MAX1601EUR-T [MAXIM]

Analog IC ; 模拟IC\n
MAX1601EUR-T
型号: MAX1601EUR-T
厂家: MAXIM INTEGRATED PRODUCTS    MAXIM INTEGRATED PRODUCTS
描述:

Analog IC
模拟IC\n

模拟IC
文件: 总12页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
19-1613; Rev 0; 1/00  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
General Description  
Features  
The MAX6101–MAX6105 are low-cost, low-dropout  
(LDO), micropower voltage references. These three-termi-  
nal references operate with an input voltage range from  
Ultra-Small 3-Pin SOT23 Package  
Low Cost  
(V  
+ 200mV) to 12.6V and are available with output  
OUT  
Stable with C  
= 0 to 1µF  
LOAD  
voltage options of 1.25V, 2.5V, 3V, 4.096V, and 5V. They  
feature a proprietary curvature-correction circuit and  
laser-trimmed thin-film resistors that result in a low tem-  
perature coefficient of 75ppm/°C (max) and an initial  
accuracy of 0.4ꢀ (max). These devices are specified  
over the extended temperature range (-40°C to +85°C).  
5mA Source Current  
0ꢀ.4 maꢁ ꢂnitial Accuracꢃ  
Low 75ppm/°C Temperature Coefficient  
150µA maꢁ Quiescent Supplꢃ Current  
50mV Dropout at 1mA Load Current  
These series-mode voltage references draw only 90µA of  
supply current and can source 5mA and sink 2mA of load  
current. Unlike conventional shunt-mode (two-terminal)  
references that waste supply current and require an  
external resistor, these devices offer a supply current that  
is virtually independent of the supply voltage (with only a  
4µA/V variation with supply voltage) and do not require an  
external resistor. Additionally, these internally compensat-  
ed devices do not require an external compensation  
capacitor and are stable with up to 1µF of load capaci-  
tance. Eliminating the external compensation capacitor  
saves valuable board area in space-critical applications.  
Their LDO voltage and supply-independent, ultra-low  
supply current make these devices ideal for battery-oper-  
ated, high-performance, low-voltage systems.  
Ordering Information  
PIN-  
TOP  
MARK  
PART  
TEMP. RANGE  
PACKAGE  
MAX6101EUR-T -40°C to +85°C 3 SOT23-3  
MAX6102EUR-T -40°C to +85°C 3 SOT23-3  
MAX6103EUR-T -40°C to +85°C 3 SOT23-3  
MAX6104EUR-T -40°C to +85°C 3 SOT23-3  
MAX6105EUR-T -40°C to +85°C 3 SOT23-3  
FZGT  
FZGU  
FZGV  
FZGW  
FZGX  
Note: There is a minimum order increment of 2500 pieces for  
SOT packages.  
The MAX6101–MAX6105 are available in tiny 3-pin  
SOT23 packages.  
Selector Guide  
OUTPUT  
VOLTAGE (V)  
INPUT VOLTAGE  
RANGE (V)  
Applications  
PART  
Portable Battery-Powered Systems  
Notebook Computers  
PDAs, GPSs, DMMs  
Cellular Phones  
MAX6101  
MAX6102  
MAX6103  
MAX6104  
MAX6105  
1.250  
2.500  
3.000  
4.096  
5.000  
2.5 to 12.6  
(V  
(V  
(V  
(V  
+ 200mV) to 12.6  
+ 200mV) to 12.6  
+ 200mV) to 12.6  
+ 200mV) to 12.6  
OUT  
OUT  
OUT  
OUT  
Hard-Disk Drives  
Typical Operating Circuit  
Pin Configuration  
+SUPPLY INPUT (SEE SELECTOR GUIDE)  
TOP VIEW  
IN  
OUT  
REFERENCE  
OUT  
IN  
1
2
MAX6101  
MAX6102  
MAX6103  
MAX6104  
MAX6105  
MAX6101  
*
MAX6102  
MAX6103  
MAX6104  
MAX6105  
3
GND  
OUT  
1µF MAX*  
GND  
SOT23-3  
*CAPACITORS ARE OPTIONAL.  
________________________________________________________________ Maxim Integrated Products  
1
For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800.  
For small orders, phone 1-800-835-8769.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
ABSOLUTE MAXIMUM RATINGS  
(Voltages Referenced to GND)  
Continuous Power Dissipation (T = +70°C)  
A
IN.........................................................................-0.3V to +13.5V  
3-Pin SOT23 (derate 4.0mW/°C above +70°C)............320mW  
Operating Temperature Range ...........................-40°C to +85°C  
Storage Temperature Range.............................-65°C to +150°C  
Lead Temperature (soldering, 10s) .................................+300°C  
OUT .............................................................-0.3V to (V + 0.3V)  
IN  
Output Short Circuit to GND or IN (V < 6V) ............Continuous  
IN  
Output Short Circuit to GND or IN (V 6V) .........................60s  
IN  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
ELECTRICAL CHARACTERISTICSMAX6101, V  
= 1.25V  
OUT  
(V = +5V, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
IN  
OUT  
A
MIN  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
1.255  
65  
UNITS  
V
OUT  
T
= +25°C  
1.245  
1.250  
V
A
0°C to +70°C  
Output Voltage Temperature  
Coefficient (Notes 2, 3)  
TCV  
ppm/°C  
µV/V  
OUT  
-40°C to +85°C  
75  
V  
/
/
OUT  
Line Regulation  
2.5V V 12.6V  
7
90  
IN  
V  
IN  
Sourcing: 0 I  
4mA  
0.7  
0.03  
25  
0.9  
3.0  
OUT  
V  
OUT  
I  
OUT  
Load Regulation  
mV/mA  
mA  
Sinking: -2mA I  
Short to GND  
Short to IN  
0  
OUT  
OUT Short-Circuit Current  
Long-Term Stability  
I
SC  
25  
V  
/
/
ppm/  
1000h  
OUT  
time  
1000h at +25°C  
50  
Output Voltage Hysteresis  
(Note 4)  
V  
OUT  
cycle  
130  
ppm  
DYNAMIC CHARACTERISTICS  
f = 0.1Hꢁ to 10Hꢁ  
f = 10Hꢁ to 10kHꢁ  
13  
15  
µVp-p  
Noise Voltage  
e
OUT  
µV  
RMS  
V  
/
OUT  
Ripple Rejection  
V
= 5V 100mV, f = 120Hꢁ  
86  
50  
dB  
µs  
µF  
IN  
V  
IN  
Turn-On Settling Time  
t
To V  
= 0.1ꢀ of final value, C  
= 50pF  
R
OUT  
OUT  
Capacitive-Load Stability Range  
(Note 3)  
C
OUT  
0
1.0  
INPUT CHARACTERISTICS  
Supply Voltage Range  
V
Guaranteed by line-regulation test  
2.5V V 12.6V  
2.5  
12.6  
150  
10  
V
IN  
Quiescent Supply Current  
Change in Supply Current  
I
IN  
90  
4
µA  
I
/V  
IN IN  
µA/V  
IN  
2
_______________________________________________________________________________________  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
ELECTRICAL CHARACTERISTICSMAX6102, V  
= 2.50V  
OUT  
(V = +5V, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
IN  
OUT  
A
MIN  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
2.510  
65  
UNITS  
V
OUT  
T
= +25°C  
2.490  
2.50  
V
A
0°C to +70°C  
Output Voltage Temperature  
Coefficient (Notes 2, 3)  
TCV  
ppm/°C  
µV/V  
OUT  
-40°C to +85°C  
75  
V  
/
/
OUT  
Line Regulation  
(V  
+ 0.2V) V 12.6V  
12  
300  
OUT  
IN  
V  
IN  
Sourcing: 0 I  
5mA  
0.6  
0.9  
6.0  
OUT  
V  
OUT  
I  
OUT  
Load Regulation  
mV/mA  
mV  
Sinking: -2mA I  
0  
0.025  
OUT  
V
IN  
-
Dropout Voltage (Note 5)  
OUT Short-Circuit Current  
Long-Term Stability  
I
= 1mA  
50  
200  
OUT  
V
OUT  
Short to GND  
Short to IN  
25  
25  
I
mA  
SC  
V  
/
/
ppm/  
1000h  
OUT  
time  
1000h at +25°C  
(Note 2)  
50  
Output Voltage Hysteresis  
(Note 4)  
V  
OUT  
cycle  
130  
ppm  
DYNAMIC CHARACTERISTICS  
f = 0.1Hꢁ to 10Hꢁ  
f = 10Hꢁ to 10kHꢁ  
27  
30  
µVp-p  
Noise Voltage  
e
OUT  
µV  
RMS  
V  
/
OUT  
Ripple Rejection  
V
= 5V 100mV, f = 120Hꢁ  
86  
dB  
µs  
µF  
IN  
V  
IN  
Turn-On Settling Time  
t
To V  
= 0.1ꢀ of final value, C = 50pF  
OUT  
115  
R
OUT  
Capacitive-Load Stability Range  
(Note 3)  
C
OUT  
0
1.0  
INPUT CHARACTERISTICS  
V
OUT  
0.2  
+
Supply Voltage Range  
V
IN  
Guaranteed by line-regulation test  
V
12.6  
Quiescent Supply Current  
Change in Supply Current  
I
90  
4
150  
10  
µA  
IN  
I
/V  
IN IN  
(V  
+ 0.2V) V 12.6V  
µA/V  
OUT  
IN  
_______________________________________________________________________________________  
3
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
ELECTRICAL CHARACTERISTICSMAX6103, V  
= 3.0V  
OUT  
(V = +5V, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
IN  
OUT  
A
MIN  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
3.012  
65  
UNITS  
V
OUT  
T
= +25°C  
2.988  
3.000  
V
A
0°C to +70°C  
Output Voltage Temperature  
Coefficient (Notes 2, 3)  
TCV  
ppm/°C  
µV/V  
OUT  
-40°C to +85°C  
75  
V  
/
/
OUT  
Line Regulation  
(V  
+ 0.2V) V 12.6V  
13  
400  
OUT  
IN  
V  
IN  
Sourcing: 0 I  
5mA  
0.5  
0.9  
7.0  
OUT  
V  
OUT  
I  
OUT  
Load Regulation  
mV/mA  
mV  
Sinking: -2mA I  
0  
0.018  
OUT  
V
IN  
-
Dropout Voltage (Note 5)  
OUT Short-Circuit Current  
Long-Term Stability  
I
= 1mA  
50  
200  
OUT  
V
OUT  
Short to GND  
Short to IN  
25  
25  
I
mA  
SC  
V  
/
/
ppm/  
1000h  
OUT  
time  
1000h at +25°C  
50  
Output Voltage Hysteresis  
(Note 4)  
V  
OUT  
cycle  
130  
ppm  
DYNAMIC CHARACTERISTICS  
f = 0.1Hꢁ to 10Hꢁ  
f = 10Hꢁ to 10kHꢁ  
35  
40  
µVp-p  
Noise Voltage  
e
OUT  
µV  
RMS  
V  
/
OUT  
Ripple Rejection  
V
= 5V 100mV, f = 120Hꢁ  
76  
dB  
µs  
µF  
IN  
V  
IN  
Turn-On Settling Time  
t
To V  
= 0.1ꢀ of final value, C = 50pF  
OUT  
115  
R
OUT  
Capacitive-Load Stability Range  
(Note 3)  
C
OUT  
0
1.0  
INPUT CHARACTERISTICS  
V
OUT  
0.2  
+
Supply Voltage Range  
V
IN  
Guaranteed by line-regulation test  
V
12.6  
Quiescent Supply Current  
Change in Supply Current  
I
90  
4
150  
10  
µA  
IN  
I
/V  
IN IN  
(V  
+ 0.2V) V 12.6V  
µA/V  
OUT  
IN  
4
_______________________________________________________________________________________  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
ELECTRICAL CHARACTERISTICSMAX6104, V  
= 4.096V  
OUT  
(V = +5V, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
IN  
OUT  
A
MIN  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
4.112  
65  
UNITS  
V
OUT  
T
= +25°C  
4.080  
4.096  
V
A
0°C to +70°C  
Output Voltage Temperature  
Coefficient (Notes 2, 3)  
TCV  
ppm/°C  
µV/V  
OUT  
-40°C to +85°C  
75  
V  
/
/
OUT  
Line Regulation  
(V  
+ 0.2V) V 12.6V  
20  
430  
OUT  
IN  
V  
IN  
