MAX1507 [MAXIM]

Linear Li+ Battery Charger with Integrated Pass FET Regulation in 3mm x 3mm Thin DFN ; 线性Li +电池充电器,带有集成调整FET调节采用3mm x 3mm TDFN封装\n
MAX1507
型号: MAX1507
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Linear Li+ Battery Charger with Integrated Pass FET Regulation in 3mm x 3mm Thin DFN
线性Li +电池充电器,带有集成调整FET调节采用3mm x 3mm TDFN封装\n

电池
文件: 总12页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2899; Rev 1; 11/03  
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
General Description  
Features  
The MAX1507 is an intelligent, stand-alone constant-cur-  
rent, constant-voltage (CCCV), thermally regulated linear  
charger for a single-cell lithium-ion (Li+) battery. The  
MAX1507 integrates the current-sense circuit, MOS pass  
element, and thermal-regulation circuitry, and also elimi-  
nates the reverse-blocking Schottky diode to create the  
simplest and smallest charging solution for hand-held  
equipment.  
Stand-Alone Linear 1-Cell Li+ Battery Charger  
No External FET, Reverse-Blocking Diode, or  
Current-Sense Resistor Required  
Programmable Fast-Charge Current (0.8A max)  
Proprietary Programmable Die-Temperature  
Regulation Control (+90°C, +100°C, and +130°C)  
The MAX1507 functions as a stand-alone charger to  
control the charging sequence from the prequalification  
state through fast-charge, top-off charge, and full-  
charge indication.  
+4.25V to +13V Input Voltage Range with Input  
Overvoltage Protection (OVP) Above +7V  
Charge-Current Monitor for Fuel Gauging  
Low Dropout Voltage—130mV at 0.425A  
Proprietary thermal-regulation circuitry limits the die  
temperature when fast charging or while exposed to  
high ambient temperatures, allowing maximum charg-  
ing current without damaging the IC.  
Input Power-Source Detection Output (VL) and  
Charge-Enable Input (EN)  
Soft-Start Limits Inrush Current  
The MAX1507 achieves high flexibility by providing an  
adjustable fast-charge current and thermal regulation  
setpoints. Other features include the charging status  
(CHG) of the battery and an active-low control input (EN).  
Charge Status Output (CHG) for LED or  
Microprocessor Interface  
Small 3mm x 3mm 8-Pin Thin DFN Package,  
The MAX1507 accepts a +4.25V to +13V supply, but dis-  
ables charging when the input voltage exceeds +7V to  
protect against unqualified or faulty AC adapters. The  
MAX1507 operates over the extended temperature  
range (-40°C to +85°C) and is available in a compact  
8-pin thermally enhanced 3mm x 3mm Thin DFN pack-  
age with 0.8mm height.  
0.8mm High  
Ordering Information  
TOP  
MARK  
PART  
TEMP RANGE PIN-PACKAGE  
Applications  
Cellular and Cordless Phones  
MAX1507ETA -40°C to +85°C 8 Thin DFN-EP*  
*EP = Exposed paddle.  
AGW  
PDAs  
Digital Cameras and MP3 Players  
USB Appliances  
Typical Operating Circuit  
Charging Cradles and Docks  
Bluetooth™ Equipment  
INPUT  
4.25V TO 13V  
Pin Configuration  
IN  
BATT  
Li+  
4.2V  
TOP VIEW  
1µF  
1µF  
8
7
6
5
MAX1507  
CHG  
EN  
ISET  
TEMP  
GND  
MAX1507  
OFF  
2.80kΩ  
ON  
VL  
2
3
1
4
0.47µF  
3mm x 3mm THIN DFN  
Bluetooth is a trademark of Ericsson.  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
ABSOLUTE MAXIMUM RATINGS  
Short-Circuit Duration.................................................Continuous  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
IN, CHG to GND.....................................................-0.3V to +14V  
VL, BATT, ISET, EN, TEMP to GND..........................-0.3V to +6V  
VL to IN...................................................................-14V to +0.3V  
IN to BATT Continuous Current.............................................0.9A  
Continuous Power Dissipation (T = +70°C)  
A
8-Pin TDFN (derate 24.4mW/°C above+70°C) ..........1951mW  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V = 5V, V  
= 4.0V, TEMP = EN = CHG = unconnected, R  
= 2.8kto GND, C = 0.47µF, BATT bypassed to GND with 1µF,  
A
IN  
BATT  
ISET VL  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
13  
UNITS  
Input Voltage Range  
V
V
Input Operating Range  
4.25  
20  
6.50  
60  
V
V
V
V
- V  
, V rising  
BATT IN  
40  
30  
7
IN  
IN  
IN  
IN  
ACOK Trip Point, IN  
mV  
V
- V  
, V falling  
BATT IN  
15  
45  
rising  
hysteresis  
6.5  
7.5  
Overvoltage Lockout Trip Point  
0.11  
1
Charging (I - I  
)
2
IN BATT  
IN Input Current  
Disabled, EN = VL  
OFF state (V = V  
0.8  
1.5  
mA  
= 4.0V)  
0.065  
IN  
BATT  
VL Output Voltage  
I
VL  
I
VL  
I
VL  
= 100µA  
3.3  
-71  
-2  
V
VL Load Regulation  
= 100µA to 2mA  
= 100µA  
-200  
mV  
VL Temperature Coefficient  
mV/°C  
V
rising  
2.95  
0.17  
3
IN  
VL Undervoltage Lockout Trip Point  
V
Hysteresis  
= 0 to 4V  
V
10  
10  
IN  
BATT Input Current  
µA  
A
EN = VL  
4
Maximum RMS Charge Current  
Battery Regulation Voltage  
BATT Removal Detection Threshold  
0.8  
4.2  
4.2  
4.67  
T
T
= 0°C to +85°C  
4.162  
4.150  
4.4  
4.238  
4.250  
4.9  
A
A
I
= 0  
V
BATT  
= -40°C to +85°C  
V
rising  
V
BATT  
2
_______________________________________________________________________________________  
Linear Li+Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
ELECTRICAL CHARACTERISTICS (continued)  
(V = 5V, V  
= 4.0V, TEMP = EN = CHG = unconnected, R  
= 2.8kto GND, C = 0.47µF, BATT bypassed to GND with 1µF,  
IN  
BATT  
ISET VL  
T
= -40°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
A
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
200  
1
MAX  
UNITS  
mV  
BATT Removal Detection-Threshold Hysteresis  
Minimum BATT Bypass Capacitance  
µF/A  
mA  
Fast-Charge Current-Loop System Accuracy  
V
= 3.5V  
478  
5
520  
562  
15  
BATT  
Percentage of the fast-charge current,  
= 2.2V  
Precharge Current System Accuracy  
10  
%
V
BATT  
TEMP = VL  
130  
100  
90  
Die-Temperature-Regulation Set Point  
TEMP = floating  
TEMP = GND  
°C  
V
Precharge Threshold Voltage  
V
rising  
2.3  
2.5  
2.7  
V
BATT  
BATT  
Current-Sense Amplifier Gain, I  
in Fast Charge Mode  
to I  
SET  
BATT  
I
= 500mA, V  
= 1.4V  
0.880  
0.958  
130  
1.035  
mA/A  
BATT  
ISET  
Regulator Dropout Voltage (V - V  
IN  
)
V
= 4.1V, I = 425mA  
BATT  
200  
mV  
V
BATT  
BATT  
EN Logic Input Low Voltage  
EN Logic Input High Voltage  
EN Internal Pulldown Resistor  
CHG Output Low Current  
4.25V < V < 6.5V  
0.52  
IN  
4.25V < V < 6.5V  
1.3  
100  
5
V
IN  
200  
12  
400  
20  
1
kΩ  
mA  
V
V
= 1V  
CHG  
CHG  
T
T
= +25°C  
= +85°C  
A
CHG Output High Leakage Current  
= 13V  
µA  
%
0.002  
10  
A
Full Battery Detection Current Threshold  
(as a Percentage of the Fast-Charge Current)  
I
falling  
5
15  
BATT  
Note 1: Limits are 100% production tested at T = +25°C. Limits over operating temperature range are guaranteed through correlation  
A
using statistical quality control (SQC) methods.  
_______________________________________________________________________________________  
3
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
Typical Operating Characteristics  
(V = 5V, V  
+25°C, unless otherwise noted.)  
= 4.0V, TEMP = EN = CHG = unconnected, R  
= 2.8kto GND, C = 1µF, C  
= 1µF, C = 0.47µF, T =  
VL A  
IN  
BATT  
ISET  
IN  
BATT  
CHARGE CURRENT  
vs. BATTERY VOLTAGE  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
DISABLED-MODE SUPPLY  
CURRENT vs. INPUT VOLTAGE  
2.0  
600  
500  
400  
300  
200  
100  
0
2.0  
1.5  
1.0  
0.5  
0
TEMP = VL  
I
= 0  
EN = VL  
BATT  
1.5  
1.0  
0.5  
0
8
0
1
2
3
4
0
2
4
6
10  
12  
8
0
2
4
6
10  
12  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
BATTERY VOLTAGE (V)  
CHARGE CURRENT  
vs. INPUT VOLTAGE  
CHARGE CURRENT  
vs. INPUT-VOLTAGE HEADROOM  
BATTERY REGULATION VOLTAGE  
vs. TEMPERATURE  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
4.210  
4.207  
4.204  
4.201  
4.198  
4.195  
4.192  
4.189  
4.186  
4.183  
4.180  
V
= 4.0V  
TEMP = VL  
BATT  
0
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13  
0
0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40  
- V (V)  
-40  
-15  
10  
35  
60  
85  
INPUT VOLTAGE (V)  
V
TEMPERATURE (°C)  
IN  
BATT  
CHARGE CURRENT  
vs. AMBIENT TEMPERATURE (TEMP = VL)  
CHARGE CURRENT  
vs. AMBIENT TEMPERATURE  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
TEMP = VL  
V
= 4.0V  
BATT  
V
= 3.6V  
BATT  
R
= 1.87kΩ  
ISET  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4
_______________________________________________________________________________________  
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
Typical Operating Characteristics (continued)  
(V = 5V, V  
+25°C, unless otherwise noted.)  
= 4.0V, TEMP = EN = CHG = unconnected, R  
= 2.8kto GND, C = 1µF, C  
= 1µF, C = 0.47µF, T =  
IN  
BATT  
ISET  
IN  
BATT VL A  
CHARGE CURRENT  
vs. AMBIENT TEMPERATURE (TEMP = GND)  
CHARGE CURRENT  
vs. AMBIENT TEMPERATURE (TEMP = OPEN)  
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
1000  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
V = 4.0V  
BATT  
V
= 4.0V  
BATT  
V
= 3.6V  
V
= 3.6V  
BATT  
BATT  
R
= 1.87kΩ  
ISET  
R
ISET  
= 1.87kΩ  
-40  
-15  
10  
35  
60  
85  
-40  
-15  
10  
35  
60  
85  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
Pin Description  
PIN  
1
NAME  
VL  
FUNCTION  
Internally Generated Logic Supply for Chip. Bypass VL to GND with a 0.47µF capacitor.  
2
IN  
Input Supply Voltage. Bypass IN to GND with a 1µF capacitor to improve line noise and transient rejection.  
Ground. Connect GND and exposed pad to a large copper trace for maximum power dissipation.  
3
GND  
Charge-Current Program and Fast-Charge Current Monitor. Output current from ISET is 0.958mA per amp of  
battery charging current. The charging current is set by connecting a resistor from ISET to GND. Fast-charge  
4
5
ISET  
current = 1461V / R  
.  
ISET  
Logic-Level Enable Input. Drive EN high to disable charger. Pull EN low or float for normal operation. EN has  
an internal 200kpulldown resistor.  
EN  
Three-Level Input Pin. Connect TEMP to VL, GND, or leave floating. Sets maximum die temperature for  
thermal regulation loop. Connection to GND = +90°C, floating = +100°C, VL = +130°C. TEMP is Hi-Z during  
shutdown.  
6
7
8
TEMP  
BATT  
CHG  
Li+ Battery Connection. Bypass BATT to GND with a capacitor of at least 1µF per ampere of charge current.  
Charging Indicator, Open-Drain Output. CHG goes low (and can turn on an LED) when charging begins.  
CHG is high impedance when the battery current drops below 10% of the fast-charging current, or when EN  
is high. Connect a pullup resistor to the µPs I/O voltage when interfacing with a µP logic input.  
Exposed Pad. Connect exposed pad to a large copper trace for maximum power dissipation. The pad is  
internally connected to GND.  
PAD  
_______________________________________________________________________________________  
5
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
state. Once the cell has passed 2.5V, the charger soft-  
Detailed Description  
starts before it enters the fast-charge stage. The fast-  
The MAX1507 charger uses voltage, current, and ther-  
charge current level is programmed through a resistor  
mal-control loops to charge a single Li+ cell and to pro-  
from ISET to ground. As the battery voltage approach-  
tect the battery (Figure 1). When a Li+ battery with a  
es 4.2V, the charging current is reduced. If the battery  
cell voltage below 2.5V is inserted, the MAX1507  
current drops to less than 10% of the fast-charging cur-  
charger enters the prequalification stage where it  
rent, the CHG indicator goes high impedance, signal-  
precharges that cell with 10% of the user-programmed  
ing the battery is fully charged. At this point the  
fast-charge current. The CHG indicator output is driven  
MAX1507 enters a constant voltage-regulation mode to  
low (Figure 2) to indicate entry into the prequalification  
MAX1507  
BATT  
IN  
V
REF  
OUTPUT DRIVER,  
CURRENT SENSE,  
AND LOGIC  
ISET  
TEMPERATURE  
SENSOR  
+90°C  
+100°C  
+130°C  
IREF  
IN  
TEMP  
IN  
VL  
VL  
0.47µF  
BATT  
V
LUVLO  
IN  
V
LOK  
EN  
REF  
ON  
V
INOVLO  
INOK  
200kΩ  
LOGIC  
REFOK  
REFOK  
CHG  
N
GND  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
6
Linear Li+Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
ASYNCHRONOUS FROM  
ANYWHERE  
V
BATT  
> 7V +  
> VIN +  
IN  
V
EN = HIGH  
SHUTDOWN  
CHARGER = OFF  
LED = OFF  
V
< 2.5V  
BATT  
V
V
> 7V +  
IN  
> V  
+
IN  
BATT  
PRECHARGE  
10% CHARGE CURRENT  
LED = ON  
EN = HIGH  
V
< 2.4V  
BATT  
V
> 2.5V  
BATT  
FAST CHARGE  
100% CHARGER CURRENT  
LED = ON  
I < 10%  
CHARGE  
I
> 20%  
OF ISET  
CHARGE  
OF ISET  
FULL BATT CONTINUES  
TO REGULATE BATT  
UP TO 4.2V  
FULL BATT  
LED = OFF  
Figure 2. Charge State Diagram  
maintain the battery at full charge. If, at any point while  
charging the battery, the die temperature approaches  
the user-selected temperature setting (TEMP pin), the  
MAX1507 reduces the charging current so the die tem-  
perature does not exceed the temperature-regulation  
set point.  
EN Charger Enable Input  
EN is a logic input (active low) to enable the charger.  
Drive EN low, leave floating, or connect to GND to  
enable the charger control circuitry. Drive EN high to  
disable the charger control circuitry. EN has a 200k  
internal pulldown resistance.  
The thermal-regulation loop limits the MAX1507 die  
temperature to the value selected by the TEMP input by  
reducing the charge current as necessary (see the  
Thermal-Regulation Selection section). This feature not  
only protects the MAX1507 from overheating, but also  
allows higher charge current without risking damage to  
the system.  
VL Internal Voltage Regulator  
The MAX1507 linear charger contains an internal linear  
regulator available on the VL output pin. VL requires a  
0.47µF ceramic bypass capacitor to GND. VL is regulat-  
ed to 3.3V whenever the input voltage is above 3.5V.  
_______________________________________________________________________________________  
7
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
to the value set by TEMP. The MAX1507 operates nor-  
mally while the thermal loop is active. An active thermal  
loop does not indicate a fault condition. TEMP allows  
the MAX1507 to maximize the charge current while pro-  
viding protection against excessive power dissipation.  
CHG Charge Indicator Output  
CHG is an open-drain current source for indicating  
charge status. Table 1 describes the state of CHG dur-  
ing different stages of operation.  
CHG is a nominal 12mA current source suitable for dri-  
ving a charge-indication LED. If the MAX1507 is used  
in conjunction with a microprocessor, a pullup resistor  
to the logic I/O voltage allows CHG to indicate charge  
status to the µP instead of driving an LED.  
Connect TEMP to GND to regulate the die temperature  
at +90°C. Leave TEMP floating to regulate the die tem-  
perature at +100°C. Connect TEMP to VL to regulate  
the die temperature at +130°C.  
Capacitor Selection  
Connect a ceramic capacitor from BATT to GND for  
proper stability. Use a 1µF X5R ceramic capacitor for  
most applications.  
Soft-Start  
An analog soft-start algorithm activates when entering  
fast-charge mode. When the prequalification state is  
complete (V  
exceeds +2.5V), the charging current  
BATT  
ramps up in 3ms to the full charging current. This  
reduces the inrush current on the input supply.  
Connect a 1µF ceramic capacitor from IN to GND. Use  
a larger input bypass capacitor for high input voltages  
or high charging currents to reduce supply noise.  
Applications Information  
Charge-Current Selection  
The maximum charging current is programmed by an  
Connect a 0.47µF ceramic capacitor from VL to GND.  
Thermal Considerations  
The MAX1507 is in a thermally enhanced thin DFN  
package with exposed paddle. Connect the exposed  
paddle of the MAX1507 to a large copper ground plane  
to provide a thermal contact between the device and  
the circuit board. The exposed paddle transfers heat  
away from the device, allowing the MAX1507 to charge  
the battery with maximum current, while minimizing the  
increase in die temperature.  
external R  
resistor connected from ISET to GND.  
ISET  
ISET  
Select the R  
value based on the following formula:  
I
= 1461V / R  
FAST  
ISET  
where I  
FAST  
is in amps and R  
is in ohms. ISET can  
ISET  
also be used to monitor the fast-charge current level.  
The output current from the ISET pin is 0.958mA per  
amp of charging current. The output voltage at ISET is  
proportional to the charging current as follows:  
DC Input Sources  
The MAX1507 operates from well-regulated DC  
sources. The full-charging input-voltage range is 4.25V  
to 7V. The device can stand up to 13V on the input  
without damage to the IC. If V is greater than 7V, then  
IN  
the MAX1507 stops charging.  
V
ISET  
= (I  
x R  
) / 1044  
ISET  
CHG  
The voltage at ISET is nominally 1.4V at the selected  
fast-charge current, and falls with charging current as  
the cell becomes fully charged.  
Thermal-Regulation Selection  
Set the regulated die temperature of the MAX1507 with  
the TEMP three-level logic input. The MAX1507  
reduces the charge current to limit the die temperature  
An appropriate power supply must provide at least  
4.25V when sourcing the desired peak charging cur-  
rent. It also must stay below 6.5V when unloaded.  
Table 1. CHG States  
EN  
V
V
I
CHG  
Hi-Z  
Low  
Low  
Hi-Z  
Hi-Z  
Hi-Z  
STATE  
IN  
BATT  
BATT  
X
Low  
V
V
0
Shutdown  
BATT  
IN  
4.25V V 7V  
< 2.5V  
2.5V  
4.2V  
X
10% of I  
Prequalification  
Fast Charge  
Full Charge  
Overvoltage  
Disabled  
IN  
FAST  
Low  
4.25V V 7V  
I
*
IN  
FAST  
Low  
4.25V V 7V  
10% of I  
IN  
FAST  
Low  
>7V  
X
0
0
High  
X
X = Don’t care.  
*I  
is reduced as necessary to maintain the die temperature set by the TEMP input.  
FAST  
8
_______________________________________________________________________________________  
Linear Li+Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
USB-Powered Li+ Charger  
The universal serial bus (USB) provides a high-speed  
serial communication port as well as power for the  
remote device. The MAX1507 can be configured to  
charge its battery at the highest current possible from  
the host port. Figure 4 shows the MAX1507 as a USB  
battery charger. To make the circuit compatible with  
either 100mA or 500mA USB ports, the circuit initializes  
at 95mA charging current. The microprocessor then  
interrogates the host to determine its current capability.  
If the host port is capable, the charging current is  
increased to 435mA. The 435mA current was chosen to  
avoid exceeding the 500mA USB specification.  
Application Circuits  
Stand-Alone Li+ Charger  
The MAX1507 provides a complete Li+ charging solu-  
tion. The Typical Application Circuit on the front page  
shows the MAX1507 as a stand-alone Li+ battery  
charger. The 2.8kresistor connected to ISET sets a  
charging current of 520mA. The LED indicates when  
either fast-charge or precharge qualification has  
begun. When the battery is full, the LED turns off.  
Microprocessor-Interfaced Charger  
Figure 3 shows the MAX1507 as a µP-cooperated Li+  
battery charger. The MAX1507 starts charging the bat-  
tery when EN is low. The µP can drive EN high to dis-  
able the charger. Use a logic-biased NPN transistor as  
an inverter circuit to generate an AC_ON signal for the  
system to detect the presence of an input supply. CHG  
can be used to detect the charge status of a battery.  
By monitoring V  
charge current.  
, the system can measure the  
ISET  
4.2V Li+  
IN  
BATT  
GND  
AC/DC  
ADAPTER  
1µF  
VI/O  
1µF  
MAX1507  
CHG  
AC_ON  
ROHM  
DTC114EM  
SYSTEM  
TEMP  
ISET  
VL  
EN  
0.47µF  
2.8kΩ  
CHARGE-CURRENT MONITOR  
VI/O  
LOW: CHARGE, HIGH: FULL OR OFF  
Figure 3. µP Interfaced Li+ Battery Charger  
_______________________________________________________________________________________  
9
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
4.2V Li+  
VBUS  
GND  
IN  
BATT  
GND  
1µF  
VI/O  
1µF  
MAX1507  
CHG  
ROHM  
DTC114EM  
SYSTEM  
TEMP  
ISET  
VL  
EN  
0.47µF  
USB PORT  
15.4kΩ  
HIGH: 435mA, LOW: 95mA  
4.3kΩ  
N
VI/O  
D+  
D-  
Figure 4. USB Battery Charger  
Layout and Bypassing  
Chip Information  
Connect a 1µF ceramic input capacitor as close to the  
device as possible. Provide a large copper GND plane  
to allow the exposed paddle to sink heat away from the  
device. Connect the battery to BATT as close to the  
device as possible to provide accurate battery voltage  
sensing. Make all high-current traces short and wide to  
minimize voltage drops. For an example layout, refer to  
the MAX1507/MAX1508 evaluation kit layout.  
TRANSISTOR COUNT: 1812  
PROCESS: BiCMOS  
10 ______________________________________________________________________________________  
Linear Li+Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
L
A
D2  
D
A2  
PIN 1 ID  
1
N
1
C0.35  
b
[(N/2)-1] x e  
REF.  
E
E2  
PIN 1  
INDEX  
AREA  
DETAIL A  
e
k
A1  
C
L
C
L
L
L
e
e
A
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY  
1
2
21-0137  
D
______________________________________________________________________________________ 11  
Linear Li+ Battery Charger with Integrated Pass FET  
and Thermal Regulation in 3mm x 3mm Thin DFN  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information  
go to www.maxim-ic.com/packages.)  
COMMON DIMENSIONS  
SYMBOL  
MIN.  
0.70  
2.90  
2.90  
0.00  
0.20  
MAX.  
0.80  
3.10  
3.10  
0.05  
0.40  
A
D
E
A1  
L
k
0.25 MIN.  
0.20 REF.  
A2  
PACKAGE VARIATIONS  
PKG. CODE  
T633-1  
N
6
D2  
E2  
e
JEDEC SPEC  
MO229 / WEEA  
MO229 / WEEC  
b
[(N/2)-1] x e  
1.90 REF  
1.95 REF  
2.00 REF  
1.500.10 2.300.10 0.95 BSC  
1.500.10 2.300.10 0.65 BSC  
0.400.05  
0.300.05  
T833-1  
8
T1033-1  
10  
1.500.10 2.300.10 0.50 BSC MO229 / WEED-3 0.250.05  
DALLAS  
SEMICONDUCTOR  
PROPRIETARY INFORMATION  
TITLE:  
PACKAGE OUTLINE, 6, 8 & 10L,  
TDFN, EXPOSED PAD, 3x3x0.80 mm  
APPROVAL  
DOCUMENT CONTROL NO.  
REV.  
2
2
21-0137  
D
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

MAX1507/MAX1508EVKIT

Evaluation Kit for the MAX1507/MAX1508
MAXIM

MAX15070A

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AAUT

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AAUT/V

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070AEUT+T

Buffer/Inverter Based MOSFET Driver, 7A, BICMOS, PDSO6, ROHS COMPLIANT, SOT-23, 6 PIN
MAXIM

MAX15070A_13

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070B

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX15070BAUT

7A Sink, 3A Source, 12ns, SOT23 MOSFET Drivers
MAXIM

MAX1507ETA

Linear Li+ Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN
MAXIM

MAX1507ETA+T

Linear Li Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN
MAXIM

MAX1507ETA-T

Linear Li Battery Charger with Integrated Pass FET and Thermal Regulation in 3mm x 3mm Thin DFN
MAXIM

MAX1508

Linear Li Battery Charger with Integrated Pass FET, Thermal Regulation, and ACOKin 3mm x 3mm TDFN
MAXIM