MAX15014BATX+ [MAXIM]

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators; 1A , 4.5V至40V输入降压型转换器,带有50毫安辅助LDO稳压器
MAX15014BATX+
型号: MAX15014BATX+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
1A , 4.5V至40V输入降压型转换器,带有50毫安辅助LDO稳压器

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 信息通信管理
文件: 总26页 (文件大小:810K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-0734; Rev 0; 1/07  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
General Description  
Features  
Combined DC-DC Converters and Low-Quiescent-  
The MAX15014–MAX15017 combine a step-down DC-  
DC converter and a 50mA, low-quiescent-current low-  
dropout (LDO) regulator. The LDO regulator is ideal for  
powering always-on circuitry in automotive applications.  
The DC-DC converter input voltage range is 4.5V to 40V  
for the MAX15015/MAX15016, and 7.5V to 40V for the  
MAX15014/MAX15017.  
Current LDO Regulators  
1A DC-DC Converters Operate from 4.5V to 40V  
(MAX15015/MAX15016) or 7.5V to 40V  
(MAX15014/MAX15017)  
Switching Frequency of 135kHz  
(MAX15014/MAX15016) or 500kHz  
(MAX15015/MAX15017)  
The DC-DC converter output is adjustable from 1.26V to  
32V and can deliver up to 1A of load current. These  
devices utilize a feed-forward voltage-mode control  
scheme for good noise immunity in the high-voltage  
switching environment and offer external compensation  
allowing for maximum flexibility with a wide selection of  
inductor values and capacitor types. The switching  
frequency is internally fixed at 135kHz and 500kHz,  
depending on the version chosen. Moreover, the  
switching frequency can be synchronized to an exter-  
nal clock signal through the SYNC input. Light load effi-  
ciency is improved by automatically switching to a  
pulse-skip mode. The soft-start time is adjustable with  
an external capacitor. The DC-DC converter can be  
disabled independent of the LDO, thus reducing the  
quiescent current to 47µA (typ).  
50mA LDO Regulator Operates from 5V to 40V  
Independent of the DC-DC Converter  
47µA Quiescent Current with DC-DC Converter  
Off and LDO On  
6µA System Shutdown Current  
Frequency Synchronization Input  
Shutdown/Enable Inputs  
Adjustable Soft-Start Time  
Active-Low Open-Drain RESET Output with  
Programmable Timeout Delay  
Thermal Shutdown and Output Short-Circuit  
Protection  
Space-Saving (6mm x 6mm) Thermally Enhanced  
36-Pin TQFN Package  
The LDO linear regulators operate from 5V to 40V and  
deliver a guaranteed 50mA load current. The devices  
feature a preset output voltage of 5V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage  
can be adjusted from 1.5V to 11V by using an external  
resistive divider. The LDO section also features a  
RESET output with adjustable timeout period.  
Ordering Information  
PIN-  
PKG  
PART  
TEMP RANGE  
PACKAGE  
CODE  
Protection features include cycle-by-cycle current limit,  
hiccup-mode output short-circuit protection, and thermal  
shutdown. All devices are available in a space-saving,  
high-power (2.86W), 36-pin TQFN package and are  
rated for operation over the -40°C to +125°C automotive  
temperature range.  
MAX15014AATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15014BATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15015AATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15015BATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15016AATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15016BATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15017AATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
MAX15017BATX+ -40°C to +125°C 36 TQFN-EP* T3666-3  
Applications  
Car Radios  
+Denotes a lead-free package.  
*EP = Exposed pad.  
Automotive Body Control Modules  
Automotive Instrument Cluster  
Navigation Systems  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
ABSOLUTE MAXIMUM RATINGS  
IN_SW, IN_LDO, DRAIN, EN_SYS, EN_SW  
LDO_OUT Output Current.................................Internally Limited  
Switch DC Current (DRAIN and LX pins combined)  
T = +125°C.......................................................................1.9A  
J
to SGND ..............................................................-0.3V to +45V  
IN_LDO to IN_SW..................................................-0.3V to +0.3V  
LX to SGND ...........................................-0.3V to (V  
LX to PGND ...........................................-0.3V to (V  
BST to SGND..........................................-0.3V to (V  
+ 0.3V)  
+ 0.3V)  
+ 12V)  
T = +150°C.....................................................................1.25A  
RESET Sink Current ..............................................................5mA  
IN_SW  
IN_SW  
IN_SW  
J
Continuous Power Dissipation (T = +70°C)  
A
BST to LX................................................................-0.3V to +12V  
PGND to SGND .....................................................-0.3V to +0.3V  
REG, DVREG, SYNC, RESET, CT to SGND............-0.3V to +12V  
36-Pin TQFN (derate 26.3mW/°C above +70°C)  
Single-Layer Board .....................................................2105mW  
36-Pin TQFN (derate 35.7mW/°C above +70°C)  
Multilayer Board ..........................................................2857mW  
Operating Temperature Range .........................-40°C to +125°C  
Maximum Junction Temperature .....................................+150°C  
Storage Temperature Range ............................-60°C to +150°C  
Lead Temperature (soldering, 10s) ................................+300°C  
FB, COMP_SW, SS to SGND....................-0.3V to (V  
+ 0.3V)  
REG  
SET_LDO, LDO_OUT to SGND ..............................-0.3V to +12V  
C+ to PGND  
(MAX15015/MAX15016 only)................(V  
C- to PGND  
- 0.3V) to 12V  
DVREG  
(MAX15015/MAX15016 only) ............-0.3V to (V  
+ 0.3V)  
DVREG  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
4–MAX5017  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
REG  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C  
= 0.22µF, T = T = -40°C to +125°C, unless otherwise noted.  
DRAIN A J  
IN_SW  
IN_LDO  
LDO_OUT  
Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
= 1.3V,  
MIN  
TYP  
MAX  
UNITS  
V
FB  
0.7  
1.8  
MAX15014/MAX15017  
System Supply Current (Not  
Switching)  
I
No load  
mA  
SYS  
V
= 1.3V,  
FB  
0.85  
5.6  
1.8  
MAX15015/MAX15016  
V
= 0V,  
FB  
MAX15014/MAX15017  
Switching System Supply Current  
LDO Quiescent Current  
I
No load  
mA  
µA  
SW  
V
= 0V,  
FB  
8.6  
MAX15015/MAX15016  
I
= 100µA  
= 50mA  
47  
130  
6
63  
200  
10  
LDO_OUT  
LDO_OUT  
V
V
= 14V,  
= 0V  
EN_SYS  
EN_SW  
I
LDO  
I
System Shutdown Current  
System Enable Voltage  
System Enable Hysteresis  
System Enable Input Current  
BUCK CONVERTER  
I
V
= 0V, V  
= 0V  
µA  
V
SHDN  
EN_SYS  
EN_SW  
V
EN_SYS = high, system on  
EN_SYS = low, system off  
2.4  
EN_SYSH  
V
0.8  
EN_SYSL  
220  
0.5  
0.6  
mV  
µA  
V
V
= 2.4V  
= 14V  
2
2
EN_SYS  
EN_SYS  
I
EN_SYS  
MAX15014/MAX15017  
MAX15015/MAX15016  
7.5  
4.5  
40.0  
40.0  
Input Voltage Range  
V
V
IN_SW  
2
_______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
REG  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C  
= 0.22µF, T = T = -40°C to +125°C, unless otherwise noted.  
DRAIN A J  
IN_SW  
IN_LDO  
LDO_OUT  
Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
and IN_LDO rising,  
MAX15014/MAX15017  
MIN  
TYP  
MAX  
UNITS  
V
IN_SW  
6.7  
7.0  
7.4  
Undervoltage Lockout Threshold  
UVLO  
V
TH  
V
and IN_LDO rising,  
IN_SW  
3.90  
4.08  
4.25  
MAX15015/MAX15016  
MAX15014/MAX15017  
MAX15015/MAX15016  
Minimum output  
0.54  
0.3  
1.26  
32  
Undervoltage Lockout  
Hysteresis  
UVLO  
V
HYST  
Output Voltage Range  
Output Current  
V
V
A
OUT  
Maximum output  
I
1
OUT  
V
EN_SW = high, switching power supply is on  
EN_SW = low, switching power supply is off  
2.4  
EN_SWH  
EN_SW Input Voltage Threshold  
EN_SW Hysteresis  
V
V
0.8  
EN_SWL  
220  
0.5  
0.6  
mV  
µA  
V
V
= 2.4V  
= 14V  
2
2
EN_SW  
EN_SW  
Switching Enable Input Current  
I
EN_SW  
INTERNAL VOLTAGE REGULATOR  
MAX15014/MAX15017, V  
MAX15015/MAX15016,  
= 9V to 40V  
7.6  
8.4  
IN_SW  
Output Voltage  
V
V
REG  
4.75  
5.25  
V
V
V
= 5.5V to 40V  
IN_SW  
IN_SW  
IN_SW  
= 9.0V to 40V, MAX15014/MAX15017  
= 5.5V to 40V, MAX15015/MAX15016  
1
1
Line Regulation  
Load Regulation  
mV/V  
V
I
= 0 to 20mA  
0.25  
0.5  
REG  
V
V
= 7.5V (MAX15014/MAX15017),  
= 4.5V (MAX15015/MAX15016),  
IN_SW  
IN_SW  
Dropout Voltage  
V
I
= 20mA  
REG  
OSCILLATOR  
V
V
= 0V, MAX15014/MAX15016  
= 0V, MAX15015/MAX15017  
122  
425  
136  
500  
150  
575  
SYNC  
SYNC  
Frequency Range  
f
kHz  
CLK  
V
= 0V, V  
= 7.5V, MAX15014  
= 4.5V, MAX15016  
= 4.5V, MAX15015  
= 7.5V, MAX15017  
SYNC  
IN_SW  
IN_SW  
IN_SW  
IN_SW  
90  
90  
90  
90  
98  
98  
96  
98  
(135kHz)  
V
= 0V, V  
SYNC  
(135kHz)  
Maximum Duty Cycle  
D
%
MAX  
V
= 0V, V  
SYNC  
(500kHz)  
V
= 0V, V  
SYNC  
(500kHz)  
Minimum LX Low Time  
SYNC High-Level Voltage  
SYNC Low-Level Voltage  
V
= 0V  
94  
ns  
V
SYNC  
2.2  
0.8  
_______________________________________________________________________________________  
3
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
REG  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C  
= 0.22µF, T = T = -40°C to +125°C, unless otherwise noted.  
DRAIN A J  
IN_SW  
IN_LDO  
LDO_OUT  
Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
100  
400  
TYP  
MAX  
200  
UNITS  
kHz  
V
MAX15014/MAX15016  
MAX15015/MAX15017  
SYNC Frequency Range  
f
SYNC  
600  
Ramp Level Shift (Valley)  
ERROR AMPLIFER  
Soft-Start Reference Voltage  
Soft-Start Current  
0.3  
V
1.210  
7
1.235  
12  
1.260  
17  
V
µA  
V
SS  
I
V
V
= 0V  
SS  
SS  
FB Regulation Voltage  
FB Input Range  
V
1.210  
0
1.235  
1.260  
1.5  
FB  
FB  
FB  
V
V
FB Input Current  
I
= 1.244V  
-250  
0.25  
+250  
4.5  
nA  
V
FB  
COMP Voltage Range  
Open-Loop Gain  
I
= -500µA to +500µA  
COMP  
80  
1.8  
10  
10  
dB  
MHz  
Unity-Gain Bandwidth  
f
= 500kHz, MAX15015/MAX15017  
= 135kHz, MAX15014/MAX15016  
SYNC  
PWM Modulator Gain  
V/V  
4–MAX5017  
f
SYNC  
CURRENT-LIMIT COMPARATOR  
Pulse Skip Threshold  
IPFM  
100  
1.3  
200  
2
300  
2.6  
mA  
A
Cycle-by-Cycle Current Limit  
I
ILIM  
Number of Consecutive ILIM  
Events to Hiccup  
7
Clock  
periods  
Hiccup Timeout  
512  
POWER SWITCH  
Switch On-Resistance  
Switch Gate Charge  
V
V
V
- V = 6V  
0.15  
0.4  
4
0.80  
BST  
BST  
LX  
- V = 6V  
nC  
LX  
= V  
= V = V  
=
IN_SW  
IN_LDO  
LX  
DRAIN  
Switch Leakage Current  
BST Quiescent Current  
BST Leakage Current  
10  
600  
1
µA  
µA  
µA  
40V, V = 0V  
FB  
V
= 40V, V  
= 40V, V = 0V,  
DRAIN FB  
BST  
400  
DVREG = 5V  
V
V
= V  
= V = V  
=
BST  
DRAIN  
LX  
IN_SW  
= 40V, EN_SW = 0V  
IN_LDO  
CHARGE PUMP (MAX15015/MAX15016)  
C- Output Voltage Low  
C- Output Voltage High  
DVREG to C+ On-Resistance  
LX to PGND On-Resistance  
LDO  
Sinking 10mA  
0.1  
0.1  
10  
V
V
Relative to DVREG, sourcing 10mA  
Sourcing 10mA  
Sinking 10mA  
12  
Input Voltage Range  
V
5
40  
V
V
V
IN_LDO  
Undervoltage Lockout Threshold  
UVLO_LDO  
V
rising  
IN_LDO  
3.90  
4.1  
0.3  
4.25  
TH  
Undervoltage Lockout Hysteresis UVLO_LDO  
HYST  
4
_______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
REG  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C  
= 0.22µF, T = T = -40°C to +125°C, unless otherwise noted.  
IN_SW  
IN_LDO  
LDO_OUT  
DRAIN  
A
J
Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
Output Current  
SYMBOL  
CONDITIONS  
= 6V (Note 2)  
IN  
MIN  
TYP  
MAX  
UNITS  
I
V
65  
200  
mA  
OUT  
I
= 100µA  
= 1mA  
4.90  
4.90  
4.85  
4.85  
3.22  
3.22  
3.2  
5
5
5.06  
5.06  
5.15  
5.15  
3.35  
3.35  
3.4  
LDO_OUT  
LDO_OUT  
I
SET_LDO = SGND,  
MAX1501_A  
6V V  
40V,  
IN_LDO  
5
I
= 1mA  
LDO_OUT  
1mA I  
V
50mA,  
OUT  
5
= 14V  
IN_LDO  
Output Voltage  
V
V
LDO_OUT  
I
= 100µA  
= 1mA  
3.3  
3.3  
3.3  
LDO_OUT  
I
LDO_OUT  
SET_LDO = SGND,  
MAX1501_B  
6V V  
40V,  
IN_LDO  
I
= 1mA  
LDO_OUT  
1mA I  
50mA, V  
14V  
=
LDO_OUT  
3.2  
1.5  
3.3  
3.4  
IN_LDO  
Adjustable Output Voltage Range  
Dropout Voltage  
V
V
V
> 0.25V  
SET_LDO  
11.0  
0.6  
V
V
ADJ  
I
I
I
I
= 10mA  
OUT  
OUT  
OUT  
OUT  
= 5V,  
IN_LDO  
MAX1501_A  
= 50mA  
= 10mA  
= 50mA  
0.82  
0.1  
V  
DO  
V
= 4.0V,  
IN_LDO  
MAX1501_B  
0.4  
From EN_SYS high to LDO_OUT rise,  
RL = 500, SET_LDO = SGND  
Startup Response Time  
400  
µs  
SET_LDO Reference Voltage  
Minimum SET_LDO Threshold  
SET_LDO Input Leakage Current  
V
1.220  
1.241  
185  
1.265  
100  
V
SET_LDO  
(Note 3)  
mV  
nA  
I
V
= 11V  
0.5  
SET_LDO  
SET_LDO  
I
V
= 10mA, f = 100Hz, 500mV  
,
OUT  
P-P  
78  
= 5V  
LDO_OUT  
Power-Supply Rejection Ratio  
Short-Circuit Current  
PSRR  
dB  
I
V
= 10mA, f = 1MHz, 500mV  
,
OUT  
P-P  
24  
= 5V  
LDO_OUT  
I
125  
185  
300  
mA  
SC  
_______________________________________________________________________________________  
5
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= V  
= V  
= 14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
REG  
IN_SW  
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C  
= 0.22µF, T = T = -40°C to +125°C, unless otherwise noted.  
DRAIN A J  
IN_SW  
IN_LDO  
LDO_OUT  
Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
RESET OUTPUT  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RESET goes high after rising V  
crosses this threshold  
LDO_OUT  
RESET Threshold  
V
90  
92.5  
95  
0.4  
1
%V  
OUT  
RESET  
RESET Output Low Voltage  
V
I
(V  
– V  
) / I = 4kΩ  
RESET RESET  
V
RL  
LDO_OUT  
V
V
= 3.3V (For MAX15_ _ _B),  
= 5V (For MAX15_ _ _A)  
RESET Output High Leakage  
Current  
RESET  
RESET  
RH  
µA  
µs  
RESET Output Minimum Timeout  
Period  
When LDO_OUT reaches RESET threshold,  
CT = unconnected  
50  
When EN_SYS goes high, C  
=
LDO_OUT  
ENABLE to RESET Minimum  
Timeout Period  
10µF, I  
= 50mA, V  
= 3.3V,  
650  
µs  
LDO_OUT  
LDO_OUT  
CT = unconnected  
Delay Comparator Threshold  
(Rising)  
V
V
1.220  
1.5  
1.241  
100  
1.265  
3
V
CT-TH  
CTTH-  
4–MAX5017  
Delay Comparator Threshold  
Hysteresis  
mV  
HYST  
CT Charge Current  
I
V
= 0V  
CT  
2
µA  
CT-CHQ  
CT Discharge Current  
I
18  
mA  
CT-DIS  
THERMAL SHUTDOWN  
Thermal Shutdown Temperature  
Thermal Shutdown Hysteresis  
Temperature rising  
+160  
20  
°C  
°C  
Note 1: Limits at -40°C are guaranteed by design and not production tested.  
Note 2: Maximum output current is limited by package power dissipation.  
Note 3: This is the minimum voltage needed at SET_LDO for the system to recognize that the user wants an adjustable LDO_OUT.  
6
_______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
Typical Operating Characteristics  
(V  
IN_SW  
= V  
= V  
=14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
REG  
=
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C = 0.22µF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
DRAIN A  
IN_SW  
IN_LDO  
LDO_OUT  
SYSTEM SHUTDOWN CURRENT  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
SWITCHING FREQUENCY  
vs. TEMPERATURE  
10  
9
8
7
6
5
4
3
2
1
0
140  
530  
520  
510  
500  
490  
480  
470  
460  
450  
MAX15015A  
MAX15016  
MAX15016A  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
-50  
0
50  
100  
150  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
-60 -40 -20  
0
20 40 60 80 100 120 140 160  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
MAXIMUM DUTY CYCLE  
MAXIMUM DUTY CYCLE  
ERROR AMPLIFIER OPEN-LOOP GAIN  
vs. INPUT VOLTAGE (MAX15015A)  
vs. INPUT VOLTAGE (MAX15016A)  
AND PHASE vs. FREQUENCY  
MAX15014 toc06  
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
340  
300  
260  
220  
180  
140  
100  
60  
GAIN  
PHASE  
-10  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
0.1  
1
10 100 1k 10k 100k 1M 10M  
FREQUENCY (Hz)  
OUTPUT CURRENT LIMIT  
vs. INPUT VOLTAGE  
TURN-ON/-OFF WAVEFORM  
TURN-ON/-OFF WAVEFORM  
MAX15014 toc08  
MAX15014 toc09  
2.5  
2.0  
1.5  
1.0  
0.5  
0
I
= 1A  
I
= 100mA  
LOAD  
LOAD  
T
= 0°C  
A
T
= +25°C  
A
EN_SW  
2V/div  
EN_SW  
2V/div  
0V  
0V  
T
= +85°C  
A
T
= +135°C  
A
V
V
OUT  
2V/div  
OUT  
2V/div  
0V  
0V  
0
10  
20  
30  
40  
50  
2ms/div  
2ms/div  
INPUT VOLTAGE (V)  
_______________________________________________________________________________________  
7
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
IN_SW  
= V  
= V  
=14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
REG  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C = 0.22µF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
DRAIN A  
IN_SW  
IN_LDO  
LDO_OUT  
TURN-ON/-OFF WAVEFORM  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
INCREASING V  
IN  
OUTPUT VOLTAGE vs. TEMPERATURE  
IN  
MAX15014 toc11  
MAX15014 toc10  
3.40  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
I
= 100mA  
I
= 1A  
LOAD  
LOAD  
V
IN  
V
5V/div  
IN  
5V/div  
0V  
0V  
I
= 0A  
0V  
0V  
LOAD  
V
OUT  
V
OUT  
2V/div  
2V/div  
I
= 1A  
LOAD  
60  
10ms/div  
10ms/div  
-40 -15  
10  
35  
85 110 135  
TEMPERATURE (°C)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15015A)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15014)  
4–MAX5017  
EFFICIENCY vs. LOAD CURRENT  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.3V  
V
= 3.3V  
OUT  
V
= 5V  
OUT  
OUT  
V
= 7.5V  
IN  
V
= 7.5V  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.5V  
IN  
V
= 4.5V  
IN  
V
= 7.5V  
IN  
V
= 24V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 12V  
V
= 24V  
IN  
IN  
V = 24V  
IN  
V
= 40V  
IN  
V
= 40V  
IN  
V
= 40V  
IN  
MAX15016A  
= 0A  
I
LDO_OUT  
0
1
10  
100  
1000  
100  
10  
LOAD CURRENT (mA)  
1
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
EFFICIENCY vs. LOAD CURRENT  
(MAX15017A)  
LOAD-TRANSIENT RESPONSE  
LOAD-TRANSIENT RESPONSE  
MAX15014 toc18  
MAX15014 toc17  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
= 4.5V, I  
= 0.25A TO 1A  
OUT  
V
= 5V  
V
= 12V, I  
= 0.25A TO 1A  
OUT  
IN  
OUT  
IN  
MAX15015A  
MAX15015A  
V
V
OUT  
AC-COUPLED  
100mV/div  
V
= 7.5V  
OUT  
IN  
AC-COUPLED  
100mV/div  
V
= 24V  
IN  
V
= 12V  
IN  
I
LOAD  
V
= 40V  
IN  
500mA/div  
I
LOAD  
500mA/div  
0
0
0
1
10  
100  
1000  
200µs/div  
200µs/div  
LOAD CURRENT (mA)  
8
_______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
Typical Operating Characteristics (continued)  
(V  
IN_SW  
= V  
= V  
=14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
REG  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C = 0.22µF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
LDO_OUT  
DRAIN A  
LX VOLTAGE AND INDUCTOR CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX15014 toc20  
MAX15014 toc19  
MAX150_ _  
V
V
LX  
LX  
5V/div  
5V/div  
0V  
0V  
0V  
INDUCTOR CURRENT  
100mA/div  
INDUCTOR CURRENT  
200mA/div  
I
= 40mA  
I
= 160mA  
LOAD  
LOAD  
2µs/div  
2µs/div  
MINIMUM LX PULSE WIDTH  
vs. LOAD CURRENT  
LX VOLTAGE AND INDUCTOR CURRENT  
MAX15014 toc21  
400  
350  
300  
250  
200  
150  
100  
50  
V
LX  
5V/div  
0V  
INDUCTOR CURRENT  
500mA/div  
I
= 1A  
V
= 3.3V  
OUT  
LOAD  
0
300 400 500 600 700 800 900 1000  
LOAD CURRENT (mA)  
2µs/div  
LDO QUIESCENT CURRENT  
vs. TEMPERATURE  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
OUTPUT VOLTAGE  
vs. TEMPERATURE  
70  
60  
50  
40  
30  
20  
10  
0
5.10  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
3.24  
3.23  
I
= 1mA  
LOAD  
I
= 100µA  
LOAD  
5.05  
5.00  
4.95  
4.90  
4.85  
I
= 1mA  
LOAD  
I
= 10mA  
= 50mA  
LOAD  
I
= 10mA  
LOAD  
NO LOAD  
I
= 50mA  
LOAD  
I
LOAD  
MAX15015A  
85 110 135  
MAX15015B  
75 100 125  
MAX15015B  
-50 -25  
0
25  
50  
-40 -15  
10  
35  
60  
-40 -15  
10  
35  
60  
85 110 135  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
_______________________________________________________________________________________  
9
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Typical Operating Characteristics (continued)  
(V  
IN_SW  
= V  
= V  
=14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
REG  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C = 0.22µF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
LDO_OUT  
DRAIN A  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
DROPOUT VOLTAGE vs. LOAD CURRENT  
POWER-SUPPLY REJECTION RATIO  
MAX15014 toc28  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
10  
0
I
= 50mA  
LOAD  
V
= 5V, I  
= 0 TO 50mA  
IN  
LOAD  
MAX15015A  
T
= +135°C  
EN_SYS  
2V/div  
I
= 50mA  
A
LDO_OUT  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
T
= +85°C  
A
I
= 10mA  
LDO_OUT  
0V  
0V  
T
= +25°C  
A
T
= -40°C  
A
V
OUT  
2V/div  
I
= 1mA  
LDO_OUT  
2ms/div  
0
10  
20  
30  
40  
50  
0.1k  
1k  
10k  
100k  
1M  
10M  
LOAD CURRENT (mA)  
FREQUENCY (Hz)  
4–MAX5017  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
MAX15014 toc30  
MAX15014 toc29  
R
= 1k  
LOAD  
MAX15015B  
= 66Ω  
R
LOAD  
EN_SYS  
2V/div  
EN_SYS  
2V/div  
0V  
0V  
0V  
V
V
LDO_OUT  
OUT  
1V/div  
2V/div  
0V  
10ms/div  
10ms/div  
TURN-ON/-OFF WAVEFORM  
TURN-ON/-OFF WAVEFORM  
TOGGLING EN_SYS  
INCREASING V  
IN  
MAX15014 toc32  
MAX15014 toc31  
I
= 50mA  
LOAD  
MAX15015B  
= 660  
R
LOAD  
EN_SYS  
2V/div  
V
IN  
5V/div  
0V  
0V  
0V  
V
LDO_OUT  
V
LDO_OUT  
1V/div  
2V/div  
0V  
10ms/div  
10ms/div  
10 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
Typical Operating Characteristics (continued)  
(V  
IN_SW  
= V  
= V  
=14V, V  
= V  
= 2.4V, V  
= V  
, V  
= V  
= V  
= V  
= 0V, C  
=
IN_LDO  
DRAIN  
EN_SYS  
EN_SW  
REG  
DVREG SYNC  
SET_LDO  
SGND  
PGND  
REG  
1µF, C  
= 0.1µF, C  
= 0.1µF, C  
= 10µF, C = 0.22µF, see Figures 6 and 7, T = +25°C, unless otherwise noted.)  
IN_SW  
IN_LDO  
LDO_OUT  
DRAIN A  
LDO TURN-ON/-OFF WAVEFORM  
WITH INCREASING V  
TURN-ON/-OFF WAVEFORM  
INCREASING V  
IN  
IN  
MAX15014 toc33  
MAX15014 toc34  
I
= 5mA  
LOAD  
MAX15015B  
R
= 66Ω  
LOAD  
V
IN  
5V/div  
V
IN  
2V/div  
0V  
0V  
0V  
0V  
V
LDO_OUT  
1V/div  
V
LDO_OU  
2V/div  
10ms/div  
10ms/div  
TURN-ON/-OFF WAVEFORM  
LOAD-TRANSIENT RESPONSE  
INCREASING V  
IN  
MAX15014 toc36  
MAX15014 toc35  
MAX15015B  
R
= 660Ω  
LOAD  
V
V
LDO_OUT  
IN  
AC-COUPLED  
100mV/div  
5V/div  
0V  
0V  
V
LDO_OUT  
I
LOAD  
1V/div  
20mA/div  
0
100µs/div  
10ms/div  
RESIDUAL SWITCHING NOISE  
ON THE LDO OUTPUT  
INPUT-VOLTAGE STEP RESPONSE  
MAX15014 toc38  
MAX15014 toc37  
DC-DC  
= 1A  
LOAD  
MAX15015B  
= 1mA  
I
LOAD  
V
IN  
20V/div  
V
LDO_OUT  
10mV/div  
0V  
V
LDO_OUT  
AC-COUPLED  
100mV/div  
400ns/div  
1ms/div  
______________________________________________________________________________________ 11  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Pin Description  
PIN  
NAME  
FUNCTION  
MAX15014/  
MAX15017  
MAX15015/  
MAX15016  
1, 2, 3, 9, 12,  
1, 2, 3, 9, 12,  
14, 16, 19, 24, 14, 16, 19, 24,  
26, 27, 30, 35 26, 27, 30, 35  
N.C.  
I.C.  
No Connection. Not internally connected. Leave unconnected or connect to SGND.  
Internally Connected. Leave unconnected.  
23, 28  
Active-Low Reset Output. When the rising V  
voltage crosses the reset  
LDO_OUT  
4
4
RESET  
threshold, RESET goes high after an adjustable delay. Pull up RESET to LDO_OUT  
with at least 4k. RESET is an active-low open-drain output.  
Signal Ground Connection. Connect SGND and PGND together at one point near  
the input bypass capacitor negative terminal.  
5
6
5
6
SGND  
CT  
Reset Timeout Delay Capacitor Connection. CT is pulled low during reset. When out  
of reset, CT is pulled up to an internal 3.6V rail with a 2µA current source. When the  
rising CT voltage reaches the trip threshold (typically 1.24V), RESET is deasserted.  
When EN_SYS is low or in thermal shutdown, CT is low.  
4–MAX5017  
Switching Regulator Enable Input (Active High). If EN_SW is high and EN_SYS is  
high, the switching power supply is enabled. EN_SW is internally pulled down to  
SGND through a 0.5µA current sink.  
7
8
7
8
EN_SW  
EN_SYS  
Active-High System Enable Input. Connect EN_SYS high to turn on the system. The  
LDO is active if EN_SYS is high; once EN_SYS is high, the switching regulator can  
be turned on if EN_SW is high. EN_SYS is internally pulled down to SGND through a  
0.5µA current sink.  
LDO Feedback Input/Output Voltage Setting. Connect SET_LDO to SGND to select  
10  
11  
10  
11  
SET_LDO the preset output voltage (5V or 3.3V). Connect SET_LDO to an external resistor-  
divider network for adjustable output operation.  
Linear Regulator Output. Bypass with at least 10µF low-ESR capacitor from  
LDO_OUT LDO_OUT to SGND. In the 5V LDO versions (A), the LDO operates in dropout below  
6V down to the UVLO trip point.  
LDO Input Voltage. The input voltage range for the LDO extends from 5V to 40V.  
Bypass with a 0.1µF ceramic capacitor to SGND.  
13  
15  
13  
15  
IN_LDO  
High-Side Gate Driver Supply. Connect BST to the cathode of the bootstrap diode  
and to the positive terminal of the bootstrap capacitor.  
BST  
Source Connection of Internal High-Side Switch. Connect both LX pins to the  
inductor and the cathode of the freewheeling diode.  
17, 18  
20, 21  
17, 18  
20, 21  
LX  
Drain Connection of the Internal High-Side Switch. Connect both DRAIN inputs  
together.  
DRAIN  
Power Ground Connection. Connect the input bypass capacitor negative terminal,  
the anode of the freewheeling diode, and the output filter capacitor negative terminal  
to PGND. Connect PGND to SGND together at a single point near the input bypass  
22  
22  
PGND  
capacitor negative terminal.  
12 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
Pin Description  
PIN  
NAME  
C-  
FUNCTION  
MAX15014/  
MAX15017  
MAX15015/  
MAX15016  
23  
Charge-Pump Flying Capacitor Negative Connection (MAX15015/MAX15016 only)  
Gate Drive Supply for the High-Side MOSFET Driver. Connect to REG and to the  
anode of the bootstrap diode for MAX15014/MAX15017. Connect to REG for  
MAX15015/MAX15016.  
25  
25  
DVREG  
Charge-Pump Flying Capacitor Positive Connection (MAX15015/MAX15016 only).  
Connect to the positive terminal of the external pump capacitor and to the anode of  
the bootstrap diode.  
28  
C+  
Oscillator Synchronization Input. SYNC can be driven by an external clock to  
synchronize the switching frequency. Connect SYNC to SGND when not used.  
29  
31  
29  
31  
SYNC  
COMP  
Error Amplifier Output. Connect COMP to the compensation feedback network.  
Feedback Regulation Point. Connect to the center tap of a resistive divider from  
converter output to SGND to set the output voltage. The FB voltage regulates to the  
voltage present at SS (1.235V).  
32  
32  
FB  
Soft-Start and Reference Output. Connect a capacitor from SS to SGND to set the  
33  
34  
36  
33  
34  
36  
SS  
REG  
IN_SW  
EP  
soft-start time. See the Applications Information section to calculate the value of the  
C
capacitor.  
SS  
Internal Regulator Output. 5V output for the MAX15015/MAX15016 and 8V output for the  
MAX15014/MAX15017. Bypass to SGND with at least a 1µF ceramic capacitor.  
Supply Input Connection. Connect to IN_LDO and an external voltage source from  
4.5V to 40V. EN_SW and EN_SYS must be high and IN_SW must be above its UVLO  
threshold for operation of the switching regulator.  
Exposed Pad. The exposed pad must be electrically connected to SGND. For an  
effective heatsinking, solder the exposed pad to a large copper plane.  
______________________________________________________________________________________ 13  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
current falls to 6µA. Additional features include a pro-  
Detailed Description  
grammable soft-start, cycle-by-cycle current limit,  
The MAX15014–MAX15017 combine a voltage-mode  
hiccup-mode output short-circuit protection, and thermal  
buck converter with an internal 0.5power MOSFET  
shutdown.  
switch and a low-quiescent-current LDO regulator. The  
The LDO linear regulator operates from 5V to 40V and  
delivers a guaranteed 50mA load current. The devices  
feature a preset output voltage of 5.0V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage  
can be adjusted from 1.5V to 11V using an external  
resistive divider. The LDO section also features a  
RESET output with adjustable timeout period.  
buck converter of the MAX15015/MAX15016 has a  
wide input voltage range of 4.5V to 40V. The  
MAX15014/MAX15017’s input voltage range is 7.5V to  
40V. Fixed switching frequencies of 135kHz and  
500kHz are available. The internal low R  
switch  
DS_ON  
allows for up to 1A of output current, and the output  
voltage can be adjusted from 1.26V to 32V. External  
compensation and voltage feed-forward simplify loop  
compensation design and allow for a wide variety of L  
and C filter components. All devices offer an automatic  
switchover to pulse-skipping (PFM) mode, providing  
low quiescent current and high efficiency at light loads.  
Under no load, PFM mode operation reduces the cur-  
rent consumption to 5.6mA for the MAX15014/  
MAX15017 and 8.6mA for the MAX15015/MAX15016. In  
shutdown (DC-DC and LDO regulator off), the supply  
Enable Inputs and UVLO  
The MAX15014–MAX15017 feature two logic inputs,  
EN_SW (active-high) and EN_SYS (active-high) that can  
be used to enable the switching power supply and the  
LDO_OUT outputs. When V  
is higher than the  
EN_SW  
threshold and EN_SYS is high, the switching power sup-  
ply is enabled. When EN_SYS is high, the LDO is active.  
When EN_SYS is low, the entire chip is off (see Table 1).  
4–MAX5017  
IN_SW  
EN_SYS  
IN_LDO  
C-  
C+  
DVREG  
DVREG  
IN_LDO  
MAX15015/MAX15016  
7.0V OR 4.1V  
LEVEL  
SHIFT  
PCLK  
UVLO_SW  
UVLO_LDO  
V
V
REFOK  
V
INT  
INTOK  
LDO_OUT  
SET_LOD  
-
PASS ELEMENT  
+
4.1V  
REG  
+
V
V
REG_LDO  
REFOK  
INT  
PREREG  
V
INTOK  
VINT  
V
INTOK  
ENABLE LDO  
-
MUX  
V
REF  
V
REF  
+
VREG_OK  
EN_SW  
V
REG_EN  
UVLO_SW  
TSD  
SHDN  
-
SHDN  
V
INT  
V
INT  
V
INT  
2µA  
OUT_LDO  
UVLO_LDO  
TSD  
185mV  
V
INT  
V
V
INT  
INT  
-
SHDN  
-
RESET  
V
REF  
I
SS  
THERMAL  
SHDN  
V
TSD  
REF  
+
REF  
0.925 x V  
REF  
+
V
REFOK  
DELAY COMPARATOR  
CT  
EN  
VREG_ OK  
DRAIN  
+
SS  
FB  
+
E/A  
-
+
SSA  
-
-
REF_ILIM  
+
HIGH-SIDE  
CURRENT  
SENSE  
V
REF  
PFM  
-
REF_PFM  
OVERLOAD  
MANAGEMENT  
BST  
LX  
COMP  
CLK  
OVERL  
IN S/W  
RAMP  
-
DVREG  
CPWM  
LOGIC  
SYNC  
SGND  
EN  
OSC  
-
+
+
PFM  
SCLK  
PCLK  
0.3V  
PGND  
CLK  
Figure 1. MAX15015/MAX15016 Simplified Block Diagram  
14 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
IN_SW  
EN_SYS  
IN_LDO  
IN_LDO  
MAX15014/MAX15017  
7.0V OR 4.1V  
UVLO_SW  
UVLO_LDO  
V
V
REFOK  
V
INT  
INTOK  
-
PASS ELEMENT  
+
LDO_OUT  
SET_LOD  
4.1V  
+
V
V
REG_LDO  
REG  
REFOK  
INT  
PREREG  
V
INTOK  
VINT  
V
INTOK  
ENABLE LDO  
-
MUX  
V
REF  
V
+
REF  
VREG_OK  
V
REG_EN  
UVLO_SW  
TSD  
SHDN  
-
EN_SW  
SHDN  
V
INT  
V
INT  
V
INT  
2µA  
OUT_LDO  
UVLO_LDO  
TSD  
SHDN  
185mV  
V
V
V
INT  
INT  
INT  
-
-
V
I
REF  
SS  
THERMAL  
SHDN  
V
V
TSD  
REF  
+
RESET  
REF  
0.925 x V  
REF  
+
REFOK  
DELAY COMPARATOR  
EN  
CT  
VREG_ OK  
+
DRAIN  
+
E/A  
-
+
SSA  
-
SS  
FB  
-
REF_ILIM  
+
HIGH-SIDE  
CURRENT  
SENSE  
ILIM  
V
REF  
PFM  
-
REF_PFM  
OVERLOAD  
MANAGEMENT  
CLK  
BST  
LX  
COMP  
OVERL  
IN S/W  
RAMP  
-
DVREG  
CPWM  
LOGIC  
EN  
OSC  
-
+
+
SYNC  
SGND  
PFM  
SCLK  
PCLK  
0.3V  
CLK  
PGND  
Figure 2. MAX15014/MAX15017 Simplified Block Diagram  
Table 1. Enable Inputs Configuration  
DC-DC SWITCHING  
CONVERTER  
EN_SYS  
EN_SW  
LDO REGULATOR  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Off  
Off  
On  
On  
Off  
Off  
Off  
On  
The MAX15014–MAX15017 provide undervoltage lock-  
out (UVLO). The UVLO monitors the input voltage  
IN_LDO  
Connect REG externally to DVREG to provide power for  
the high-side MOSFET gate driver. Bypass REG to  
(V  
) and is fixed at 4.1V (MAX15015/MAX15016)  
SGND with a ceramic capacitor (C  
) of at least 1µF.  
REG  
or 7V (MAX15014/MAX15017).  
Place the capacitor physically close to the MAX15014–  
MAX15017 to provide good bypassing. During normal  
operation, REG is intended for powering up only the  
internal circuitry and should not be used to supply  
power to external loads.  
Internal Linear Regulator (REG)  
REG is the output terminal of a 5V (MAX15015/  
MAX15016), or 8V (MAX15014/MAX15017) LDO which  
is powered from IN_SW and provides power to the IC.  
______________________________________________________________________________________ 15  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
80dB open-loop gain and a 1.8MHz GBW product. See  
the Typical Operating Characteristics for the Gain and  
Phase vs. Frequency graph.  
Soft-Start and Reference (SS)  
SS is the 1.235V reference bypass connection for the  
MAX15014–MAX15017 and also controls the soft-start  
period. At startup, after input voltage is applied at IN_SW,  
IN_LDO and the UVLO thresholds are reached, the  
device enters soft-start. During soft-start, 14µA is sourced  
Oscillator/Synchronization Input (SYNC)  
With SYNC connected to SGND, the MAX15014–  
MAX15017 use their internal oscillator and switch at a  
fixed frequency of 135kHz and 500kHz. The MAX15014/  
MAX15016 are the 135kHz options and MAX15015/  
MAX15017 are the 500kHz options. For external syn-  
chronization, drive SYNC with an external clock from  
400kHz to 600kHz (MAX15015/MAX15017) or 100kHz  
to 200kHz (MAX15014/MAX15016). When driven with  
an external clock, the device synchronizes to the rising  
edge of SYNC.  
into the capacitor (C ) connected from SS to SGND  
SS  
causing the reference voltage to ramp up slowly. When  
V
reaches 1.244V, the output becomes fully active. Set  
SS  
the soft-start time (t ) using following equation:  
SS  
V
×C  
SS  
SS  
I
t
=
SS  
SS  
where V = soft-start reference voltage = 1.235V (typ),  
SS  
-6  
I
= soft-start current = 14 x 10 A (typ), t is in sec-  
PWM Comparator/Voltage Feed-Forward  
An internal ramp generator clocked by the internal  
oscillator is compared against the output of the error  
amplifier to generate the PWM signal. The maximum  
SS  
SS  
onds and C is in Farads.  
SS  
Internal Charge Pump  
(MAX15015/MAX15016)  
amplitude of the ramp (V ) automatically adjusts to  
RAMP  
The MAX15015/MAX15016 feature an internal charge  
pump to enhance the turn-on of the internal MOSFET,  
allowing for operation with input voltages down to 4.5V.  
compensate for input voltage and oscillator frequency  
changes. This causes the V / V to be a  
4–MAX5017  
IN_SW  
RAMP  
constant 10V/V across the input voltage range of 4.5V to  
40V (MAX15015/MAX15016) or 7.5V to 40V (MAX15014/  
MAX15017) and the SYNC frequency range of 400kHz  
to 600kHz (MAX15015/MAX15017) or 100kHz to 200kHz  
(MAX15014/MAX15016).  
Connect a flying capacitor (C ) between C+ and C-, a  
F
boost diode from C+ to BST, as well as a bootstrap  
capacitor (C  
) between BST and LX to provide the  
BST  
gate drive voltage for the high-side n-channel DMOS  
switch. During the on-time, the flying capacitor is  
charged to V . During the off-time, the positive ter-  
DVREG  
Output Short-Circuit Protection  
(Hiccup Mode)  
minal of the flying capacitor (C+) is pumped to two times  
and charge is dumped onto C to provide  
V
The MAX15014–MAX15017 protect against an output  
short circuit by utilizing hiccup-mode protection. In hic-  
cup mode, a series of sequential cycle-by-cycle  
current-limit events cause the part to shut down and  
restart with a soft-start sequence. This allows the  
device to operate with a continuous output short circuit.  
DVREG  
BST  
twice the regulator voltage across the high-side DMOS  
driver. Use a ceramic capacitor of at least 0.1µF for  
C
and C located as close as possible to the device.  
F
BST  
Gate Drive Supply (DVREG)  
DVREG is the supply input for the internal high-side  
MOSFET driver. The power for DVREG is derived from  
the output of the internal regulator (REG). Connect  
DVREG to REG externally. To filter the switching noise,  
the use of an RC filter (1and 0.47µF) from REG to  
DVREG is recommended. In the MAX15015/MAX15016,  
the high-side drive supply is generated using the inter-  
nal charge pump along with the bootstrap diode and  
capacitor. In the MAX15014/MAX15017, the high-side  
MOSFET driver supply is generated using only the boot-  
strap diode and capacitor.  
During normal operation, the current is monitored at the  
drain of the internal power MOSFET. When the current  
limit is exceeded, the internal power MOSFET turns off  
until the next on-cycle and a counter increments. If the  
counter counts seven consecutive current-limit events,  
the device discharges the soft-start capacitor and  
shuts down for 512 clock periods before restarting with  
a soft-start sequence. Each time the power MOSFET  
turns on and the device does not exceed the current  
limit, the counter is reset.  
LDO Regulator  
The LDO regulator operates over an input voltage from  
5V to 40V, and can be enabled independently of the  
DC-DC converter section. Its quiescent current is as  
low as 47µA with a load current of 100µA. All devices  
Error Amplifier  
The output of the internal error amplifier (COMP) is avail-  
able for frequency compensation (see the Compensation  
Design section). The inverting input is FB, the noninverting  
input SS, and the output COMP. The error amplifier has an  
16 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
feature a preset output voltage of 5V (MAX1501_A) or  
3.3V (MAX1501_B). Alternatively, the output voltage  
can be adjusted using an external resistive-divider net-  
work connected between LDO_OUT, SET_LDO, and  
SGND. See Figure 5.  
Inductor Selection  
Three key inductor parameters must be specified for  
operation with the MAX15014–MAX15017: inductance  
value (L), peak inductor current (I  
), and inductor  
PEAK  
saturation current (I  
). The minimum required induc-  
SAT  
tance is a function of operating frequency, input-to-out-  
put voltage differential, and the peak-to-peak inductor  
RESET Output  
The RESET output is typically connected to the reset  
input of a microprocessor (µP). A µP’s reset input starts  
or restarts the µP in a known state. The MAX15014–  
MAX15017 supervisory circuits provide the reset logic  
to prevent code-execution errors during power-up,  
power-down, and brownout conditions. RESET  
changes from high to low whenever the monitored volt-  
age drops below the RESET threshold voltage. Once  
the monitored voltage exceeds its respective RESET  
threshold voltage(s), RESET remains low for the RESET  
timeout period, then goes high. The RESET timeout  
current (I ). Higher I  
allows for a lower inductor  
P-P  
P-P  
value while a lower I  
requires a higher inductor  
P-P  
value. A lower inductor value minimizes size and cost  
and improves large-signal and transient response, but  
reduces efficiency due to higher peak currents and  
higher peak-to-peak output voltage ripple for the same  
output capacitor. On the other hand, higher inductance  
increases efficiency by reducing the I . Resistive  
P-P  
losses due to extra wire turns can exceed the benefit  
gained from lower I  
levels especially when the  
P-P  
inductance is increased without also allowing for larger  
inductor dimensions. A good compromise is to choose  
period is adjustable with an external capacitor (C  
connected to CT.  
)
CT  
I  
equal to 40% of the full load current. Calculate the  
P-P  
inductor using the following equation:  
Thermal-Shutdown Protection  
The MAX15014–MAX15017 feature thermal shutdown  
protection which limits the total power dissipation in the  
device and protects it in the event of an extended ther-  
mal fault condition. When the die temperature exceeds  
+160°C, an internal thermal sensor shuts down the part,  
turning off the DC-DC converter and the LDO regulator,  
and allowing the IC to cool. After the die temperature  
falls by 20°C, the part restarts with a soft-start sequence.  
V
V
(V V  
)
OUT  
OUT IN  
L =  
× f × I  
IN SW  
PP  
V
IN  
and V  
are typical values so that efficiency is opti-  
OUT  
mum for typical conditions. The switching frequency  
(f ) is internally fixed at 135kHz (MAX15014/  
SW  
MAX15016) or 500kHz (MAX15015/MAX15017) and  
can vary when synchronized to an external clock (see  
the Oscillator/Synchronization Input (SYNC) section).  
Applications Information  
The I , which reflects the peak-to-peak output rip-  
P-P  
Setting the Output Voltage  
Connect a resistive divider (R3 and R4, see Figures 6  
and 7) from OUT to FB to SGND to set the output volt-  
age. Choose R3 and R4 so that DC errors due to the FB  
input bias current do not affect the output-voltage  
setting precision. For the most common output-voltage  
settings (3.3V or 5V), R3 values in the 10krange are  
adequate. Select R3 first and calculate R4 using the  
following equation:  
ple, is worst at the maximum input voltage. See the  
Output-Capacitor Selection section to verify that the  
worst-case output ripple is acceptable. The inductor  
current (I  
) is also important to avoid current run-  
SAT  
away during continuous output short circuit. Select an  
inductor with an I specification higher than the  
SAT  
maximum peak current limit of 2.6A.  
Input-Capacitor Selection  
The discontinuous input current of the buck converter  
causes large input ripple currents and therefore the  
input capacitor must be carefully chosen to keep the  
input voltage ripple within design requirements. The  
R3  
R4 =  
V
V
OUT  
1  
FB  
input voltage ripple is comprised of V (caused by  
Q
the capacitor discharge) and V  
(caused by the  
ESR  
where V = 1.235V.  
FB  
ESR of the input capacitor). The total voltage ripple is  
the sum of V and V . Calculate the input capaci-  
Q
ESR  
tance and ESR required for a specified ripple using the  
following equations:  
______________________________________________________________________________________ 17  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
tance, its ESR, and its equivalent series inductance  
V  
ESR  
(ESL). The output capacitor supplies the load current  
during a load step until the controller responds with a  
ESR =  
I  
PP  
2
I
+
OUT_MAX  
greater duty cycle. The response time (t  
)
RESPONSE  
depends on the closed-loop bandwidth of the converter  
(see the Compensation Design section). The resistive  
drop across the output capacitor’s ESR, the drop  
I
×D  
OUT_MAX  
C
=
IN  
V ×f  
Q
SW  
across the capacitor’s ESL (V  
), and the capacitor  
ESL  
where C is the sum of C  
and additional decou-  
IN  
DRAIN  
discharge causes a voltage droop during the loadstep.  
pling capacitance at the buck converter input,  
Use a combination of low-ESR tantalum/aluminum elec-  
trolytic and ceramic capacitors for better transient load  
and voltage ripple performance. Non-leaded capaci-  
tors and capacitors in parallel help reduce the ESL.  
Keep the maximum output voltage deviation below the  
tolerable limits of the electronics being powered. Use  
the following equations to calculate the required ESR,  
ESL, and capacitance value during a load step:  
(V V )× V  
IN  
OUT  
OUT  
I  
=
and  
PP  
V
× f ×L  
IN SW  
V
OUT  
D =  
V
IN  
I
is the maximum output current, D is the duty  
OUT_MAX  
cycle, and f  
is the switching frequency.  
SW  
V  
ESR  
The MAX15014–MAX15017 include UVLO hysteresis  
and soft-start to avoid chattering during turn-on.  
However, use additional bulk capacitance if the input  
source impedance is high. Use enough input capaci-  
tance at lower input voltages to avoid possible under-  
shoot below the undervoltage lockout threshold during  
transient loading.  
ESR =  
I
STEP  
I
× t  
RESPONSE  
4–MAX5017  
STEP  
C
=
OUT  
V  
Q
V  
× t  
STEP  
ESL  
I
ESL =  
STEP  
1
Output-Capacitor Selection  
The allowable output voltage ripple and the maximum  
deviation of the output voltage during load steps deter-  
t
RESPONSE  
3ƒ  
C
mine the output capacitance (C  
) and its equivalent  
where I  
is the load step, t  
is the rise time of the  
OUT  
STEP  
load step, t  
STEP  
series resistance (ESR). The output ripple is mainly  
is the response time of the con-  
RESPONSE  
composed of V (caused by the capacitor discharge)  
troller and f is the closed-loop crossover frequency.  
Q
C
and V  
(caused by the voltage drop across the ESR  
ESR  
Compensation Design  
The MAX15014–MAX15017 use a voltage-mode control  
scheme that regulates the output voltage by comparing  
the error amplifier output (COMP) with an internal ramp  
to produce the required duty cycle. The output lowpass  
LC filter creates a double pole at the resonant frequency,  
which has a gain drop of -40dB/decade. The error  
amplifier must compensate for this gain drop and  
phase shift to achieve a stable closed-loop system.  
of the output capacitor). The equations for calculating  
the peak-to-peak output voltage ripple are:  
I  
PP  
V  
=
Q
8×C  
×f  
OUT SW  
V  
= ESR× I  
PP  
ESR  
Normally, a good approximation of the output voltage rip-  
ple is V = V + V . If using ceramic capaci-  
RIPPLE  
ESR  
Q
The basic regulator loop consists of a power modulator,  
an output feedback divider, and a voltage error amplifier.  
tors, assume the contribution to the output voltage ripple  
from ESR and the capacitor discharge to be equal to 20%  
The power modulator has a DC gain set by V  
RAMP  
/
IN  
and 80%, respectively. I  
is the peak-to-peak inductor  
P-P  
V
, with a double pole and a single zero set by the  
current (see the Input-Capacitor Selection section) and  
is the converter’s switching frequency.  
output inductance (L), the output capacitance (C  
),  
OUT  
f
SW  
and its ESR. The power modulator incorporates a voltage  
feed-forward feature, which automatically adjusts for vari-  
ations in the input voltage resulting in a DC gain of 10.  
The allowable deviation of the output voltage during  
fast load transients also determines the output capaci-  
18 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
The following equations define the power modulator:  
C8  
V
IN  
G
=
=10  
MOD_DC  
C7  
V
R5  
RAMP  
C6  
R6  
1
f
=
LC  
2× π × L ×C  
OUT  
R3  
1
V
OUT  
f
=
ZESR  
2× π ×C  
×ESR  
EA  
OUT  
COMP  
R4  
REF  
The switching frequency is internally set at 500kHz for  
MAX15015/MAX15017 and can vary from 400kHz to  
600kHz when driven with an external SYNC signal. The  
switching frequency is internally set at 135kHz for  
MAX15014/MAX15016 and can vary from 100kHz to  
200kHz when driven with an external sync signal. The  
crossover frequency (fC), which is the frequency when  
the closed-loop gain is equal to unity, should be set to  
around 1/10 of the switching frequency or below.  
GAIN  
(dB)  
CLOSED-LOOP  
GAIN  
EA  
GAIN  
The crossover frequency occurs above the LC double-  
pole frequency, and the error amplifier must provide a  
gain and phase bump to compensate for the rapid gain  
and phase loss from the LC double pole, which exhibits  
little damping.  
f
f
f
f f  
P2 P3  
Z1 Z2  
C
FREQUENCY  
Figure 3. Error Amplifier Compensation Circuit (Closed-Loop  
and Error-Amplifier Gain Plot) for Ceramic Capacitors  
This is accomplished by utilizing a Type 3 compensator  
that introduces two zeroes and three poles into the con-  
trol loop. The error amplifier has a low-frequency pole  
value and tend to be more expensive. Aluminum elec-  
trolytic capacitors have much larger ESR but can reach  
much larger capacitance values.  
(f ) near the origin so that tight voltage regulation at DC  
P1  
can be achieved.  
The two zeroes are at:  
Compensation when f < f  
C
ZESR  
This is usually the case when a ceramic capacitor is  
selected. In this case, f occurs after f . Figure 3  
1
f
=
ZI  
ZESR  
C
2π ×R5×C7  
shows the error amplifier feedback as well as its gain  
response.  
and  
f
is set to 0.5 to 0.8 x f and f is set to f to com-  
LC Z2 LC  
Z1  
1
f
=
Z2  
pensate for the gain and phase loss due to the double  
pole. To achieve a 0dB crossover with -20dB/decade  
2π ×(R3+R6)×C6  
slope, poles f and f are set above the crossover fre-  
quency f .  
P2  
P3  
and the higher frequency poles are at:  
1
C
The values for R3 and R4 are already determined in the  
Setting the Output Voltage section. The value of R3 is  
also used in the following calculations.  
f
=
P2  
2π ×R6×C6  
and  
1
Since f < f < f , then R3 >> R6, and R3 + R6 can  
be approximated as R3.  
Z2  
C
P2  
f
=
P3  
C7×C8  
C7+C8  
2π ×R5×  
Now we can calculate C6 for zero f  
:
Z2  
The compensation design primarily depends on the  
type of output capacitor. Ceramic capacitors exhibit  
very low ESR, and are well suited for high-switching-  
frequency applications, but are limited in capacitance  
1
C6 =  
2π × f ×R3  
LC  
______________________________________________________________________________________ 19  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
f
occurs between f and f . In this region, the com-  
Z2 P2  
C
C8  
pensator gain (G ) at f is due primarily to C6 and R5.  
EA  
C
Therefore, G (f ) = 2π x f x C6 x R5 and the modula-  
tor gain at f is:  
EA C  
C
C7  
R5  
C
C6  
R6  
G
MOD_DC  
2
G
(f ) =  
MOD C  
R3  
(2π × f ) ×L ×C  
C
OUT  
V
OUT  
Since G (f ) x G  
(f ) = 1, R5 is calculated by:  
MOD C  
EA C  
EA  
COMP  
R4  
REF  
f ×L ×C  
×2π  
OUT  
C
R5 =  
C6×G  
MOD_DC  
GAIN  
(dB)  
The frequency of f is set to 0.5 x f and now we can  
Z1  
LC  
CLOSED-LOOP  
GAIN  
calculate C7:  
EA  
GAIN  
1
C7 =  
0.5×2π ×R5× f  
LC  
f
is set at 1/2 the switching frequency (f ). R6 is  
SW  
P2  
then calculated by:  
4–MAX5017  
f
f
f
f
f
P3  
Z1 Z2  
P2  
C
FREQUENCY  
1
Figure 4. Error Amplifier Compensation Circuit (Closed-Loop  
and Error-Amplifier Gain Plot) for Higher ESR Output  
Capacitors  
R6 =  
2π ×C6×(0.5× f  
)
SW  
Note that if the crossover frequency has been chosen  
as 1/10 of the switching frequency, then f = 5xf .  
frequency is higher than f but lower than the closed-  
LC  
P2  
C
loop crossover frequency. The equations that define  
The purpose of f is to further attenuate the residual  
P3  
switching ripple at the COMP pin.  
the error amplifier’s poles and zeros (f , f , f , and  
Z1 Z2 P2  
f
P3  
) are the same as before. However, f is now lower  
P2  
If the ESR zero (f  
) occurs in a region between  
ZESR  
than the closed-loop crossover frequency. Figure 4  
shows the error amplifier feedback as well as its gain  
response for circuits that use higher-ESR output capac-  
itors (tantalum or aluminum electrolytic).  
f
and f  
/ 2, then f can be used to cancel it. This  
C
SW P3  
way, the Bode plot of the loop gain plot will not flatten  
out soon after the 0dB crossover, and will maintain  
its -20dB/decade slope up to 1/2 of the switching  
frequency.  
Again, starting from R3, calculate C6 for zero f  
:
Z2  
If the ESR zero well exceeds f /2 (or even f ), f  
P3  
SW  
SW  
1
C6 =  
should in any case be set high enough not to erode the  
phase margin at the crossover frequency. For example,  
2π × f ×R3  
LC  
it can be set between 5 x f and 10 x f .  
C
C
and then place f to cancel the ESR zero. R6 is calcu-  
P2  
The value for C8 is calculated from:  
lated as:  
C7  
C8 =  
C
×ESR  
C6  
OUT  
R6 =  
(2π ×C7×R5× f 1)  
P3  
If the value obtained here for R6 is not considerably  
smaller than R3, then recalculate C6 using (R3 + R6) in  
place of R3. Then use the new value of C6 to obtain a  
better approximation for R6. The process can be further  
Compensation when f > f  
C
ZESR  
For larger ESR capacitors such as tantalum and alu-  
minum electrolytic, f can occur before f . If f  
ZESR  
C
ZESR  
< f , then f occurs between f and f . f and f  
C
C
P2  
P3 Z1  
Z2  
iterated, and convergence is ensured as long as f <  
LC  
remain the same as before however, f  
is now  
P2  
f .  
ZESR  
set equal to f  
. The output capacitor’s ESR zero  
ZESR  
20 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
The error amplifier gain between f and f is approxi-  
P2  
P3  
V
IN_LDO  
mately equal to R5 / (R6 || R3).  
The ESR zero frequency f  
might not be very much  
ZESR  
higher than the double-pole frequency f , therefore  
LC  
IN_LDO  
the value of R5 can be calculated as:  
2
LDO_OUT  
SET_LDO  
R3×R6  
R3+R6  
f
C
R5 =  
×
2
G
× f  
MOD_DC LC  
R1  
R2  
MAX15014–  
MAX15017  
C7 can still be calculated as:  
1
C7 =  
0.5×2π ×R5× f  
LC  
SGND  
f
P3  
is set at 5xf . Therefore, C8 is calculated as:  
C
C7  
Figure 5. Setting the Output Voltage Using a Resistive Divider  
Connect CT to LDO_OUT to select the internally fixed  
C8 =  
2π ×C7×R5× f 1  
P3  
timeout period. C must be low-leakage-type capaci-  
CT  
Setting the LDO Linear  
Regulator Output Voltage  
tor. Ceramic capacitors are recommended; do not use  
capacitors lower than 200pF to avoid the influence of  
parasitic capacitances.  
The MAX15014–MAX15017 LDO regulator features Dual  
Modeoperation: it can operate in either a preset voltage  
mode or an adjustable mode. In preset voltage mode,  
internal trimmed feedback resistors set the internal linear  
regulator to 3.3V or 5V (see the Selector Guide). Select  
preset voltage mode by connecting SET_LDO to ground.  
In adjustable mode, select an output voltage between  
1.5V and 11V using two external resistors connected as a  
voltage-divider to SET_LDO (see Figure 5). Set the output  
voltage using the following equation:  
Capacitor Selection and  
Regulator Stability  
For stable operation over the full temperature range and  
with load currents up to 50mA, use a 10µF (min) output  
capacitor (C ) with a maximum ESR of 0.4. To  
LDO_OUT  
reduce noise and improve load-transient response, sta-  
bility, and power-supply rejection, use larger output  
capacitor values. Some ceramic dielectrics such as Z5U  
and Y5V exhibit very large capacitance and ESR varia-  
tion with temperature and are not recommended. With  
X7R or X5R dielectrics, 15µF should be sufficient for  
operation over their rated temperature range. For higher-  
ESR tantalum capacitors (up to 1), use 22µF or more to  
maintain stability. To improve power-supply rejection  
and transient response use a minimum 0.1µF capacitor  
between IN_LDO and SGND.  
R1  
R2  
V
= V  
1+  
OUT  
SET_LDO  
where V  
= 1.241V and the recommended value  
SET_LDO  
for R2 is around 50k.  
Setting the RESET Timeout Delay  
The RESET timeout period is adjustable to accommo-  
date a variety of µP applications. Adjust the RESET  
timeout period by connecting a capacitor (C  
between CT and SGND.  
Power Dissipation  
The MAX15014–MAX15017 are available in a thermally  
enhanced package and can dissipate up to 2.86W at  
)
CT  
T
= +70°C. When the die temperature reaches  
A
C
× V  
+160°C, the part shuts down and is allowed to cool.  
After the die cools by 20°C, the device restarts with a  
soft-start. The power dissipated in the device is the  
sum of the power dissipated in the LDO, power dissi-  
CTTH  
CT  
I
t
=
RP  
CTTHQ  
where V  
= delay comparator threshold (rising) =  
CT-TH  
-6  
= CT charge current = 2 x 10 A  
CT-THQ  
1.241V (typ), I  
pated from supply current (P ), transition losses due to  
switching the internal power MOSFET (P ), and the  
SW  
Q
(typ), t is in seconds and C is in Farads.  
RP  
Dual Mode is a trademark of Maxim Integrated Products, Inc.  
______________________________________________________________________________________ 21  
CT  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
C
C
C
DRAIN  
IN_LDO  
IN_SW  
V
IN  
R6  
C6  
R3  
4.5V TO 40V  
D1  
C8  
IN_LDO  
IN_SW  
DRAIN  
C7  
R5  
BST  
LX  
COMP  
FB  
C
BST  
L
V
AT 1A  
OUT1  
V
IN  
EN_SW  
5V TO 40V  
R4  
EN_SYS  
C+  
D2  
C
OUT  
MAX15015  
MAX15016  
C
F
C-  
RESET  
CT  
SS  
10k  
V
AT 50mA  
SYNC  
REG  
OUT2  
LDO_OUT  
PGND SGND  
C
4–MAX5017  
C
C
LDO_OUT  
SS  
CT  
1Ω  
C
REG  
DVREG  
SET_LDO  
0.47µF  
PGND  
SGND  
Figure 6. MAX15015/MAX15016 Typical Application Circuit (4.5V to 40V Input Operation)  
power dissipated due to the RMS current through the  
internal power MOSFET (P ). The total power  
R
is the on-resistance of the internal power MOSFET  
ON  
(see the Electrical Characteristics).  
MOSFET  
dissipated in the package must be limited such that the  
junction temperature does not exceed its absolute max-  
imum rating of +150°C at maximum ambient tempera-  
ture. Calculate the power lost in the MAX15014–  
MAX15017 using the following equations:  
The power loss due to switching the internal MOSFET:  
V
×I  
×(t + t )×f  
IN OUT R F SW  
P
=
SW  
4
The power loss through the switch:  
t and t are the rise and fall times of the internal power  
R
F
MOSFET measured at LX.  
2
) ×R  
RMS_MOSFET ON  
P
= (I  
MOSFET  
The power loss due to the switching supply current (I ):  
SW  
D
3
2
2
I
=
× I  
+(I ×I )+I  
PK DC  
PK DC  
RMS_MOSFET  
P
= V  
×I  
Q
IN_SW SW  
I  
PP  
2
I
=I  
+
PK  
OUT  
The power loss due to the LDO regulator:  
= (V V )×I  
LDO_OUT  
I  
PP  
2
P
I
=I  
LDO  
IN_LDO  
LDO_OUT  
DC OUT  
V
V
OUT  
The total power dissipated in the device will be:  
= P + P + P + P  
LDO  
D =  
IN  
P
TOTAL  
MOSFET  
SW  
Q
22 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
C
C
C
DRAIN  
IN_LDO  
IN_SW  
V
IN  
R6  
C6  
R3  
7.5V TO 40V  
D1  
C8  
IN_LDO  
IN_SW  
DRAIN  
C7  
R5  
BST  
LX  
COMP  
FB  
C
BST  
L
V
AT 1A  
OUT1  
V
IN  
EN_SW  
7.5V TO 40V  
R4  
EN_SYS  
D2  
C
OUT  
MAX15014  
MAX15017  
RESET  
CT  
SS  
10kΩ  
V
AT 50mA  
SYNC  
REG  
OUT2  
LDO_OUT  
PGND SGND  
C
C
C
LDO_OUT  
SS  
CT  
1Ω  
C
REG  
DVREG  
SET_LDO  
0.47µF  
PGND  
SGND  
Figure 7. MAX15014/MAX15017 Typical Application Circuit (7.5V to 40V Input-Voltage Operation)  
______________________________________________________________________________________ 23  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Pin Configuration  
Chip Information  
PROCESS: BiCMOS/DMOS  
TOP VIEW  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
N.C.  
N.C.  
+
N.C.  
N.C.  
N.C.  
DVREG  
N.C.  
RESET  
SGND  
CT  
C- (I.C.)  
PGND  
DRAIN  
DRAIN  
N.C.  
MAX15014–MAX15017  
EN_SW  
EN_SYS  
N.C.  
EP*  
TQFN  
( ) MAX15014/MAX15017  
*EP = EXPOSED PAD.  
4–MAX5017  
Selector Guide  
LDO OUTPUT  
SWITCHING  
FREQUENCY (kHz)  
DC-DC MINIMUM  
INPUT VOLTAGE (V)  
CHARGE  
PUMP  
PART  
ADJUSTABLE  
5V  
3.3V  
OUTPUT  
MAX15014A  
135  
135  
500  
500  
135  
135  
500  
500  
7.5  
7.5  
4.5  
4.5  
4.5  
4.5  
7.5  
7.5  
X
X
X
X
X
X
X
X
X
X
X
X
MAX15014B  
MAX15015A  
MAX15015B  
MAX15016A  
MAX15016B  
MAX15017A  
MAX15017B  
X
X
X
X
X
X
X
X
24 ______________________________________________________________________________________  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
4–MAX5017  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
______________________________________________________________________________________ 25  
1A, 4.5V to 40V Input Buck Converters with  
50mA Auxiliary LDO Regulators  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
4–MAX5017  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
26 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2007 Maxim Integrated Products  
is a registered trademark of Maxim Integrated Products, Inc.  

相关型号:

MAX15014_07

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015A

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015AATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015AATX+T

Switching Regulator, Voltage-mode, 2.6A, 575kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WJJD-1, TQFN-36
MAXIM

MAX15015B

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015BATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15015BATX+T

Switching Regulator, Voltage-mode, 2.6A, 575kHz Switching Freq-Max, BICMOS, 6 X 6 MM, 0.80 MM HEIGHT, LEAD FREE, MO-220WJJD-1, TQFN-36
MAXIM

MAX15016A

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016AATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016AATX+T

暂无描述
MAXIM

MAX15016B

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM

MAX15016BATX+

1A, 4.5V to 40V Input Buck Converters with 50mA Auxiliary LDO Regulators
MAXIM