Sourcing: 0 I  
5mA  
0.5  
0.9  
8
OUT  
V  
OUT  
I  
OUT  
Load Regulation  
mV/mA  
mV  
Sinking: -2mA I  
0  
0.018  
OUT  
V
IN  
-
Dropout Voltage (Note 5)  
OUT Short-Circuit Current  
Long-Term Stability  
I
= 1mA  
50  
200  
OUT  
V
OUT  
Short to GND  
Short to IN  
25  
25  
I
mA  
SC  
V  
/
/
ppm/  
1000h  
OUT  
time  
1000h at +25°C  
50  
Output Voltage Hysteresis  
(Note 4)  
V  
OUT  
cycle  
130  
ppm  
DYNAMIC CHARACTERISTICS  
f = 0.1Hꢁ to 10Hꢁ  
f = 10Hꢁ to 10kHꢁ  
50  
50  
µVp-p  
Noise Voltage  
e
OUT  
µV  
RMS  
V  
/
OUT  
Ripple Rejection  
V
= 5V 100mV, f = 120Hꢁ  
72  
dB  
µs  
µF  
IN  
V  
IN  
Turn-On Settling Time  
t
To V  
= 0.1ꢀ of final value, C = 50pF  
OUT  
190  
R
OUT  
Capacitive-Load Stability Range  
(Note 3)  
C
OUT  
0
1.0  
INPUT CHARACTERISTICS  
V
OUT  
0.2  
+
Supply Voltage Range  
V
IN  
Guaranteed by line-regulation test  
V
12.6  
Quiescent Supply Current  
Change in Supply Current  
I
90  
4
150  
10  
µA  
IN  
I
/V  
IN IN  
(V  
+ 0.2V) V 12.6V  
µA/V  
OUT  
IN  
_______________________________________________________________________________________  
5
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
ELECTRICAL CHARACTERISTICSMAX6105, V  
= 5.000V  
OUT  
(V = +5.2V, I  
= 0, T = T  
to T  
, unless otherwise noted. Typical values are at T = +25°C.) (Note 1)  
MAX A  
IN  
OUT  
A
MIN  
PARAMETER  
Output Voltage  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
5.020  
65  
UNITS  
V
OUT  
T
= +25°C  
4.980  
5.000  
V
A
0°C to +70°C  
Output Voltage Temperature  
Coefficient (Notes 2, 3)  
TCV  
ppm/°C  
µV/V  
OUT  
-40°C to +85°C  
75  
V  
/
/
OUT  
Line Regulation  
(V  
+ 0.2V) V 12.6V  
25  
550  
OUT  
IN  
V  
IN  
Sourcing: 0 I  
5mA  
0.4  
0.9  
10  
OUT  
V  
OUT  
I  
OUT  
Load Regulation  
mV/mA  
mV  
Sinking: -2mA I  
0  
0.012  
OUT  
V
IN  
-
Dropout Voltage (Note 5)  
OUT Short-Circuit Current  
Long-Term Stability  
I
= 1mA  
50  
200  
OUT  
V
OUT  
Short to GND  
Short to IN  
25  
25  
I
mA  
SC  
V  
/
/
ppm/  
1000h  
OUT  
time  
1000h at +25°C  
50  
Output Voltage Hysteresis  
(Note 4)  
V  
OUT  
cycle  
130  
ppm  
DYNAMIC CHARACTERISTICS  
f = 0.1Hꢁ to 10Hꢁ  
f = 10Hꢁ to 10kHꢁ  
60  
60  
µVp-p  
Noise Voltage  
e
OUT  
µV  
RMS  
V  
/
OUT  
Ripple Rejection  
V
= 5V 100mV, f = 120Hꢁ  
65  
dB  
µs  
µF  
IN  
V  
IN  
Turn-On Settling Time  
t
To V  
= 0.1ꢀ of final value, C = 50pF  
OUT  
300  
R
OUT  
Capacitive-Load Stability Range  
(Note 3)  
C
OUT  
0
1.0  
INPUT CHARACTERISTICS  
V
OUT  
0.2  
+
Supply Voltage Range  
V
IN  
Guaranteed by line-regulation test  
V
12.6  
Quiescent Supply Current  
Change in Supply Current  
I
90  
4
150  
10  
µA  
IN  
I
/V  
IN IN  
(V  
+ 0.2V) V 12.6V  
µA/V  
OUT  
IN  
Note 1: Devices are 100ꢀ production tested at T = +25°C and are guaranteed by design from T = T  
to T  
by correlation to  
MAX  
A
A
MIN  
sample units characteriꢁed over temperature.  
Note 2: Temperature coefficient is specified by the “box” method; i.e., the maximum V  
is divided by the maximum t.  
OUT  
Note 3: Not production tested. Guaranteed by design.  
Note 4: Thermal hysteresis is defined as the change in +25°C output voltage before and after temperature cycling of the device  
from T = T to T  
.
MAX  
A
MIN  
Note 5: Dropout voltage is the minimum input voltage at which V  
changes 0.2ꢀ from V  
at V = 5.0V (V = 5.5V for  
OUT IN IN  
OUT  
MAX6105).  
6
_______________________________________________________________________________________  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
Typical Operating Characteristics  
(T = +25°C, unless otherwise noted.)  
A
MAX6102  
OUTPUT VOLTAGE TEMPERATURE DRIFT  
2.497  
MAX6105  
SUPPLY CURRENT  
vs. INPUT VOLTAGE  
OUTPUT VOLTAGE TEMPERATURE DRIFT  
120  
100  
80  
60  
40  
20  
0
5.004  
5.002  
5.000  
4.998  
4.996  
4.994  
4.992  
4.990  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
3 TYPICAL PARTS  
3 TYPICAL PARTS  
TEMPERATURE RISING  
2.490  
2.489  
2.488  
TEMPERATURE RISING  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
2
4
6
8
10  
12  
14  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
MAX6102  
MAX6102  
DROPOUT VOLTAGE vs. SINK CURRENT  
DROPOUT VOLTAGE vs. SOURCE CURRENT  
SUPPLY CURRENT vs. TEMPERATURE  
250  
200  
150  
100  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
140  
120  
100  
80  
V
= 12V  
CC  
T
= +85°C  
A
V
= 5V  
CC  
T
= -40°C  
A
V
= 3.3V  
CC  
V
= 2.5V  
CC  
60  
T
= +25°C  
A
T
= +85°C  
A
40  
T
= -40°C  
A
T
= +25°C  
A
20  
0
0
-40  
-20  
0
20  
40  
60  
80  
0
1
2
3
4
5
0
0.5  
1.0  
1.5  
2.0  
2.5  
TEMPERATURE (°C)  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
MAX6102  
LOAD REGULATION  
MAX6105  
MAX6105  
DROPOUT VOLTAGE vs. SINK CURRENT  
DROPOUT VOLTAGE vs. SOURCE CURRENT  
8
7
250  
200  
150  
100  
50  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
T
= +85°C  
T
= +85°C  
A
A
6
SINK  
SOURCE  
5
T
= +25°C  
A
4
T
= -40°C  
A
T
= +25°C  
A
T
A
= -40°C  
3
2
T
= -40°C  
A
1
T
= +85°C  
A
T
= -40°C  
A
0
T
= +25°C  
A
T
= +85°C  
A
-1  
-2  
T
= +25°C  
A
0
-6 -4 -2  
0
2
4
6
8
10 12  
0
1
2
3
4
5
6
0
0.5  
1.0  
1.5  
2.0  
2.5  
LOAD CURRENT (mA)  
SOURCE CURRENT (mA)  
SINK CURRENT (mA)  
_______________________________________________________________________________________  
7
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX6102  
LINE REGULATION  
MAX6105  
LINE REGULATION  
MAX6105  
LOAD REGULATION  
5
0.25  
0.20  
0.15  
0.10  
0.05  
0
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
T
= +85°C  
A
4
3
SINK  
SOURCE  
T
= -40°C  
A
T
= -40°C  
A
T
= +25°C  
A
2
T
= -40°C  
A
T
= +85°C  
T
= +25°C  
A
A
1
T
= -40°C  
= +25°C  
A
T
A
T
= +25°C  
A
0
T
= +85°C  
A
-0.05  
-0.10  
T
= +85°C  
A
-1  
-0.05  
-6 -4 -2  
0
2
4
6
8
10 12  
2
4
6
8
10  
12  
14  
4
6
8
10  
12  
14  
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
MAX6102  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
MAX6105  
POWER-SUPPLY REJECTION RATIO  
vs. FREQUENCY  
MAX6101  
LINE-TRANSIENT RESPONSE  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
IN  
200mV/div  
V
OUT  
200mV/div  
0.001 0.01  
0.1  
1
10  
100 1000  
0.001 0.01  
0.1  
1
10  
100 1000  
100µs/div  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
MAX6105  
LINE-TRANSIENT RESPONSE  
MAX6102  
LINE-TRANSIENT RESPONSE  
OUTPUT IMPEDANCE vs. FREQUENCY  
800  
700  
600  
500  
400  
V
V
IN  
IN  
200mV/div  
200mV/div  
300  
200  
V
V
OUT  
5mV/div  
OUT  
100mV/div  
100  
0
-100  
0.01 0.1  
1
10 100 1k 10k 100k 1M  
FREQUENCY (Hz)  
100µs/div  
100µs/div  
8
_______________________________________________________________________________________  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX6101  
LOAD-TRANSIENT RESPONSE  
MAX6102  
LOAD-TRANSIENT RESPONSE (C  
= 0)  
LOAD  
V
V
OUT  
200mV/div  
OUT  
200mV/div  
5mA  
I
OUT  
4mA  
5mA/div  
I
OUT  
5mA/div  
-2mA  
-2mA  
200µs/div  
200µs/div  
MAX6105  
LOAD-TRANSIENT RESPONSE (C  
MAX6102  
LOAD-TRANSIENT RESPONSE (C  
= 0)  
= 1µF)  
LOAD  
LOAD  
V
V
OUT  
200mV/div  
IN  
2V/div  
I
OUT  
5mA/div  
5mA  
V
OUT  
50mV/div  
-2mA  
200µs/div  
200µs/div  
MAX6105  
LOAD-TRANSIENT RESPONSE (C  
MAX6101  
TURN-ON TRANSIENT  
= 1µF)  
LOAD  
V
V
IN  
5V/div  
IN  
2V/div  
V
OUT  
50mV/div  
V
OUT  
00mV/div  
100µs/div  
100µs/div  
_______________________________________________________________________________________  
9
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
Typical Operating Characteristics (continued)  
(T = +25°C, unless otherwise noted.)  
A
MAX6105  
TURN-ON TRANSIENT  
MAX6102  
0.1Hz TO 10Hz OUTPUT NOISE  
MAX6105  
0.1Hz TO 10Hz OUTPUT NOISE  
V
IN  
2V/div  
20µV/div  
20µV/div  
V
OUT  
2V/div  
100µs/div  
1s/div  
1s/div  
Supply Current  
Pin Description  
The quiescent supply current of the series-mode  
MAX6101 family is typically 90µA and is virtually indepen-  
dent of the supply voltage, with only a 10µA/V (max) vari-  
ation with supply voltage. Unlike series references,  
shunt-mode references operate with a series resistor con-  
nected to the power supply. The quiescent current of a  
shunt-mode reference is thus a function of the input volt-  
age. Additionally, shunt-mode references have to be  
biased at the maximum expected load current, even if the  
load current is not present at the time. In the MAX6101  
family, the load current is drawn from the input voltage  
only when required, so supply current is not wasted and  
efficiency is maximiꢁed at all input voltages. This  
improved efficiency reduces power dissipation and  
extends battery life. When the supply voltage is below the  
minimum specified input voltage (as during turn-on), the  
devices can draw up to 400µA beyond the nominal  
supply current. The input voltage source must be capable  
of providing this current to ensure reliable turn-on.  
PIN  
1
NAME  
IN  
FUNCTION  
Input Voltage  
2
OUT  
GND  
Reference Output  
Ground  
3
Applications Information  
Input Bypassing  
For the best line-transient performance, decouple the  
input with a 0.1µF ceramic capacitor as shown in the  
Typical Operating Circuit. Locate the capacitor as  
close to IN as possible. Where transient performance is  
less important, no capacitor is necessary.  
Output/Load Capacitance  
Devices in the MAX6101 family do not require an output  
capacitance for frequency stability. They are stable for  
capacitive loads from 0 to 1µF. However, in applications  
where the load or the supply can experience step  
changes, an output capacitor will reduce the amount of  
overshoot (undershoot) and improve the circuit’s  
transient response. Many applications do not require an  
external capacitor, and the MAX6101 family can offer a  
significant advantage in these applications when board  
space is critical.  
Output Voltage Hysteresis  
Output voltage hysteresis is the change of output voltage  
at T = +25°C before and after the device is cycled  
A
over its entire operating temperature range. Hysteresis  
is caused by differential package stress appearing  
across the bandgap core transistors. The typical tem-  
perature hysteresis value is 130ppm.  
10 ______________________________________________________________________________________  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
V
S
+2V  
S
V+  
V-  
V
CC  
IN  
+REF OUTPUT  
OUT  
MAX681  
GND  
MAX6101  
MAX6102  
MAX6103  
MAX6104  
MAX6105  
1M, 0.1%  
V+  
OUTPUT  
GND  
ICL7652  
V-  
1M, 0.1%  
10nF  
-2V  
S
-REF OUTPUT  
Figure 1. Positive and Negative References from Single +3V or +5V Supply  
Turn-On Time  
Chip Information  
These devices typically turn on and settle to within 0.1ꢀ  
TRANSISTOR COUNT: 117  
of their final value in 50µs to 300µs. The turn-on time can  
increase up to 1.5ms with the device operating at the  
minimum dropout voltage and the maximum load.  
Positive and Negative Low-Power  
Voltage Reference  
Figure 1 shows a typical method for developing a bipolar  
reference. The circuit uses a MAX681 voltage  
doubler/inverter charge-pump converter to power an  
ICL7652, thus creating a positive as well as a negative  
reference voltage.  
______________________________________________________________________________________ 11  
ICminer.com Electronic-Library Service CopyRight 2003  
Low-Cost, Micropower, Low-Dropout,  
High-Output-Current, SOT23 Voltage References  
Package Information  
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are  
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.  
12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600  
© 2000 Maxim Integrated Products  
Printed USA  
is a registered trademark of Maxim Integrated Products.  
Powered by ICminer.com Electronic-Library Service CopyRight 2003  

相关型号:

MAX1602

Single-Channel CardBus and PCMCIA VCC/VPP Power-Switching Network
MAXIM

MAX16020

Low-Power uP Supervisory Circuits with Battery-Backup Circuit and Chip-Enable Gating
MAXIM

MAX16020LTBL+T

暂无描述
MAXIM

MAX16020LTBM+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBR+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBS+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBT+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBW+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBY+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTBZ+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM

MAX16020LTES+

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, TQFN-16
MAXIM

MAX16020LTES+T

Power Supply Management Circuit, Fixed, 1 Channel, BICMOS, ROHS COMPLIANT, TQFN-16
MAXIM