in the Ordering Information table  
Removed future product designation from MAX14745QEWX+ and  
MAX14745QEWX+T in the Ordering Information table  
20  
2/20  
63–65  
21  
22  
7/20  
9/20  
66  
66  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
67  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY