MAX14783EATA+ [MAXIM]

High-Speed 3.3V/5V RS-485/RS-422 Transceiver with ±35kV HBM ESD Protection;
MAX14783EATA+
型号: MAX14783EATA+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

High-Speed 3.3V/5V RS-485/RS-422 Transceiver with ±35kV HBM ESD Protection

文件: 总17页 (文件大小:1044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EVALUATION KIT AVAILABLE  
Click here to ask about the production status of specific part numbers.  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
General Description  
Benefits and Features  
Integrated Protection Increases Robustness  
The MAX14783E is a half-duplex RS-485/422 transceiver  
that operates at either 3.3V or 5V rails with high ±35kV  
ESD performance and up to 42Mbps data rate. The  
device is optimized for high speeds over extended cable  
runs while maximizing tolerance to noise.  
• High ESD Protection  
• ±35kV HBM ESD per JEDEC JS-001-2012  
• ±20kV Air Gap per IEC 61000-4-2  
• ±12kV Contact ESD per IEC 61000-4-2  
• ±4kV EFT per IEC 61000-4-4  
®
The MAX14783E is available in 8-pin µMAX , 8-pin SO,  
• Short-Circuit Protected Outputs  
and 8-pin TDFN-EP packages. The device in the TDFN-EP  
package operates over the -40°C to +125°C temperature  
range. The MAX14783E in the μMAX and SO packages  
operates over the -40°C to +85°C and -40°C to +125°C  
temperature ranges.  
• True Fail-Safe Receiver Prevents False Transition  
on Receiver Input Short or Open Events  
• Hot-Swap Capability Eliminates False Transitions  
During Power-Up or Hot Insertion  
3V to 5.5V Supply Voltage Range  
Applications  
High-Speed Data Rates up to 42Mbps  
-40°C to +125°C Operating Temperature  
Allows Up to 32 Transceivers on the Bus  
Motion Controllers  
Field Bus Networks  
Encoder Interfaces  
Backplane Busses  
Low 10µA (max) Shutdown Current for Lower Power  
Consumption  
Ordering Information appears at end of data sheet.  
Functional Diagram  
V
CC  
MAX14783E  
R
RO  
RE  
B
A
SHUTDOWN  
DE  
DI  
D
GND  
µMAX is a registered trademark of Maxim Integrated Products, Inc,.  
19-6734; Rev 2; 7/20  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Absolute Maximum Ratings  
(Voltages referenced to GND.)  
Junction Temperature......................................................+150°C  
V
.....................................................................-0.3V to +6.0V  
Storage Temperature Range............................ -65°C to +150°C  
CC  
RO ............................................................ -0.3V to (V  
+ 0.3V)  
Continuous Power Dissipation (T = +70°C)  
CC  
A
RE, DE, DI............................................................-0.3V to +6.0V  
µMAX (derate at 4.8mW/°C above +70°C) .................387mW  
SO (derate at 7.6mW/°C above +70°C)......................606mW  
TDFN-EP (derate at 24.4mW/°C above +70°C)........1951mW  
Lead Temperature (soldering, 10s) .................................+300ºC  
Soldering Temperature (reflow)...................................... +260°C  
A, B (V  
≥ 3.6V) .............................................-8.0V to +13.0V  
CC  
A, B (V  
< 3.6V) .............................................-9.0V to +13.0V  
CC  
Short-Circuit Duration (RO, A, B) to GND.................Continuous  
Operating Temperature Range  
MAX14783EE_............................................... -40°C to +85°C  
MAX14783EA_............................................. -40°C to +125°C  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these  
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Package Information  
PACKAGE TYPE: 8 SOIC  
Package Code  
S8+4  
Outline Number  
21-0041  
90-0096  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
132°C/W  
38°C/W  
JA  
Junction to Case (θ  
)
JC  
PACKAGE TYPE: 8 TDFN  
Package Code  
T833+2  
21-0137  
90-0059  
Outline Number  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
41°C/W  
8°C/W  
JA  
Junction to Case (θ  
)
JC  
PACKAGE TYPE: 8 µMAX  
Package Code  
U8+1  
Outline Number  
21-0036  
90-0092  
Land Pattern Number  
THERMAL RESISTANCE, FOUR-LAYER BOARD  
Junction to Ambient (θ  
)
206°C/W  
42°C/W  
JA  
Junction to Case (θ  
)
JC  
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a “+”, “#”,  
or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains  
to the package regardless of RoHS status.  
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board.  
For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.  
Maxim Integrated  
2  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Electrical Characteristics  
(V  
= +3.0V to +5.5V, T = T  
A
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2)  
CC A  
CC  
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
POWER SUPPLY (Test)  
Supply Voltage  
V
3.0  
5.5  
4
V
CC  
I
Supply Current  
DE = V , RE = GND, no load  
1.9  
mA  
µA  
CC  
CC  
I
Shutdown Supply Current  
DRIVER  
DE = GND, RE = V  
10  
SHDN  
CC  
V
V
V
= 4.5V, R = 54Ω, Figure 1  
2.1  
2.0  
1.5  
CC  
CC  
CC  
L
V
Differential Driver Output  
= 3V, R = 100Ω, Figure 1  
V
OD  
L
= 3V, R = 54Ω, Figure 1  
L
Change in Magnitude of Differential  
Output Voltage  
ΔV  
R = 54Ω or 100Ω, Figure 1 (Note 3)  
-0.2  
0
+0.2  
3
V
V
V
OD  
L
Driver Common-Mode Output  
Voltage  
V
R = 54Ω or 100Ω, Figure 1  
V
/ 2  
OC  
L
CC  
Change in Magnitude of Common-  
Mode Voltage  
ΔV  
R = 54Ω or 100Ω, Figure 1 (Note 3)  
-0.2  
2.2  
+0.2  
OC  
L
V
Single-Ended Driver Output High  
Single-Ended Driver Output Low  
Differential Output Capacitance  
A or B output, I  
A or B output, I  
= -20mA  
= 20mA  
V
OH  
A or B  
V
0.8  
V
OL  
A or B  
C
DE = RE = V , f = 4MHz  
12  
pF  
mA  
mA  
OD  
CC  
0 ≤ V  
≤ +12V, output low  
250  
250  
OUT  
|I  
|
Driver Short-Circuit Output Current  
RECEIVER  
OST  
-7V ≤ V  
≤ V , output high  
CC  
OUT  
V
V
= +12V  
= -7V  
400  
300  
12  
1000  
DE = GND, V  
or +5.5V  
= GND  
IN  
IN  
CC  
I
Input Current  
µA  
pF  
A, B  
-800  
-200  
C
Differential Input Capacitance  
Between A and B, DE = GND, f = 4MHz  
A, B  
Receiver Differential Threshold  
Voltage  
V
-7V ≤ V  
≤ +12V  
-105  
10  
-10  
mV  
TH  
CM  
ΔV  
Receiver Input Hysteresis  
Receiver Input Resistance  
LOGIC INTERFACE (DI, DE, RE, RO)  
Input Voltage High  
V
= 0V  
mV  
TH  
CM  
R
-7V ≤ V  
≤ +12V  
12  
kΩ  
IN  
CM  
V
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
DE, DI, RE  
DE, RE  
2.0  
V
V
IH  
V
Input Voltage Low  
0.8  
IL  
V
Input Hysteresis  
50  
mV  
µA  
kΩ  
HYS  
I
Input Current  
±1  
10  
IN  
Input Impedance on First Transition  
1
RE = GND, I  
= -2mA,  
RO  
V
RO Output Voltage High  
RO Output Voltage Low  
V
– 0.4  
V
V
OHRO  
CC  
(V - V ) > 200mV  
A
B
RE = GND, I  
= 2mA,  
RO  
V
0.4  
OLRO  
(V - V ) < -200mV  
A
B
Maxim Integrated  
3  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Electrical Characteristics (continued)  
(V  
= +3.0V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
RE = V , 0 ≤ V ≤ V  
MIN  
TYP  
MAX  
UNITS  
I
Receiver Tri-State Output Current  
±1  
µA  
OZR  
CC  
RO  
CC  
Receiver Output Short-Circuit  
Current  
I
0 ≤ V  
≤ V  
±110  
mA  
OSR  
RO  
CC  
PROTECTION  
T
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
Temperature rising  
+160  
15  
°C  
°C  
SHDN  
IEC 61000-4-2 Air Gap Discharge to GND  
IEC 61000-4-2 Contact Discharge to GND  
Human Body Model  
±20  
±12  
±35  
±2  
ESD Protection on A and B Pins  
ESD Protection, All Other Pins  
kV  
kV  
Human Body Model  
Switching Characteristics MAX14783E  
(V  
= +3V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2, 4)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DRIVER  
t
20  
20  
DPLH  
R = 54Ω, C = 50pF,  
L L  
Figures 2 and 3  
Driver Propagation Delay  
ns  
ns  
ns  
t
DPHL  
Driver Differential Output Rise or  
Fall Time  
R = 54Ω, C = 50pF,  
L
L
t
, t  
7
3
HL LH  
Figures 2 and 3  
Differential Driver Output Skew  
R = 54Ω, C = 50pF,  
L
L
t
DSKEW  
|t  
- t  
|
Figures 2 and 3 (Note 5)  
DPLH DPHL  
MAX14783EATA  
42  
30  
40  
42  
MAX14783EEUA  
MAX14783EESA  
3.0V ≤ V  
3.6V  
CC  
CC  
CC  
DR  
Maximum Data Rate  
Mbps  
MAX  
MAX14783EAUA  
MAX14783EASA  
3.0V ≤ V  
5.5V  
6
3.0V ≤ V  
3.6V  
42  
16  
3.0V ≤ V  
CC  
5.5V  
Maxim Integrated  
4  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Switching Characteristics MAX14783E (continued)  
(V  
= +3V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2, 4)  
CC A  
CC  
A
MIN  
MAX  
PARAMETER  
SYMBOL  
CONDITIONS  
R = 110Ω, C = 50pF,  
MIN  
TYP  
MAX  
UNITS  
L
L
t
Driver Enable to Output High  
Driver Enable to Output Low  
Driver Disable Time from Low  
Driver Disable Time from High  
30  
ns  
DZH  
Figures 4 and 5 (Note 6)  
R = 110Ω, C = 50pF,  
L
L
t
30  
30  
30  
6
ns  
ns  
ns  
µs  
DZL  
DLZ  
DHZ  
Figures 4 and 5 (Note 6)  
R = 110Ω, C = 50pF,  
L
L
t
Figures 4 and 5  
R = 110Ω, C = 50pF,  
L
L
t
Figures 4 and 5  
Driver Enable from Shutdown to  
Output High  
R = 110Ω, C = 15pF,  
L
L
t
DLZ(SHDN)  
Figures 4 and 5 (Note 6)  
Driver Enable from Shutdown to  
Output Low  
R = 110Ω, C = 15pF,  
Figures 4 and 5 (Note 6)  
L
L
t
6
µs  
ns  
DHZ(SHDN)  
t
Time to Shutdown  
(Note 6)  
50  
42  
800  
SHDN  
RECEIVER  
t
25  
25  
RPLH  
Receiver Propagation Delay  
C = 15pF, Figures 6 and 7  
ns  
L
t
RPHL  
C = 15pF, Figures 6 and 7  
L
(Note 5)  
t
Receiver Output Skew  
Maximum Data Rate  
2
ns  
RSKEW  
DR  
Mbps  
MAX  
R = 1kΩ, C = 15pF,  
Figure 8 (Note 6)  
L
L
t
Receiver Enable to Output High  
Receiver Enable to Output Low  
30  
30  
ns  
ns  
RZH  
R = 1kΩ, C = 15pF,  
L
L
t
RZL  
Figure 8 (Note 6)  
t
Receiver Disable Time from Low  
Receiver Disable Time from High  
R = 1kΩ, C = 15pF, Figure 8  
30  
30  
ns  
ns  
RLZ  
L
L
t
R = 1kΩ, C = 15pF, Figure 8  
RHZ  
L
L
Receiver Enable from Shutdown to  
Output High  
R = 1kΩ, C = 15pF,  
L L  
Figure 8 (Note 6)  
t
6
µs  
RLZ(SHDN)  
RHZ(SHDN)  
Receiver Enable from Shutdown to  
Output Low  
R = 1kΩ, C = 15pF,  
L
L
t
6
µs  
ns  
Figure 8 (Note 6)  
t
Time to Shutdown  
(Note 6)  
50  
800  
SHDN  
Note 1: All devices 100% production tested at T = +25°C. Specifications over temperature are guaranteed by design.  
A
Note 2: All currents into the device are positive; all currents out of the device are negative. All voltages are referenced to ground,  
unless otherwise noted.  
Note 3: ΔV  
and ΔV  
are the changes in V  
and V , respectively, when the DI input changes state.  
OD  
OC  
OD OC  
Note 4: Capacitive load includes test probe and fixture capacitance.  
Note 5: Guaranteed by design; not production tested.  
Note 6: The timing parameter refers to the driver or receiver enable delay, when the device has exited the initial hot-swap protect  
state and is in normal operating mode.  
Note 7: Shutdown is enabled by driving RE high and DE low. The device is guaranteed to have entered shutdown after t  
has  
SHDN  
elapsed.  
Maxim Integrated  
5  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Test and Timing Diagrams  
A
V
CC  
DE  
R
L
2
A
B
DI  
V
OD  
R
L
C
L
V
OD  
R
2
L
V
OC  
B
Figure 1. Driver DC Test Load  
Figure 2. Driver Timing Test Circuit  
f = 1MHz, t = 3ns, t = 3ns  
LH  
HL  
V
CC  
DI  
1.5V  
1.5V  
0
t
t
DPHL  
DPLH  
B
A
V
OD  
V
= [V - V ]  
A B  
OD  
V
O
90%  
90%  
V
OD  
0
10%  
10%  
-V  
O
t
LH  
t
HL  
t
|t  
- t  
|
DSKEW = DPLH DPHL  
Figure 3. Driver Propagation Delays  
Maxim Integrated  
6  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
A
B
S1  
DI  
V
0
GND OR V  
CC  
OUT  
CC  
D
C
L
1.5V  
50pF  
DE  
t
, t  
R
110  
DZH DZH(SHDN)  
L =  
DE  
0.25V  
V
0
OH  
1.5V  
GENERATOR  
OUT  
50Ω  
t
DHZ  
Figure 4. Driver Enable and Disable Times (t  
t
)
DZH, DHZ  
V
CC  
R
L =  
110  
A
V
0
CC  
S1  
DI  
0 OR V  
OUT  
CC  
D
1.5V  
DE  
t
, t  
DZL DZL(SHDN)  
B
t
DLZ  
V
CC  
DE  
OUT  
1.5V  
V
OL  
0.25V  
GENERATOR  
50Ω  
Figure 5. Driver Enable and Disable Times (t  
, t  
)
DZL DLZ  
A
B
R
RO  
ATE  
V
ID  
Figure 6. Receiver Propagation Delay Test Circuit  
Maxim Integrated  
7  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
A
B
1V  
-1V  
t
t
RPHL  
RPLH  
V
OH  
RO  
1.5V  
1.5V  
V
OL  
t
|t  
- t  
|
RSKEW = RPHL RPLH  
Figure 7. Receiver Propagation Delays  
+1.5V  
-1.5V  
S3  
R
1k  
S1  
S2  
V
CC  
RO  
V
R
ID  
C
L
15pF  
RE  
GENERATOR  
50Ω  
V
0
V
CC  
CC  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
RE  
RO  
1.5V  
1.5V  
RE  
0
t
t
RZH, RZH(SHDN)  
t
, t  
RZL RZL(SHDN)  
V
V
OH  
CC  
2
CC  
OL  
V
V
CC  
2
0
V
RO  
RE  
V
CC  
V
CC  
S1 OPEN  
S2 CLOSED  
S3 = +1.5V  
S1 CLOSED  
S2 OPEN  
S3 = -1.5V  
1.5V  
1.5V  
RE  
RO  
0
0
V
0
t
t
RLZ  
RHZ  
V
CC  
OL  
OH  
0.25V  
0.25V  
V
RO  
Figure 8. Receiver Enable and Disable Times  
Maxim Integrated  
8  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Typical Operating Characteristics  
(V  
= +5V, T = +25°C, unless otherwise specified.)  
CC  
A
NO-LOAD SUPPLY CURRENT  
vs. TEMPERATURE  
SHUTDOWN SUPPLY CURRENT  
SUPPLY CURRENT vs. DATA RATE  
vs. TEMPERATURE  
120  
3.0  
2.5  
10  
9
8
7
6
5
4
3
2
1
0
DE = V  
CC  
V
= 5V, 54Ω LOAD  
CC  
DE = V  
DE = GND  
RE = V  
CC  
RE = GND  
CC  
100  
80  
60  
40  
20  
0
V
CC  
= 5V  
2.0  
1.5  
1.0  
0.5  
0
V
= 3.3V, 54Ω LOAD  
CC  
V
= 3.3V  
CC  
V
CC  
= 5V  
V
= 5V, NO LOAD  
CC  
V
= 3.3V  
CC  
V
CC  
= 3.3V, NO LOAD  
0
10  
20  
DATA RATE (Mbps)  
30  
40  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
RECEIVER-OUTPUT HIGH VOLTAGE  
vs. OUTPUT CURRENT  
RECEIVER-OUTPUT LOW VOLTAGE  
vs. OUTPUT CURRENT  
DRIVER OUTPUT CURRENT  
vs. DIFFERENTIAL OUTPUT VOLTAGE  
5
4
3
2
1
0
5
4
3
2
1
0
160  
120  
80  
40  
0
OUTPUT SOURCING CURRENT  
OUTPUT SINKING CURRENT  
V
CC  
= 5V  
V
= 5V  
CC  
V
= 3.3V  
V
CC  
= 3.3V  
CC  
V
= 3.3V  
CC  
V
= 5V  
50  
CC  
0
-10  
-20  
-30  
-40  
-50  
-60  
0
10  
20  
30  
40  
60  
0
1
2
3
4
5
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
DIFFERENTIAL OUTPUT VOLTAGE (V)  
DIFFERENTIAL DRIVER OUTPUT  
VOLTAGE vs. TEMPERATURE  
DRIVER OUTPUT CURRENT  
vs. OUTPUT HIGH VOLTAGE  
5.0  
-180  
V
= 5V  
R = 54Ω  
L
CC  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
-160  
-140  
-120  
-100  
-80  
C = 50pF  
L
V
= 5V  
CC  
V
= 3.3V  
CC  
-60  
V
CC  
= 3.3V  
-40  
-20  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-7 -6 -5 -4 -3 -2 -1  
0
1
2
3
4
5
TEMPERATURE (°C)  
OUTPUT HIGH VOLTAGE (V)  
Maxim Integrated  
9  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Typical Operating Characteristics (continued)  
(V  
= +3.0V to +5.5V, T = T  
to T  
, unless otherwise specified. Typical values are at V  
= +5V and T = +25°C.) (Notes 1, 2)  
A
CC  
A
MIN  
MAX  
CC  
DRIVER OUTPUT CURRENT  
vs. OUTPUT LOW VOLTAGE  
DRIVER PROPAGATION DELAY  
DIFFERENTIAL DRIVER SKEW  
vs. TEMPERATURE  
vs. TEMPERATURE  
180  
30  
10  
9
8
7
6
5
4
3
2
1
0
R = 54Ω  
C = 50pF  
L
R = 54Ω  
C = 50pF  
L
V
= 5V  
L
L
CC  
160  
140  
120  
100  
80  
25  
t
, V = 3.3V  
DPHL CC  
20  
15  
10  
5
t , V = 3.3V  
DPLH CC  
V
CC  
= 3.3V  
60  
V
CC  
= 3.3V  
t
, V = 5V  
DPHL CC  
40  
t , V = 5V  
DPLH CC  
20  
V
CC  
= 5V  
0
0
0
2
4
6
8
10  
12  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
OUTPUT LOW VOLTAGE (V)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER-OUTPUT RISE/FALL TIME  
vs. TEMPERATURE  
DRIVER-OUTPUT TRANSITION SKEW  
vs. TEMPERATURE  
RECEIVER PROPAGATION DELAY  
vs. TEMPERATURE  
8
7
6
5
4
3
2
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
18  
16  
14  
12  
10  
8
R = 54Ω  
C = 50pF  
L
C = 15pF  
L
R = 54Ω  
C = 50pF  
L
L
L
t
, V = 3.3V  
HL CC  
t
, V = 3.3V  
RPLH CC  
t , V = 5V  
HL CC  
t , V = 3.3V  
RPHL CC  
V
= 3.3V  
CC  
t , V = 5V  
RPHL CC  
t
, V = 5V  
LH CC  
6
t , V = 3.3V  
LH CC  
t , V = 5V  
RPLH CC  
4
2
V
= 5V  
CC  
0
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
DRIVER/RECEIVER  
PROPAGATION DELAY  
DIFFERENTIAL INPUT CAPACITANCE  
vs. FREQUENCY  
MAX14783E toc15  
30  
20  
10  
0
V
= 3.3V  
DE = GND  
CC  
C = 8pF  
L
5V/div  
DI  
A/B  
RO  
2V/div  
5V/div  
0
3
30  
10ns/div  
FREQUENCY (MHz)  
Maxim Integrated  
10  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Pin Configuration  
TOP VIEW  
V
B
7
A
6
GND  
5
CC  
8
+
RO  
RE  
DE  
1
2
3
8
7
6
V
B
A
CC  
MAX14783E  
MAX14783E  
*EP  
+
DI  
4
5
GND  
1
2
3
4
RO  
RE  
DE  
DI  
µMAX/SO  
TDFN-EP  
*CONNECT EXPOSED PAD (EP) TO GND  
Pin Description  
PIN  
NAME  
FUNCTION  
1
RO  
Receiver Output. See Function Tables.  
Receiver Output Enable. Drive RE low to enable RO. Drive RE high to disable the receiver. RO is high  
impedance when RE is high. Drive RE high and pull DE low to enter low-power shutdown mode.  
2
3
4
RE  
Driver Output Enable. Drive DE high to enable the driver. Drive DE low to disable the driver. Driver  
outputs are high-impedance when the driver is disabled. Drive RE high and pull DE low to enter low-  
power shutdown mode.  
DE  
Driver Input. With DE high, a low on DI forces the A output low and the B output high. Similarly, a high  
on DI forces the A output high and B output low.  
DI  
5
6
GND  
A
Ground  
Noninverting RS-485/RS-422 Receiver Input and Driver Output  
Inverting RS-485/RS-422 Receiver Input and Driver Output  
7
B
8
V
Positive Supply Voltage Input. Bypass V  
with a 0.1µF ceramic capacitor to ground.  
CC  
CC  
EP  
Exposed Pad (TDFN only). Connect EP to GND.  
Maxim Integrated  
11  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Function Tables  
TRANSMITTING  
INPUTS  
OUTPUTS  
MODE  
RE  
X
DE  
1
DI  
1
B
0
1
A
1
0
Active  
Active  
X
1
0
0
0
X
X
High Impedance  
High Impedance  
Driver Disabled  
Shutdown  
1
0
RECEIVING  
INPUTS  
OUTPUTS  
MODE  
RE  
0
DE  
X
A-B  
≥ -10mV  
≤ -200mV  
Open/Shorted  
X
RO  
1
Active  
Active  
0
X
0
0
X
1
Active  
1
1
1
High Impedance  
High Impedance  
Receiver Disabled  
Shutdown  
0
X
X = Don’t care  
Maxim Integrated  
12  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Hot-Swap Capability  
Detailed Description  
The MAX14783E is a 3.3V/5V ESD-protected RS-485/  
RS-422 transceiver intended for high-speed, half-duplex  
communications. Integrated hot-swap functionality elimi-  
nates false transitions on the bus during power-up or hot  
insertion.  
Hot-Swap Inputs  
When circuit boards are inserted in a hot or powered  
backplane, disturbances on the enable inputs and dif-  
ferential receiver inputs can lead to data errors. Upon  
initial circuit board insertion, the processor undergoes its  
power-up sequence. During this period, the processor  
output drivers are high impedance and are unable to drive  
the DE and RE inputs of the MAX14783E to a defined  
logic level. Leakage currents up to 10µA from the high-  
impedance outputs of a controller could cause DE and RE  
to drift to an incorrect logic state. Additionally, parasitic  
The device features fail-safe receiver inputs guaranteeing  
a logic-high receiver output when inputs are shorted or  
open. The IC has a 1-unit load receiver input impedance,  
allowing up to 32 transceivers on the bus.  
True Fail Safe  
The MAX14783E guarantees a logic-high receiver output  
when the receiver inputs are shorted or open, or when  
they are connected to a terminated transmission line with  
all drivers disabled. If the differential receiver input voltage  
(A–B) is greater than or equal to -10mV, RO is logic-high.  
circuit board capacitance could cause coupling of V  
CC  
or GND to DE and RE. These factors could improperly  
enable the driver or receiver. The MAX14783E features  
integrated hot-swap inputs that help to avoid these poten-  
tial problems.  
When V  
rises, an internal pulldown circuit holds DE  
Driver Single-Ended Operation  
CC  
low and RE high. After the initial power-up sequence, the  
pulldown circuit becomes transparent, resetting the hot-  
swap-tolerable inputs.  
The A and B outputs can either be used in the standard  
differential operating mode, or can be used as single-  
ended outputs. Since the A and B driver outputs swing  
rail-to-rail, they can individually be used as standard TTL  
logic outputs.  
Hot-Swap Input Circuitry  
The DE and RE enable inputs feature hot-swap capabil-  
ity. At the input, there are two nMOS devices, M1 and M2  
(Figure 9). When V  
ramps from 0V, an internal 10µs  
CC  
timer turns on M2 and sets the SR latch that also turns  
V
CC  
10µs  
TIMER  
TIMER  
DRIVER  
ENABLE  
5k(typ)  
DE  
(HOT SWAP)  
100µA  
500µA  
M1  
M2  
Figure 9. Simplified Structure of the Driver Enable (DE) Pin  
Maxim Integrated  
13  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
on M1. Transistors M2 (a 500µA current sink) and M1 (a  
100µA current sink) pull DE to GND through a 5kΩ (typ)  
resistor. M2 is designed to pull DE to the disabled state  
against an external parasitic capacitance up to 100pF that  
can drive DE high. After 10µs, the timer deactivates M2  
while M1 remains on, holding DE low against three-state  
leakages that can drive DE high. M1 remains on until an  
external source overcomes the required input current.  
At this time, the SR latch resets and M1 turns off. When  
M1 turns off, DE reverts to a standard, high-impedance  
● ±35kV HBM  
● ±20kV using the Air-Gap Discharge method specified  
in IEC 61000-4-2  
● ±12kV using the Contact Discharge method specified  
in IEC 61000-4-2  
ESD Test Conditions  
ESD performance depends on a variety of conditions.  
Contact Maxim for a reliability report that documents test  
setup, test methodology, and test results.  
CMOS input. Whenever V  
swap input is reset.  
drops below 1V, the hot-  
CC  
Human Body Model (HBM)  
Figure 10 shows the HBM, and Figure 11 shows the cur-  
rent waveform it generates when discharged into a low-  
impedance state. This model consists of a 100pF capaci-  
tor charged to the ESD voltage of interest, which is then  
discharged into the test device through a 1.5kΩ resistor.  
A complementary circuit employing two pMOS devices  
pulls RE to V  
.
CC  
±35kV ESD Protection  
ESD protection structures are incorporated on all pins  
to protect against electrostatic discharges encountered  
during handling and assembly. The driver outputs and  
receiver inputs of the MAX14783E have extra protection  
against static electricity. The ESD structures withstand  
high ESD in all states: normal operation, shutdown, and  
powered down. After an ESD event, the MAX14783E  
keeps working without latch-up or damage.  
IEC 61000-4-2  
The IEC 61000-4-2 standard covers ESD testing and per-  
formance of finished equipment. However, it does not spe-  
cifically refer to integrated circuits. The MAX14783E helps  
in designing equipment to meet IEC 61000-4-2 without the  
need for additional ESD protection components.  
The major difference between tests done using the HBM  
and IEC 61000-4-2 is higher peak current in IEC 61000-  
4-2 because series resistance is lower in the IEC 61000-  
4-2 model. Hence, the ESD withstand voltage measured  
to IEC 61000-4-2 is generally lower than that measured  
using the HBM.  
ESD protection can be tested in various ways. The trans-  
mitter outputs and receiver inputs of the MAX14783E are  
characterized for protection to the following limits:  
R
1.5k  
R
1MΩ  
D
C
PEAK-TO-PEAK RINGING  
(NOT DRAWN TO SCALE)  
I
100%  
90%  
I
P
R
DISCHARGE  
RESISTANCE  
CHARGE CURRENT-  
LIMIT RESISTOR  
AMPERES  
36.8%  
HIGH-  
DEVICE  
UNDER  
TEST  
VOLTAGE  
DC  
C
100pF  
STORAGE  
CAPACITOR  
S
10%  
0
SOURCE  
TIME  
0
t
RL  
t
DL  
CURRENT WAVEFORM  
Figure 10. Human Body ESD Test Model  
Figure 11. Human Body Current Waveform  
Maxim Integrated  
14  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Figure 12 shows the IEC 61000-4-2 model, and Figure  
13 shows the current waveform for IEC 61000-4-2 ESD  
Contact Discharge test.  
RE and DE can be connected together and driven simul-  
taneously. The MAX14783E is guaranteed not to enter  
shutdown if RE is high and DE is low for less than 50ns.  
If the inputs are in this state for at least 800ns (max), the  
device is guaranteed to enter shutdown.  
Applications Information  
Driver Output Protection  
Typical Applications  
Two mechanisms prevent excessive output current and  
power dissipation caused by faults or by bus connec-  
tion. The first, a current limit on the output stage provides  
immediate protection against short circuits over the whole  
common-mode voltage range. The second, a thermal-shut-  
down circuit, forces the driver outputs into a high-imped-  
ance state if the die temperature exceeds +160°C (typ).  
The MAX14783E transceiver is designed for bidirectional  
data communications on multipoint bus transmission  
lines. Figure 14 shows a typical network application cir-  
cuit. To minimize reflections, terminate the line at both  
ends with its characteristic impedance and keep stub  
lengths off the main line as short as possible.  
Low-Power Shutdown Mode  
Low-power shutdown mode is initiated by bringing RE  
high and DE low. In shutdown, the devices draw less than  
10µA of supply current.  
R
C
R
D
I
50MTO 100MΩ  
330Ω  
100%  
90%  
DISCHARGE  
RESISTANCE  
CHARGE CURRENT-  
LIMIT RESISTOR  
HIGH-  
VOLTAGE  
DC  
DEVICE  
UNDER  
TEST  
C
150pF  
STORAGE  
CAPACITOR  
S
SOURCE  
10%  
t
R
= 0.7ns TO 1ns  
t
30ns  
60ns  
Figure 12. IEC 61000-4-2 ESD Test Model  
Figure 13. IEC 61000-4-2 ESD Generator Current Waveform  
120  
120Ω  
DE  
B
B
DI  
D
D
DI  
DE  
A
B
A
B
A
A
R
RO  
RE  
RO  
RE  
R
R
R
D
D
MAX14783E  
DE  
RE  
DI  
DI  
RO  
DE RO RE  
Figure 14. Typical Half-Duplex RS-485 Network  
Maxim Integrated  
15  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Ordering Information  
PART  
SUPPLY RANGE  
DATA RATE (MAX)  
TEMP RANGE  
PIN-PACKAGE  
MAX14783EEUA+  
MAX14783EESA+  
MAX14783EATA+  
3.0V to 5.5V  
3.0V to 5.5V  
3.0V to 5.5V  
3.0V to 3.6V  
3.0V to 5.5V  
3.0V to 3.6V  
3.0V to 5.5V  
30Mbps  
40Mbps  
42Mbps  
42Mbps  
16Mbps  
42Mbps  
6Mbps  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +125°C  
8 µMAX  
8 SO  
8 TDFN-EP*  
MAX14783EASA+  
MAX14783EAUA+  
-40°C to +125°C  
-40°C to +125°C  
8 SO  
8 µMAX  
+Denotes lead(Pb)-free/RoHS-compliant package.  
*EP = Exposed paddle.  
Chip Information  
PROCESS: BiCMOS  
Maxim Integrated  
16  
www.maximintegrated.com  
MAX14783E  
High-Speed 3.3V/5V RS-485/RS-422 Transceiver  
with ±35kV HBM ESD Protection  
Revision History  
REVISION REVISION  
PAGES  
CHANGED  
DESCRIPTION  
NUMBER  
DATE  
6/13  
1/15  
7/20  
0
1
2
Initial release  
1
Updated page 1 content  
Updated the Benefits and Features and Electrical Characteristics sections  
1, 3  
For pricing, delivery, and ordering information, please visit Maxim Integrated’s online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.  
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses  
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)  
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.  
©
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.  
2020 Maxim Integrated Products, Inc.  
17  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY