MAX1572ETC130+ [MAXIM]

Switching Regulator, Current-mode, 1.65A, 2200kHz Switching Freq-Max, PQCC12, 4 X 4 MM, 0.8 MM HEIGHT, MO220WGGB, QFN-12;
MAX1572ETC130+
型号: MAX1572ETC130+
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Switching Regulator, Current-mode, 1.65A, 2200kHz Switching Freq-Max, PQCC12, 4 X 4 MM, 0.8 MM HEIGHT, MO220WGGB, QFN-12

开关
文件: 总11页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-2837; Rev 0; 4/03  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
General Description  
Features  
Up to 97% Efficiency  
The MAX1572 is a fixed-frequency, synchronous step-  
down DC-to-DC converter to power low-voltage micro-  
processor/DSP cores in portable equipment requiring  
high efficiency in a limited PC board area. The features  
are optimized for high efficiency over a wide load range,  
small external component size, low output ripple, and  
excellent transient response. The input supply voltage  
range is from 2.6V to 5.5V, while the output is internally  
fixed from 0.75V to 2.5V in 50mV increments with a  
guaranteed output current of 800mA. The high 2MHz  
switching allows tiny low-cost capacitors and a low-pro-  
file inductor, while the power-saving pulse-group mode  
reduces quiescent current to 48µA (typ) with light loads.  
To reduce noise and RF interference, the converter can  
be configured to provide forced-PWM operation.  
2MHz PWM Switching  
800mA Guaranteed Output Current  
Low 48µA Quiescent Current  
Power-Saving Modes: Pulse-Group, Pulse-Skip,  
Forced-PWM Mode  
0.75V to 2.5V Preset Output Range  
(in 50mV Increments)  
Voltage-Positioning Load Transients  
5mV  
Output Ripple  
P-P  
Tiny 2.2µH Inductor  
10µF Ceramic Output Capacitor  
Low 0.1µA Shutdown Current  
No External Schottky Diode Required  
Soft-Start with Zero Inrush Current  
170ms (min) RESET Output  
Small 12-Pin, 4mm x 4mm Thin QFN Package  
Ordering Information  
The MAX1572 includes a low on-resistance internal  
MOSFET switch and synchronous rectifier to maximize  
efficiency and minimize external component count. No  
external diode is needed. Other features include soft-  
start to eliminate inrush current at startup and a 170ms  
(min) RESET output to provide power-on/undervoltage  
reset. The MAX1572 is available in a 12-pin, 4mm x  
4mm thin QFN package with exposed paddle.  
PART  
TEMP RANGE  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
-40°C to +85°C  
PIN-PACKAGE  
MAX1572ETC075  
MAX1572ETC130  
MAX1572ETC150  
MAX1572ETC180  
MAX1572ETC250  
MAX1572ETCxyz*  
12 Thin QFN-EP**  
12 Thin QFN-EP**  
12 Thin QFN-EP**  
12 Thin QFN-EP**  
12 Thin QFN-EP**  
12 Thin QFN-EP**  
Applications  
Cell Phones and Smart Phones  
PDAs, Palmtops, and Notebook Computers  
MP3 and DVD Players  
Digital Cameras and Camcorders  
PCMCIA Cards  
Hand-Held Instruments  
*xyz is for the output voltage (e.g., MAX1572ETC165 has a  
1.65V output). Minimum order quantity is 2500.  
**EP = Exposed paddle.  
Selector Guide appears at end of data sheet.  
Typical Operating Circuit  
Pin Configuration  
OUTPUT  
0.75V TO 2.5V  
800mA  
TOP VIEW  
INPUT  
2.6V TO 5.5V  
2.2µH  
BATT  
LX  
9
1
8
7
3
EN1  
EN2  
GND  
OUT  
10  
11  
12  
6
5
4
MAX1572  
PGND  
ABATT  
GND  
MAX1572  
ABATT  
EN1  
EN2  
SS  
OUT  
RESET  
MODE  
SELECT  
2
GND  
4mm x 4mm  
THIN QFN  
________________________________________________________________ Maxim Integrated Products  
1
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at  
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
ABSOLUTE MAXIMUM RATINGS  
ABATT, BATT, EN1, EN2, RESET, OUT,  
Operating Temperature Range ...........................-40°C to +85°C  
Junction Temperature......................................................+150°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
SS to GND ............................................................-0.3V to +6V  
PGND to GND .......................................................-0.3V to +0.3V  
LX Current (Note 1)............................................................. 2.1A  
Output Short-Circuit Duration ............................................Infinite  
Continuous Power Dissipation (T = +70°C)  
A
12-Pin Thin QFN (derate 16.9mW/°C above +70°C)...1349mW  
Note 1: LX has internal clamp diodes to PGND and BATT. Applications that forward bias these diodes should take care not to  
exceed the ICs package power dissipation limits.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.6V, T = +0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BATT  
A
A
PARAMETER  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
UNITS  
BATT Input Voltage  
V
V
Undervoltage Lockout Threshold  
V
rising and falling, 1% hysteresis  
2.20  
2.35  
48  
2.55  
80  
BATT  
EN1 = GND, EN2 = BATT, no switching  
EN1 = BATT, EN2 = GND, no switching  
Quiescent Supply Current  
µA  
700  
0.1  
Shutdown Supply Current  
Maximum Output Current  
OUT Bias Current  
EN1 = EN2 = GND, T = +25°C  
1
µA  
mA  
µA  
A
800  
-0.4  
6
1.2  
9
No load, EN1 = EN2 = BATT  
100mA load  
3.2  
+0.8  
0
+2.0  
Output-Voltage Accuracy  
(Voltage Positioning)  
300mA load  
%
550mA load  
-1  
800mA load  
-2  
Line Regulation  
0.3  
%/V  
V
V
V
V
= 3.6V  
= 2.6V  
= 3.6V  
= 2.6V  
0.28  
0.33  
0.18  
0.20  
1.25  
-0.52  
40  
0.45  
0.30  
BATT  
BATT  
BATT  
BATT  
P-Channel On-Resistance  
I
I
= 180mA  
= 180mA  
LX  
N-Channel On-Resistance  
LX  
P-Channel Current-Limit Threshold  
N-Channel Current-Limit Threshold  
N-Channel Zero-Crossing Threshold  
LX Output Current  
1.00  
-0.68  
15  
1.65  
-0.37  
65  
A
A
EN1 = EN2 = BATT  
EN1 = BATT, EN2 = GND  
(Note 2)  
mA  
1.4  
A
RMS  
LX Leakage Current  
EN1 = EN2 = GND  
0.1  
10  
µA  
%
Maximum Duty Cycle  
100  
EN1 = BATT, EN2 = GND or  
EN1 = GND, EN2 = BATT  
0
Minimum Duty Cycle  
%
EN1 = EN2 = BATT  
16.7  
2
17.3  
2.2  
Switching Frequency  
SS Output Impedance  
1.8  
65  
MHz  
100  
150  
kΩ  
2
_______________________________________________________________________________________  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.6V, T = +0°C to +85°C, unless otherwise noted. Typical values are at T = +25°C.)  
BATT  
A
A
PARAMETER  
CONDITIONS  
EN1 = EN2 = GND  
MIN  
TYP  
MAX  
UNITS  
SS Discharge Resistance  
100  
200  
V
V
> 4.2V  
1.6  
1.4  
ABATT  
ABATT  
EN_ Logic Input High  
V
4.2V  
EN_ Logic Input Low  
0.4  
1
V
µA  
%
EN_ Logic Input Current  
0.1  
90  
RESET Threshold  
Percent of nominal, measured at OUT  
From V > 90% to RESET = HI  
87  
93  
RESET Timer Delay Time  
RESET Output Low Level  
RESET Internal Pullup Resistance to OUT  
Thermal-Shutdown Threshold  
Thermal-Shutdown Hysteresis  
170  
200  
0.015  
14  
230  
0.075  
20  
ms  
V
OUT  
I
= 1mA  
SINK  
9
kΩ  
°C  
°C  
T rising  
J
160  
20  
ELECTRICAL CHARACTERISTICS  
(V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted.) (Note 3)  
A
BATT  
PARAMETER  
CONDITIONS  
MIN  
2.6  
TYP  
MAX  
5.5  
2.55  
80  
UNITS  
V
BATT Input Voltage  
Undervoltage Lockout Threshold  
Quiescent Supply Current  
Shutdown Supply Current  
Maximum Output Current  
OUT Bias Current  
V
rising and falling, 1% hysteresis  
2.20  
V
BATT  
EN1 = GND, EN2 = BATT, no switching  
EN1 = EN2 = GND  
µA  
µA  
mA  
µA  
3
800  
-1.2  
9
No load, EN1 = EN2 = BATT  
100mA load  
3.2  
Output-Voltage Accuracy  
(Voltage Positioning)  
%
+2.8  
0.45  
0.3  
P-Channel On-Resistance  
N-Channel On-Resistance  
N-Channel Current-Limit Threshold  
N-Channel Zero-Crossing Threshold  
LX Output Current  
I
LX  
I
LX  
= 180mA  
= 180mA  
EN1 = EN2 = BATT  
EN1 = BATT, EN2 = GND  
(Note 2)  
-0.68  
10  
-0.22  
65  
A
mA  
1.4  
A
RMS  
LX Leakage Current  
EN1 = EN2 = GND  
10  
µA  
%
Maximum Duty Cycle  
100  
Minimum Duty Cycle  
EN1 = EN2 = BATT  
17.3  
2.2  
%
Switching Frequency  
1.8  
65  
MHz  
kΩ  
SS Output Impedance  
150  
200  
SS Discharge Resistance  
EN1 = EN2 = GND  
V
V
> 4.2V  
1.6  
1.4  
ABATT  
ABATT  
EN_ Logic Input High  
V
4.2V  
_______________________________________________________________________________________  
3
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
ELECTRICAL CHARACTERISTICS (continued)  
(V  
= 3.6V, T = -40°C to +85°C, unless otherwise noted.) (Note 2)  
A
BATT  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
0.4  
1
UNITS  
V
EN_ Logic Input Low  
EN_ Logic Input Current  
RESET Threshold  
µA  
%
Percent of nominal, measured at OUT  
From V > 90% to RESET = HI  
87  
93  
RESET Timer Delay Time  
RESET Output Low Level  
RESET Internal Pullup Resistance to OUT  
170  
230  
0.2  
20  
ms  
V
OUT  
I
= 1mA  
SINK  
9
kΩ  
Note 2: Guaranteed by design, not production tested.  
Note 3: Specifications to -40°C are guaranteed by design and not production tested.  
Typical Operating Characteristics  
(V  
= 3.6V, V  
= 1.5V, EN1 = GND, EN2 = BATT, T = +25°C, unless otherwise noted.)  
OUT  
BATT  
A
EFFICIENCY vs. LOAD CURRENT  
WITH 2.5V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.8V OUTPUT  
EFFICIENCY vs. LOAD CURRENT  
WITH 1.5V OUTPUT  
100  
90  
100  
90  
100  
90  
80  
70  
60  
50  
80  
70  
60  
50  
80  
70  
60  
50  
V
= 2.6V  
IN  
V
IN  
= 3.6V  
V
IN  
= 5V  
V
= 5V  
V
= 2.6V  
V = 3.6V  
IN  
IN  
IN  
V
= 2.6V  
V = 3.6V  
IN  
V
= 5V  
IN  
IN  
40  
40  
40  
1
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
OUTPUT VOLTAGE  
vs. LOAD CURRENT  
OUTPUT VOLTAGE vs. INPUT VOLTAGE  
WITH 100mA LOAD  
EFFICIENCY vs. LOAD CURRENT  
vs. MODE  
1.58  
1.56  
1.54  
1.52  
1.50  
1.55  
1.53  
1.51  
100  
90  
PULSE-  
GROUP MODE  
T = +85°C  
A
T = +85°C  
A
80  
70  
60  
50  
PULSE-  
SKIP MODE  
T = +25°C  
A
1.48  
1.46  
1.44  
T = +25°C  
A
T = -40°C  
A
1.49  
1.47  
1.45  
T = -40°C  
A
FORCED-  
PWM MODE  
1.42  
1.40  
40  
0
200  
400  
600  
800  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
1
10  
100  
1000  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
4
_______________________________________________________________________________________  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, V  
= 1.5V, EN1 = GND, EN2 = BATT, T = +25°C, unless otherwise noted.)  
OUT  
BATT  
A
INPUT CURRENT vs. INPUT VOLTAGE  
WITH NO LOAD  
HEAVY-LOAD SWITCHING WAVEFORMS  
MAX1572 toc08  
60  
50  
40  
V
2V/div  
LX  
V
OUT  
RIPPLE  
10mV/div  
30  
20  
10  
500mA/div  
I
L
I
= 500mA  
LOAD  
0
2.0  
2.5 3.0 3.5  
4.0 4.5 5.0 5.5  
200ns/div  
INPUT VOLTAGE (V)  
LIGHT-LOAD SWITCHING WAVEFORMS  
SOFT-START/SHUTDOWN WAVEFORMS  
MAX1572 toc09  
MAX1572 toc10  
V
V
2V/div  
1V/div  
V
EN2  
2V/div  
LX  
OUT  
V
OUT  
20mV/div  
500mA/div  
RIPPLE  
100mA/div  
I
IN  
I
L
I
= 20mA  
LOAD  
2µs/div  
200µs/div  
RESET WAVEFORM  
LOAD TRANSIENT, FORCED-PWM MODE  
MAX1572 toc11  
MAX1572 toc12  
V
2V/div  
1V/div  
EN2  
100mV/div  
500mA/div  
V
OUT  
V
OUT  
1V/div  
V
RESET  
I
LOAD  
100mA/div  
I
IN  
I
= 20mA TO 550mA  
LOAD  
100ms/div  
4µs/div  
_______________________________________________________________________________________  
5
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
Typical Operating Characteristics (continued)  
(V  
= 3.6V, V  
= 1.5V, EN1 = GND, EN2 = BATT, T = +25°C, unless otherwise noted.)  
OUT  
BATT  
A
LOAD TRANSIENT, PULSE-SKIP MODE  
LOAD TRANSIENT, PULSE-GROUP MODE  
MAX1572 toc13  
MAX1572 toc14  
100mV/div  
500mA/div  
V
OUT  
V
OUT  
100mV/div  
500mA/div  
I
LOAD  
I
LOAD  
I
= 20mA TO 550mA  
I
= 20mA TO 550mA  
LOAD  
LOAD  
4µs/div  
4µs/div  
LINE TRANSIENT  
MAX1572 toc15  
V
20mV/div  
1V/div  
OUT  
V
IN  
200mA/div  
I
L
V
= 3.5V TO 4.0V  
IN  
40µs/div  
6
_______________________________________________________________________________________  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
Pin Description  
PIN  
NAME  
FUNCTION  
Active-Low RESET Output. Open-drain output with internal 14kpullup to OUT. RESET is driven LOW in  
shutdown.  
1
RESET  
Soft-Start Control. Connect a capacitor from SS to GND to set the soft-start time. Use a 1000pF or larger  
capacitor to eliminate inrush current during startup. With greater than 10µF total output capacitance, increase  
2
SS  
C
to C /10,000 for soft-start. In shutdown, SS is discharged internally with 100to GND.  
OUT  
SS  
3, 5, 11  
4
GND  
OUT  
EN2  
Ground. Connect all ground pins to the exposed paddle.  
Output Sense Input. Connect to the output of the regulator. In shutdown, OUT is discharged internally with  
14kto GND.  
6
7
Enable/Mode Control Input 2. See Table 1.  
PGND Power Ground. Connect to exposed paddle.  
8
LX  
Inductor Connection. LX is high impedance in shutdown.  
9
BATT  
EN1  
Supply Voltage Input. Connect to a 2.6V to 5.5V source. Connect a 10µF ceramic capacitor from BATT to GND.  
Enable/Mode Control Input 1. See Table 1.  
10  
12  
ABATT Analog Supply Input. Connect to BATT through a 10resistor. Connect a 0.1µF capacitor from ABATT to GND.  
Exposed  
Exposed Paddle. Connect to GND and PGND.  
Paddle  
Table 1. Mode Select Truth Table  
MODE  
EN1  
EN2  
Shutdown  
0
0
1
1
0
1
0
1
CLOCK  
2MHz  
Pulse group  
Pulse skip  
ABATT  
BATT  
EN2  
EN1  
MODE  
0.1µF  
SELECT  
10Ω  
INPUT  
Forced PWM  
2.6V TO 5.5V  
CURRENT  
SENSE  
A zero represents EN_ being driven low or connected to GND.  
A 1 represents EN_ being driven high or connected to BATT.  
OUTPUT  
0.75V TO 2.5V  
800mA  
PWM  
CONTROL  
10µF  
SLOPE  
COMP  
LX  
2.2µH  
C
Detailed Description  
OUT  
MAX1572  
PGND  
OUT  
Figure 1 is the functional diagram.  
RESET  
TIMER  
170ms  
RESET  
PWM Control Scheme  
The MAX1572 uses a 2MHz fixed-frequency, pulse-  
width-modulated (PWM), current-mode control scheme.  
The heart of the current-mode PWM controller is an  
open-loop comparator that compares the error amp  
voltage-feedback signal against the sum of the ampli-  
fied current-sense signal and the slope compensation  
ramp. At each rising edge of the internal clock, the  
internal high-side P-channel MOSFET turns on until the  
PWM comparator trips. During this on-time, current  
ramps up through the inductor, sourcing current to the  
EA  
REFERENCE  
GND  
THERMAL  
SHUTDOWN  
SS  
1000pF  
Figure 1. Functional Diagram  
_______________________________________________________________________________________  
7
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
output and storing energy in the inductors magnetic  
field. The current-mode feedback system regulates the  
peak inductor current as a function of the output voltage  
error signal. Since the average inductor current is nearly  
the same as the peak inductor current (assuming that  
the inductor value is relatively high to minimize ripple  
current), the circuit acts as a switch-mode transconduc-  
tance amplifier. This pushes the output LC filter pole,  
normally found in a voltage-mode PWM, to a higher fre-  
quency. To preserve inner-loop stability and eliminate  
inductor staircasing, an internal slope-compensation  
ramp is summed into the main PWM comparator. During  
the second half of the switching cycle (off-time), the  
internal high-side P-channel MOSFET turns off and the  
internal low-side N-channel MOSFET turns on. Now the  
inductor releases the stored energy as its current ramps  
down while still providing current to the output. The output  
capacitor stores charge when the inductor current  
exceeds the load current and discharges when the  
inductor current is lower, smoothing the voltage across  
the load. Under overload conditions, when the inductor  
current exceeds the current limit, the high-side MOSFET  
is turned off and the low-side MOSFET remains on for  
the remainder of the cycle to let the inductor current  
ramp down.  
pulse-group mode. In pulse-skip mode, the output volt-  
age ripple is lower, and the load-transient response  
faster. However, the quiescent current is higher than in  
pulse-group mode.  
Forced-PWM Mode  
In forced-PWM mode, the MAX1572 operates at a con-  
stant 2MHz switching frequency without pulse skipping.  
This is desirable in noise-sensitive applications, since the  
output ripple is minimized and has a predictable noise  
spectrum. Forced-PWM mode requires higher supply  
current with light loads due to constant switching.  
100% Duty-Cycle Operation  
The MAX1572 can operate at 100% duty cycle. In this  
state, the high-side P-channel MOSFET is turned on (not  
switching). This occurs when the input voltage is close to  
the output voltage. The dropout voltage is the voltage  
drop due to the output current across the on-resistance  
of the internal P-channel MOSFET (R  
) and the  
DS(ON)P  
inductor resistance (R ):  
L
V
= I  
× ( R + R )  
DS(ON)P L  
DROPOUT  
OUT  
R
is given in the Electrical Characteristics sec-  
DS(ON)P  
tion. R , for a few recommended inductors, is given in  
L
Table 2.  
Pulse-Group Mode  
Pulse-group mode is used to minimize the supply cur-  
rent with a light load. In pulse-group mode, the IC shuts  
Load-Transient Response/  
Voltage Positioning  
The MAX1572 uses voltage positioning that matches  
the load regulation to the voltage droop seen during  
load transients. In this way, the output voltage does not  
overshoot when the load is removed, which results in  
the total output-voltage variation being half as wide as  
in a conventional design. Figure 2 shows an example of  
a voltage-positioned and a nonvoltage-positioned load  
transient. Additionally, the MAX1572 uses a wide-band-  
width feedback loop to respond more quickly to a load  
transient than regulators using conventional integrating  
feedback loops.  
off most internal circuitry when V  
is +0.8% above  
OUT  
nominal regulation. When V  
drops below +0.8% of  
OUT  
the nominal regulation voltage, the IC powers up its cir-  
cuits and resumes switching.  
Pulse-Skip Mode  
Pulse-skip mode is also used to minimize the supply  
current with a light load. The difference between pulse-  
group and pulse-skip modes is that when V  
rises  
OUT  
above the +0.8% regulation point, pulse-group mode  
stops switching and completely turns off a number of  
circuits. Under the same conditions, pulse-skip mode  
stops switching but leaves all circuits on. The delay  
coming out of pulse-skip mode is shorter than with  
The load line used to achieve voltage positioning is  
shown in Figure 3. This assumes a nominal operating  
point of 3.6V input at 300mA load.  
Table 2. Recommended Inductors  
MANUFACTURER  
PART  
LQH32CN  
CDRH3D16  
CDRH2D11  
D312F  
VALUE (µH)  
R
(m)  
97  
I
(mA)  
SIZE (mm)  
2.5 x 3.2 x 2.0  
3.8 x 3.8 x 1.8  
3.2 x 3.2 x 1.2  
3.6 x 3.6 x 1.2  
4.8 x 4.8 x 1.2  
SHIELDED  
L
SAT  
Murata  
2.2  
2.2  
2.2  
2.2  
2.2  
790  
No  
Yes  
Yes  
No  
50  
1200  
780  
Sumida  
TOKO  
78  
170  
140  
1200  
1330  
D412F  
No  
8
_______________________________________________________________________________________  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
NORMAL OPERATION  
FORCED-PWM  
+1  
V
V
= 3.6V  
IN  
OUT  
(VOLTAGE POSITIONING)  
CHANGE IN  
0
OUTPUT  
V
IN  
= 5.5V  
VOLTAGE (%)  
V
OUT  
(CONVENTIONAL)  
-1  
V
= 2.6V  
IN  
I
OUT  
-2  
0
200  
400  
LOAD CURRENT (mA)  
600  
800  
Figure 2. Load Transient Response, With and Without Voltage  
Positioning  
Figure 3. Voltage-Positioning Load Line  
current. For maximum efficiency, the inductors DC  
resistance should be as low as possible. See Table 2  
for recommended inductors and manufacturers.  
Soft-Start  
Soft-start is used to prevent input-current overshoot dur-  
ing startup. For most applications using a 10µF output  
capacitor, connect a 1000pF capacitor from SS to GND.  
If a larger output capacitor is used, then use the follow-  
ing formula to find the value of the soft-start capacitor  
needed to prevent input-current overshoot:  
Capacitor Selection  
Ceramic 10µF input and output capacitors are recom-  
mended for most applications. For output voltages  
below 1.5V, output capacitance should be increased to  
22µF. For best stability over a wide temperature range,  
use capacitors with an X5R or better dielectric.  
C
SS  
= C  
/104  
OUT  
During soft-start, the output voltage rises from 0 to  
with a time constant equal to C times  
V
OUT(nom)  
SS  
ABATT Input Filter  
In normal applications, an RC filter on ABATT keeps  
power-supply noise from entering the IC. Connect a  
10resistor between BATT and ABATT and connect a  
0.1µF capacitor from ABATT to GND.  
100k(see the Typical Operating Characteristics).  
170ms RESET  
RESET is an open-drain output with an internal 14kΩ  
pullup resistor to OUT. During startup, RESET is held low  
until 200ms (typ) after the output voltage reaches 90% of  
its nominal regulation voltage. When the output voltage  
drops below 90% of its nominal regulation voltage,  
RESET pulls low again. See the Typical Operating  
Characteristics section for RESET waveforms during  
startup and shutdown.  
PC Board Layout and Routing  
Due to fast-switching waveforms and high-current  
paths, careful PC board layout is required. An evalua-  
tion kit (MAX1572EVKIT) is available to speed design.  
When laying out a board, minimize trace lengths  
between the IC, the inductor, the input capacitor, and the  
output capacitor. Keep these traces short, direct, and  
wide. Keep noisy traces, such as the LX node trace,  
away from OUT. The input bypass capacitors should be  
placed as close to the IC as possible. Connect PGND  
and GND directly to the exposed paddle underneath the  
IC. The ground connections of the input and output  
capacitors should be as close together as possible.  
Applications Information  
Inductor Selection  
A 2.2µH inductor with a saturation current of at least 1A  
is recommended for full-load (800mA) applications. For  
lower load currents, the inductor current rating may be  
reduced. For most applications, use an inductor with a  
current rating 1.25 times the maximum required output  
_______________________________________________________________________________________  
9
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
Selector Guide  
Chip Information  
TRANSISTOR COUNT: 3697  
PART  
V
(V)  
TOP MARK  
AABW  
AACW  
AABX  
AABY  
AABZ  
OUT  
PROCESS: BiCMOS  
MAX1572ETC075  
MAX1572ETC130  
MAX1572ETC150  
MAX1572ETC180  
MAX1572ETC250  
MAX1572ETCxyz  
0.75  
1.30  
1.50  
1.80  
2.50  
*
*xyz is for output voltage (e.g., MAX1572ETC165 has a 1.65V  
output).  
Package Information  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
10 ______________________________________________________________________________________  
800mA, 2MHz, PWM DC-to-DC  
Step-Down Converter with RESET  
Package Information (continued)  
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,  
go to www.maxim-ic.com/packages.)  
PACKAGE OUTLINE  
12,16,20,24L QFN THIN, 4x4x0.8 mm  
21-0139  
A
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 11  
© 2003 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY